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Abstract. From the combined data of 1990 and 1991 of 
the DELPHI experiment at LEP, 13057 4-jet events are 
obtained and used for determining the contribution of 
the triple-gluon vertex. The relevant variables are the gen- 
eralized Nachtmann Reiter angle 0* R and the opening 
angle of the two least energetic jets. A fit to their two- 
dimensional distribution yields 

CA/CF=2.12+0.35 and Nc/NA=0.46+_O.19, 

where C4/Cr is the ratio of the coupling strength of the 
triple-gluon vertex to that of gluon bremsstrahlung from 
quarks, and N c / N  A, the ratio of the number of quark 
colours to the number of gluons. 

This constitutes a convincing model-independent proof 
of the existence of the triple-gluon vertex, since its con- 
tribution is directly proportional to CA/CF. The results 
are in agreement with the values expected from QCD: 
CA/C F =2.25, and N c / N  A = 3/8. 

1 Introduction 

An essential feature of Quantum Chromodynamics 
(QCD) is the self-coupling o.f the gluons due to their 
colour charges. The 'triple-gluon vertex' is a direct con- 
sequence of the non-Abelian nature of this gauge theory. 
The large two-jet rate for medium jet energies at hadron 
colliders can be considered as evidence for gluon-gluon 
scattering [1 ], if one accepts the extrapolation of the gluon 
structure function of the proton from deep-inelastic vN- 
scattering to collider energies. A colourless gluon would 
lead to the reaction Y--*2 jets [2] which is not observed 
[3]. In e+e - annihilation the energy dependence [4] of 
the strong coupling constant es, where the triple gluon 
vertex enters through loop corrections, constitutes further 
indirect evidence. Direct evidence can be obtained from 
the study of 4-jets events in e+e - annihilation, as in 4- 
patton final states the triple-gluon vertex contributes to 
the Born diagrams. 

Several observables have been proposed [5-8] to test 
the presence of the triple-gluon vertex experimentally. In 
the study of the angular distributions of 4-jet events, 
several collaborations [10-13] have published evidence 
against a QED-like Abelian theory [5, 14] of the strong 
interaction in which the gluon is colourless but the three- 

fold colour of the quarks is retained. The Abelian theory 
is disproved by its much higher secondary q~-production, 
since the distributions considered distinguish well be- 
tween the contribution from secondary quark-antiquark 
production (Fig. lb) and that from two gluons (Fig. la, c), 
due to their different helicity structures. More generally 
two experiments [11, 13] have provided limits on the rel- 
ative contribution from secondary q~-production. How- 
ever, these results do not give evidence for the existence 
of the triple-gluon vertex since the one-dimensional an- 
gular distributions studied do not distinguish between the 
contribution from the triple-gluon vertex (Fig. lc) and 
double-bremsstrahlung (Fig. la). 

In a previous analysis of 4-jet events [15] two-dimen- 
sional distributions have been studied. As in the other 
publications the generalized Nachtmann-Reiter angle 
0*R (Fig. 2) [9] has been used since it distinguishes be- 
tween two-gluon final states and secondary q~-produc- 
tion. It is defined as the angle between ( P l -  P2) and 
(P3 - P4), where the Pi are the 3-momenta of the four jets 
in decreasing energy order. The additional observable, 
the angle between the two least energetic jets e34 (Fig. 2), 
distinguishes between triple-gluon vertex and double- 
bremsstrahlung. The contribution from the triple-gluon 
vertex may be determined directly from the two-dimen- 
sional distribution of these observables. 

The initial analysis suffered from the limited statistics 
of the full simulation of the detector. This induced a bias 

g 

(a) 

(b)  (c) 
Fig. la-e .  Diagrams that yield 4-parton final states, a Double- 
bremsstrahlung; b Secondary q~ production; c Triple-gluon "r 
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~ s  -~ |-- p y . . . . .  P P2 
/ . - "  

P4 ,.-" 

P3 "2,, P3-P4 

Fig. 2. Definitions of the generalised Nachtmann-Reiter angle 
0"~ in terms of the jet momentum vectors pj, and of the angle ~34 
used in this analysis to distinguish the triple-gluon vertex contri- 
bution from that due to double-bremsstrahlung (The index j in- 
creases with decreasing jet energy) 

in the result, due to the lack of smoothness in the ref- 
erence distributions for the different 4-parton final states. 
This bias was estimated and corrected for, but was an 
additional source of uncertainty. In the present paper the 
analysis is extended to all data of 1990 and 1991. Only 
tracks from charged particles are used. Smooth reference 
distributions were produced by generating very large event 
samples. Full simulation of the DELPHI detector is 
needed only for an overall correction of detector effects. 

2 Theoretical basis 

The triple-gluon vertex in e+e - annihilation appears in 
terms which are second order and higher in the strong 
coupling constant. The principal second order contri- 
butions to the 4-patton final states are: double-brems- 
strahlung, triple-gluon vertex and secondary q0-produc- 
tion. The diagrams are shown in Fig. 1. Thus testing the 
triple-gluon vertex requires a study of 4-jet events. With 
the four jets ordered according to energy, jet 3 and jet 4 
correspond preferentially to the secondary partons. 

The fundamental couplings are illustrated in Fig. 3. 
The Casimir factors CF, CA, TF are respectively a meas- 
ure the coupling strengths of gluon radiation from quarks, 
of the triple-gluon vertex, and of gluon splitting into a 
quark-antiquark pair. For any representation of a gauge 
group describing these couplings, they are determined in 
terms of its generators t2b and its structure constants f ~ "  
by the relations (the notation of Hebbeker [16] is used): 

t;b t;~ = 5a~ Ce , where: 

fr~t fr~ = 5t, CA, a, b .... = 1 ..... N c quark color index, 

trb t~a = 5r~ TF, r, s .... = 1,..., N A gluon color index, 

and repeated indices are to be summed. 
The ratio of the coupling strength T F for g~q?l  to 

C F for q ~ q g  is then given by [17]: 

T~/C,~ =Nc/NA. 

The interference terms contain combinations of these ba- 
sic couplings and this leads to more complicated graphs 

(b) 

i 
_U J a 

",,,j 
2 

C F 

a<i 2 

(c) 
2 

Fig. 3a-c. Casimir factors for the fundamental couplings. Diagrams 
a and e have the same topology; the coupling strengths are related 
to the numbers of quark colours N c and gluons N A by TF/Ce= 
Nc/WA 

for the transition probabilities. The graphs can be grouped 
as simple planar ones and the more complicated non- 
planar graphs where particle lines cross. Ellis et al. [18] 
have calculated the differential cross sections for the pro- 
duction of the 4-parton final states in order e~. In Figs. 6 
and 8 of their paper, all topologically distinct graphs for 
the transition probabilities are shown. Second order ma- 
trix elements (ME method) should provide a more reli- 
able representation of hard jets for the analysis of the 
triple-gluon vertex than the patton shower models (PS) 
(see Bengtsson [19]. T h e t w o  approaches are also dis- 
cussed by Bethke et al. [20]). For the q~gg final state 
there are 36 contributions which can be grouped into 
three classes: 

A: planar double-bremsstrahlung graphs with weight 

B: non-planar double-bremsstrahlung graphs with weight 
C (CF--�89 
C: graphs involving the triple-gluon vertex with weight 
cFcA. 

Similarity the 36 contributions for q~q(7 fall into the clas- 
ses" 

D: planar graphs with weight C e T R ; 
E: non-planar graphs with weight Cr (CF--~ CA); 
F : graphs with weight Ce, which give contributions only 
if the charge of the partons is determined experimentally 
and are therefore not relevant to this analysis. 

T R and T F are related by 

TR = T F n  f ,  

where nf is the number of active quark flavours. 

The variable N c originally appearing in these expres- 
sions has been replaced by C a , as the really relevant 
coupling is that for the triple-gluon vertex [17]. In 
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S U ( N c )  gauge theory and in particular in QCD, the 
quantities C A and N c are equal. In other gauge groups 
however the differnt physical meaning of these factors 
results in different numerical values. 

The differential cross section for 4-jet production in 
e + e -  annihilation can be written in the form: 

(74 (Yij ) = ff qflgg (Yzj ) + a q~q~ (Y i j  ) " 

Here y ~ j = m ~ / s  ( i , j =  1 .... ,4), and denote the effective 

masses squared for any pair of  jets (partons); and 

1 CA ) FB(yij ) 
a q # g g = a ~  1 2 C F 

+~CA Fc (Y~j)] 

Oq q = o 1 2 , 

where o- o is the zeroth order 2-parton cross section given 
with the quark charges e k by 

4zc~ 2 ~f 
a o :  ~ - s  N c ~, e~. 

k=l  

The analytic form of the kinematical functions F A .. . . .  F e 
can be derived from the formulae in [18]. For  QCD the 
fermionic Casimir operator is Cr _ 4  - x ,  the coupling 
strength of  the triple-gluon vertex C~ = 3 and TF = �89 For  
the Abelian theory the values are C F = 1, C a = O, T F = 3 
and for QED CF = 1, CA=O, T y = 1. The values for 
N c / N  A and C a / C  F in other gauge groups are given in 

Table  I. Expectation for the observables in different gauge theories. 
The quarks are assumed to be in the fundamental representation 
and the gluons in the adjoint representation, except for the lines 
marked with �9 where the quarks are in the next higher represen- 
tation of this gauge group. N c / N A  = ratio of quark colours to num- 
ber of gluons. C a /NF = ratio of coupling strength of triple-gluon 
vertex to gluon-bremsstrahlung off quarks 

Group Gluons Quarks N c/N,~ C A / N  e 

n 2n 2 SU(n) n 2-  1 n 
n 2 -- 1 n 2 -  1 

* n 2 -  1 n ( n -  l) n 1,/2 

SO (n)  n (n - 1)  
2: 

Sp(2n) n(Z.+  i) 

* n(2n'+ ~.) 
G 2 1:# 
F4; 52: 
E 6 78' 
E 7 1~3:3 ~ 
E 8 2#8; 
U ( 1)3 Abetian r 
U(1) QED-ti.~. 1, 

2 2 ( n +  1) (n+ 1 ) ( n - 2 )  
2 

n 2 - - N c / N  A 
n - - [  

2 
2n 2:+1%t~v~: 

2 n +  1 
z n ~ - n - t  1 -1 /n  Z- -NJNA 

7 1/2 2' 
26, I /2  3~/2 
27 9/2t5 18/r3 
56 8fl.9 2#]19 ~ 

2#8 1: t, 
3; 3~ 0~ 
t ~ 0 

Table 1 [17]. Since the grouping of  the graphs is done in 
a gauge invariant way, one can determine the contribu- 
tions from these classes, and use their relative weights as 
a test of  QCD and compare also with the the predictions 
of other gauge groups, 

In this analysis the contributions of the classes are 
considered as functions of two observables. One is as 
usual the generalised Nachtmann-Reiter angle 0"~.  The 
second observable is the opening angle ~34 of the jets 
from the secondary partons. These observables have the 
advantage that no cuts in opening angles are needed on 
the 4-jet sample. The two observables of our analysis are 
illustrated in Fig. 2. There is some correlation between 
0"~ and (~34; the study is therefore performed by plotting 
the two-dimensional distribution in the angular observ- 
ables. Two-dimensional reference distributions in the 
observables are provided for the five classes by Monte 
Carlo simulation. From the reference distributions in 
I cos0*~[ and c0s~34, the expected two-dimensional 
distribution is expressed as a function of C A / C  F and 
TR/C~ . The variables C A / C  F and T R / C  F are then de- 
termined in a fit of  this distribution to the corresponding 
one of the data, corrected for effects of the detector. 

3 Treatment of data 

This analysis is based on the data of 1990 and 1991 from 
e+e - annihilations at c.m.s, energies around the Z ~ res- 
onance. Only tracks from charged particles are used. The 
same cuts are applied for event selection as in the earlier 
study [21] of hadronic decays of the Z ~ The most im- 
portant of  these selections are that tracks are kept only 
if the measured track length is greater than 50 cm and 
their polar angle is between 25 ~ and 155 ~ . Furthermore, 
for all events the polar angle 0 of the sphericity axis has 
to be between 40 ~ and 140 ~ and the total momentum 
imbalance below 20 GeV/c.  After the selections 68 862 
and 154 424 multihadron events remained. 

Jets of  charged particles are determined with the al- 
gorithm LUCLUS provided with the LUND Monte Carlo 
program [23], called JETSET. In this algorithm two jets 
with 3-momenta Pl, P2 and opening angle ~ 12 are merged 

~1 2 <d  if2 Pl*P2 . s in  2 = ~ j o i n "  Each time two jets are merged, 
Pl +P2 

new jet axes are determined and all particles are reas- 
signed to the nearest jet. With the new jets so defined, 
the procedure is repeated until a stable configuration is 
reached. The jet resolution parameter djoin is set to a fixed 
val.ue of 3' GeV. This corresponds to a value of  the effec- 
ti.ve m a ~  meff o f  ~ y  two jets of at least 9.8 GeV when 
scalefl: w ~  the ra~tio of Ecru s and the average charged 
visiNe" energy o f  55GeV. It is required that 
E,~ S > 0.20'E~m ~, where Evi S is the sum of the energies of 

the accepted' c ~ g e ~  particles, and E c m  s = ]//S. This yields 
4279 and 9"8'55 4~eg events from the data of  the two years. 
They are sorted', according to the values of our two ob- 
servables into a 20 x 20 matrix. 

To determine the influence of the D ELP H I  detector, 
tuned matrix element and parton shower simulations of 
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1991 (7098 4-jets and 8320 4-jets respectively) and special 
matrix-element simulations based on 4-patton final states 
(1990:28 422 4-jets and 1991:11 645 4-jets) have all been 
studied with full simulation of the DELPHI detector. For 
the ME simulation in JETSET7.2, Ycut, the minimum 
invariant mass-squared of any two partons scaled by 

2 E~m~, was set to 0.010. This Ycut corresponds to 
rn~ff = 9.1 GeV and is below the cut imposed by LUCLUS. 

These subsets have been generated in slightly different 
conditions, but the detector corrections calculated from 
each subset are consistent with each other; the compar- 
ison of the correction matrix from simulation of 1990 
with the combined one from the simulations of 1991 gives 
zZ/dof=430/399. The direct comparison of the 4279 
4-jets from the data of 1990 with the 9855 4-jets from the 
data of 1991 gives x2/dof = 390/399. Thus there is no 
significant change in the response of charged particles as 
far as this analysis is concerned and the analysis can be 
performed with the combined data aiad simulations of 
1990 and 1991. Adding up all simulations gives 55 485 
4-jet events. 

Consistency between the simulated and the real 4-jet 
samples was first checked by comparing their thrust dis- 
tributions; then with the event plane and axis defined by 
the sphericity tensor, the transverse particle momenta 
within and perpendicular to the event plane were exam- 
ined. Finally, for each of the jets 1 to 4, the distribution 
of the jet momentum, of the charged multiplicity of the 
jet and of the transverse and longitudinal particle mo- 
menta relative to the jet axis were examined. The average 
values agree typically within about 3%. 
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O_ 1 

+ e,  oog ..... ,or,eve,, t 

TI i n Jets with detector simulation, 

0 1 

A* partons __ ICOS QNR 1 jets [COS ~.R 

I 

(b )  t ~  + JetSrms__0.551from generator level, 

0 . 0 5  ~ ~ [3 Jets with detector simulation, 
rms=0.541 

0.025 

2 0 2 
partons COS ~ 3 4  - -  COS C(34 Jets 

Fig. 4a, b. Comparison of generator level with full detector simu- 
lated events. Resolution for the observables : a l cos 0*RI ; b cos~34; 
tz: after detector-simulation; + : generated events 

The same global and track cuts as those described 
above for data and full detector level simulated events 
were applied to the charged particles from generator level 
4-patton events, i.e. before detector simulation. The ac- 
curacy with which the observables ]cos 0*RI and cos c~34 
are measured is shown in Fig. 4 for generator level events 
and for events passed through the full detector simula- 
tion; the differences in I cos 0*R I and in cos e34 at parton- 
and hadron-jet level are plotted. The resolution curves 
for generated events and for events after full detector 
simulation are practically the same. This shows that the 
uncertainty in the jet angles is dominated by the cluster 
algorithm, and that the jet angles are altered very little 
by the small loss of charged particles in the central part 
of the DELPHI detector. This similarity of the resolution 
curves permits the correction of the data to the physical 
distribution and vice versa without unfolding for addi- 
tional smearing. 

Figure 5 a and b show the distributions in the analysis 
observables of the 4-jet events after full simulation and 
at the generator level respectively. The comparison of 
Fig. 5a and b gives the 20 • 20 correction matrix in Fig. 5c 
for the relation between these two distributions. For the 
analysis the three rows with cos 0(34 ~ 0.7 and 10 trian- 
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Fig. 5. Two-dimensional distributions in I cos 0"~ I and cos 734- a 
4-jets after full detector simulation; b 4-jet events at the generator 
level; c correction matrix for the 330 accepted bins from a bin-by- 
bin comparison of a and b; d correction function from a 4th-order 
two-dimensional polynomial fit of  these 330 bins 
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gular arranged bins in the corner around ]cos 0~vR] = 1, 
cos a34 = - 1 ,  where the acceptance decreases due to the 
djoin-CUt on the jet distances, have been omitted. The data 
contain 13 057 4-jet events in the 330 remaining bins. 

A smooth correction function ~/ was obtained by fit- 
ting the correction matrix with a 4th-order polynomial 
in the two observables following the ansatz: 

(Prediction for full simulation)z ' m 

= (Generator level distribution)1,m*~14m. 

The matrix representation ~h,m of the correction function 
is shown in Fig. 5d. Due to the same global and tracks 
cuts in both samples the correction function is rather flat. 
It varies only between 0.95 and 1.07 for the accepted 
range. 
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4.1 Fit of  the Casimir-factors 

The 4-jet events are sorted into a 20 • 20 matrix according 
to their values of [cos 0*RI and cos 0(34. The predictions 
are fitted to a selected range of these 20 • 20 bins with a 
maximum likelihood method. Poisson distributions for 
the likelihood factor are used in each bin. 

The basis of the fit are two-dimensional reference dis- 
tributions Al,  m, Bl, m, Cl, m, Dl, m, El,  m in the form of 20 • 20 
matrices in I cos 0*RI and cos0(34 for the classes A, B, C, 
D, E. Events of class B and E cannot be generated directly 
since for some values of the kinematical variables their 
contribution to the cross section becomes negative. The 
combined contributions of A, B and also of D, E are 
positve. Class C is extracted directly from the QCD- 
events. The classes A, B and D, E contribute with different 
factors in QCD and the Abelian theory and this allows 
one to separate A from B and D from E. With the QCD 
values of the Casimir-factors, 2.5 million 4-jet events were 
generated. An additional 1.1 million 4-jet events have 
been generated in the Abelian theory with its different 
Casimir-factors. 

The very large statistics of these generator events gives 
reasonably smooth reference distributions and there is no 
problem with a bias in this analysis. The two-dimensional 
reference distributions for the groups A, B, C, D, E are 
shown in Fig. 6a. Projections of the distributions are given 
in Fig. 6b. The relative contributions of the groups A, B, 
C, D, E are 35%, - 6%, 64%, 7%, - 0.2% for QCD and 
26%, 34%, 0%, 39%, 1% for the Abelian theory. In 
0* R, secondary q~ events (class D) differ markedly from 
events with a pair of gluons, but triple-gluon events 
(class C) and double-bremsstrahlung events (classes A 
and B) look quite similar; they are distinguished by 
the second observable 0(34. From a combined fit of both 
variables, the contribution of all classes can be separated. 

The theoretical prediction for the number of 4-jets 
from the generator of 4-parton events is given for each 
bin l, rn by: 
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N*~s  *CF Tl, m = 2 2 

1 C A CA 
*[A/'m"}-(  1 2 C F ) B l ' r n + ~  C'm 

+ ~ -  Dr, m +  1 

where N is the overal l  no rma l i s a t i on  fac tor  and  A, B, C, 
D, E are the reference d is t r ibu t ions  f rom the M o n t e  Car lo  
s imula t ions  descr ibed above.  The  d i s t r ibu t ion  with  which 
the d a t a  is c o m p a r e d  is then 

Pl, m=(Tl ,  m+Fl,  m)*~l,m �9 

Ft, m represents  the b a c k g r o u n d  to the 4-jet events f rom 
f r agmen ta t ion  f luc tua t ions  o f  3- and  2 -pa r ton  events. Its 
in tegral  con t r ibu t ion  has been de te rmined  f rom the full- 
s imula t ion  o f  de tec to r  effects wi th  the comple te  Q C D  
mat r ix  e lement  and  amoun t s  to 1.51 ___ 0.15% of  the 4-jet 
events. The shape is well de te rmined  by  the high statist ics 
o f  genera ted  events, which con ta in  6009 b a c k g r o u n d  4- 
je t  events. The  d is t r ibu t ions  are shown in Fig.  7a and  b. 
This  b a c k g r o u n d  has  a sizeable influence as its shape is 
comple te ly  different  f rom the reference dis t r ibut ions .  F o r  
the ext ra  er rors  in t roduced  in the  results  due to the l imited 
statist ics in full de tec to r  s imula t ion  o f  this background ,  
see Sect. 5.4. 

~Z,m is the cor rec t ion  fac tor  discussed before  (see 
Fig.  5d),  which takes  into account  the influence o f  de- 
tec tor  effects. 

A m a x i m u m  l ike l ihood  fit was then pe r fo rmed  to the 
I cos0~l U COS0~34 d i s t r ibu t ion  in terms o f  the three 

C~ T R 
var iables  X 1 = N * ~ * C  2 ,  X 2 = ~ - , _ ~  and  X 3 = C i '  using 

M I N U I T  [23] for  maximisa t ion .  This  was done  simul- 
t aneous ly  wi th  the fit o f  the cor rec t ion  funct ion.  In  this 
way,  the influence o f  the finite stat ist ics o f  the de tec tor  
s imula t ion  on the resul t  o f  C A / C  F and  T R / C  F is in- 
cluded.  A b in  by  b in  cor rec t ion  using direct ly  the unf i t ted  
cor rec t ion  ma t r ix  has  also been t r ied and  gives consis tent  
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Fig. 7a, b. Background to 4-jet events from 3- and 2-parton events, 
(not normalised), a after full detector simulations; b for generated 
events 

Table 2. Results of the simultaneous fits of correction-function and 
data. :z2/dof after the likelihood fit is given for: comb. = combined 
contribution from data and correction function; corfun=con- 
tribution from correction function alone; data = contribution from 
data alone; cose34 < 0.7 and 10 triangular arranged bins omitted 
in comer 1, - 1; (330 bins used in fit, 'Minos-fit' errors are given), 
(CJNF,  T J C  F correlation coefficient is -0 .30 for the 4th-order 
fit) 

Correction z2/dof x2/dof x2/dof CA/C F TR/C ~ 
comb. corfun data 

bin by bin 1.141 2.20 +0.30 +0.67 - 0.29 1.95 _ 0.65 

const 1.109 1 .157  1 .060  2.09 + 0.26 . _^ + 0.59 
- 0.26 1.,9 _ 0.57 

linear 1.100 1 .134  1 .065  2.38 +0.29 +0.65 - 0.28 1.70 _ 0.63 

0.29 + 0.67 
quadratic 1.099 1 .132  1 .066  2.26 _ + 0.29 1.81 _ 0.64 

+ 0.29 . ^~ + 0.67 
cubic 1.093 1 .102  1 .085 2.21-0.29 l.~b --0.65 

4th-order 1 . 0 9 2  1 .101 1 .084  2.21 + 0.29 + 0.68 -0.29 1.93 _ 0.65 

+ 0.30 + 0.67 
5 th-order 1.091 1 .096  1 .085  2.23 _ 0.29 1.93 _ 0.65 

+ 0.30 + 0.67 
6th-order 1 . 0 9 4  1 .108  1 .082  2.23 _ 0.29 1.93 _ 0.65 

Table 3. As Table 2, but different cuts at edges or in corner 1, - 1 
Correction x 2 / d o f  x 2 / d o f  z 2 / d o f  CA/C  F TR/C F 

comb. corfun data 

cosa34 < 0.6 (310 bins) 

bin bybin  1.139 2.15___0.3i 2.08• 
4th-order 1 . 1 0 7  1 .135  1 .080  2.16-t-0.31 2.07• 

cos~34 < 0.8 (350 bins) 

bin by bin 1.147 2.264440.28 1.88+0.66 
4th-order 1 . 0 9 7  1 .098  t.096 2.29 + 0.28 1.87 444 0.66 

15 bins omitted in corner (325 bins) 

bin by bin I. 141 2.26 • 0.30 2.22 + 0.70 
4th-order 1.086 1 .104  1 .068  2.27 _ 0.30 2.22 • 0.70 

6 bins omitted in comer (334 bins) 

bin by bin 1.159 2.12• 1.704440.64 
4th-order 1 . 0 9 9  1 .094  1 .103 2.14 444 0.28 1.68 • 0.63 

-0.09 < cos~3,< 0.7 (314 bins) 

bin by bin 1A46 2.17+--0.30 1.86_+0.67 
4th-order 1.099 1.I02 1296 2.184-0.30 1.85+_0.67 

Icos 0*~l < 0.95 (317 bins:) 

bin by bin t.109 2.064440.32 2.344440..76 
4th-order 1 . 0 7 7  1A04 1.05i 2.06 444 0:.31 2.34 _ 0.76 

nothing omitted (400 bins) 

bin by bin 1.252 2.04444 0.2'6 1.16 444 0.58 
4th-order 1.I63 1.158 1 .168  2.09_0.26 1.~4__ 0.59 

cons~ 1.193 L276 i. .109' 1.97 • 0~.23; t.55• 



120 

8O 
8O 

40 4O 

0 0 
-1 1 -1  

~ o ; , /  o o~ /~176 o oo~ 
1 1 

(a) DELPHI-Data (b) fitted distribution 
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Fig. 9a-e. PS vs ME: Comparison with 1991 data. a Data; b QCD- 
ME full detector simulation; c X z in each bin from comparison of 
data and QCD-ME; d QCD-PS full detector simulations; e X 2 in 
each bin from comparison of data and QCD-PS 

results. In this case the influence of  the finite statistics of 
the full simulation on the errors of the fit-parameters 
CA/Cr and T R /C  F has been taken into account by a 
global scaling factor deduced from the ratio of  the num- 
ber of 4-jet events in full detector simulation to that of 
data. Fit results are given in Tables 2 and 3 and discussed 
in Sect. 5. The quoted X 2 values have been calculated 
afterwards using the results of the likelihood fits. Figure 8 
shows the two-dimensional distributions in I cos 0~vR[ and 
cos e34 for the data and for the result of  the fit of  the 330 
bins with the 4th-order polynomial for the correction 
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function. The bins which are not included in the fit are 
also shown. 

4.2 Comparison of parton shower model 
and matrix element description 

The two-dimensional distribution in [ cos 0*R[ and 
cos~34 from the data of 1991 (9855 4-jets) was also com- 
pared directly with that from full detector-simulation 
based on the patton-shower model, which is known to 
describe global event distributions well. In order to arrive 
at a clear distinction by X 2 for the shapes, 4 • 4 binning 
was performed. ME (7098 4-jets) and PS-simulations 
(8320 4-jets) are normalised to the same total number of  
events as contained in the data (9855 4-jets), and then 
the shapes are compared in Fig. 9. ME-simulation shows 
a x2 /do f  = 13.36/15, in very good agreement with the 
data. PS-simulation gives xZ/dof=45.77/15, corre- 
sponding to a confidence level of  8.10 -5. Clearly one 
needs the exact second order QCD ME to describe the 
4-jet angular distributions. The leading log approxima- 
tion used in the PS model is not sufficient. 

5 Systematic errors 

5.1 Parametrisation of the correction function 

Results are given in Table 2 for the fit with bin by bin 
correction without smoothing, and for the combined fits 
with parametrisations of the correction function from a 
constant up to a 6th order polynomial. From 3rd order 
on, the xZ/dof  no longer improves and moreover the 
results for the physical variables CA/C F and TR/C F do 
not change and agree in their values with those obtained 
in the bin by bin correction. Thus there is no indication 
for a systematic shift as soon as one takes 3rd or higher 
order correction functions. The 4th-order result was cho- 
sen to be quoted. 

5.2 Influence of the bin selection 

To test the stability of  the fit values, one row of bins or 
further triangular-arranged bins in one corner have been 
added or omitted. The results are given in Table 3, in 
each case for the bin by bin correction, and for the par- 
ametrisation by the 4th-order two-dimensional correction 
function. Also for this non-standard bin selection, results 
for other orders have been obtained. They are not shown 
as in all considered cases the results were stable starting 
from 3rd order. Typically the change for CA/CF is below 
0.06 and for TR/C F below 0.3. The largest change arises 
when the row 0.95 < [cos 0*RI < 1.00 is omitted. This is 
the row with the highest contents. Even then the changes 
of 0.15 and 0.4 respectively are less than the statistical 
errors of 0.30 and 0.7. There is no indication of a signif- 
icant systematic influence caused by different bin selec- 
tions around the standard 330 accepted bins. 

If all 400 bins are included, the z2 /d o f  in the fits is 
worse. This is expected as reference distributions from 



366 

the generator level and the full detector simulation dis- 
agree near the kinematic boundaries. 

5.3 Different correction functions for  the classes 

A universal correction function for detector effects has 
been used for the five reference distributions. It is not 
possible to determine the correction functions separately 
for the five classes, since the high statistics needed for 
the separation in the five classes cannot be achieved with 
full simulation of the detector. However separate correc- 
tions for C and the combined classes A B  and D E  as they 
appear in QCD can be deduced. As the contribution of  
class B is only 6% and that of E only 0.2% and the fit- 
result is near the QCD values, one gets a properly 
weighted estimate of the possible influence of separately 
determined correction functions. Extra correction func- 
tions, by which the universal correction function is in- 
dependently multiplied, are determined from the com- 
parison of fully simulated and generator distributions for 
these three contributions of  double-bremsstrahlung, tri- 
ple-gluon vertex, and secondary quark-antiquark pro- 
duction. The results for the extra linear correction func- 
tions are given in Table 4, together with the resulting shift 
on the fit results of CA/CF and TR/C F . The errors for 
these possible shifts have been determined by quadratic 
addition of the shifts induced by a change of each pa- 
rameter by one standard deviation. None of  these shifts 
is statistically significant. For  the final result, the errors 
are increased by 50% since, instead of the separate classes 
A, B, D, E, only the combined classes A B  and D E  have 
been considered. 

5.4 Background f rom three- and two-parton events 

The background from 3- and 2-patton events is inherently 
built into all the fits. If this background is 'switched 
off' ,  there are changes of  A ( C A / C F ) =  +0.23 and 
A (TR/C F ) =  -0 .69 .  This is despite the fact, that for the 
matrix element model with detector simulation, the back- 
ground contribution is only 1.5% of the 4-jet rate. 

The uncertainty of these shifts is estimated by allowing 
an extra linear correction function with which the overall 
correction function is multiplied. The shape and the nor- 
malisation factor of  the distribution from the 107 mi- 
grated events obtained from the full detector simulation 
(Fig. 7a) is fitted to the one from generator level events 
(Fig. 7b). The result is also shown in Table 4. This gives 

the resulting uncertainty due to the finite number of the 
events of this type available from full detector simulation. 
The errors have been increased by 50% for the final result 
to have a conservative estimate. 

The 4-jet rate in the data is higher than that in the 
simulation. The difference can be attributed to 5-parton 
events in the data, with a soft or collinear parton which 
appear as 4-jet events. This effect is not present in the 
simulation, as the generator does not contain this higher 
order effect. The above shifts are therefore overestimated. 
The true shifts are obtained by scaling with the ratio 
5.74%/6.42% of  the corresponding 4-jet rates (see 
Sect. 5.6) and are only + 0.21 and -0 .62 .  Hence correc- 
tions of - 0 . 0 2  for CA/C  F and +0.07 for TR/C F have 
to be applied. 

5.5 Fragmentation 

The influence of the variation of  the fragmentation pa- 
rameters on the results has been studied by Seitz [24]. 
The five fragmentation parameters a, b, O-q, ec, eb have 
been chosen independently in a large range around their 
nominal values by a random generator. For each set events 
have been generated, and their distributions in rapidity 
(60 bins) and aplanarity (20 bins), which are sensitive to 
these parameters, were considered. Sets were accepted if 
the sum of the ~,~2 increase of these two distributions was 
below 60. The events of the accepted sets were then con- 
sidered as data, and fit values for C A / C  F and TR/C F 
have been determined. The values of  CA/CF and TR/C F 
for the sets which fulfilled the XKcondition were com- 
pared with those from the events generated with the nom- 
inal fragmentation parameters. The rms of the shifts in 
the two parameters were 0.072 and 0.30 respectively. 

In Sect. 4.2 the Lund PS model was excluded. It is 
interesting to know if this conclusion remains the same 
if the parameters are varied. The 8320 4-jet events 
from full detector simulation have been treated as 'data' 
in the fit-program for the Casimir-factors. The result is 
C A / C  e =2.21 _____0.32 and TR/C F = -2.0___0.6. The neg- 
ative value for TR/C ~ is unphysical and 6 standard de- 
viations away from the QCD-value of  1.875. The varia- 
tion of the fragmention parameters in ME-simulation has 
given rms of 0.3 for the shifts in TR/C ~. This nmnber 
should not depend much on the model. Even for a factor 
two bigger influence, the Lund PS simulation with vari- 
ation of the fragmentation parameters is still inconsistent 
by 5 standard deviations with the QCD expectations. 

Table 4. Shifts induced on CA/C F and TR/C F by allowing deviations from the general correction function. N, X, Y are the fit results for 
the normalisation factor and slopes in [cos 0*R] and cos ~34 for extra linear correction functions, which are superimposed on the general 
4th order correction function 

Used for N X Y A ( CA/ Ce ) A ( TR/ C F 

AB 
C 
DE 
Background 

Combined values 

A B + C + D E  
all 

1.028 __+ 0.012 - 0.020 _+ 0.017 0.029 _ 0.020 - 0.046 _ 0.074 - 0.11 • 0.11 
0.996 • 0.008 0.001 -+ 0.012 - 0.009 -+ 0.014 - 0.022 _ 0.031 - 0.13 • 0.13 
0.977 • 0.020 0.044 -+ 0.035 - 0.044 -+ 0.042 0.018 -+ 0.027 0.02 -+ 0.08 
1.11 _+0.20 0.17 +0.21 -0.10 - + 0 . 2 3  0 .020___0.057 -0.04• 

- 0.006 • 0.085 - 0.06 • 0.19 
0.014_+0.102 -0.10 +0.26 
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5.6 Influence of higher orders 

It is not possible to give a quantitative estimate of the 
influence of higher orders. The tree contributions in the 
next order e~ are available [25], but have not yet been 
incorporated into standard event generators. The internal 
loop-corrections to the 4-parton final states have not yet 
been calculated. If QCD is the correct theory then the 
agreement of the results of this analysis with the QCD- 
values can be interpreted as an indication that the influ- 
ence of the higher orders is relatively small. 

The parton shower model contains higher orders in 
the leading log approximation (LLA); but it has been 
shown in Sect. 4.2 and 5.5 that this is not enough to 
describe the distributions which are sensitive to the triple- 
gluon vertex. Therefore it cannot be used for a quanti- 
tative estimate of the influence of higher orders. Higher 
orders manifest themselves in 5-jet events. The data con- 
tain only 0.48% of 5-jet events, the parton shower model 
0.29%, and the matrix element model 0.04%. The last 
number gives the contribution from 4-parton events, ap- 
pearing as 5-jets. This implies that in the data about 90% 
are real 5 jets (i.e. 5-parton) events. The 4-jet contribu- 
tions are 6.4%, 5.6%, and 5.7% respectively. That is, the 
5-jet contribution in the data amounts to 8% of the 4-jet 
rate. The rate is sizeable; this indicates that the contri- 
bution to 4-jets from 5-parton events with one unresolved 
parton pair might be sizeable too. But this contribution 
enters into the analysis only through the shape of the two 
dimensional angular distribution of its 4-jet events, which 
is probably not too different to that from genuine 4- 
parton events. 

5.7 Dependence on the Ycut 

In the calculations of the patton cross-sections a Ycut is 
applied to handle the divergencies from soft and collinear 
gluons. On the parton level Your= 0.01 in the generator 
is below the cut imposed on the kinematical configuration 
by the value of d~oin in the LUCLUS cluster routine. When 
lowering the Ycut additional softer partons are produced, 
but after applying the cut criteria of the cluster routine 
on the parton configuration, exactly the same patton 
events survive. This independence on the Your is not per- 
fect for the jets from the hadrons due to fluctuations in 
the fragmentation of the partons. The jet rates and the 
kinematical distributions still depend slightly on the 
choice of the Ycut. 

Whereas the difference between data and simulation 
in the 4-jet rate can be considered as the unknown influ- 
ence of higher orders, there is no such physical reason 
for a difference in the 3-jet rates, as for the 3-parton states 
the calculations contain also the contributions from the 
next order in cq. The observed difference of 1.1 + 0.2% 
in the 3-jet rate of data and simulation has to be attributed 
to imperfect tuning. A way to get this aspect right is to 
change the Ycut. A study at generator level (detector ef- 
fects are expected to be small, see Sect. 3) shows that the 
difference in the 3-jet rate disappears for a reduction to 
Ycut= 0.0093. As compared with the original Yo~t = 0.01, 
for Ycut = 0.0093 the relative increase of the 4-parton cross 
section is 10%, but that of the 4-jet rate is only 1.6 _ 0.2%. 

The influence of this change in the Ycut on the result 
of the analysis has been determined by generating a large 
sample of events with the Ycut = 0.0093 and fitting these 
events as 'data' using in the fit the reference distributions 
with the nominal Yout=0.0100. The results CA/CF = 
2.36 _+0.06 and TR/C F = 1.43 _+0.13 are shifted with re- 
spect to the nominal values 2.25 and 1.875. The shift were 
subtracted and the size of the shift added as systematic 
errors. 

5.8 Influence of heavy quark masses 

The production of secondary heavy quark-antiquark pairs 
is suppressed. A separate study with the applied jet cut 
has shown that the different flavours are generated in the 
ratio d:u:s: c:b= 1:1:1 :(0.98 _+0.02):(0.65 +0.02). The 
effective number of active quark flavours is then 
n} ff= 4.63 + 0.03. This number is already built into the 
reference distributions at the generator level, which are 
used in the fit. Hence to reduce the result for TR/C F to 
the value T r / C  F for one quark flavour, one has to divide 
by 5. 

6 Discussion and conclusions 

With the errors for the possible effects of separate cor- 
rection functions, the corrections and errors for the back- 
ground and Ycut-dependence, and the uncertainties from 
the variation of the fragmentation parameters, the results 
are 

C A /C  r = 2.12 __+ 0.29 (stat.) ___ 0.19 (corr.) 

- 0.07 (fragm.), 

TR/C F = 2.31 • 0.66 (stat.) ___ 0.60 (corr.) 

___ 0.30 (fragm.), 

where TR=ny T F. Using TF /CF= Nc /NA,  and nf= 5, 
and adding the errors in quadrature results in 

CA/CF=2.12• and Nc/NA=0.46+_O.19. 

The measured variables C A / C r and N c / N  A represent 
the ratios of the coupling strength of the triple-gluon 
vertex to that of gluon bremsstrahlung from a quark, and 
of the number of quark colours to the number of gluons. 
Using the fit correlation coefficient and the global errors, 
the plot with the contours for 68% and 95% confidence 
levels is given in Fig. 10. 

The result for C A/C F is in agreement with the value 
9/4 expected for QCD. The value for N c / N  A is consistent 
with the QCD value of 3/8. 

It is evident that the triple-gluon vertex must exist and 
that generally the number of quark colours has to be 
smaller than the number of gluons. 

The expectations for various other gauge groups are 
given in Fig. 10. The quarks are assumed to be in the 
fundamental representation and the gluons in the adjoint 
representation, except for SU(4)', SP(4)', and SP(6)', 
which are examples with quarks in the next higher rep- 
resentation. 
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Fig. 10. 68% and 95% CL contour plots for the measured variables 
C A /C F and N c/NA, and expections from different gauge theories. 
CJCr=ra t io  of coupling strength of g-*gg to q~qg; N c /  
N~ = number of quark colours divided by the number of gluons. 
It is evident that the triple-gluon vertex must exist and that generally 
the number of quark colours has to be smaller than the number of 
gluons. Quarks are in the fundamental and gluons in the adjoint 
representation (except SU(4)', SP(4)', SP(6)', where the quarks 
are in the next higher representation). Most groups have N c --/:3 
(see Table l) and are already excluded by Nc=3 from 
R = a (e+e - -*hadrons)/a (e+e - ~ p  +/2-) and F(n~ N c = 3 
only for the Abelian model U(1)3, SO(3), and QCD (larger symbols 
in the figure). From the result of this analysis also SO(3) is excluded 
as a candidate 

F r o m  Table 1 it is evident that  mos t  groups in the 
plot  are excluded by their inherent number  o f  quark  
colours as this is directly determined experimentally 
f rom R = a (e+e - - * h a d r o n s ) / a  (e+e - --*/2 +/~-)  and 
F ( n ~  as N c = 3. Apar t  f rom SU(3)  and the ad hoc 
invented Abelian model  U(1)3, only SO(3) has 3 colours 
for the quarks, but  only 3 gluons in contrast  to Q C D  
which has 8 gluons. The result excludes also SO(3) as a 
candidate and allows only Q C D  with 8 gluons. 

The previous analysis [15] o f  the data  o f  1989 and par t  
o f  the data  o f  1990 gave N c / C F = 2 . 5 5 + _ O . 5 5 ( s t a t . )  
_ 0.4 (fragm. + models)  _ 0.2 (errors in bias) and T R / C  e 
= 0.1 + 2.4. A preliminary analysis o f  the complete data  
o f  1990 has been presented at the Geneva Conference 
1991 [26]. The contr ibut ion o f  the triple-gluon vertex has 
later also been established by A L E P H  [27]. The fit is per- 
formed in the fivefold space of  the kinematical invafiants, 

and, due to the m a n y  variables, they have to correct 
for  the efficiencies o f  the detector after the fit. Their 
results are N c / C  e = 2.24 +_ 0.32 (stat.) ___ 0.24 (syst.) and 
T e / C  F = 0.58 _ 0.17 (stat.) _ 0.23 (syst.). 

In  summary,  it is found that  the data  require the ex- 
istence o f  the triple-gluon vertex contr ibut ion in the Q C D  
second order  matr ix element description. The pa t ton  
shower version, which contains higher orders only in the 
leading-log approximat ion,  does not  describe quanti ta-  
tively the distributions which are sensitive to the triple- 
gluon vertex. Other  gauge groups with less than 8 gluons 
or more  than 3 quark  colours are excluded. 
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