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Abstract The Poincaré–Lindstedt method in perturbation theory is used to compute periodic
solutions in perturbed differential equations through a nearby periodic orbit of the unperturbed
problem. The adaptation of this technique to systems of differential equations of first order could
produce meaningful advances in the qualitative analysis of many dynamical systems. In this paper,
we present a new symbolic algorithm as well as a new symbolic computation tool to calculate
periodic solutions in systems of differential equations of first order. The algorithm is based on an
optimized adaptation of the Poincaré–Lindstedt technique to differential systems. This algorithm is
applied to compute a periodic solution in a Lotka–Volterra system.
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1 Introduction

Periodic orbits play a key role in understanding dynamical systems. Their rigorous computation and the
precise knowledge of their properties has made them very important for studying the behavior of many
dynamical systems of physical interest. In “Les méthodes nouvelles de la Mécanique Céleste” [17], Poincaré
considers the determination of periodic solutions by series expansion with respect to a small parameter.
Consider for instance the equation ẍ+ x = εf(x), and suppose that an isolated periodic solution exists
for 0 < ε� 1, and if ε = 0 all solutions are periodic. Under certain conditions Poincaré proves that we
can describe the periodic solution by a convergent series in entire powers of ε, where the coefficients are
bounded functions of time. The Poincaré–Lindstedt expansion is a classical perturbation method used to
continue a periodic orbit with respect to a small perturbation parameter, when fixing the amplitude (or
the energy) of the system. This method has been used extensively to the analysis of a wide variety of
systems in many branches of science: from galactic ([21], [22]) to atomic models [16], and covering also
applications in population biology, ecology and mathematical biology [5]. Nowadays, many researchers
([2],[3], [4], [8], [19] and [24] to cite some examples) make use of this method to study dynamical systems.
Buonomo [2] uses the Poincaré expansion theorem in order to compute the periodic solution of the van
der Pol equation, Hu & Xiong [8] explore the capabilities of the Poincaré–Lindstedt method to study
the cubic Duffing equation, and the quintic Duffing equation is also examined with this technique by
Ramos [19]. As stated in [4] and [24], the only algorithms capable of computing high–precision periodic
orbits are based on the Poincaré–Lindstedt series method. In [24], the author presents the most accurate
computation of Hill’s orbit of lunation since its justly celebrated discovery in 1878 with the help of the
Poincaré–Lindstedt technique. The Poincaré–Lindstedt technique has traditionally been used to deal with
oscillators with power–law potentials. In [1], Bhattacharjee et al. show how this method can be extended
to deal with molecular potentials for which the frequency goes to zero as the energy approaches zero.
The extension requires the use of an asymptotic analysis which is combined with perturbation theory.
They also point out that the time period obtained in their study can be used to obtain the quantum
mechanical energy levels of these potentials within the Bohr–Sommerfeld scheme.

As described before, the Poincaré–Lindstedt technique is only to solve nonlinear differential equations
depending on a small parameter. To overcome this limitation, some modified Poincaré–Lindstedt–type
methods have been proposed in recent years. Chen & Cheung [3] employ a modification of the Poincaré–
Lindstedt technique to analyze some strongly non–linear oscillators of two degree of freedom. The proposed
method is based on a parameter transformation such that a strongly nonlinear system with a large
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parameter is transformed into a small parameter system. In [6], He introduces a new Poincaré–Lindstedt
method based on the expansion of a constant, rather than the nonlinear frequency, in powers of the
expanding parameter to avoid the ocurrence of secular terms in the perturbation series solution. A detailed
review of some other Poincaré–Lindstedt–type methods can be found in [19].

The application of the Poincaré–Lindstedt technique requires massive symbolic computation. The
most common perturbation methods tend to produce expressions containing thousands of terms, and
their treatment with general symbolic packages becomes a time–consuming task [7]. Specific symbolic
computation packages avoid this inconvenience working with simple data structures and algorithms. In
[11], Navarro describes a symbolic processor which could be a very useful tool to implement the Poincaré–
Lindstedt method. This package works with the so called modified quasipolynomial. In that paper, the
authors described a general algorithm to construct the general solution to a second order linear differential
equation of constant coefficients. This package has been used to implement the Poincaré–Lindstedt
technique as detailed in [12], as well as the asymptotic expansion method [13].

However, the efforts devoted to the application of the Poincaré–Lindstedt technique to systems of
differential equations presenting a periodic orbit have not been so abundant. In [23], an approximation
to the periodic solutions of the general Lotka–Volterra prey–predator system is obtained using the
Poincaré–Lindstedt method. The computation of periodic solutions in Lotka–Volterra systems is an open
problem where the Poincaré–Lindstedt method could play a key role in the computation of periodic
orbits and the understanding of the way the phase space is structured not only in two species systems. In
[9], Li obtains sufficient conditions for the existence of at least four positive almost periodic solutions
to two species parasitical system with impulsive effects and harvesting terms, by applying MawhinÕs
continuation theorem of coincidence degree theory. Camelia Pop et al. [18] study the existence of periodic
solutions in the Lotka–Volterra system from the mechanical geometry point of view. Miao and Ke [10]
investigate a generalized Gilpin–Ayala competition system which is more general and more realistic than
the classical Lotka–Volterra competition system. By the fixed–point theorem and differential mean value,
some sufficient conditions guaranteeing the existence, uniqueness and exponential stability of positive
periodic solutions for a generalized Gilpin–Ayala competition system with time delays are given. In [14],
Pang, Xu and Zhang give some sufficient conditions for the existence of at least two positive almost
periodic solutions of harvesting predator-prey model with Holling III type functional response and time
delays by means of the same procedure followed by Miao and Ke [10]. Pei and Wang [15] study dynamics
of a logistical predator–prey system with state feedback control and a general functional responses. By
using the Poincare map, some conditions for the existence and stability of semi-trivial solution and
positive periodic solution are obtained. They show that a chaotic solution is generated via a cascade of
period doubling bifurcations.

The aim of this paper is to present a general algorithm for implementing the standard Poincaré–
Lindstedt method to systems of differential equations of first order. We also present here the specific
symbolic tool needed to implement this technique, as well as an application of this algorithm to a simple
Lotka–Volterra system to clarify some aspects related to the application of the method.

2 Adaptation of the Poincaré–Lindstedt Method for Systems

Let us consider the problem defined by the following nonlinear differential system of first order,

ẋ+ y = ε f(x, y) ,
ẏ − x = ε g(x, y) , (1)

where 0 < ε� 1 is a small parameter and functions f(x, y) and g(x, y) can be arranged as follows,

f(x, y) =
∑

0≤q≤M

∑
0≤ν≤q

fν,q−ν x
νyq−ν ,

g(x, y) =
∑

0≤q≤M

∑
0≤ν≤q

gν,q−ν x
νyq−ν , (2)

where fν,q−ν , gν,q−ν ∈ R for 0 ≤ q ≤M , 0 ≤ ν ≤ q and M ∈ N.
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If the unperturbed system (ε = 0) has periodic solutions and ε is a measure of the size of the perturbing
terms, then the trajectories for the full system will remain pretty close to those of the non–perturbed
system, for any finite period of time t0 < t < t0 +α (α > 0) with an error not larger than O(α). In general,
even a small perturbation is enough to destroy periodicity, that is, nonlinearity will finish with most of
the periodic orbits of the unperturbed system, but some of them may persist. The Poincaré–Lindstedt
technique is used to find those periodic solutions by expanding the solution of the system in the form

x(t) = x0(T ) + ε x1(T ) + ε2 x2(T ) + · · · ,
y(t) = y0(T ) + ε y1(T ) + ε2 y2(T ) + · · · , (3)

where xν = xν(T ) and yν = yν(T ) are 2π–periodic in T , and T = ωt is the stretched time variable, with

ω = 1 + εω1 + ε2ω2 + · · · , (4)

being ων real constants. Thus, the nonlinear period is 2π/ω.
To apply this technique, one has to start by rewriting (1) in terms of the new independent variable T ,

to obtain

ωx′ + y = ε
∑

0≤q≤M

∑
0≤ν≤q

fν,q−ν x
νyq−ν ,

ωy′ − x = ε
∑

0≤q≤M

∑
0≤ν≤q

gν,q−ν x
νyq−ν . (5)

Here, ˙ stands for d/dt and ′ for d/dT . If expansions (3) and (4) are substituted into (5), and terms in
equal powers of ε are collected, we get an equation for each order of the approximation in the expansions
(3). In order to simplify the expression of these equations, let us introduce here the following notation: Sν
denotes the ν–th order coefficient of the expansion of S, so that

S = S0 + εS1 + ε2S2 + · · · .

For instance, if S = x2, then (x2)0 = x0x0, (x2)1 = 2x0x1, and in general, (x2)q =
∑

0≤ν≤q xνxq−ν . This
notation eases the way to express the formulae for the computation of the coefficients of the expansion of
the solution at any order.

The solution to (1) is constructed from the order zero, which corresponds with the unperturbed
problem, and can be written as

x′0 + y0 = 0 ,
y′0 − x0 = 0 . (6)

The first order system is given by

x′1 + y1 =
∑

0≤q≤M

∑
0≤ν≤q

fν,q−νx
ν
0y
q−ν
0 − ω1x

′
0 ,

y′1 − x1 =
∑

0≤q≤M

∑
0≤ν≤q

gν,q−νx
ν
0y
q−ν
0 − ω1y

′
0 . (7)

The order Q of the expansion is obtained by solving the system

x′Q + yQ =
∑

0≤q≤M

∑
0≤ν≤q

fν,q−ν
[
xνyq−ν

]
Q−1 −

∑
1≤ν≤Q−1

x′νωQ−ν − ωQx′0 ,

y′Q − xQ =
∑

0≤q≤M

∑
0≤ν≤q

gν,q−ν
[
xνyq−ν

]
Q−1 −

∑
1≤ν≤Q−1

y′νωQ−ν − ωQy′0 . (8)

At each order p of the perturbation method, one has to calculate xp, yp and ωp from the equation above,
but also x′p, y′p and the collection of products (xν1yν2)p for each ν1, ν2 ∈ Z such that 0 ≤ ν1, ν2 ≤M , in
order to compute the right–hand side of equation (8) for the (p+ 1)–th order of the perturbation method.
At the p–th order of the Poincaré–Lindstedt approximation, one first fits the value of ωp to assure that no
secular terms exist, expressing it as a function of some constants which depend on the initial conditions
of the problem. Once ωp has been obtained, xp and yp can be computed by solving the system (8). In the
next section, we describe a procedure for the implementation of the Poincaré–Lindstedt method.
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3 Application to Lotka–Volterra Systems

In this section we apply the algorithm described above to a Lotka–Volterra system in order to understand
the mathematical object we deal with when we apply the Poincaré–Lindstedt method. The Lotka–Volterra
equations constitute a differential system for modelling the interaction between two species. These
equations have one non–trivial equilibrium solution and periodic solutions forming close orbits around
this point in the phase plane. The Lotka–Volterra system can be written as

dX

dτ
= X(τ)(a− bY (τ)) ,

dY

dτ
= Y (τ)(cX(τ)− d) , (9)

where a, b, c, d > 0. Now, defining the variables

ξ(t) = c

d
X(τ) , η(t) = b

a
Y (τ) , t = aτ , α = d

a
,

we get

dξ(t)
dt

= ξ(t)(1− η(t)) ,

dη(t)
dt

= −αη(t)(1− ξ(t)) . (10)

This system presents an equilibrium solution at ξ(t) = η(t) = 1. Now, if we perturb the system around
this point,

ξ(t) = 1 + εx(t) , η(t) = 1 + εy(t) ,

with ε� 1, and taking α = 1, we get

ẋ(t) = −y(t)− εx(t)y(t) ,
ẏ(t) = x(t) + εx(t)y(t) . (11)

Now, we will apply the algorithm introduced in the last section to this system.

3.1 Order Zero

The solution to (1) is constructed from the order zero, which corresponds with the unperturbed problem,
and can be written as

x′0 + y0 = 0 ,
y′0 − x0 = 0 . (12)

The solution to (12) is given by

x0(t) = A0 cosT −B0 sinT ,
y0(t) = A0 sinT +B0 cosT , (13)

where A0 and B0 are constants depending on the initial conditions of the problem. The derivatives of x0
and y0 with respect to T are

x′0(t) = −A0 sinT −B0 cosT ,
y′0(t) = −B0 sinT +A0 cosT . (14)
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3.2 First Order

The first order system is given by

x′1 + y1 = −x0y0 − ω1x
′
0 ,

y′1 − x1 = x0y0 − ω1y
′
0 . (15)

Substituting (13) and (14) into (21), we get the system

x′1 + y1 = −1
2(A2

0 −B2
0) sin 2T −A0B0 cos 2T + ω1A0 sinT + ω1B0 cosT ,

y′1 − x1 = 1
2(A2

0 −B2
0) sin 2T +A0B0 cos 2T + ω1B0 sinT − ω1A0 cosT . (16)

Now, we set the value of ω1 to assure that resonant terms dissapear. To that purpose, we apply the
following result: the system

x′ + y = A sinT +B cosT +
∑
m≥2

Am sin(mT ) +Bm cos(mT ) ,

y′ − x = C sinT +D cosT +
∑
m≥2

Cm sin(mT ) +Dm cos(mT ) ,

has periodic solutions if, and only if, A−D = 0 and B + C = 0. Thus, we get that 2ω1A0 = 2ω1B0 = 0,
so ω1 = 0. Equation (22) now reads

x′1 + y1 = −1
2(A2

0 −B2
0) sin 2T −A0B0 cos 2T ,

y′1 − x1 = 1
2(A2

0 −B2
0) sin 2T +A0B0 cos 2T . (17)

Now, we have to compute the particular solution of (23), arising from the higher harmonics on the
right–hand side of the system. No complementary solution is calculated, since the general solution of the
homogeneous system includes two arbitrary contants, and we will take this into account when determing
the value of A0 and B0 from the initial conditions. The particular solution of (23) is

x1 = 1
6
(
A2

0 −B2
0 − 4A0B0

)
sin 2T + 1

3
(
A2

0 −B2
0 +A0B0

)
cos 2T ,

y1 = 1
6
(
A2

0 −B2
0 + 4A0B0

)
sin 2T − 1

3
(
A2

0 −B2
0 −A0B0

)
cos 2T . (18)

Taking derivatives with respect to T , we get

x′1 = −2
3
(
A2

0 −B2
0 +A0B0

)
sin 2T + 1

3
(
A2

0 −B2
0 − 4A0B0

)
cos 2T ,

y′1 = 2
3
(
A2

0 −B2
0 −A0B0

)
sin 2T + 1

3
(
A2

0 −B2
0 + 4A0B0

)
cos 2T . (19)

Thus, the solution to the first order is given by

x(t) = x0(T ) + ε x1(T ) =

= A0 cosT −B0 sinT + ε

(
1
6
(
A2

0 −B2
0 − 4A0B0

)
sin 2T + 1

3
(
A2

0 −B2
0 +A0B0

)
cos 2T

)
,

y(t) = y0(T ) + ε y1(T ) =

= A0 sinT +B0 cosT + ε

(
1
6
(
A2

0 −B2
0 + 4A0B0

)
sin 2T − 1

3
(
A2

0 −B2
0 −A0B0

)
cos 2T

)
.

(20)

Here, T = ωt, and
ω = 1 + εω1 = 1 .
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3.3 Second Order
The second order system is given by

x′2 + y2 = −x0y1 − x1y0 − ω1x
′
1 − ω2x

′
0 ,

y′2 − x2 = x0y1 + x1y0 − ω1y
′
1 − ω2y

′
0 . (21)

Substituting (18) and (19) into (21), we get

x′2 + y2 =

= − 1
12
(
A3

0 −A2
0B0 +A0B

2
0 −B3

0
)

sinT − 1
12
(
A3

0 +A2
0B0 +A0B

2
0 +B3

0
)

cosT +

+1
4
(
A3

0 + 3A2
0B0 − 3A0B

2
0 −B3

0
)

sin 3T − 1
4
(
A3

0 − 3A2
0B0 − 3A0B

2
0 +B3

0
)

cos 3T −

−ω2 (−A0 sinT −B0 cosT ) ,
y′2 − x2 =

= 1
12
(
A3

0 −A2
0B0 +A0B

2
0 −B3

0
)

sinT + 1
12
(
A3

0 +A2
0B0 +A0B

2
0 +B3

0
)

cosT −

−1
4
(
A3

0 + 3A2
0B0 − 3A0B

2
0 −B3

0
)

sin 3T + 1
4
(
A3

0 − 3A2
0B0 − 3A0B

2
0 +B3

0
)

cos 3T −

−ω2 (−B0 sinT +A0 cosT ) . (22)

Now we compute the value of ω2 to assure that resonant terms dissapear. Then, we obtain the following
equations,

−1
6A

3
0 −

1
6A0B

2
0 + 2ω2A0 = 0 ,

−1
6A

2
0B0 −

1
6B

3
0 + 2ω2B0 = 0 .

Thus, the value of ω2 is given by
ω2 = 1

12
(
A2

0 +B2
0
)

to have 2π periodic solutions in T . Now, equation (22) is written as

x′2 + y2 =

= 1
12
(
A2

0B0 +B3
0
)

sinT − 1
12
(
A3

0 +A0B
2
0
)

cosT +

+1
4
(
A3

0 + 3A2
0B0 − 3A0B

2
0 −B3

0
)

sin 3T − 1
4
(
A3

0 − 3A2
0B0 − 3A0B

2
0 +B3

0
)

cos 3T ,

y′2 − x2 =

= 1
12
(
A3

0 +A0B
2
0
)

sinT + 1
12
(
A2

0B0 +B3
0
)

cosT −

−1
4
(
A3

0 + 3A2
0B0 − 3A0B

2
0 −B3

0
)

sin 3T + 1
4
(
A3

0 − 3A2
0B0 − 3A0B

2
0 +B3

0
)

cos 3T .

(23)

The particular solution of this system can be easily computed via the method of undetermined coefficients
as done in the previous step. As before, a complementary solution is computed, since the general solution
of the homogeneous system includes two arbitrary contants, and we will take this into account when
determing the value of A0 and B0 from the initial conditions. The solution to (23) reads

x2 = − 1
12(A3

0 +A0B
2
0) sinT − 1

12(A2
0B0 +B3

0) cosT −

− 1
16
(
2A3

0 − 3A2
0B0 − 6A0B

2
0 +B3

0
)

sin 3T − 1
16
(
A3

0 + 6A2
0B0 − 3A0B

2
0 − 2B3

0
)

cos 3T ,

y2 = 1
16
(
A3

0 − 6A2
0B0 − 3A0B

2
0 + 2B3

0
)

sin 3T + 1
16
(
2A3

0 + 3A2
0B0 − 6A0B

2
0 −B3

0
)

cos 3T .

(24)
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Figure 1. Some of the periodic solutions computed through a second order approximation.

Then, the solution to the second order is

x(t) = x0(T ) + ε x1(T ) + ε2 x2(T ) =
= A0 cosT −B0 sinT +

+ ε

(
1
6
(
A2

0 −B2
0 − 4A0B0

)
sin 2T + 1

3
(
A2

0 −B2
0 +A0B0

)
cos 2T

)
+

+ ε2
(
− 1

12(A3
0 +A0B

2
0) sinT − 1

12(A2
0B0 +B3

0) cosT−

− 1
16
(
2A3

0 − 3A2
0B0 − 6A0B

2
0 +B3

0
)

sin 3T − 1
16
(
A3

0 + 6A2
0B0 − 3A0B

2
0 − 2B3

0
)

cos 3T
)
,

y(t) = y0(T ) + ε y1(T ) + ε2 y2(T ) =
= A0 sinT +B0 cosT +

+ ε

(
1
6
(
A2

0 −B2
0 + 4A0B0

)
sin 2T − 1

3
(
A2

0 −B2
0 −A0B0

)
cos 2T

)
+

+ ε2
(

1
16
(
A3

0 − 6A2
0B0 − 3A0B

2
0 + 2B3

0
)

sin 3T + 1
16
(
2A3

0 + 3A2
0B0 − 6A0B

2
0 −B3

0
)

cos 3T
)
.

(25)

Here, T = ωt, and

ω = 1 + εω1 + ε2ω2 = 1 + ε2
1
12
(
A2

0 +B2
0
)
.

In Figure 1, we show some of the periodic solutions for several values of the initial conditions.
All these equations give us the key to propose the mathematical object of the symbolic computation

system in next section.
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4 Symbolic Computation Tool

In this section, we follow F. San–Juan and A. Abad [20] to introduce the representation of a mathematical
object in a computer. To that purpose, let us introduce the concepts of normal and canonical functions.
Let E be a set of symbolic objects, and ∼ be an equivalence relation in E, defined as follows: a ∼ b
if a = b, with a, b ∈ E. Here, the operator = is considered as the equality on the mathematical object
level. Moreover, a ≡ b if a and b are identical as symbolic objects. A function f : E → E is said to be
normal in (E,∼) if f(a) ∼ a for all a ∈ E, and f is said to be canonical in (E,∼) if it is normal and
a ∼ b⇒ f(a) = f(b) for all a, b ∈ E. Thus, a canonical function provides identical objects when objects
are equivalent, that is, when they represent the same mathematical object.

A general implementation of the Poincaré–Lindstedt technique should be constructed over a kernel
which works with series of the form

S(T ) =
∑
m∈I

Pm(A1, A2, τ1, . . . , τn) sin(mT ) + Qm(A1, A2, τ1, . . . , τn) cos(mT ) , (26)

where I ⊂ N, and Pm and Qm are polynomials of the form

Pm(A1, A2, τ1, . . . , τn) =
∑
i,j

ci,jA
j1
1 A

j2
2 τ

i1
1 · · · τ inn ,

Qm(A1, A2, τ1, . . . , τn) =
∑
i′,j′

ci′,j′A
j′

1
1 A

j′
2

2 τ
i′1
1 · · · τ

i′n
n ,

being j1, j2, i1, . . . , in and j′1, j′2, i′1, . . . , i′n natural numbers, and ci,j , ci′,j′ real and rational. That is, the
mathematical object we need to apply the Poincaré–Lindstedt method is a particular type of a Poisson
series. The term Aj1

1 A
j2
2 τ

i1
1 · · · τ inn is usually referred to as monomial, the letters A1, A2, τ1, . . . , τn as the

polynomial variables, and T as the angle variable.
The set of Poisson series forms a commutative algebra over the ring of coefficients [20]. If P and Q

are Poisson series, then their sum and product by a real number, P +Q and αP , with α ∈ R, are also
Poisson series. Algebraic closure properties make automatic manipulation rather easy when the elements
in the algebra are represented in a standard canonical form, since closure implies that the result retains
the standard form of the operands.

Some of the specific symbolic operations we have to implement in order to apply the method are:

1. Computation of derivatives with respect to T .
2. Resolution of systems of linear differential equations of first order by the method of undetermined

coefficients.
3. Symbolic solution of systems of equations.

We will focus our attention on the mathematical object defined by the special type of Poisson
series given in (26). We will refer to the set of these Poisson series as P. Now, we look for a canonical
representation for each equivalence class defined in P. For that purpose, the following operations must be
performed over each series:

1. Let us consider a Poisson series

S(T ) =
∑
m∈I

Pm(A1, A2, τ1, . . . , τn) sin(mT ) +Qm(A1, A2, τ1, . . . , τn) cos(mT ) .

If m < 0, the following rules must be applied:

sin(−mT ) = − sin(mT ) , cos(−mT ) = cos(mT ) .

2. Let
Pm(A1, A2, τ1, . . . , τn) sin(mT ) +Qm(A1, A2, τ1, . . . , τn) cos(mT )
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be a term of a Poisson series, where

Pm(A1, A2, τ1, . . . , τn) =
∑
i,j

ci,jA
j1
1 A

j2
2 τ

i1
1 · · · τ inn ,

Qm(A1, A2, τ1, . . . , τn) =
∑
i′,j′

ci′,j′A
j′

1
1 A

j′
2

2 τ
i′1
1 · · · τ

i′n
n .

The terms of Pm (and Qm) must be ordered as follows: let us condider two terms of Pm,

T1 = ci,jA
j1
1 A

j2
2 τ

i1
1 · · · τ inn ,

and
T2 = ci′,j′A

j′
1

1 A
j′

2
2 τ

i′1
1 · · · τ

i′n
n .

We say that T1 < T2 if (j1 < j′1) or (j1 = j′1 and j2 < j′2) or (j1 = j′1, j2 = j′2 and for the first
ν ∈ {1, . . . , n} such that iν 6= i′ν , then iν < i′ν). If jα = j′α and iν = i′ν for each α = 1, 2 and
ν = 1, . . . , n, then the terms must be grouped together.

Now, we will consider the special Poisson series set we are working with from the computational point
of view. To that purpose, we will analyze the basic information which characterizes a Poisson series,
as well as the data structure to store it in the computer. This must be done preserving the canonical
representation we have chosen.

The efficiency of the algorithms for the basic algebra of a series depends on the way is coded. An
overcoded structure that makes good use of memory generally requires complex algorithms, which increase
the computational cost in terms of time. On the other hand, an undercoded computational representation
of the series generates simple algorithms, because the location of all the coefficients can be obtained
directly. However, this scheme presents the inconvenience of being very wasteful in the memory resources
required for the storage of the series [7]. As pointed out in [20], most of the operations involving a series
are based on navigating and searching through the structure that represents the series. Thus, and taking
into account the special type of Poisson series we are dealing with, the most adequate structure for storing
these series is a linked and ordered list, where each node of the structure is linked to two red–black trees
for the storage of the polynomials Pm and Qm respectively. We show a representation of this structure in
Figure 2.

s
?s
?s
?

-� a
@� aaa

@�

-� aa a
@�

a
@�

-� aaa a
a a
a a

a
@�

a
@�

P0 Q0

P1 Q1

P2 Q2

Figure 2. A dynamical list represents a Poisson series.

Now, we will concentrate on the way the polynomial parts Pm and Qm are stored. To this purpose,
let us introduce the red–black tree structure. A red–black tree is a special type of tree, where each node
has a color attribute, the value of which is either red or black. In addition to the ordinary requirements
imposed on binary search trees, the following additional requirements of any valid red-black tree apply: A
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node is either red or black. The root is black. All leaves are black, even when the parent is black. Both
children of every red node are black. Every simple path from a node to a descendant leaf contains the
same number of black nodes. A critical property of red–black trees is enforced by these constraints: the
longest path from the root to a leaf is no more than twice as long as the shortest path from the root
to a leaf in that tree. The result is that the tree is roughly balanced. Since operations such as inserting,
deleting, and finding values requires worst–case time proportional to the height of the tree, this fact
makes the red–black tree efficient. For instance, the search–time is O(logn).

As explained above, each node of the Poisson series structure is linked with two red–black trees that
represent Pm and Qm respectively. Let us now consider one of these two polynomials,

Pm(A1, A2, τ1, . . . , τn) =
∑
i,j

ci,jA
j1
1 A

j2
2 τ

i1
1 · · · τ inn .

The information associated to each term of Pm is given by the following elements:

1. A real number cij ∈ R.
2. A set of n+ 2 integer numbers, j1, j2, i1 . . . , in.

The data associated to each node of the tree is a real number representing the coefficient of the
corresponding term (ci,j), and the key of each node is given by the set (j1, j2, i1 . . . , in). In Figure 3, we
show the tree structure in which a polynomial is stored. The polynomial we show in Figure 3 has 7 terms,
with keys ν1 < ν2 < · · · < ν7. Each key corresponds to a set of numbers of the form

ν = (j1, j2, i1, . . . , in) .

s
@
@
@
@
@R

�
�

�
�
�	s s

(ν4, c4)

(ν2, c2) (ν6, c6)
A
A
A
A
AU

�
�
�
�
��s s

(ν1, c1) (ν3, c3)

A
A
A
A
AU

�
�
�
�
��s s

(ν5, c5) (ν7, c7)

Figure 3. Red–black tree for representing a polynomial with keys ν1 < ν2 < ν3 < ν4 < ν5 < ν6 < ν7. Each node
of the tree contains also the value of the coeffcient of the term (ci).

If we store the key of a term in a vector structure, the complexity of the comparison of the keys
is O(n). We can reduce this complexity by storing keys in red–black trees. For each term of a Poisson
series, we store pairs (ν, iν). Thus, the complexity of comparison between terms is reduced from O(n)
to O(log2(n)) in the worst case scenario. If the keys associated to two different terms have different
sizes, that means both terms are not equal and can not be collected. This fact helps also to reduce the
computation time. Moreover, it is not necessary to compare the entire key in case one index fails.

Thus, from a computational point of view, a Poisson series will be represented by a red–black tree
with keys stored in red–black trees. In Figure 4, we show the representation of the Poisson series

P =
(
A3

1 +A2
1A2 +A3

2
)

sinT +
(
A3

1 +A1A
2
2 − 2A3

2
)

cosT +
+
(
A3

1 + 3A2
1A2 + 2A3

2
)

sin 3T −
(
A3

1 − 3A1A
2
2 + 7A3

2
)

cos 3T ,

just to clarify the way red–black trees are used to store a Poisson series. We also illustrate the way the
key is coded in a red–black tree structure. In Figure 5, we show the representation of the key A2

1A
4
2τ

7
1 .

Journal of Advances in Applied Mathematics, Vol. 1, No. 3, July 2016 169

Copyright © 2016 Isaac Scientific Publishing JAAM



?s

?

m = 1A2
1A2

A3
1 A3

2

A1A
2
2

A3
1 −2A3

2

-�

sm = 33A2
1A2

A3
1 2A3

2

−3A1A
2
2

A3
1 7A3

2

-�

s s
A
A
A
AU

�
�
�
��s s

A
A
A
AU

�
�
�
��s s

s s
A
A
A
AU

�
�
�
��s s

A
A
A
AU

�
�
�
��s s

Figure 4. Representation of a Poisson series.

@
@
@
@R

�
�

�
�	

s
s s

A4
2 ≡ (2, 4)

A2
1 ≡ (1, 2) τ7

1 ≡ (2 + 1, 7)

Figure 5. Representation of the key A2
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1 in a red–black tree.

5 Symbolic Algorithm for the Poincaré–Lindstedt Method

In this section, we present a general algorithm to compute periodic solutions through the application
of the Poincaré–Lindstedt method to the system given in equation (1). As above, P refers to the set of
Poisson series of the type defined in (26).

1. Define X(ρ1, ρ2, q) ∈ P for each ρ1, ρ2, q ∈ N such that 0 ≤ ρ1, ρ2 ≤M and 0 ≤ q ≤ Q, Q being the
order of the expansion. Here,

X(ρ1, ρ2, q) = (xρ1yρ2)q .

2. Define DX(q), DY (q) ∈ P for each q ∈ N such that 0 ≤ q ≤ Q, Q being the order of the expansion.
Here,

DX(q) = d

dT
xq , DY (q) = d

dT
yq .

3. Define the array W (q) ∈ P, for each 0 ≤ q ≤ Q, to represent the coefficient ωq.
4. The functions f(x, y) and g(x, y) are represented by the following (1 +M)× (1 +M) real matrices,

F =

 f0,0 · · · f0,M
...

. . .
...

fM,0 · · · fM,M

 ,

G =

 g0,0 · · · g0,M
...

. . .
...

gM,0 · · · gM,M

 .

If f(x, y) and g(x, y) are given by equation (2), then fρ1,ρ2 = 0 and gρ1,ρ2 = 0 if ρ1 + ρ2 > M . We
will refer to the element fρ1,ρ2 and gρ1,ρ2 as F (ρ1, ρ2) and G(ρ1, ρ2) respectively.
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5.1 0–th Order Solution

1. Set X(0, 0, 0) = 1 and W (0) = 1.
2. Set W (0) = 1. This means that ω0 = 1.
3. Compute X(1, 0, 0) and X(0, 1, 0) as the solution to (6). Notice that X(1, 0, 0) and X(0, 1, 0) are mod-

ified Poisson series containing parameters with undetermined value corresponding to the integration
constants.

4. Compute

DX(0) = d

dt
X(1, 0, 0) ,

DY (0) = d

dt
X(0, 1, 0) .

5. Calculate, for each ρ with 2 ≤ ρ ≤M ,

X(ρ, 0, 0) = X(1, 0, 0)X(ρ− 1, 0, 0) ,
X(0, ρ, 0) = X(0, 1, 0)X(0, ρ− 1, 0) .

that is, xρ0 and yρ0 .
6. For each ρ1, ρ2 with 1 ≤ ρ1, ρ2 ≤M , compute the modified Poisson series (xρ1yρ2)0,

X(ρ1, ρ2, 0) = X(ρ1, 0, 0)X(0, ρ2, 0) .

5.2 1–th Order Solution

1. Compute the first term of the right–hand side of equation (7),

U1 =
∑

0≤q≤M

∑
0≤ν≤q

fν,q−νx
ν
0y
q−ν
0 ,

V1 =
∑

0≤q≤M

∑
0≤ν≤q

gν,q−νx
ν
0y
q−ν
0 .

These series are calculated as

U1 =
∑

0≤q≤M

∑
0≤ν≤q

F (ν, q − ν)X(ν, q − ν, 0) ,

V1 =
∑

0≤q≤M

∑
0≤ν≤q

G(ν, q − ν)X(ν, q − ν, 0) .

2. Calculate the rest of the right–hand side of (7),

R1 = −ω1x
′
0 , S1 = −ω1y

′
0 .

The value of ω1 is fitted to assure that no secular terms are included in the solution. To do that, we
apply the following result: the system

x′ + y = A sinT +B cosT +
∑
m≥2

Am sin(mT ) +Bm cos(mT ) ,

y′ − x = C sinT +D cosT +
∑
m≥2

Cm sin(mT ) +Dm cos(mT ) ,

has periodic solutions if, and only if, A−D = 0 and B + C = 0.
3. Once W (1) has been determined, we substitute its value in equation (8). This is equivalent to

eliminating resonant terms from the right–hand side of this equation. Now, we calculate X(1, 0, 1)
and X(0, 1, 1) as the solution to system (8) without resonant terms.
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4. Compute

DX(1) = d

dt
X(1, 0, 1) ,

DY (1) = d

dt
X(0, 1, 1) ,

that is, x′1 and y′1.
5. Calculate, for each ρ with 2 ≤ ρ ≤M ,

X(ρ, 0, 1) =
∑

0≤ν≤1
X(ρ− 1, 0, ν)X(1, 0, 1− ν) ,

X(0, ρ, 1) =
∑

0≤ν≤1
X(0, ρ− 1, ν)X(0, 1, 1− ν) ,

that is, (xρ)1 and (yρ)1.
6. For each ρ1, ρ2 with 1 ≤ ρ1, ρ2 ≤M , compute (xρ1yρ2)1 as

X(ρ1, ρ2, 1) =
∑

0≤ν≤1
X(ρ1, 0, ν)X(0, ρ2, 1− ν) .

5.3 p–th Order Solution, for p > 1

1. Compute the following part of the right–hand side of equation (8),

Up =
∑

0≤q≤M

∑
0≤ν≤q

fν,q−ν
[
xνyq−ν

]
p−1 −

∑
1≤ν≤p−1

x′νωp−ν ,

Vp =
∑

0≤q≤M

∑
0≤ν≤q

gν,q−ν
[
xνyq−ν

]
p−1 −

∑
1≤ν≤p−1

y′νωp−ν .

which corresponds to

Up =
∑

0≤q≤M

∑
0≤ν≤q

F (ν, q − ν)X(ν, q − ν, p− 1)−
∑

1≤ν≤p−1
DX(ν)W (p− ν) ,

Vp =
∑

0≤q≤M

∑
0≤ν≤q

G(ν, q − ν)X(ν, q − ν, p− 1)−
∑

1≤ν≤p−1
DY (ν)W (p− ν) .

2. Calculate the rest of the right–hand side of (7),

Rp = −ωpx′0 , Sp = −ωpy′0 .

The value of ωp is fitted to assure that resonance disappears. As before, we apply the following result:
the system

x′ + y = A sinT +B cosT +
∑
m≥2

Am sin(mT ) +Bm cos(mT ) ,

y′ − x = C sinT +D cosT +
∑
m≥2

Cm sin(mT ) +Dm cos(mT ) ,

has periodic solutions if, and only fi, A −D = 0 and B + C = 0. Then ωp must be fitted to make
resonance disappear, and we can compute W (p) as a modified Poisson series depending on the
integration constants of the problem.

3. Once W (p) has been determined, we substitute it in equation (8). This corresponds to eliminating
resonant terms from the right–hand side of this equation. Now, we calculate X(1, 0, p) and X(0, 1, p)
as the solution to system (8) without resonant terms. For that purpose we use the undetermined
coefficients method.
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4. Compute

DX(p) = d

dt
X(1, 0, p) ,

DY (p) = d

dt
X(0, 1, p) .

5. For each ρ with 2 ≤ ρ ≤M , determine

X(ρ, 0, p) =
∑

0≤ν≤p
X(ρ− 1, 0, ν)X(1, 0, p− ν) ,

X(0, ρ, p) =
∑

0≤ν≤p
X(0, ρ− 1, ν)X(0, 1, p− ν) ,

that is (xρ)p and (yρ)p.
6. For each ρ1, ρ2 with 1 ≤ ρ1, ρ2 ≤M , compute (xρ1yρ2)p,

X(ρ1, ρ2, p) =
∑

0≤ν≤p
X(ρ1, 0, ν)X(0, ρ2, p− ν) .

The approximation to the periodic solution to (1) is given by

x(t) = X(1, 0, 0)(T ) + εX(1, 0, 1)(T ) + ε2X(1, 0, 2)(T ) + · · ·+ εQX(1, 0, Q) ,
y(t) = X(0, 1, 0)(T ) + εX(0, 1, 1)(T ) + ε2X(0, 1, 2)(T ) + · · ·+ εQX(0, 1, Q) ,

where X(1, 0, q)(T ) and X(0, 1, q) (1 ≤ q ≤ Q) are 2π–periodic in T = ωt, and

ω = W (0) + εW (1) + ε2W (2) + · · ·+ εQW (Q) .

6 Conclusion

We have presented a new symbolic computation tool to implement the algorithm of Poincaré–Lindstedt
method for the computation of periodic solutions in two dimensional differential systems of first order.
After giving a general review of the method, we have applied it to a Lotka–Volterra system in order to
understand the mathematical object we deal with when we apply the Poincaré–Lindstedt method. A
general implementation of the Poincaré–Lindstedt technique should be constructed over a kernel which
works with a particular type of a Poisson series. We have also introduced a computational representation
of these series, using red–black trees within which keys are stored. Finally, we have presented the algorithm
to implement the Poincaré–Lindstedt method.
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