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ABSTRACT

We employ an analytical model that incorporates both wavelength-dependent and wavelength-independent depolarization to describe
radio polarimetric observations of polarization atλλλ3.5,6.2, 20.5 cm in M51 (NGC 5194). The aim is to constrain both the regular
and turbulent magnetic field strengths in the disk and halo, modeled as a two- or three-layer magneto-ionic medium, via differential
Faraday rotation and internal Faraday dispersion, along with wavelength-independent depolarization arising from turbulent magnetic
fields. A reduced chi-squared analysis is used for the statistical comparison of predicted to observed polarization maps to determine
the best-fit magnetic field configuration at each of four radial rings spanning 2.4 − 7.2 kpc in 1.2 kpc increments. We find that a
two-layer modeling approach provides a better fit to the observations than a three-layer model, where the near and far sides of the
halo are taken to be identical, although the resulting best-fit magnetic field strengths are comparable. This implies that all of the signal
from the far halo is depolarized at these wavelengths. We finda total magnetic field in the disk of approximately 18µG and a total
magnetic field strength in the halo of∼ 4− 6 µG. Both turbulent and regular magnetic field strengths in thedisk exceed those in the
halo by a factor of a few. About half of the turbulent magneticfield in the disk is anisotropic, but in the halo all turbulence is only
isotropic.

Key words. galaxies: individual: M51 – galaxies: spiral – ISM: magnetic fields – galaxies: magnetic fields – polarization – radio
continuum: galaxies

1. Introduction

Magnetic fields are important drivers of dynamical processes in
the interstellar medium (ISM) of galaxies on both large and small
scales. They regulate the density and distribution of cosmic
rays in the ISM (Beck 2004) and couple with both charged and,
through ion-neutral collisions, neutral particles in essentially
all interstellar regions except for the densest parts of molecu-
lar clouds (Ferrière 2001). Moreover, their energy densities are
comparable to the thermal and turbulent gas energy densities on
large scales, as indicated for the spiral galaxies NGC 6946 and
M33 and for the Milky Way (Beck 2007; Tabatabaei et al. 2008;
Heiles & Haverkorn 2012), thereby affecting star formation and
the flow of gas in spiral arms and around bars (Beck 2009, 2007,
and refs. therein). In the case of the Galaxy, magnetic fields
contribute to the hydrostatic balance and stability of the ISM on
large scales, while they affect the turbulent motions of supernova
remnants and superbubbles on small scales (Ferrière 2001, and
refs. therein). Knowledge of the strength and structure of mag-
netic fields is therefore paramount to understanding ISM physics
in galaxies.

Multiwavelength radio-polarimetric observations of diffuse
synchrotron emission in conjunction with numerical modeling is
a way of probing magnetic field interactions with cosmic rays
and the diffuse ISM in galaxies. Of particular interest are the
total magnetic field and its regular and turbulent components,
as well as their respective contributions to both wavelength-

dependent and wavelength-independent depolarization in the
thin and thick gaseous disk (hereafter the disk and halo).

Physically, regular magnetic fields are produced by dynamo
action, by anisotropic random fields from compression and
shearing gas flows, and by isotropic random fields by super-
novae and other sources of turbulent gas flows. In the presence
of magnetic fields, cosmic ray electrons emit linearly polarized
synchrotron radiation. Polarization is attributable onlyto the or-
dered magnetic fields, while unpolarized synchrotron radiation
stems from disordered magnetic fields. The degree of polariza-
tion p, defined as the ratio of polarized synchrotron to total syn-
chrotron intensity, thus characterizes the magnetic field content
and may be used as an effective modeling constraint.

Except for edge-on galaxies, where the disk and halo are spa-
tially distinct in projection to the observer, disentangling contri-
butions to depolarization from the disk and halo is challenging.
In this paper, we apply the theoretical framework developedin
Shneider et al. (in press) to numerically simulate the combined
action of depolarization mechanisms in two or three consecutive
layers describing a galaxy’s disk and halo to constrain the regular
and turbulent disk and halo magnetic field strengths in a face-on
galaxy.

In particular, M51 (NGC 5194) is ideally suited to studying
such interactions for several reasons: (i) small angle of inclina-
tion (l = −20◦) permits the assumption of a multilayer decom-
position into disk and halo components along the line of sight,
(ii) high galactic latitude (b= +68.6◦) facilitates polarized signal
extraction from the total synchrotron intensity since the contribu-
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tion from the Galactic foreground is negligible at those latitudes
(Berkhuijsen et al. 1997), and (iii) proximity of 7.6 Mpc allows
for a high spatial resolution study. Besides a regular, large-scale
magnetic field component and an isotropic random, small-scale
field, the presence of an anisotropic random field component is
expected since there is no large-scale pattern in Faraday rota-
tion accompanying M51’s magnetic spiral pattern observed in
radio polarization (Fletcher et al. 2011). Additionally, M51’s
galaxy type (Sc), linear dimension, and ISM environment are
comparable with that of the Milky Way (Mao et al. 2012), (see
also Pavel & Clemens (2012) for near infrared (NIR) polarime-
try), possibly allowing for the nature of the global magnetic field
properties of our own Galaxy to be further elucidated.

2. Observational data

We use the Fletcher et al. (2011)λλλ 3.5, 6.2, 20.5 cm contin-
uum polarized and total synchrotron intensity observations of
M51, taken with the VLA and Effelsberg and smoothed with a
15′′ beam resolution, to construct degree of polarizationp maps.
The p maps are partitioned into four radial rings from 2.4− 7.2
kpc in 1.2 kpc increments with every ring further subdivided into
18 azimuthal sectors, each with an opening angle of 20◦, follow-
ing Fletcher et al. (2011). We will call these rings 1 through4
from the innermost to the outermost ring. This results in a to-
tal of 72 bins. In the outermost ring, two of the bins are ex-
cluded as the number of data points within them is too small
(less than five). For each of the remaining bins, histograms are
produced to check that the individual distributions are more or
less Rician and the mean ofp is computed with the standard de-
viation of p taken as the error. Thermal emission subtraction
was done using a constant thermal emission fraction across the
Galaxy (Fletcher et al. 2011). In this method, thermal emission
may have possibly been underestimated in the spiral arms in the
Fletcher et al. (2011) total synchrotron intensity maps, the val-
ues of p may, consequently, be overestimated in the bins that
contain the spiral arms.

3. Model

3.1. Regular field

Following Fletcher et al. (2011), we use a two dimensional regu-
lar magnetic field

∑

m Bm(r) cos(m φ − βm) for both the disk and
halo with integer mode numberm and azimuthal angle in the
galaxy planeφ, measured counterclockwise from the northern
end of the major axis along M51’s rotation. A superposition of
axisymmetric modes (m = 0, 2) describes the disk magnetic field
while mainly a bisymmetric mode (m = 1) describes the halo
magnetic field. These modes yield the individual amplitudesBm,
pitch angles1 pm andβm angles2.

1 The pitch angle of the total horizontal magnetic field is given by
arctan

(

Br/Bφ

)

per modem. Hence, sin(pm) and cos(pm) correspond
to theBr andBφ components ofB, respectively.
2 Theβ angle is the azimuth at which the correspondingm , 0 mode
is a maximum.

Table 1. Fitted Model Parameters adopted from Fletcher et al. (2011,
Table A1). Ratios of mode strengths are reported as this allows for the
magnetic field strengths to be left as a variable parameter inour model.

Ring 1 Ring 2 Ring 3 Ring 4

r [kpc] [2.4, 3.6] [3.6, 4.8] [4.8, 6.0] [6.0, 7.2]

B2/B0 −33/−46 −25/−57 −40/−76 −44/−76

p0[◦] −20 −24 −22 −18

p2[◦] −12 16 8 3

β2[◦] −8 −6 −14 −25

Bh1/Bh0 76/23 ... ... ...

ph0[◦] −43 ... ... ...

ph1[◦] −45 −49 −50 −50a

βh1[◦] 44 30 −3 −16

Notes.The indexh refers to the halo magnetic field. Dots mean that the
corresponding parameter was insignificant in the Fletcher et al. (2011)
fits and is thus not an input in our model.
(a) changed from original value of−90◦ to be in closer agreement with
the halo pitch angle value reported for inner three rings.

The regular disk and halo magnetic fields in cylindrical polar
coordinates are

Br = B0 sin(p0) + B2 sin(p2) cos(2φ − β2),

Bφ = B0 cos(p0) + B2 cos(p2) cos(2φ − β2),

Bz = 0,

Bhr = Bh0 sin(ph0) + Bh1 sin(ph1) cos(φ − βh1),

Bhφ = Bh0 cos(ph0) + Bh1 cos(ph1) cos(φ − βh1),

Bhz = 0, (1)

whereh denotes the component of the halo field. Please consult
Table 1 for the associated magnetic field parameters in Eq. (1)
and see Fig.14 of Fletcher et al. (2011) for an illustration of their
best-fit disk and halo modes. An anomalous halo pitch angle of
−90◦ for the outermost ring was deemed unphysical and prob-
ably arose owing to the low polarization degrees in this ring.
Therefore, we ignore this value and instead use−50◦, the pitch
angle in the adjacent ring.

Our model inputs only the regular magnetic fielddirections,
described by the respective modes for the disk and halo in
Eq. (1), along with the relative strengths of these modes, given
by B2/B0 andBh1/Bh0 in Table 1, while the regular disk and halo
magnetic fieldstrengths are allowed to vary.

The components of the regular magnetic field are projected
onto the sky-plane (Berkhuijsen et al. 1997) as

Bx = Br cos(φ) − Bφ sin(φ),

By =
[

Br sin(φ) + Bφ cos(φ)
]

cos(l) + Bz sin(l),

B‖ = −
[

Br sin(φ) + Bφ cos(φ)
]

sin(l) + Bz cos(l),

wherel is the inclination angle and‖ denotes a component of the
field parallel to the line of sight.
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Table 2. Model Standard Parameters. Thermal electron density (ne)
and path length (L) values are collected from Berkhuijsen et al. (1997)
and Fletcher et al. (2011). The parameterα is used to characterize
anisotropic turbulent magnetic fields and is discussed in Section 3.2.

ne [cm−3] L [pc] α

Disk Ring 1,2 0.11 800 2.0
Disk Ring 3,4 0.06 1200 2.0
Halo Ring 1,2 0.01 5000 1.5
Halo Ring 3,4 0.006 3300 1.5

3.2. Turbulent field

We explicitly introduce three-dimensional turbulent magnetic
fields with both isotropic and anisotropic components. The ran-
dom magnetic fields are expressed as the standard deviationsof
the total magnetic field and are given by

σ2
x = σ

2
r

[

cos2(φ) + α sin2(φ)
]

,

σ2
y = σ

2
r

{[

sin2(φ) + α cos2(φ)
]

cos2(l) + sin2(l)
}

,

σ2
‖ = σ

2
r

{[

sin2(φ) + α cos2(φ)
]

sin2(l) + cos2(l)
}

. (2)

Anisotropy is assumed to exclusively arise from compression
along spiral arms and by shear from differential rotation and is
assumed to have the formσ2

φ = ασ
2
r with α > 1 andσr = σz.

Isotropy is the case whenα = 1. For anisotropic disk magnetic
fields in M51,α has been measured to be 1.83 by Houde et al.
(2013) who measured the random field anisotropy in terms of the
correlation scales in the two orthogonal directions (x andy) and
not in terms of the strength of the fluctuations in the two direc-
tions, as we use. For the halo anisotropic fields,α is expected
to be less than the disk value as a result of weaker spiral density
waves and differential rotation in the halo. In our model, the disk
and halo anisotropic factors are fixed to 2.0 and 1.5, respectively,
and are reported in Table 2. Root mean square (rms) values are
used for individual components of the turbulent magnetic field
strengths in the disk or halo by normalizing the square isotropic
σ2

I or anisotropicσ2
A field strength asσ2

r = σ2
I /3 for isotropy

andσ2
r = σ

2
A/(2 + α) for anisotropy in Eq. (2).

3.3. Densities

The thermal electron density (ne) is assumed to be a constant at
each of the four radial rings and about an order of magnitude
smaller in the halo than in the disk. Table 2 displays these values
along with the respective path lengths through the (flaring)disk
and halo. The cosmic ray density (ncr) is assumed to be a global
constant throughout the entire galaxy whose actual value isnot
significant as it cancels out upon computingp. Synchrotron
emissivity is described asε = cB2

⊥ with constantc = 0.1.

3.4. Depolarization

We model the wavelength-dependent depolarization mecha-
nisms of differential Faraday rotation (DFR) and internal Fara-
day dispersion (IFD) concomitantly to account for the presence
of regular and turbulent magnetic fields in a given layer together
with wavelength-independent depolarization. The combined
wavelength-dependent and wavelength-independent depolariza-
tion for a two-layer system and three-layer system, with identi-

cal far and near sides of the halo, are given by (Shneider et al.
in press)
(

p
p0

)

2layer

=

{

W2
d

( Id

I

)2












1− 2e−Ωd cosCd + e−2Ωd

Ω2
d + C2

d













+W2
h

( Ih

I

)2












1− 2e−Ωh cosCh + e−2Ωh

Ω2
h +C2

h













+WdWh
IdIh

I2

2
F2 +G2

[

{F,G} (2∆ψdh +Ch)

+ e−(Ωd +Ωh) {F,G} (2∆ψdh +Cd)

− e−Ωd {F,G} (2∆ψdh +Cd + Ch)

− e−Ωh {F,G} (2∆ψdh)

]}1/2

, (3)

and
(

p
p0

)

3layer

=

(

2W2
h

( Ih

I

)2 {












1

Ω2
h +C2

h













×

(

1− 2e−Ωh cosD + e−2Ωh
) [

1+ cos(Cd +Ch)
]

}

+W2
d

( Id

I

)2












1− 2e−Ωd cosC + e−2Ωd

Ω2
d +C2

d













+WdWh
IdIh

I2

2
F2 +G2

{

{F,−G} (−2∆ψdh +Cd)

+ {F,G} (2∆ψdh +Ch)

+ e−(Ωd +Ωh)
[

{F,G} (2∆ψdh +Cd) + {F,−G} (−2∆ψdh +Ch)
]

− e−Ωd
[

{F,G} (2∆ψdh +Cd +Ch) + {F,−G} (−2∆ψdh)
]

− e−Ωh
[

{F,−G} (−2∆ψdh +Cd + Ch) + {F,G} (2∆ψdh)
]

})1/2

,

(4)

where p0 is the intrinsic degree of linear polarization of syn-
chrotron radiation,{d, h} denote the disk and halo,Ωd =

2σ2
RMd

λ4, Ωh = 2σ2
RMh

λ4, Cd = 2Rdλ
2, Ch = 2Rhλ

2, F =
ΩdΩh + CdCh, G = ΩhCd − ΩdCh.

In Eqs. (3) and (4), the per-layer total synchrotron emission
Ii, the total Faraday depthRi, the dispersion of the intrinsic RM
within the volume of the telescope beamσRMi , along with the
wavelength-independent depolarizing termsWi are respectively
given as

Ii = εi Li,

Ri = 0.81nei B‖i Li,

σRMi = 0.81 〈nei〉 b‖i (Li di)
1/2 , (5)

Wi =



































[

(

B
2
x − B

2
y + σ

2
x − σ

2
y

)2
+ 4B

2
xB

2
y

]1/2

B2
⊥



































i

, (6)

whereεi is the synchrotron emissivity,Ii is the synchrotron in-

tensity, Li is the path length (pc), along withB
2
⊥ = B

2
x + B

2
y

andB2
⊥ = B

2
⊥ + σ2

x + σ2
y . The form ofWi in Eq. (6) implic-

itly assumes that emissivity scales withε ∝ B2
⊥ corresponding
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to a synchrotron spectral index of -1. Isotropic expressions for
the intrinsic polarization angle and for wavelength-independent
depolarization are obtained by settingσx = σy. The opera-
tion {F,G} (a) is defined as{F,G} (a) = F cos(a) − G sin(a).
∆ψdh = 〈ψ0d〉 − 〈ψ0h〉 is the difference in the projected intrin-
sic polarization angles of the disk and halo with the respective
angles given by (Sokoloff et al. 1998, 1999) as

〈ψ0i〉 =
π
2 − arctan

[

cos(l) tan(φ)
]

+ 1
2 arctan



















2BxBy

B
2
x − B

2
y + σ

2
x − σ

2
y



















i

.

(7)

Expectation values denoted by〈. . .〉 arise whenever turbulent
magnetic fields are present. Only the last term of Eq. (7) remains
upon taking the difference.

In our use of Eq. (5) to describe both isotropic and
anisotropic random fields we implicitly treatσRM as a global
constant, independent of the observer’s viewing angle as for a
purely isotropic random field. Moreover, the diameter of a tur-
bulent celldi in the disk or halo, as it appears in Eq. (5), is ap-
proximately given by (Fletcher et al. 2011)

di ≃

[

DσRM,D

0.81 〈nei〉 b‖i (Li)1/2

]2/3

, (8)

with σRM,D denoting the RM dispersion observed within a tele-
scope beam of a linear diameterD = 600 pc. σRM,D has been
fixed to the observed value of 15 rad m−2 (Fletcher et al. 2011).

4. Procedure

We use various magnetic field configurations of isotropic turbu-
lent and/or anisotropic turbulent fields in the disk and halo with
the requirement that there be at least a turbulent magnetic field
in the disk following Fletcher et al. (2011) observations. We also
model wavelength-independent depolarization directly viaWi in
Eq. (6) instead of approximating it with the value ofp at the
shortest wavelength. Consequently, these turbulent configura-
tions, given in Table 3, span 12 of the 17 model types listed in
Shneider et al. (in press, upper panel of Table 2) and are illus-
trated in their Figs. 2 and 3 for an example bin with a particular
choice of magnetic field strengths. These configurations may
also be viewed in terms of two distinct groups characterizedby
the presence or absence of a turbulent magnetic field in the halo.

The isotropic and anisotropic turbulent magnetic field
strengths in the disk and halo are each sampled from
[0, 2, 5, 8, 10, 15,20, 25, 30]µG in line with M51 observations of
having a 10µG isotropic and a 10µG anisotropic turbulent field
in the disk (Houde et al. 2013). We assume that the total turbu-
lent field strength in the halo is less than or equal to that in the
disk. For each of these turbulent magnetic field configurations,
we allow the regular magnetic fields in the disk and halo to sep-
arately vary in the ranges of 0− 50µG in steps of 0.1µG.

We apply a reduced chi-square statistic to discern a best-
fit magnetic field configuration for each of the four ra-
dial rings, independently, at the three observing wavelengths
λλλ 3.5, 6.2, 20.5 cm. The reduced chi-square statistic is given
by

χ2
red =

χ2

N
=

1
N

∑

bins ∈ ring

(pobs − pmod) 2

σ2
,

where pobs and pmod are the observed and modeledp values
given in Eqs. (3) and (4),σ is the standard deviation of the

Table 3.Model settings for a two- or three-layer system based on regu-
lar and turbulent magnetic field configurations in the disk and halo.

Disk Halo

Reg. Iso. Aniso. Reg. Iso. Aniso.
DIH X X X

DAH X X X

DAIH X X X X

DIHI X X X X

DIHA X X X X

DAHI X X X X

DAHA X X X X

DIHAI X X X X X

DAHAI X X X X X

DAIHI X X X X X

DAIHA X X X X X

DAIHAI X X X X X X

Notes. The three column headings below the principle headings of
the ‘Disk’ and ‘Halo’ denote the regular, isotropic turbulent, and
anisotropic turbulent magnetic fields. The rows contain a listing of all
model types simulated with the following nomenclature: ‘D’and ‘H’
denote disk and halo magnetic fields, respectively, ‘I’ and ‘A’ are the
isotropic and anisotropic turbulent magnetic fields.

measuredp values per bin in a given ring, and the sum is
taken over all bins comprising a given ring.N is the num-
ber of degrees of freedom given by(# observing wavelengths) ×
(# bins in a ring) − (# independent parameters), with the num-
ber of independent parameters being the variable disk and halo
regular magnetic field strengths and, hence, always two, fora
fixed input of turbulent magnetic fields describing a particular
configuration.

For each turbulent magnetic field configuration sampled, the
best-fit combination of total disk and halo regular magneticfield
strengths corresponding to the lowestχ2

red value are found and
a range ofχ2

red contours are plotted in order to examine theχ2
red

landscape. Repeating this procedure allows for a global mini-
mumχ2

red value to be obtained for each of the rings.

χ2
red values larger than one are accepted in order to establish

a trend in turbulent magnetic field configurations and strengths.
To test whether the admission of these higherχ2

red values yield
regular disk and halo magnetic field configurations that are sta-
tistically consistent for each ring, we use a generalization error
approach (bootstrap technique) which is independent of theχ2

red
statistic. This approach stipulates to approximately retain 70%
of the data while discarding around 30% of the data at random,
for each independent trial run, and to check the resulting fits
again. In this way, the stability of the lowestχ2

red contours for
a particular configuration is tested. Following 50 such indepen-
dent trial runs for each of the globalχ2

red minimum found per
ring reveals that all such lowestχ2

red contours arestable for both
a two-layer model and (quasi) stable for a three-layer model.

We examine a smaller subset of the turbulent field configu-
rations for a three-layer model making sure to examine config-
urations that are both good and poor fits for the corresponding
two-layer system.
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Fig. 1. (a)-(d) Contours of equal reduced chi-square values for regular magnetic field strengthsB in disk and halo in a two-layer model for each
of the four rings. The best-fit DAIHI model, denoted by⋆, is composed of regular, isotropic turbulent and anisotropic turbulent disk and halo
magnetic fields with respective minimum reduced chi-square(χ2

min) values and field strengths presented in Table 4. The dashed,solid, and dotted
contours represent 10,50, and 100 percent increases in theχ2

min value, respectively.

Table 4.Two-layer best-fit DAIHI model magnetic field strengths. Val-
ues in parenthesis correspond to the alternative best-fit model adopted
for ring 2.

Ring 1 Ring 2 Ring 3 Ring 4

Disk

Iso.[µG] 10 10 10 10
Aniso.[µG] 5 10 10 10
Reg.[µG] 8.8+4

−7 0.0+13
−0 (12.4+5

−4) 10.6± 3 12.8+5
−4

d[pc] 47 40 52 52

Halo

Iso.[µG] 5 10 (2) 2 2
Aniso.[µG] 0 0 0 0
Reg.[µG] 3.8± 1 7.6± 2 (1.5± 1.5) 2.5± 1 3.3+2

−3
d[pc] 215 135 (395) 638 638

χ2
min 1.2 2.4 (3.1) 2.1 3.0

5. Results

5.1. Two-layer model

The turbulent magnetic field strengths which correspond to the
best-fit two-layer model per ring are presented in Table 4 to-

0 5 10 15 20

B disk (µG)
0

5

10

B
 h

al
o 

(µ
G)

Two- layer χ 2
red contours ring 2

Fig. 2. Contours of constantχ2
min for values of regular field in the disk

and halo for ring 2 with a deviating value for the isotropic turbulent
field corresponding to the alternative best-fit model adopted, see text.
Symbols are the same as used in Fig. 1.

gether with the best-fit regular disk and halo field strengthsat-
tained from the reduced chi-squared analysis. Errors reported
for these respective regular field strengths are based on thesolid
contour in Fig. 1 which represents a 50% increase in theχ2

min
value.χ2

min is the minimumχ2
red value corresponding to the best-
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Fig. 3. Predicted magnetic field strengths (µG) with radial distance
(kpc) from M51. The best-fit two-layer model configuration consisting
of an isotropic turbulent (‘Iso.’), anisotropic turbulent(‘Aniso.’), and
regular (‘Reg.’) magnetic field strengths in the disk (a) andhalo (b) is
shown per ring.

fit disk and halo magnetic field configuration composed of regu-
lar, isotropic turbulent, and anisotropic turbulent magnetic fields.

Figure 1 and Table 4 clearly indicate that the best-fit mag-
netic field values in ring 2 deviate from the trend in the other
three rings, especiallyBreg in the disk andBiso in the halo. To
test how significant this deviation from the other rings is, we
calculated a best-fit model with magnetic field values consistent
with the other rings and checked how much theχ2

red increased.
InsertingBiso = 2 µG in the halo for ring 2, results in a minimum
χ2

red = 3.1 for best-fit regular field values of 12.4 µG and 1.5 µG
in the disk and halo, respectively (see Fig. 2). Consideringthe
uncertainties in the model, an increase inχ2

min from 2.4 to 3.1 is
not believed to be a significant difference in ring 2. We conclude
that these field values are equally plausible and choose to adopt
them as the best-fit model, making all magnetic field values in
all rings roughly consistent. Fig. 3 illustrates these regular and
turbulent magnetic field values for the two-layer best-fit models.

Global conclusions to be drawn from these magnetic field
values are:

– The total magnetic field strength in the disk is about
Btot,disk ≈ 18 µG, while the total magnetic field strength in
the halo is aboutBtot,halo ≈ 4− 6 µG;

– Both regular and turbulent magnetic field strengths in the
disk are a few times higher than those in the halo;

– There is a significant anisotropic turbulent field component
in the disk, but not in the halo;

– Within the errors, none of the magnetic field strengths shows
a clear trend as a function of galactocentric radius. A pos-
sible exception here is a slightly stronger (isotropic) random
magnetic field strength in the inner halo.

The lowerχ2
min value and more sensitiveχ2

red range in ring
1 suggest that the regular and turbulent magnetic fields may be
best fit in ring 1 of the two-layer model. This may arise from
different magnetic field strengths and thermal electron densities
between arm and interarm regions. Ring 1 contains mostly spi-
ral arms, while rings 2 - 4 trace both arm and interarm regions
which makes a single fit for magnetic field strengths in the entire
ring less of a good fit. Aπ-periodic modulation is apparent in the
best-fit polarization profiles of all rings in Fig. 4, indicating de-
polarization caused by the regular, mostly azimuthal, magnetic
field component. It can also be clearly seen that smaller errors
in the observedp/p0 decrease the width of the shaded gray cor-
ridor.

A model with only regular fields does not yield any good
fits as expected on physical and observational grounds. A one-
layer model is excluded by our modeling as a non-zero regu-
lar magnetic field in the halo is predicted by all magnetic field
configurations sampled. This is consistent with the expecta-
tion of two separate Faraday rotating layers (Berkhuijsen et al.
1997; Fletcher et al. 2011). We also consider observations of
M51 at 610 MHz which show thatp/p0 < 1% in spiral arms
(Farnes et al. 2013). Applying the criterion thatp/p0 < 1% in
the bins that contain the spiral arms in each ring, results inthe
exclusion of all field configurations which do not have a turbu-
lent magnetic field in the halo. This also automatically rejects a
one-layer model.

5.2. Three-layer model

For a three-layer model, with identical near and far sides ofthe
halo, theχ2

red landscape consists of an archipelago of minimum
χ2

red values as shown in Fig. 5. If a minimumχ2
red were to be

taken as representative of a global minimum, then, for the pur-
poses of comparison with the two-layer model, we present the
best-fit three-layer model results per ring in Table 5. The three-
layer best-fit models are poorer fits to the polarization observa-
tions than the two-layer models owing to the higherχ2

min in the
innermost pair of rings and the outermost ring. Both three- and
two-layer models favor the absence of an anisotropic turbulent
halo field in all rings. Summarizing, the three-layer modelsre-
sult in roughly the same magnetic field values as the two-layer
models.

5.3. Robustness of results

The stability of the lowestχ2
red contours for the two-layer models

and the (quasi) stability of such contours for the three-layer mod-
els, following the bootstrap technique discussed in Section 4,
gives confidence as to the robustness of the results. In addition,
the elongated shape of theχ2

red contours in both these figures in-
dicates that the halo is more sensitive to variation in its regular
field value and is therefore a stronger depolarizing region than
the disk. The models also yieldχ2

red contours for the innermost
and outermost pair of rings which are morphologically similar
among themselves. Morphological similarity between the rings
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Fig. 4. Normalized polarization degreep/p0 as a function of azimuthal angle for observing wavelength ofλλλ3.5,6.2, 20.5 cm for each of the
four rings for a two-layer model. Columns provide the polarization profiles per ring at a fixed observing wavelength whilerows provide polarization
profiles at all three observing wavelengths at a fixed ring. 0◦ corresponds to the North major axis of M51 with sectors counted counterclockwise.
The solid black points correspond to the predicted polarization value, at each azimuth, from the best-fit magnetic field strengths. The shaded gray
region corresponds to the range of polarization values predicted by all regular disk and halo magnetic field configurations encompassed by the
solid, 1.5 ∗ χ2

min contour in Fig. 1 for rings 1,3,4 and in Fig. 2 for ring 2. The turbulent magnetic fields are the same as described in Table 4. The
following sectors have been discarded as they are outliers (see text): sector at 60◦ for the inner two rings, and sectors at 220◦, 300◦, and 320◦ in
the outermost ring.

constituting each pair may be expected based on the physicalpa-
rameters of thermal electron density and path length being equal
for each pair as listed in Table 2.

An area of very strong polarized intensity observed at
λλ 3.5, 6.2 cm in Fletcher et al. (2011, Fig. 2) coincides with the
ring 1 sectors at 300◦ and 320◦ and plausibly accounts for the
underestimatedp values at those locations at all observing wave-
lengths. Moreover, the ring 1 and ring 2 bins at 60◦ along with
the ring 4 bin at 320◦ are outliers as a result of an area of sparse
data in the same maps and are consequently discarded. The re-
sults shown in Tables 4, 5 are obtained from the outlier free data.

Using the innermost ring which traces the data the closest,
our models allow considerable variation in the turbulent mag-
netic field values in the disk, while magnetic field values in the
halo are tightly constrained. In particular, replacing thebest-fit
ring 1 configuration in Table 4 with isotropic and anisotropic
turbulent disk fields of 20µG each, while retaining the 5µG
isotropic turbulent halo field, results in less than a 20% increase
in χ2

min whereas only changing the isotropic turbulent halo field
to 10µG, while keeping the isotropic and anisotropic turbulent
disk fields at 10µG and 5µG, respectively, results in more than a
25% increase inχ2

min. Correspondingly, total turbulent field val-
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Fig. 5. (a)-(d) Same as in Fig. 1 but now for a three-layer DAIHI model.

Table 5.Three-layer best-fit DAIHI model magnetic field strengths.

Ring 1 Ring 2 Ring 3 Ring 4

Disk

Iso.[µG] 10 10 10 10
Aniso.[µG] 10 10 10 5
Reg.[µG]a 1.8+10

−2 0.0+10
−0 2.2+17

−3 10.9+16
−11

d[pc] 40 40 52 61

Halo

Iso.[µG] 5 8 10 8
Aniso.[µG] 0 0 0 0
Reg.[µG]a 3.6± 1 5.3+2

−1 6.8+3
−5 6.8+4

−7
d[pc] 215 157 218 253

χ2
min 3.0 3.6 2.1 3.6

Notes. (a) A value of 0µG is to be used for the lower regular field
strength bound when the lower error bound exceeds the actualregular
field value.

ues of up to 30µG are allowed in the disk. However, Houde et al.
(2013) report an observed value of the total turbulent disk field
of 15µG in M51, so that any models with a total turbulent field
greater than 15µG are excluded observationally. Finally, the
regular disk and halo field strengths vary only slightly for all
allowed values of turbulent disk and halo fields, indicatingthat
they are robust for all rings.

6. Discussion

The picture that emerges is the following: in the disk, magnetic
field strengths areBreg ≈ 10 µG andBturb ≈ 11− 14µG, where
Bturb includes both the isotropic and anisotropic random com-
ponents. In the halo,Breg ≈ 3 µG andBturb is about equal to
Breg and consists only of an isotropic component; there is no
anisotropic random field in the halo. If anisotropy in magnetic
field fluctuations is caused mostly by the strong density waves
in M51 and shearing flow, the anisotropy would indeed mostly
or exclusively occur in the disk. The regular and total magnetic
field strengths in the disk are in agreement with equipartition
values ofBreg ≈ 8− 13µG andBtot ≈ 15− 25µG as calculated
by Fletcher et al. (2011).

In the halo, maximum cell sizes of the turbulence appear to
increase towards the outer part of the galaxy (for a two-layer
model), whereas the turbulent cell sizes in the disk are approxi-
mately equal. The smaller the turbulent field strength, the larger
the turbulent cell size for the representative RM dispersion as
given by Eq. (8). If the turbulent cell size in the halo were equal
for the inner and outer parts of the galaxy, the RM dispersion
would decrease towards the outer part of the galaxy, for the val-
ues of turbulent magnetic field resulting from the model, which
is not observed. However, the cell size in the halo is uncertain
since Eq. (8) is only valid ford ≪ D andd ≪ L, which might
not be the case in the halo.

The field strengths we find are broadly consistent with ear-
lier studies. Berkhuijsen et al. (1997) discussed the magnetic
fields in M51 in terms of separate disk and halo for the first
time. They found a slightly lower regular magnetic field in
the diskBreg,disk ≈ 7 µG, constant across the disk. Their (as-
sumed isotropic) turbulent field strength is comparable to our
results; they show that for even larger galactocentric radii out
to 15 kpc, this turbulent magnetic field is expected to decrease
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to ∼ 9 µG. Fletcher et al. (2011) finds regular magnetic field
strengths in both the disk and halo between roughly 1− 4µG
with a slight increasing trend in disk regular field strengthwith
radius. They ascribed these anomalously low values to ignoring
anisotropic random fields in the equipartition estimate forthe
regular field strength. There is still an anomaly in the estimated
regular field strengths though since the polarization angleand
RM give 1− 4µG while depolarization and equipartition both
give 10µG field strengths. Possible explanations include ignor-
ing the (unknown) filling factor of the thermal electrons in the
RM based estimate, correlations in the line-of-sight distributions
of B‖ andne, and equipartition not holding.

The resulting magnetic field strengths in the two-layer mod-
els and the three-layer models are in agreement. In fact, if the
best-fit turbulent magnetic field configurations for all rings for
the two-layer model were to be used for a three-layer model,
then the resulting best-fit regular disk and halo fields wouldstill
be described by the three-layer model within the stated error.
This implies that all of the signal is depolarized from the far side
of the halo, at all wavelengths. Our models therefore confirmthe
conclusions from Horellou et al. (1992) and Berkhuijsen et al.
(1997) based on Faraday rotation and polarization angle mea-
surements. Analyzing polarization data of 21 nearby galaxies
from the WSRT SINGS survey (Heald et al. 2009), Braun et al.
(2010) concluded from RM Synthesis that M51 shows polar-
ized intensity at Faraday depthsφ ≈ +13 rad m−2, coming from
a region of emissivity located just above the midplane. They
also measured Faraday depth components of about−180 and
200 rad m−2, interpreted as emission from the far side of the mid-
plane, which is highly Faraday rotated because of its propagation
through the midplane. The positive and negative Faraday depth
components roughly coincide to the hemispheres of the disk
where the an azimuthal magnetic field would point towards or
away from the observer. The high Faraday depth components are
consistent with our model, assuming the path length and electron
density as in Table 2 andB‖ = 10 sin(l) µG. The turbulent cell
sizes found for the disk agree with the values in (Fletcher etal.
2011; Houde et al. 2013) and the turbulent cell sizes in the halo
are characteristic of the typical cell size expected for spiral
galaxies of between 100− 1000 pc (Sokoloff et al. 1998).

The expected total magnetic field strength may also be
estimated from the interdependence of the magnetic field
strength, gas density, and star formation rate (SFR) as suggested
by the far-infrared - radio correlation (Niklas & Beck 1997).
Schleicher & Beck (2013) demonstrated that the observed re-
lation between star formation rate and magnetic field strength
arises as a result of turbulent magnetic field amplification by tur-
bulent dynamo action, with turbulence driven by supernova (SN)
explosions. The expression they derived, applied at a redshift
z = 0, is given by

Btot ∼
√

fsat8π ρ
1/6
0 ( fmasǫ ESN)1/3 Σ

1/3
SFR, (9)

whereρ0 ∼ 10−24 g cm−3 is the typical ISM density,ΣSFR ∼

0.1 M⊙ kpc−2 yr−1 is a reference SFR per unit area,fsat ∼ 5% is
the expected saturation level for supersonic turbulence orfrac-
tion of the turbulent energy averaged over timescales of∼ 100
Myr, fmas∼ (8%/M⊙) is the mass fraction of stars yielding core-
collapse SNs,ǫ ∼ 5% is the fraction of SN energy converted
to turbulence, andESN ∼ 1051 erg is the typical energy released
by an SN. TheBtot ∝ Σ

1/3
SFR scaling of Schleicher & Beck (2013)

is comparable with the observed relation between equipartition
magnetic field strength and star formation rate for spiral galaxies
by Niklas & Beck (1997). We takeΣSFR = 0.012M⊙ kpc−2 yr−1

for M51, adopted from Table 3 of Tabatabaei et al. (2013), which
gives a total magnetic field strengthBtot ∼ 10µG via Eq. (9), as
an order of magnitude estimate. Considering the roughness of
the estimates of the parameter values in Eq. (9),Btot ∼ 10µG in
the disk is consistent with our results.

7. Conclusion

We have shown that it is possible to use our analytical depolar-
ization models with radio polarimetric observations, consisting
of only three observing wavelengths atλλλ 3.5, 6.2, 20.5 cm, as-
sisted by the criterion found from the 610 MHz M51 data by
Farnes et al. (2013), to constrain both regular and turbulent mag-
netic field strengths in M51. By numerically simulating differ-
ential Faraday rotation (DFR) and internal Faraday dispersion
(IFD) as the main wavelength-dependent depolarization mech-
anisms along with the contribution of isotropic and anisotropic
turbulent magnetic fields to wavelength-independent depolariza-
tion, we have arrived at estimates for both regular and turbulent
magnetic field strengths in the disk and halo consistent withlit-
erature, as shown in Table 4.

This agreement with earlier studies gives confidence that
these models are realistic. However, our model is more so-
phisticated than earlier work since it directly simulates the
wavelength-dependent depolarizing mechanisms of DFR and
IFD thanks to the presence of both regular and random magnetic
fields. Previous models (Berkhuijsen et al. 1997; Fletcher et al.
2011) did not include synchrotron emission from the halo, relied
primarily on rotation measure (RM) measurements, and did not
model the actual contribution of isotropic and anisotropicturbu-
lent magnetic fields to wavelength-independent depolarization.

We find that anisotropic turbulent magnetic field strengths in
the disk of M51 are comparable to isotropic turbulent field and
regular field strengths (B ≈ 10 µG). However, no anisotropic
turbulent field is detected in the halo, where the isotropic field is
B ≈ 2 µG, comparable to the regular field strength in the halo.

Comparison of disk-halo models including and excluding a
(depolarizing) halo at the far side shows that the far side halo is
mostly depolarized at our radio wavelengths, making a two-layer
model of disk and near side halo a good approximation.

These models show that even with observational data at only
three wavelengths, useful results on magnetic field strengths and
configurations can be obtained. Current observational capabil-
ities of broadband radio polarimetry would allow the data to
be constrained to a greater extent. This would make it possi-
ble not only to better determine whether a two-layer or three-
layer modeling approach is best suited for describing the data
but also to have tighter estimates for the regular and (isotropic
and anisotropic) turbulent field strengths in the disk and halo.

Recent studies by Tabatabaei et al. (2013) and Heesen et al.
(2014) have observationally revealed local correlations between
the mean and turbulent magnetic field components with the star
formation rate with a theoretical motivation for such scenarios
recently provided by Schleicher & Beck (2013). Future investi-
gations, in conjunction with tests of models for magnetic field
amplification by dynamo action, would, therefore, focus on the
dynamical physical quantities that give rise to the field structure
found in this work. Valuable for this purpose would be spectro-
scopic data from Hα and far-infrared to probe the star formation
rate, HI and H2 for estimating gas density, and HI line emission
for determination of rotational and turbulent velocity.
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