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Abstract—This paper proposes a new compact filtering build- 0060606060000 00
ing block. It consists of two via holes embedded into a subsite (J (J
integrated waveguide (SIW) cavity connected to capacitivenetal (J (J Via hole
patches at the top layer. This topology provides two coaxiahodes (] o / 5 . To
performing a doublet filtering configuration. The proposed dual- 000 o0 ot
mode SIW coaxial cavity is studied in detail and guidelinesdr the (AR hI.l
filter design are given. As will be shown, the proposed buildig UG ) —— LR J
block presents a high degree of design flexibility, which atiws OI : IO / Bottom
for the design of multiple kind of bandpass filter responses, Lam ® .
including both narrow- and wide-band bandpass filters along o () Cross section (not to scale)
with TZ generation. As a verification, several filters are deigned 0006060000000
and implemented at 8 GHz. W

Index Terms—bandpass filter (BPF), coaxial line, dual-mode, €]
substrate integrated waveguide (SIW), transmission zero. _

. INTRODUCTION C.
T HE hybrid technology Substrate Integrated Waveguide
(SIW) has demonstrated in the last years to be a very ;fjgg?h

attractive solution for managing propagation, power divis

and/or filtering of signals in microwave/mm-wave systems.
This is mainly due to its low cost, easy integration with b) ©
classical planar technologies, such as microstrip or capla

and its relatively high@-factor [1]. With respect to the filter- Fig. 1. (a) Layout of the proposed dual mode SIW coaxial fugdblock.
ing application, the emergent microwave applications deina(®) Equivalent transmission line model. (c) Routing conglpath.

advanced filtering responses with several transmissiooszepgn fiiter design flexibility. The proposed building bloclsa

(TZs) in their responses to avoid, for example, co-channgl,erates a TZ, which can be placed either below or above the
interferences, along with a very compact circuit size. S\Waqshand, as desired for the filter designer. Several basdpa
components, for not very high frequencies (i.e., lower thafkers (BPFs) presenting narrow- and wide-band responses,
10 GHz), usually present a big occupation area, mainly {untered at 8 GHz and based on the proposed building block

comparison to their microstrip counterparts. In order toefa 56 gesigned and implemented, thus demonstrating the-afore
this issue, several solutions/approaches have been OIS 1 antioned advantageous features.
SIW compactness, such as the folded SIW [2], half-mode SIW

[3] or more recently the coaxial combline SIW [4], where a vidl. THEORETICAL ANALYSIS OF THE PROPOSEBUILDING
hole is embedded into the center of the SIW cavity providing BLocCk

a TEM coaxial mode. o o Fig. 1(a) shows the layout of the proposed dual-mode SIW
In this paper, a filtering building block consisting of &oaxial cavity. It is formed by a SIW cavity where two via
dual-mode SIW coaxial cavity is proposed. Such a buildingples are symmetrically inserted with respect to the cavity

block provides a high degree of miniaturization along with @enter. Each via hole with diametéis connected to the circuit
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TABLE |
value Cy, whereasCy depends on the length, and the FILTER DESIGN PARAMETERS

inside gapg;. Their values can be computed by means of a

quasi-static simulation or by using the approach of [5].éNot e WEB Ye7(3"2)3) Y‘ié”é‘g) Clgz(gF) 0272':)
that the Cu base thicknegsalso plays an important role in- Fiter WB-II | 946 11.15 344 73
both capacitance values. This equivalent circuit, due $o it Filter NB 9.40 11.16 340 53
symmetry, can be analyzed by means of an even-odd mode
analysis. The two transcendental equations which provide t TABLE Il
. . FILTER DIMENSIONS(UNITS IN MM)
two resonant frequencies of the proposed dual-mode canéty a
found as: ln ly S 9i Yo leat Wext
v v Filter WB-1 | 1.8 | 22 | 295 | 0.15| 0.15| 35 | 0.8
weCy = —<—71 W, (Cy 4 2Cs) = o (1) Fiter WB-Il | 3.0 | 2.0 | 5.15| 0.15| 0.35| 35 | 0.8
tan =<h tan <2h Filter NB 30| 20| 53 |030]|030| 23| 05
wherew, and w, and, Y, andY, are the angular resonant
frequencies and characteristic admittances of the evedad editatdlii
mode, respectively, andis the propagation speetl, andY, i

. . . [+ | S A
can be computed numerically by using static methods such as L Xy H

conformal transformation or Green’s function [6], [7]. The
values depend on the ratig W (whereW is the cavity width),
s and the substrate permittiviey.. Obviously, ass increases, B4
the ratioY, /Y. approaches to 1 and no distributed coupling ; Filter N8
. . ,—| Filter WB-II

appears between lines. For small resonator electricatheng iom

as usually happens in SIW combline resonators, one can find 5
a closed expression for the ratio between the two reson&lft >

Photographs of the three implemented filters.

frequencies, which facilitates the filter design: I1l. EXPERIMENTAL VALIDATION
Jo _ G Y, @) In order to validate the proposed topology, several second
fe C1+2C Y, order bandpass filters presenting narrow and wideband re-
p p

ponses have been designed and fabricated by using a standar

As deduced from (2), it is possible to synthesize the requir CB prototvping process. The filters have been implemented
fo/ fe by controlling both the coupling between linék (Y.) on R?MOO%/?: I%(fgers sﬁbstrate whose characte?istics are:
and C; and Cs. The ratio f,/ f. defines the passband band- _ 355 h — 1.52 mm, ¢ — 17 um, and loss tangent

width of the filter response, indeed, this topology allows Ug ; .
the design of both ngrrowband and Widebrfnd %I)t/ers by juin® = 0.003. All filters have been designed at a center
choosing properlyf,/f.. Other characteristics such as th requency fo = 8 GHz. For all designsi = 0.4 mm and
position of the generated transmission zero, can also bly eas . — 10.6 mm. Those values are chosen as a trade-off
controlled with this topology as will be shown next. It shaul etweer()-factor and compactnes_s [AT]' The unloadgdactor
be noted thaff,/ f. can be set to a value higher or lower tha f the propog,ed dl_JaI-mode cavity is around 220, extracted
1, depending on the desired filter performance. Therefboee, rom HFSS simulations.
proposed building block provides a high degree of flexipilit

For the filter design purpose, the doublet filtering configurd- YMdeband BPF Examples

tion shown in Fig. 1(c) perfectly models the proposed batdi | thjs first example, a wideband BPF (named WB-I) with
block. This configuration provides two poles and one finite TZ fyactional bandwidti3Waqs = 20% is designed and imple-

[8]. The TZ is placed at the normalized frequency mented. The TZ is designed to be above the passband. The
MogM2. — Moo filter design parameters and dimensions are given in Tables
Oz = o = (3) I and Il, whereas the photographs of the implemented filters

m2 — m?2 A ) -
5o se are shown in Fig. 2. The filter presents a very compact size

wherem.. andm,, are the normalized even and odd modef 10.6 x 10.6 mn? (i.e., 0.42 x 0.42 )\3, where ), is the
frequencies, andns. andmg, are the normalized couplingsguided wavelength of the CPW feeding line). A conventional
between the input and the even- and odd-modes, respectivetyd order SIW filter based on rectangular cavities coupled
Thus, by properly choosing the design parameters, the B¥ means of iris windows would occupy a size around 4
can be placed at frequencies lower or higher than the filttmes bigger without presenting any TZ in the response. Fig.
passband, as required for the application. It should bednotgots the theoretical, simulated (by using HFSS) and measur
that there is not coupling between modes in the proposezsponses, where a good agreement is observed among all
topology, independently of the value of coupling betweeof them. The in-band return and insertion losses are in all
lines. The parameters,, and m,, are controlled by the responses better than 15 dB and 0.7 dB, respectively. The filt
penetration of the coplanar feeding line into the cavitptigh presents a high selectivity in the higher band part due to the
lext and we,. For the proposed filtering building block,generated TZ. The achieved wide fractional bandwidth would
mge > Mg, fOr any geometrical parameter, which means thae very difficult to be obtained by using conventional SIW
the input (output) port is coupled more strongly to the evdiiter configurations, or even with the recently proposed SIW
mode than to the odd mode. coaxial filters [4].
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Fig. 3.  Theoretical, full-wave simulated and measured orsps of the Fig. 5. Theoretical, full-wave simulated and measured arsps of the

implemented Filter WB-I. For the theoretical response;. = 0.62, ms, = implemented Filter NB. For the theoretical response;e = 0.73, mso =
0.35, mee = 0.70 and myo = —0.38 with BW3qg = 20%. 0.49, mee = —0.61 andmeo, = 1.21 with BW3qg = 5%.
TABLE Il
COMPARISON WITH OTHER COMPACTSIW FILTERS
BWags(%) | fo (GHz) | N | TZs® | Eq. Cavity SizB
o 2
g [2] 5 10 4 0 0.27\]
5 [3] 22 7.8 3 0 0.22)%
g [4] 6 9.8 3 0 0.18>\§
g This work:
a ] WB-| 20 8.0 2 1 0.092
D o} "'hFAull wave ] WB-II 14 8.0 2 1 0.09\2
——Measurements 2
““““ Theoretical NB 5 8.0 2 1 0'09>‘q
0 6 8 10 12 14 16 2The TZs column indicates the number of TZs whose positioroigrolled in the
Frequency (GHz) synthesis phaséThe equivalent cavity size is computed as the total filtee siwided

by the filter order N.

Fig. 4. Theoretical, full-wave simulated and measured arsps of the
implemented Filter WB-II. For the theoretical response;. = 0.63, mso =

050 0.18 and T 04 with BTV 97 analyzed in detail, and a design strategy has been given
-0J, Mee = —U. Moo = 1. 3dB = 0.

for the filter design. Along with its very compact size, its
Another wideband BPF (WB-Il) withBWags = 14% is high design flexibility should be highlighted, as it has been
designed and implemented in order to demonstrate the higg¢monstrated with the design of both narrow and wide-band
design flexibility of the proposed building block. In thisBPFs presenting TZs placed as required for the particular
case, the TZ is placed below the passband and the widebapglication. Several proof-of-concept filters have beeo- su
response is obtained with a very low distributed couplingessfully constructed and tested based on the proposeuhfjite
between lines, i.e.Y,/Y. ~ 1, as Table | depicts. Fig. 4 topology. As future work, the proposed building block may be
shows the simulated and measured responses. Again, a gased for the design of higher-degree filters or even for filter
agreement between all responses is found, whereas the $ig@bility/reconfigurability.
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