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Compact LCOS—-SLM Based Polarization Pattern
Beam Generator
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Ignacio Moreno, Member, IEEE, and Juan Campos

Abstract—In this paper, a compact optical system for generat-
ing arbitrary spatial light polarization patterns is demonstrated.
The system uses a single high-resolution liquid crystal (L.C) on sil-
icon (LCOS) spatial light modulator. A specialized optical mount
is designed and fabricated using a 3D printer, in order to build a
compact dual optical architecture, where two different phase pat-
terns are encoded on two adjacent halves of the LCOS screen, with
a polarization transformation in between. The final polarization
state is controlled via two rotations of the Poincaré sphere. In ad-
dition, a relative phase term is added, which is calculated based
on spherical trigonometry on the Poincaré sphere. Experimental
results are presented that show the effectiveness of the system to
produce polarization patterns.

Index Terms—Adaptive optics, displays, optical modulation,
optical polarization, optical retarders, optical vortices, stokes
parameters.

1. INTRODUCTION

HE production of two-dimensional polarization patterns

has become a relevant issue for a number of different ap-
plications. In particular, cylindrical vector beams [1], of which
radially and azimuthally polarized beams are a subclass, are es-
pecially interesting due to their very appealing properties upon
focalization with high aperture lenses [2], or because their re-
lation with the orbital angular momentum of light [3]. Addi-
tionally, they are eigen-solutions of cylindrical resonators and
optical fibers [4].

On the other hand, LC modulators are optoelectronic devices
capable of modulating the state of polarization (SOP), which can
be arranged in pixelated panels. LC devices have been developed
with electrode patterns specific for the production of optical
vortices and radially polarized beams [5]. However, their usual
arrangement is as a rectangular grid of pixels, commonly known

Manuscript received November 25, 2014; revised January 2, 2015, January
8, 2015, and January 19, 2015; accepted January 19, 2015. Date of publication
January 20, 2015; date of current version March 16, 2015. This work was
supported by the Spanish Ministerio de Economia y Competitividad under
Grants FIS2012-39158-C02-01 and FIS2012-39158-C02-02 and the Catalan
Government contract 2014 SGR 1639.

X. Zheng, A. Lizana, A. Peinado, C. Ramirez and J. Campos are with
the Department of Physics, Universitat Autonoma de Barcelona, 08193 Bel-
laterra, Spain (e-mail: xuejiezheng0603 @gmail.com; Angel.Lizana@uab.cat;
Alba.Peinado @uab.cat; cramirezxp @ gmail.com; Juan.Campos @uab.cat).

A. Mirquez is with the Department of Physics, Systems Engineering and
Signal Theory, Universidad de Alicante, 03080 Alicante, Spain (e-mail: andres.
marquez@ua.es).

J. L. Martinez and 1. Moreno are with the Department of Materials Science,
Optics and Electronics Technology, Universidad Miguel Herndandez de Elche,
03202 Elche, Spain (e-mail: josel.martinezf @ gmail.com; i.moreno@umbh.es).

Color versions of one or more of the figrues in this paper are available online
at http//ieeexplore.ieee.org.

Digital Object Identifier 10.1109/JLT.2015.2395256

as LC spatial light modulators (LCSLM). LCSLMs can be used
to produce spatially variant SOP controlled from a computer
and, in recent years, a variety of different methods and systems
have been developed to create such 2D polarization patterns
with these devices [6]-[21].

One general approach has been based on optical processing
systems, where diffraction gratings are encoded onto a LCSLM,
and different diffraction orders are filtered and their SOP are
modified in the desired manner, before recombination [6]-[9].
Another related approach uses a computer-generated hologram
displayed on a SLM within a Sagnac interferometer [10].

Other approaches use directly the LCSLM capability to mod-
ulate SOP as a function of the applied voltage [11]. Com-
mon parallel-aligned LCSLMs are devices intended to produce
phase-only modulation. They act as linear retarders that can
modulate only the electric field linear component parallel to
the LC director. Therefore, in order to achieve a general SOP
modulation, methods have been developed based on displaying
independent control of two different halves of a SLM [12]-[16]
or by using with two different SLMs [17]-[19]. These methods
permit to control two parameters required to produce arbitrary
SOPs. The different methods differ either in the parameters used
to achieve SOP modulation, or in the optical architecture. But
in all cases, the capability to separately encode unrelated pat-
terns gives these systems much greater flexibility. Additional
flexibility is obtained by adding a second LCSLM to incor-
porate independent amplitude and phase control over the SOP
modulation [20], [21].

Nevertheless, in spite of this great recent advance in the field,
all the proposed techniques are bulky systems and very sensi-
tive to possible misalignments. In [22], [23], a compact system
applied to demultiplex optical modes is proposed. It is based on
a parallel aligned LCOS—-SLM and the light steering is made
by polarizing beam-splitters. The system works in the Fourier
domain and modifies the phase of each polarization component.
To control both, amplitude and phase in the spatial domain, they
use a simulated annealing algorithm based diffractive optics
technique. With this technique they evaluate what should be the
phase distribution on the Fourier domain in order to control both
amplitude and phase in a limited region of the spatial domain.
Our aim is the development of a compact system capable of pro-
ducing arbitrary SOP spatial distributions in the spatial domain,
using in this way the full bandwidth of the LCOS—-SLM.

Nowadays, the advances in LCOS—SLM technology provide
devices with very large number of pixels and high definition
and resolution panels with dimensions below centimeter scale.
In addition 3D printing technology, combined with high quality

0733-8724 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

0733-8724 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IE

EE permission. See

http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information:

DOI 10.1109/JLT.2015.2395256, Journal of Lightwave Technology

2048

Laser

LP(45°)

Fig. 1. PSG composed of two variable linear wave-plates.

optical components, can be used to fabricate very compact
optical systems. This is the purpose of this work. Here we
demonstrate a first prototype of a compact polarization pattern
generator based on high resolution LCOS display, where the full
system optical mount is developed using 3D printing technol-
ogy and combined with high quality optical components. The
system is capable of producing spatial patterns with complete
control of the SOP modulation. It is based on inducing two con-
secutive independent polarization transformations that can be
visualized to produce two independent rotations in the Poincaré
sphere, in an equivalent manner to the system proposed in [17].
A residual phase modulation is produced, and can be analyzed
in terms of the Pancharatman—Berry phase [24]. Experimental
results are provided that demonstrate the polarization encoding.
In a first stage, we applied the developed system to produce a
versatile polarization state generator (PSG) with almost contin-
uous variation of the selected SOP. Then, in a second stage, we
demonstrate the production of cylindrical vector beams.

The paper is organized as follows. After this introduction,
Section II describes the optical architecture and presents the de-
veloped optical 3D mount and optics. Then, Section III presents
an analysis of the SOP modulation capability of the system,
based on the Poincaré sphere transformations, including the cal-
culation of the residual phase modulation. Section IV presents
experimental results of different vectorial beams generated with
the developed compact polarization pattern generator. Finally,
Section V presents the conclusions of the work. For complete-
ness, an Appendix is included at the end of the paper to analyze
the proposed system with the Jones formalism, which shows
equivalent results with the alternative derivation based on the
Poincaré sphere transformations.

II. COMPACT OPTICAL ARCHITECTURE

The architecture of the set-up we propose is based on the PSG
shown in Fig. 1. It is based on the polarization state detector
proposed in [25], but the elements are placed in opposite order.
It is also equivalent to the system in Ref. [17]. It is composed
of a linear polarizer oriented at 45°, a linear wave-plate with
variable phase shift §; oriented at 0° (LC-WP1), and a second
linear wave-plate with variable phase shift d» oriented at 45°
(LC-WP2). As it will be shown in the next section, this system
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Fig.2. Scheme of the optical setup. LCOS—SLM indicates the display; HWP1
and HWP2 indicate half-wave plates with 22.5 relative angle; BS1 and BS2 are
non-polarizing beam splitters; L is a converging lens; LB indicates a light barrier
to block light. Red arrows indicate the trajectory of the modulated beam. Inset:
Alternative set-up without the use of beam-splitters, based on the combination
of three mirrors and one lens.

permits the generation of an arbitrary SOP by adjusting these
two phase shifts.

However, with the idea to build a robust and compact ex-
perimental set-up, to decrease costs, and to be able to create
arbitrary polarization patterns, we have reduced the number of
elements to one single spatial light modulator. This is achieved
by providing an adequate double pass of the light through a
LCOS-SLM.

Fig. 2 shows a scheme of the optical setup. A collimated
laser beam (He-Ne, A = 632.8 nm) is launched onto the system.
It is linearly polarized, orientated at 45 degrees with respect
to the SLM LC director axis (considered perpendicular to the
page plane in Fig. 2). A first beam-splitter (BS1) divides the
incident light. The transmitted beam is blocked by the light
barrier (LB), while the reflected beam is directed onto one half
of the LCOS—SLM screen, which is used to encode one first
polarization transformation on the light beam. The beam is then
reflected back to BS1, and the transmitted part passes through
a system containing two prisms, a converging lens, a second
beam-splitter (BS2) and two half-wave plates (HWP). In this
set-up, the beam-splitters should be non-polarizing to preserve
the polarization that is generated in each step. Therefore, in
each pass through the beam-splitters BS1 and BS2, the light
intensity is reduced to one half. In those applications where
the intensity losses are especially critical, alternative systems
should be devised. An alternative to avoid the use of beam
splitters may consist in using oblique incidence on the SLM,
but then, the system becomes larger. An example of oblique
incident architecture can be seen in the inset of Fig. 2.

The two prisms (P1) and (P2) are included in the set-up to
properly steer the light beam, leading to a compact architec-
ture. A convergent lens (L) images the first half of the SLM
over the second half of the screen, which encodes the second
polarization transformation. The two half-wave plates (HWP1
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and HWP?2, respectively), are oriented with a relative angle of
22.5° between them. This specific combination of retarders acts
as a polarization rotator with a rotation angle of 45°. This fact
is very important since it ensures a system being equivalent to
the one discussed in Fig. 1. (i.e., a combination of two Parallel
Aligned (PA)-LCOS displays with a relative angle between their
fast axes of 45°). Note, however, that the system in Fig. 2 is not
entirely equivalent to the one in Fig. 1, since a final polarization
rotation element would be required at the output. However, this
polarization rotation simply implies a rotation of the reference
frame at the final output beam.

As stated before, by achieving this construction, any fully
polarized SOP can be generated by properly selecting the phase
shifts §; and d» encoded onto each half of the LCOS—SLM.

The compact set-up sketched in Fig. 2 has been experi-
mentally implemented. The beam-splitters and prisms are from
Thorlabs (models BS010 and PS910H-A respectively). The lens
L1 is also from Thorlabs, model LB1212-A, with a focal length
of 20 mm and an aperture of 9 mm. This lens focal length was
selected to match a 2f configuration in order to achieve a unity
magnification (object distance is equal to image distance, equal
to 2f). Finally, another converging lens was placed at the output
of the system, to image the right part of the SLM onto a CCD
camera.

Actually, the whole optical system, with the exception of
the SLM, is placed in a box-holder about 20 mm x 20 mm X
20 mm (see Fig. 3), leading to a very compact set-up, and very
robust system. The box holder was manufactured onto polylac-
tide (PLA) thermoplastic polymer by means of a 3D-printer,
RepRap BCN3D-+. Fig. 3(a) shows the holder design created
with Rhinoceros software.

Fig. 3(b) shows a picture of the fabricated system to be placed
in front of the SLM. Two lateral screws were placed on the prism
P1 wall, in order to achieve a fine lateral displacement in the
reflected beam, so it can be properly centered on the rest of the
system.

Finally, the LCOS-SLM is a parallel aligned (PA) display
distributed by HoloEye, model PLUTO SLM. This is an active
matrix reflective mode device with a rectangular screen with
1.8 cm diagonal 1920 x 1080 pixels with a pixel pitch of 8 ym
and 87% fill factor. The rectangular shape of this device is ideally
suited for this architecture, since the screen can be divided in
two nearly square halves.

III. POLARIZATION TRANSFORMATIONS
AND PHASE MODULATION

In this section we describe how the optical system presented
above provides the desired SOP transformation in terms of the
two-phase levels addressed to the two patterns in the LCOS—
SLM. There are different methods for this analysis. We present
here the analysis in terms of the Mueller—Stokes matrix for-
malism, which more easily lends itself to physical insights of
the polarization transformation through the related Poincaré
sphere [26]. However, the Mueller—Stokes formalism does not
provide directly information about the relative phase shift
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Fig.3. (a) Design of the holder architecture, (b) fabricated experimental com-
pact holder with optical elements.

modulation that accompanies this generated SOP transforma-
tion. In order to derive this additional information, we apply
spherical geometry considerations on the Poincaré sphere [24].
However, for the sake of completeness, the Appendix section
provides an alternative complete derivation in terms of the Jones
matrix formalism.

A. Analysis in Terms of Mueller—Stokes Formalism

The Stokes parameters of elliptically polarized light with az-
imuth « and ellipticity € (see Fig. 4(a)) are given by [26]:

So 1

. Sy _ | cos (2¢) c?s (2a) , W
So cos (2¢) sin (2a)
Sy sin (2¢)

where Sy = 1 has been selected since we deal with fully po-
larized light. Additionally, there is a biunivocal correspondence
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Fig. 4. (a) Representation of a SOP with ellipticity (¢) and azimuth ().

(b) Representation on the Poincare sphere. (c) SOP transformations to produce
a desired (e, ar) SOP with the proposed system.

between this SOP and a point |C' on the Poincaré sphere surface,
with longitude 2« and latitude 2¢, respectively (see Fig. 4(b)).

The second relevant feature of the Poincaré sphere for our
purpose is related to the action of a linear retarder with phase
shift & and orientation @, which can be visualized as a §-rotation
of the incident SOP along the axis defined by 6 [26]. Therefore,
the polarization transformation produced by the system in Fig. 1
can be visualized as two Poincaré sphere rotations, as indicated
in Fig. 4(c). We follow here the sign convention in [26], where
a clockwise rotation corresponds to a positive phase-shift. We
start with the linearly polarized state oriented at 45°, represented
as point |A in Fig. 4(c). This light traverses a first wave-plate
oriented at 0°; therefore a first rotation of angle 9, is produced
around the S axis, leading to the intermediate state | B. Finally,
the passage of light though the second wave-plate, oriented at
45°, produces a second rotation of the sphere, now around the
S, axis, and an angle d,, leading to the final state |C'. Note that
the complete surface of the sphere can be reached if the phase
shifts §; and d2 can be continuously tuned within the range
[0, 27].

The Mueller—Stokes formalism directly provides relations be-
tween the phase shifts §; and d, and the ellipticity and azimuth
angles of the generated SOP. The normalized output Stokes
parameters, Sy, are given by the following relation [26]:

Sout = Dus (02) - Do (61) - Lys, (2)

where Ly5 = (101 O)T are the Stokes parameters of the initial
linearly polarized state oriented at 45°, and Dy and Dg5 are
the Mueller matrices corresponding to the linear wave-plates
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oriented at 0 and 45°, respectively, which take the following
form [26]:

10 0 0 100 0
01 0 0 0 ¢ 0 —s
o=t o0 ¢ s|"?" {oo1 o @
0 0 —s ¢ 0 s 0 ¢

where s = sin (0) and ¢ = cos (9). Therefore, the matrix prod-
uct in Eq. (2) leads to the following result:

1
sin (07) sin (d9)
Sout - . (4)
cos (07)
—sin (01 ) cos (d2)
By comparing Egs. (1) and (4) the following relations are
easily derived:

1
tan (20) = S e (5) (5a)
sin (2e) = —sin (d;) cos (d2), (5b)

that provide the (e, «) parameters of the generated SOP as a
function of the encoded phase shifts ; and d,. The comparison
of Egs. (1) and (4) also directly provide inverse relations with
the phase shifts §; and &, required to obtain a polarization ellipse
with parameters (g, ):

cos (01) = sin (2ar) cos (2¢), (6a)
_cos(2a)
tan (62) = tan (20) (6b)

However, although these relations completely define the SOP,
there is no information about the relative phase shift modula-
tion between different SOP generated with this system. This
phase difference might be relevant especially in polarization
diffractive elements. For that purpose, next we apply spherical
trigonometry considerations. A complementary analysis based
on the Jones matrix formalism is also presented in the Appendix
section, to the sake of completeness.

B. Analysis Based on Spherical Trigonometry
on the Poincaré Sphere

Following [24], SOP transformations and derivation of the
coupled phase modulation can be obtained through the Poincaré
sphere transformations described in Fig. 4(c). SOPs |A, | B and
|C' define a spherical triangle. The trajectory from |A to |B
follows a geodesic arc with length d;. On the contrary, trajectory
from | B to |C, with length d2, does not follow a geodesic arc.
The spherical triangle is closed with another geodesic arc that
joints points |C' and | A, forming a rectangular angle at point |C'.
By applying the spherical cosine and sine laws to this spherical
triangle, it is straightforward to derive the same relations as in
Egs. (5) and (6). In addition, the phase modulation related to
these trajectories on the Poincaré sphere can also be derived by
following the procedure described in Ref. [24]. This procedure
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indicates that when a general input SOP |a is transformed onto
an output SOP |b by a waveplate with polarization eigenvectors
|e and |/, the relative phase shift ¢ gained in this polarization
transformation is given by

Qbe Qae
2 2’

¢ =de+ (7)
where ¢, is the phase-shift gained by the waveplate eigenvector
le, and €. denotes the solid angle subtended by the spherical
rectangle enclosed by the geodesic arc joining state |b and the
eigenstate |e, the equator line, and the two meridians passing
through |b and |e. Half this solid angle corresponds to the phase
of the inner product e|b. This calculation can be done through
any of the two eigenvectors of the wave-plate, which lie on
antipodal points on the Poincaré sphere.

Let us first evaluate the phase gained at the intermediate
point | B with respect to the initial polarization (point |A). In
this case, we consider the eigenstate located at the positive S
axis (denoted as |e; in Fig. 4(c)), which has a positive phase shift
d1. The two projections provide Q4.1 = 0 and Qp.1 = —61/2,
where the sign convention in [24] is followed. Therefore, the
total phase shift of this first step is directly ¢ = 61 /2.

For the second step, from |B to |C, we must consider that
now the rotation is around S, axis. We select as the eigenvector
the positive state along this axis, denoted as |ey in Fig. 4(c).
Since |B and |es lie in the same meridian, now Q.o = 0. The
calculation of {2, must be done through the spherical triangle
defined by |es, the final state |C, and the projection of this onto
the equator, labeled as point |C” in Fig. 4(c). The segment from
|C to |C" is equal to 2¢, the segment from |C” to |e is 90° — 2c,
and the segment from |C' to |ey is §;. And the angle at point
les is equal to 90° — 0. As a result, and applying spherical
trigonometry relations, the following expression can be derived
to the solid angle of this triangle:

sin’ (%1) sin (262)

1 — 2sin® (%) cos? (&)

®)

tan QCSQ =

Therefore, the total phase shift gained at this second transfor-
mation is o = ds + Q¢e2/2, and the total phase shift from |A
to |C' is:

o 51 QCeZ
6 1 sin? (%) sin (26,)

= — + 0y + = arcta 2/ .
g T2 n<1—2sin2 (%) cos? (82) ®

This equation can be rewritten as: ¢ = 1 (6 +0s) +
% (Qcea + 02), which after some trigonometric manipulation,
leads to the following simpler expression:

_htd 1 <mmm)

- t
p T pArctan cos (61)

¢ (10)

This equation provides the relative phase shift between the
different SOP generated with the proposed setup, as a function
of the two required phase shifts ¢; and 6,.
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Fig.5. Available SOP generated with uniform screens with gray level steps of:
(a) 20, (b) 10, and (c) 5. Therefore, 142 = 196, 272 = 729, and 522 = 2704
different SOP are available, respectively, uniformly distributed on the Poincaré
sphere.

IV. EXPERIMENTAL RESULTS

In order to test the optical system, we first analyzed its per-
formance as a PSG by addressing screens of uniform gray level
to each half of the LCOS-SLM. The gray level can be adjusted
to values in the range (0, 255), each one corresponding to a
different phase shift on the LCOS—SLM. The display is config-
ured to provide a 27 phase modulation in the complete range of
addressed gray levels (from 0 to 255 gray level). Different com-
binations of pairs of gray levels (g, g2) have been selected to be
addressed to each half of the LCOS screen, and the generated
SOPs at the output have been tested by measuring the corre-
sponding Stokes vector with a commercial Stokes polarimeter.

Fig. 5 shows the polarimeter results. In Fig. 5(a) we have
first used a gray level step of 20, i.e., g; and g» have been as-
signed values 0, 20, 40, ..., 220, 240, 255. Thus, the number of
combinations is 14° providing 196 different polarization states
uniformly distributed in the Poincaré sphere. Each red spot rep-
resents a different generated SOP detected with the polarimeter.
They show an excellent uniform distribution on the Poincaré
sphere surface, although some SOP discretization is still clearly
visible due to the large gray level selected step.

In Fig. 5(b) and (c) the gray level step was reduced to 10
and 5 respectively, leading to a total of 729 and 2704 different
states of polarization respectively. Note that the Poincaré sphere
is uniformly and completely filled with SOP generated with the
system. In the limit, using all possible gray levels, the number of
SOP would be 256° = 65536 leading to practically continuous
variation of the SOP.
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Fig. 6. CCD capture for different polarization distributions. A polarizer is
placed in front of the CCD camera, oriented at O degrees. (a) Radial polarization
(order m = 1). (b) Order m = 0.5. (c) Order m = 2 plus quadratic phase shift
(d = 0.5), and (d) Order m = 3 plus quadratic phase shift (d = 1). Video files
are attached that show the SOP variation by rotating the analyzer in front of the
CCD detector.

A second test is performed for producing non-uniform distri-
butions of polarization. The results are shown in Fig. 6. In order
to visualize the corresponding polarization pattern, an analyzer
is placed just in front of the CCD camera in Fig. 2. In the images
shown in Fig. 6, this analyzer is oriented at 0° (laboratory verti-
cal direction). In the corresponding related videos, the analyzer
is rotated and it can be seen that the whole intensity pattern
performs the corresponding rotation, indicating the polarization
angle.

We started by generating a light beam with radial distribu-
tion of linear polarization. In an ideal case, the radial polar-
ization could be generated by encoding a spiral phase shift 61,
while encoding a uniform d2 = 7/2, in order to emerge linear
states. However, due to experimental imperfections of the op-
tical elements in the set-up (see Fig. 3) with respect to the
theoretical values (caused by non-zero retardance values of the
beam-splitters [27], certain experimental offset for the wave-
plates orientation, time-fluctuations of the phase introduced
by the LCOS display [28], etc.), the above mentioned phase
encoding procedure may lead to slightly modified results. To
take into account those experimental deviations and thus, to
achieve the best phase encoding, a searching software-based
procedure is applied. The software, implemented on LabView,
is based on the experimental calibration given in Fig. 5, where
the relation between pairs of gray levels and the corresponding
SOP measured is obtained. In fact, from this gray level pairs-
SOPs database, the implemented searching method provides the
pair of gray levels related to the experimental SOP providing
the minimum mean squared error when compared with the de-
sired SOP. Note that once the relation between gray level pairs
and SOP is known, the relation between the phases d; and &
and the gray level pair addressed to the LCOS display is directly
obtained by using Eqgs. (6).

Fig. 6(a) shows the experimental output beam measured on
the CCD when generating a light beam with radial distribution

JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 33, NO. 10, MAY 15, 2015

Fig. 7. Gray level distribution addressed to the first half (first column images)
and to the second half (second column images) of the LCOS screen. (a) Radial
polarization (m = 1, d = 0). (b) Azimuthal polarization (m = 0.5, d = 0).
(c) Radial quad (m = 2;d = 0.5), and (d) Radial quad (m = 3;d = 1).

of linear polarization. In addition, the dual gray level pattern
encoded on the LCOS—SLM that generates this beam is shown
in Fig. 7(a). Since the analyzer transmission axis is oriented
at 0°, the radial distribution of linear SOP is observed as an
angular progression from a maximum vertical intensity line (at
0°, vertical direction) to the null horizontal intensity line (at
90°, horizontal direction). Verification of the radial polarization
is observed in the related videos, where the intensity pattern is
reversed when the analyzer is rotated by 90°.

Fig. 6(b)—(d) show other spatially polarization variant beams.
These SOP patters are created by displaying the images in
Fig. 7(b)—(d) on the LCOS—SLM. Such patterns are given by
a radial distribution with an additional quadratic phase shift
pattern, as provided by the following relation:

§ = mb + dnr?, (11)

where r is the radius and 6 is the azimuthal angle, m provides
the number of whole rotations versus 6 and d is a parameter that
determines the curvature of quadratic phase term. This is the
retardance pattern to be addressed to the first half of the LCoS,
i.e. 81 (r,0), whereas to the second half a constant retardance
value d, = 7/2 must be addressed. Note that Fig. 7 highlights
the necessity of using the SOP searching algorithm to accu-
rately encode the desired SOP spatial distribution: for example,
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the second half of the LCoS display should ideally have a uni-
form gray level, but actually the appropriate gray level image to
produce the desired results is not uniform.

In Fig. 6(b), only half azimuthal polarization rotation is pro-
duced on the beam (m = 1/2), and the quadratic phase term is
avoided (d = 0). As a consequence, polarization is linear and
vertical on left horizontal line, and it is linear and horizontal
on right horizontal line, and it progressively rotates in between.
Therefore, when this polarization distribution is projected over
a linear polarizer fixed at 0° of the vertical, the obtained in-
tensity pattern presents a continuous intensity variation from a
maximum intensity line at the left, to a null intensity line at the
right.

Finally, Fig. 6(c) and (d) show the result when a radial
quadratic distribution is encoded on the LCOS display. As it
was shown in [16], this phase distribution produces a spiral
linear SOP pattern. The number of dark and bright lines di-
rectly depends on the m value (i.e., the distribution order) of the
encoded spiral phase, and the helices curvature grows with d.
These experimental results confirm the theory.

A final remark refers to the gray level distributions in Fig. 7
that produce the patterns in Fig. 6 (obtained through the SOP
searching algorithm software). Note that the polarization dis-
tribution exiting from the first half of the LCOS screen is not
only modified by the optical elements present in the compact
optical system given in Fig. 3 but is also affected by an image
inversion, due to the reflections present in the optical path from
one half of the LCOS display to the other half. To compensate
this effect, the gray level distribution addressed to the second
half is inverted as well, as can be seen in the second column of
Fig. 7.

V. CONCLUSION

In summary, we have developed a compact optical system
based on a parallel-aligned LCOS—SLM that acts as a pixelated
PSG, suitable for the production of complex spatial polarization
patterns. The system can be regarded as the combination of
two variable retarders with tunable retardance, with a relative
orientation of 45° among them. Although the system introduces
some important losses, mainly due to the four passages through
the beam splitters, it has been experimentally validated to act as
a polarization generator covering the complete Poincaré sphere.

A complete analysis of the SOP modulation capability of
the system has been presented, based on the Mueller-Stokes
formalism. Additionally, the coupled relative phase modulation
has also been derived based on spherical trigonometry relations
on the Poincaré sphere. These relations have been alternatively
derived using the Jones formalism in the Appendix, therefore
providing an alternative point of view.

Based on the excellent results obtained, the suitability of the
system to generate different spatially variant distributions of
polarization has been validated.

APPENDIX

The analysis presented in the paper, based on the Mueller—
Stokes formalism, provides a complete description of the SOP

2053

transformations of the system. In addition, the analysis of the
Poincaré sphere transformation additionally provides informa-
tion about the coupled relative phase modulation. However,
many users are more familiar with the Jones formalism. The
purpose of this Appendix is to provide an alternative derivation
based on the Jones formalism, in order to complete the different
views of the analysis.

The Jones formalism is not directly related to the azimut-
ellipticity parameterization of the SOP. On the contrary, it is
directly related to the complex amplitude components of the
electric field, and therefore it can provide information about
the relative phase shift between different SOP generated with
the proposed system.

The same polarization transformation in Eq. (2) can be ap-
plied in the Jones formalism, but then the input normalized
Jones vector is Lys = (1/v2 1/V/2 )Tand the Jones matrices
corresponding to the wave-plates are given by:

D 62'5
"o

0 _ _ _
1) , Dys = R(—45)- Dy - R(+45), (Al)
where the rotation matrix is

cos sin 0
R(9) = . .
—sinf cosf
Note that in Eq. (A1), the phase shift in Dy is limited to the x
component, while it is considered constant for the y component,
in agreement with the x-axis orientation of the LC director of
the LCOS—SLM display.

The calculation of Eq. (2) by applying the Jones matrices in
Eq. (A1) leads to the following result:

(A2)

7 eid [ cos A +isind (A%)
M2\ cosd —isinA ]
where § and A are given respectively by,
Sz&;@,Az&;®. (A4)

Note that the Jones vector does not provide a direct relation
with the ellipticity-azimut parameterization of the polarization
ellipse. This can be obtained by noting that the normalized Jones
vector can be written in terms of « and ¢ as [24]:

_ _ cose
J(a,e) = R(a)~< >

isine

CcoS(Ccose — isinasine
. . . . (AS)
sina cose + 1cosasine

By comparison of the Jones vector in Eq. (A3) with an out-
put Jones vector J,u; = €'¥.J (a, ¢), Egs. (5) and (6) derived
with the Mueller approach can also be retrieved. But now, also
the relative phase modulation between different SOPs can be
derived.

By calculating J , - J,u¢, denoting 7T the transposed Jones
vector, the following equality is obtained for the vector in
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Eq. (A3) and for the vector J,u; = €?.J (a, €):

forut oy = €20 (cos d1 cos dy + isindy)

= cos (2¢) e, (A6)

This complex values equality directly provides Eq. (5b) when
the modulus is considered. And, when dealing with the phase
values, the following relation is obtained:

-1 tan dy
@ =0 + — arctan .
2 cos 01

(A7)

This is exactly the same phase modulation (Eq. (10)) derived
with the Poincaré sphere technique in Section III-B.
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