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Highlights 

 We develop an efficient multi-objective optimization method using surrogate 

models based on Kriging interpolation. 

 We solve a hybrid simulation-optimization model formed by units of the flowsheet 

with low numerical noise, Kriging models and explicit equations. 

 The hybrid approach (Kriging models, simulation and explicit equations) has 

proved to be robust and reliable. 

 

Abstract  

In this work, we propose a new methodology for the large scale 

optimization and process integration of complex chemical processes that 

have been simulated using modular chemical process simulators. Units 

with significant numerical noise or large CPU times are substituted by 
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surrogate models based on Kriging interpolation. Using a degree of 

freedom analysis, some of those units can be aggregated into a single unit 

to reduce the complexity of the resulting model. As a result, we solve a 

hybrid simulation-optimization model formed by units in the original 

flowsheet, Kriging models, and explicit equations.  

We present a case study of the optimization of a sour water stripping plant 

in which we simultaneously consider economics, heat integration and 

environmental impact using the ReCiPe indicator, which incorporates the 

recent advances made in Life Cycle Assessment (LCA). 

The optimization strategy guarantees the convergence to a local optimum 

inside the tolerance of the numerical noise. 

Keywords: process simulation, process optimization, Kriging interpolation, 

heat exchanger network, life cycle assessment.  

 

Nomenclature 

Fi heat capacity flowrate of hot stream i 

fj heat capacity flowrate of cold stream j 

i hot stream 

j cold stream 

k set of hot streams pinch candidates 

l set of cold streams pinch candidates 

𝑄𝑘,𝑖
ℎ𝑝

  
energy available from hot stream i above hot pinch candidate 

k 

𝑄𝑙,𝑖
𝑐𝑝

  
energy available from hot stream i above cold pinch 

candidate l 

𝑞𝑘,𝑗
ℎ𝑝

  energy required by cold stream j above hot pinch candidate k 

𝑞𝑙,𝑗
𝑐𝑝

  
energy required by cold stream j above cold pinch candidate 

l 

QCj energy to be transferred to cold stream j 

QHi energy to be transferred from hot stream i 

QS heat supplied by the hot utility 

QW heat removed by the cold utility 

𝑇𝑖
𝑖𝑛   inlet temperature for the hot stream i  

𝑇𝑖
𝑜𝑢𝑡 outlet temperature for the hot stream i  

𝑡𝑗
𝑖𝑛  inlet temperature for the cold stream j  

𝑡𝑗
𝑜𝑢𝑡  outlet temperature for the cold stream j  

𝑇𝑘
𝑖𝑛  inlet temperature for a pinch candidate k  



𝑡𝑙
𝑖𝑛  inlet temperature for a pinch candidate l  

𝑊𝐶𝑗
𝐴𝑏𝑜𝑣𝑒 

binary variable. Represents the case when the stream j lies 

above the pinch candidate 

𝑊𝐶𝑗
𝐵𝑒𝑙𝑜𝑤 

binary variable. Represents the case when the stream j lies 

below the pinch candidate 

𝑊𝐶𝑗
𝑀𝑖𝑑𝑑𝑙𝑒 

binary variable. Represents the case when the stream j 

crosses the pinch candidate 

𝑊𝐻𝑖
𝐴𝑏𝑜𝑣𝑒 

binary variable. Represents the case when the stream i lies 

above the pinch candidate 

𝑊𝐻𝑖
𝐵𝑒𝑙𝑜𝑤 

binary variable. Represents the case when the stream i lies 

below the pinch candidate 

𝑊𝐻𝑖
𝑀𝑖𝑑𝑑𝑙𝑒 

binary variable. Represents the case when the stream i 

crosses the pinch candidate 

𝑌𝐶𝑖
𝐴𝑏𝑜𝑣𝑒 

binary variable. Represents that hot stream i lies above the 

temperature of the cold pinch candidate plus Tmin 

𝑌𝐶𝑖
𝐵𝑒𝑙𝑜𝑤 

binary variable. Represents that hot stream i lies below the 

temperature of the cold pinch candidate plus Tmin 

𝑌𝐶𝑖
𝑀𝑖𝑑𝑑𝑙𝑒 

binary variable. Represents that hot stream i crosses the 

temperature of the cold pinch candidate plus Tmin 

𝑌𝐻𝑖
𝐴𝑏𝑜𝑣𝑒 

binary variable. Represents that hot stream i lies above the 

temperature of the hot pinch candidate 

𝑌𝐻𝑖
𝐵𝑒𝑙𝑜𝑤 

binary variable. Represents that hot stream i lies below the 

temperature of the hot pinch candidate 

𝑌𝐻𝑖
𝑀𝑖𝑑𝑑𝑙𝑒  

binary variable. Represents that hot stream i crosses the 

temperature of the hot pinch candidate 

𝑍𝐶𝑗
𝐴𝑏𝑜𝑣𝑒 

binary variable. Represents that cold stream j lies above the 

temperature of the cold pinch candidate 

𝑍𝐶𝑗
𝐵𝑒𝑙𝑜𝑤 

binary variable. Represents that cold stream j lies below the 

temperature of the cold pinch candidate 

𝑍𝐶𝑗
𝑀𝑖𝑑𝑑𝑙𝑒  

binary variable. Represents that cold stream j crosses the 

temperature of the cold pinch candidate 

𝑍𝐻𝑗
𝐴𝑏𝑜𝑣𝑒  

binary variable. Represents that cold stream j lies above the 

temperature of the hot pinch candidate minus Tmin 

𝑍𝐻𝑗
𝐵𝑒𝑙𝑜𝑤 

binary variable. Represents that cold stream j lies below the 

temperature of the hot pinch candidate minus Tmin 

𝑍𝐻𝑗
𝑀𝑖𝑑𝑑𝑙𝑒 

binary variable. Represents that cold stream j crosses the 

temperature of the hot pinch candidate minus Tmin 

Tmin heat recovery approach temperature 

 

 



1. Introduction 

The simulation of a chemical plant can be represented by a large system of 

linear and nonlinear equations of the form: 

𝑓(𝑥) = 0 (1) 

Where f is a vector of functions and x is a vector of variables. The variables 

represent composition, temperatures, pressures, flow rates, etc. and the 

functions are obtained from conservation of mass and energy, chemical 

equilibrium, kinetics and transport phenomena or physical properties 

calculations. Even a small chemical plant can involve thousands of 

equations and variables. In some cases, it is possible to write and solve the 

complete set of equations by using an adequate modeling system (e.g. 

ASCEND (Piela et al., 1991) or gPROMS (Process Systems Enterprise, 

2000)). Those modeling systems include databases of chemical and 

thermodynamic properties and robust numerical methods. However, as the 

model becomes more complex the convergence is more difficult and the 

possibility of physically meaningless solutions increases. In those cases, 

good initial points and/or complex initialization strategies are mandatory. 

Alternatively, instead of solving all the equations simultaneously, it is 

possible to use a modular approach. In this case, a given module is solved 

using specific numerical methods, including their initialization strategies. 

To converge the entire flowsheet all units are solved following a pre-

specified sequence. In order to assemble the different modules, the output 

from one module is used as input for the next one so that the information 

flow matches the material flow (a notable exception is the process 

simulator Aspen-Hysys (Hyprotech, 1995 - 2011)). If there are recycles in 

the flowsheet we must also select a set of “tear streams” (or variables) and 

iterate over these variables by repeatedly solving the entire flowsheet. 

Mathematically the original problem is rewritten as follows: 

𝑥𝑖
𝑜𝑢𝑡 = 𝑔𝑖(𝑥𝑖

𝑖𝑛, 𝑢𝑖)    𝑖 = 1…𝑛𝑢 

𝑥𝑖
𝑜𝑢𝑡 = 𝑥𝑗

𝑖𝑛    𝑜𝑢𝑡𝑝𝑢𝑡 𝑓𝑟𝑜𝑚 𝑖 𝑒𝑠 𝑎𝑛 𝑖𝑛𝑝𝑢𝑡 𝑡𝑜 𝑗 

‖𝑥𝑡𝑒𝑎𝑟
𝑘+1 − 𝑥𝑡𝑒𝑎𝑟

𝑘 ‖ ≤ 𝑒𝑝𝑠 

(2) 

Where u is a set of module specific parameters, xout, xin are a subset of 

variables related to the input and output of module i. Outputs from module 

i become the inputs of the following module(s) in the flowsheet. The set of 



tear variables (related to streams or other user added convergence blocks) 

must also be explicitly included in the model. 

The theory related to the simulation and convergence of sequential modular 

flowsheets was developed in the 1970s. A good overview can be found in 

the book by Westerberg et al. (1979). 

Some noteworthy advantages of sequential modular simulators are: a) 

Different modules can be developed and tested independently. b) Solution 

methods can be tailored for each model, independently of its final use. c) 

Data can be easily checked for completeness and consistency. d) New 

modules can be easily added. Due to these advantages, it is not surprising 

that modular simulators are the dominant approach.  

However, when we move from simulation to optimization modular 

simulation based approach loses some of its advantages:  

 The selection of independent variables is constrained by the rigid 

input-output structure.  

 Most of the modules are in the form of «gray box models» in which 

the final user has not access to the explicit equations; therefore, 

derivative information must be estimated using perturbations of 

independent variables by any finite difference scheme. 

 Implicit modules inherently include some numerical noise. If the 

noise is low enough the unit can be used in an optimization model, 

provided that the convergence is fast enough. This is usually the case 

of a single flash, mixers, splitters, compressors or pumps, among 

other units in a flowsheet. However, even in a slightly noisy model, 

an accurate estimation of a derivative is not possible, resulting in 

unexpected behavior of NLP solvers. Of course, second derivatives 

are usually not even considered and some NLP solvers (i.e. 

CONOPT (Drud, 1996)) base part of their performance on accurate 

second derivatives. 

 Recycles act as noise amplifiers, further increasing the numerical 

problem. 

 A module should converge in a relatively short CPU time. Each time 

that the solver needs a new gradient, a given module must be solved 

at least twice for each independent variable affecting that module. If 



the convergence is not fast enough the total CPU time could become 

prohibitive.  

 The lack of convergence of a given module in any moment of the 

optimization crashes the entire optimization. It is possible to develop 

strategies to recover from simulation convergence failures, but the 

behavior after a recovery is solver dependent and not always reliable. 

To overcome all these drawbacks, in recent years, surrogate models have 

been proposed as an alternative to process models which have a modular 

structure, because they ensure an acceptable degree of accuracy and they 

are computationally efficient (Chung et al., 2011). In this context a 

metamodel or data driven surrogate model –for simplicity “surrogate 

models” hereinafter- is a relatively simple combination of mathematical 

functions, based on data generated from the simulation with the sole 

purpose of approximating the input-output relationship of the simulation. 

While the original simulation model could be difficult to solve, noisy or 

time consuming, the surrogate model must be relatively easy to solve and 

noise free (Palmer & Realff, 2002). 

In the optimization field, surrogate models have become popular due to 

their applicability (Caballero & Grossmann, 2008; Queipo et al., 2005; 

Wang & Shan, 2006) and we can differentiate two approaches. The first 

locates the most relevant variables of the entire flowsheet through a 

sensitivity analysis and then generates a surrogate model based on these 

variables. If the number of variables is large, then the number of sampling 

points must also be large to capture the behavior of the original model 

and/or a frequent resampling is usually needed through the optimization 

algorithm. The second approach disaggregates the simulation model into 

different blocks and each block is modeled separately before optimization. 

This ensures that smaller and more robust models are generated (Cozad et 

al., 2014). The disaggregated process units can be linked by the variable 

connectivity to formulate complex optimization models (Cozad et al., 

2014). 

The HEN is a basic component in many industrial processes because they 

are responsible for large amounts of energy consumption (Allen et al., 

2009). For this reason, research in the area of HEN synthesis has been 

developed with considerable effect on the industry (Al-mutairi, 2010; K. F. 

Huang & Karimi, 2013). 



Additionally, reduction of energy consumption can achieve the 

minimization of environmental impacts (Lara et al., 2013; Morar & Agachi, 

2010). 

In this paper we deal with the optimization of a large scale actual sour 

water stripping plant (SWS) with the following relevant characteristics: 

 We use a novel approach in which some parts of the plant are 

substituted by Kriging models (in particular stripping columns), 

some units are maintained in the process simulator (those that do not 

introduce numerical noise like pumps or heat exchangers), and parts 

of the model are defined in terms of explicit equations, in particular, 

all the equations related to heat integration and Life Cycle 

Assessment. 

 We do not follow a complete distributed approach (where each piece 

of equipment is substituted by a Kriging model) nor a global one 

(where the complete flowsheet is substituted by a surrogate model), 

instead we use an analysis based on feasibility and degree of freedom 

considerations that allows aggregating some equipment in a single 

and more robust surrogate model. 

 We simultaneously perform the optimization of the operating 

conditions of the flowsheet and the heat integration using the pinch 

location method (added to the model in form of explicit equations 

with continuous and binary variables). As far as we know, this kind 

of optimization has been previously done only in equation based 

systems involving a reduced number of streams (around 3 hot and 3 

cold streams at most) and of course no on a very large scale model. 

 Convergence of the recycle streams is carried out by the optimization 

solver (and not by the simulation) by transforming the convergence 

blocks to explicit equations avoiding inefficient and time consuming 

iterations. 

The result is a reliable and robust optimization model. 

In the rest of the paper, we first discuss the practical implementation and 

the optimization algorithm. Then we introduce the optimization of an actual 

stripping plant located in Germany. First, we perform the optimization of 

the stripping plant, minimizing the operating costs without considering heat 

integration, and evaluate the environmental performance through a Life 



Cycle Assessment (LCA). Then we introduce the heat integration and 

repeat the optimization together with the LCA. And finally, we present a 

broad discussion through the case study. 

 

2. Methods 

In this work, we focus on the Kriging (Krige, 1951) interpolation to 

approximate models. Kriging metamodels combine relatively small 

sampling data with computational efficiency. Usually, data obtained from 

larger experimental areas are used to fit Kriging models. Therefore, 

Kriging models have been used for sensitivity analysis and optimization 

(Kleijnen, 2009). 

Important studies have been performed with Kriging models by 

disaggregating parts of the model (Caballero & Grossmann, 2008) or using 

the full system approach (Davis & Ierapetritou, 2007; D. Huang et al., 

2006; Palmer & Realff, 2002). An interesting summary of Kriging 

simulation applications can be found in the review by Kleijnen (2009). 

Caballero and Grossmann (2008) studied modular flowsheet 

(disaggregated) optimization using Kriging models to represent process 

units with low-level noise. Complete process Kriging models were used by 

Davis and Ierapetritou (2007) to find global model solutions and later 

refine them using local response surface around the optima. The 

optimization of steady-state simulators using surrogate models was studied 

by Palmer and Realff (2002). To deal with uncertainty in black-box 

systems, D. Huang et al. (2006) used Kriging models on complete 

processes. Henao and Maravelias (2011) employed disaggregated models 

for each unit in a flowsheet using artificial neural networks. Quirante et al. 

(2015) used Kriging interpolation for the rigorous design of distillation 

columns and distillation sequences, explicitly including integer variables in 

the surrogate model. 

In this paper, we follow a disaggregated approach, but instead of using a 

surrogate model for each unit in the flowsheet, we substitute only those 

modules that could potentially introduce numerical problems in the 

optimization. The rest of the units: phase separators, mixers, splitters, 

heaters, coolers, pumps, etc. are maintained in their original form. In this 

way we have a hybrid system that can simultaneously deal with:  



 Modules at the level of process simulator. 

 Third party modules developed in any other simulation environment.  

 Explicit equations. This could be a unit operation added in equation 

form or constraints added by the designer. 

Different authors have proposed different general procedures for the 

creation and use of surrogate models (Palmer & Realff, 2002; Welch & 

Sacks, 1991). All of them share the main basic steps with different 

modifications depending on the final objective (local or global 

optimization), the availability of derivatives and the accuracy of the initial 

Kriging interpolator. Biegler et al. (2014) in the context of multi-scale 

optimization, proposes three algorithms for using surrogate models with 

trust regions concept from non-linear programming that guarantee 

convergence to the optimum of the original problem. Biegler et al. (2014) 

also established the convergence conditions of these algorithms. In this 

paper, we follow an exhaustive sampling to minimize the number of 

resamplings and Kriging calibration (algorithm 3 in the Biegler’s 

taxonomy). It is worth remark that this approach is only feasible when the 

number of degrees of freedom in each Kriging model is small (say no more 

than 5 or 6 degrees of freedom). The disaggregation strategy that we follow 

in this work generates a relatively large number of Kriging models with 

reduced number of degrees of freedom. 

To develop a robust and convergent trust region algorithm involving 

surrogate models, the following conditions must hold (Conn et al., 2000): 

For the original model: 

1. Functions must be twice continuously differentiable on Rn.  

2. Functions are bounded below for all variables in their domain. 

3. The second derivatives are uniformly bounded for all the variables 

in the domain. 

For the surrogate model: 

4. At each iteration, the surrogate model is twice differentiable inside 

the trust region. 

5. The values of the original and surrogate models coincide in the 

current iterate inside the trust region. 



6. The gradients of the original and surrogate models coincide, for 

every iteration, inside the trust region. 

7. The second derivatives of the surrogate models remain bounded 

within the trust regions. 

Conditions for the original model can, in general, be ensured because 

models behind a process simulator are based on material and energy 

balances; heat, mass or momentum transfer equations, equilibrium 

relations, etc. All these equations are continuous, differentiable and 

bounded. However, some care must be taken when used in a black box 

model. For example, different equations can be used to estimate the heat 

transfer coefficients depending on the flow regimen. The set of equations is 

also different in the flash calculation of a single phase or if multiple phases 

appear. The designer must be aware of these situations and capture this 

behavior. 

In the case of surrogate models conditions 4 and 7 can be guaranteed by the 

surrogate construction. Condition 5 can be ensured by constructing 

accurate surrogates over the trust region. However, gradients of the original 

and surrogate models could differ. A common approach to solve this 

difference consists of using scaled functions by using local corrections to 

the current iteration (Agarwal & Biegler, 2013). 

Φ̃𝑘
𝑆(𝑥) = Φ𝑘

𝑆(𝑥) + (Φ(𝑥𝑘) − Φ𝑘
𝑆(𝑥𝑘))

+ (∇Φ(𝑥𝑘) − ∇Φ𝑘
𝑆(𝑥𝑘))

𝑇
(𝑥 − 𝑥𝑘) 

(3) 

Where �̃�𝑘
𝑆(·) is the corrected (scaled) surrogate model at the current 

iteration, 𝛷𝑘
𝑆(·) is the uncorrected surrogate model and 𝛷(·) is the original 

model. However, in a noisy model it is not possible to calculate the 

derivative of the model; in fact this is one of the main reasons to use a 

surrogate model. To circumvent this problem, Quirante et al. (2015) 

proposed including a matching gradient step that basically consists of 

contracting the trust region around the optimal solution obtained in the 

previous step (note that resampling is needed) and re-optimizing starting 

from the optimal solution before contraction. In a noisy system, we must 

finish when there is no improvement in two consecutive contractions in a 

small, but large enough (to avoid adjusting the noise) region. 

A critical aspect in surrogate modeling is the selection of the sampling 

points. This point cannot be randomly selected but a pre-specified space 



filling design must be used. Biegler et al. (2014) showed that frequent 

resampling of the original models can result in prohibitively large 

computational times. Instead, they proposed exhaustive evaluations of the 

original models over large trust regions before starting the optimization. 

With sufficiently accurate surrogate models it is possible to minimize (or 

even avoid) resampling during the optimization. Of course, there is a 

tradeoff between the cost of an a-priori sampling and the cost of some 

intermediate re-sampling. However, this tradeoff is case dependent. In this 

case, taking into account that each resampling also involves a Kriging 

calibration we will try to minimize resampling as much as possible by 

performing exhaustive a-priori sampling, even though we recognize that 

maybe this is not the optimal strategy. 

In order to get good Kriging models with reduced initial error while 

minimizing the necessity of resampling and recalibrating, a correct 

distribution of sampling points is mandatory. The final quality of the 

Kriging model depends more on the uniformity of the sampling distribution 

than on its randomness. If we use a set of points randomly distributed 

without any other consideration, we could expect surrogate models with 

bad performance (independently on the surrogate model). If the model 

includes some measure of the quality of the parameters like confidence 

intervals in the case of regression models or estimated variance in the case 

of Kriging we would expect to obtain large values of these estimators if the 

sampling points are not correctly selected (Diwekar, 2003). There are 

different variance reduction techniques like Hammersley, Halton or Sobol 

sequences, Latin Hypercube sampling, etc. A discussion on sampling can 

be found in the work by Sasena (2002).  

In this paper we select the ‘maxmin’ approach to distribute the sampling 

points; we maximize the minimum distance between two sample points in a 

normalized space (all variables range between 0 and 1). However, instead 

of distributing N points following the ‘maxmin’ approach, we fix 2D points 

to the D-dimensional vertex of the hypercube that forms the feasible space 

and then we distribute the rest (N-2D) points following the ‘maxmin’ 

approach. In this way, we ensure that Kriging does not perform 

‘extrapolations’ near the vertices of the feasible region. 



It is worth mentioning that deterministic optimization methods, like the 

approach proposed in this paper, are not the only alternative for dealing 

with these problems.  

Stochastic methods have proved to be a good alternative for solving hybrid 

simulation–based optimization problems. Derivative-free optimization 

(DFO) is a class of algorithms designed to solve optimization problems 

when derivatives are unavailable, unreliable or prohibitively expensive to 

evaluate. Although there is a vast literature on metaheuristic optimization, 

combination with chemical process simulators is a relatively recent 

development (Dantus & High, 1999; Eslick & Miller, 2011; Gutiérrez-

Antonio & Briones-Ramírez, 2009; Gutiérrez-Antonio et al., 2011; 

Leboreiro & Acevedo, 2004; Torres et al., 2013). Although DFO 

algorithms can be used in models with costly and/or noisy function 

evaluations, these methods are often constrained to models in which the 

number of degrees of freedom does not exceed about 10 (Rios & Sahinidis, 

2013). 

On the other hand, energy efficiency is a crucial aspect of chemical 

processes. One of the main reasons to develop techniques for efficient and 

sustainable energy use is the increasing global demand, related to the high 

cost of energy due to the quick decrease in the availability of fossil fuels, 

the technological barriers and prohibitive prices of renewable energy, and 

the strict standards that regulate carbon dioxide emissions, to mitigate the 

greenhouse effect and its consequences (Gharaie et al., 2013; Hasan et al., 

2010; K. F. Huang & Karimi, 2013; Razib et al., 2012; Wechsung et al., 

2011). Additionally, the most effective method to reduce costs is the use of 

energy from process streams through thermal integration between heat 

exchangers and cooling and/or heating systems. The optimal Heat 

Exchanger Network (HEN) is through the thermal integration of the 

system. 

 

3. Algorithm implementation 

Surrogate models based on Kriging interpolation combine computational 

efficiency with relatively small sampling data compared to other methods 

of approximating a model. For example, regression by splines usually 

requires moderate data sets (Friedman, 1991) while neural networks 

usually require large data sets (Himmelblau, 2000). 



Kriging was developed by the South African mining engineer Daniel G. 

Krige in his Master Thesis (Krige, 1951). 

The Kriging fitting is composed of two parts: a polynomial expression and 

a deviation from that polynomial: 

𝑦(𝑥) = 𝑓(𝑥) + 𝑍(𝑥) (4) 

where Z(x) is a stochastic Gaussian process that represents the uncertainty 

about the mean of y(x) with expected value zero. The covariance for two 

points xi and xj is given by a scale factor 2 that can be fitted to the data and 

by a spatial correlation function R(xi,xj). The most common alternative for 

the spatial correlation function in Kriging models is to use the extended 

exponential (Sacks et al., 1989). 

𝑅(𝑥𝑖 , 𝑥𝑗) = 𝑒𝑥𝑝 (−∑𝜃𝑙(𝑥𝑖,𝑙 − 𝑥𝑗,𝑙)
𝑃𝑙

𝑑

𝑙=1

)

= ∏𝑒𝑥𝑝 (−𝜃𝑙(𝑥𝑖,𝑙 − 𝑥𝑗,𝑙)
𝑃𝑙

)

𝑑

𝑙=1

 

(5) 

where l ≥ 0 and 0 ≤ Pl ≤ 2 are adjustable parameters. The value of l 

shows how fast the correlation goes to zero as we move in a lth coordinate 

direction. The parameter Pl determines the smoothness of the function 

which is usually fixed to 2 (Gaussian Kriging) in all coordinates. 

In Kriging fitting, when a function is smooth, the degrees of the polynomial 

f(x) does not affect significantly the resulting metamodel fit because Z(x) 

captures the most significant behavior of the function. This is an important 

advantage of Kriging models. Usually, a simple constant term (µ) is 

enough for a good prediction. 

A comprehensive description of all the details of Kriging interpolation can 

be found in references (Jones, 2001; Jones et al., 1998; Palmer & Realff, 

2002; Quirante et al., 2015). 

Before presenting a detailed description of the algorithm it is interesting to 

introduce the characteristics of the problem we are dealing with.  

The starting point is a complex flowsheet that is usually defined in a 

process simulator. Some general characteristics of the flowsheet are: 



 It can contain «gray box» units defined in the database of the process 

simulator. The specific equations, and of course their derivatives, are 

usually closed to the final user.  

 Some unit operations can be defined by third party modules. For 

example, proprietary process units. For this kind of models we have 

all the possibilities: a) Modules without access to the code. In this 

case, we can consider the units equivalent to any other module in the 

flowsheet. b) Modules with access to the code. In this case, it is 

possible to get exact derivatives (inside the computer precision) by 

using automatic differentiation. c) The model is in equation form. In 

this case, we have two options; either we can maintain the module 

identity by solving the equations at each iteration, or explicitly 

include the equations in the whole model and solve those equations 

together with the rest of the flowsheet. 

 The flowsheet could include important “recycle of information” 

either by recycle streams (identified as tear streams in the flowsheet) 

or any other convergence blocks (these blocks have different names 

depending on the process simulator, i.e. Adjust in Aspen-Hysys 

(Hyprotech, 1995 - 2011), Forward or Backward controllers in 

ChemCad (Chemstations, 2012), Specifications in Aspen-Plus 

(Aspen Technology, 1994-2015)).  

We are interested in performing an efficient optimization but at the same 

time maintaining the rigor of a process simulator. As mentioned before, 

there are three reasons why an NLP solver presents bad performance or 

fails when is directly interfaced with a process simulator: Large CPU 

execution times in some unit operations, numerical noise and lack of 

convergence. To overcome these problems we substitute these “badly 

behaved” models by surrogate models based on the Kriging interpolation. 

In this case, we follow a disaggregated approach in which only those units 

or modules that could produce numerical problems are substituted by 

Kriging surrogates, the rest of the units are maintained in the simulator.  

Recycles, either stream recycles or convergence blocks, introduce two 

numerical problems. In the first place, they can act as noise amplifiers 

because small errors can be propagated through the cycle and secondly, the 

CPU time to converge the flowsheet could be large because all units must 

be converged inside the recycles at each flowsheet iteration. Instead, we let 



the NLP solver converge all the recycles: We explicitly include all the 

recycles and convergence blocks as constraints in the NLP model. With 

this approach, we gain in speed and reliability and completely avoid the 

numerical problems mentioned above. 

Finally, it is possible to add any given model in equation form (e.g. 

equations for energy integration or LCA) or any set of constraints or 

bounds to the model in the same way as in a regular NLP model. 

It is worth remarking that the Kriging interpolation does not accept cross-

correlation between different simulation outputs, and univariate Kriging 

models are fitted. In other words, we can adjust multiple inputs and single 

output models so a given multiple-output model will require multiple 

Kriging interpolators. There are, however, cokriging methods that take 

advantage of the covariance between two or more variables that are related, 

and are appropriate when the main attribute of interest is sparse, but related 

secondary information is abundant. Cokriging requires the same conditions 

to be satisfied as Kriging does, but demands more modeling, and 

computation time. The common cokriging methods are multivariate 

extensions of the Kriging system of equations and use two or more 

additional attributes. In our case, even though some variables are clearly 

correlated, independent variables are enough to define the problem and we 

do not expect better numerical performance but much more computational 

effort. However, conservation properties (mass and energy balances) must 

be rigorously maintained (e.g. we cannot adjust all the flows of all the 

components because small errors could violate the mass balances). As a 

consequence, we select a set of output variables (those with the largest 

sensitivity) and calculate the rest through conservation balances. 

The model we are dealing with is, therefore, a hybrid model: explicit units 

in process simulator, multiple Kriging modules, third party modules 

connected to the simulation and explicit equations. Conceptually the model 

can be written as follows: 

𝑚𝑖𝑛: 𝑓(𝑥) 

𝑠. 𝑎.  𝑥𝑖,𝑗
𝑂𝑢𝑡

= 𝐺𝑖,𝑗
𝑆 (𝑥𝑖

𝐼𝑛, 𝑢𝑖)    𝑖 𝜖 𝐾𝑟𝑖𝑔𝑖𝑛𝑔 𝑈𝑛𝑖𝑡;   𝑗 𝜖 𝐾𝑟𝑖𝑔𝑖𝑛𝑔 𝑚𝑜𝑑𝑒𝑙𝑖 

 𝑥𝑘
𝑂𝑢𝑡 = 𝐺(𝑥𝑘

𝐼𝑛, 𝑢𝑘)      𝑘 𝜖 𝑈𝑛𝑖𝑡 𝑖𝑛 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑜𝑟 

 𝑥𝑗
𝑂𝑢𝑡 =  𝑥𝑖

𝐼𝑛                  𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 

(6) 



 ‖𝑥𝑡𝑒𝑎𝑟
𝑠𝑢𝑝

− 𝑥𝑡𝑒𝑎𝑟
𝑐𝑎𝑙𝑐‖ ≤ 𝑒𝑝𝑠 

 ℎ(𝑥) = 0 

 𝑔(𝑥) ≤ 0 

Where f(·) is the objective function. The first constraint represents the 

input-output structure of the Kriging interpolators. The second constraint is 

the input-output structure for the units in process simulators or third party 

models. The third constraint is related to the connectivity equations 

between different units in the flowsheet. These equations can be explicitly 

included in the form of equations or implicitly by just propagating the 

information through the flowsheet. We follow this second approach. The 

fourth constraint transfers the recycle structure of the flowsheet to the NLP 

solver. Finally, the last two constraints are explicit equations added to the 

model. 

With all the previous comments in mind, the algorithm for solving these 

models is as follows (a scheme of the flowchart has been included in Fig. 

1): 

< Insert Fig. 1 > 

Fig. 1. Flowchart of Kriging based NLP optimization algorithm.  

 

1. The starting point is a converged, large scale, flowsheet. Usually, a 

given flowsheet includes specifications (like purities, recoveries, etc.) 

that must be met but could be difficult to converge. In these cases, the 

first step consists of locating these difficult specifications and 

substituting them by easier to converge specifications and transferring 

the difficult to converge constraints to the NLP solver in the form of 

explicit equations. For example, in a conventional distillation column 

with known pressure (two degrees of freedom) concentration 

specifications are much more difficult to converge than distillate 

flowrates and reflux ratio. Some process simulators (Aspen Plus) follow 

this approach in distillation columns. 

2. A sensitivity analysis for each unit in the flowsheet will provide the 

following information: a) Which variables are the most important in the 

flowsheet and which can be neglected without affecting the optimization 

performance. b) Which units introduce unacceptable numerical noise 

and must be substituted by Kriging interpolators and which can be 



maintained in the process simulators. c) Indirectly, the CPU time to 

converge a given unit. If it is too large then we must consider the 

possibility of using a surrogate model with the unit. Finally, at this 

point, we must consider the possibility of merging two or more units in 

a single surrogate model. For example, two or more columns connected 

by a thermal couple with the objective of reducing the number of 

degrees of freedom of the surrogate model and increasing the robustness 

of the optimization. 

3. All the recycle information is removed from the flowsheet and 

transformed in explicit equations in the solver. In this way, the NLP 

solver will ‘see’ an acyclic system avoiding both unnecessary iterations 

and numerical noise amplification. 

4. Sampling. In this paper, we select the ‘maxmin’ approach to distribute a 

set of N points maximizing the minimum distance between two sample 

points in a normalized space. Note however, that 2D of those points (D 

is the number of independent variables) are fixed to the corners of the 

D-dimensional hypercube that define the domain of the independent 

variables. In this way, we ensure that Kriging is not making 

extrapolations. A detailed description of the maxmin procedure is 

included in Appendix B. 

5. For a given trust region, ideally the complete domain for every 

surrogate model, we calibrate the Kriging models and validate the 

accuracy of the model by two approaches. The first is cross-validation: a 

point is removed and its value re-evaluated with the rest of the points. 

This procedure is repeated with all the sampling points. And, second we 

use a minimum set of 100 randomly selected points. The consideration 

of an error as «small» is case dependent. Depends on the sensitivity of 

the variable in relation to the rest of the model. As commented above, 

one of the first steps in the algorithm consists of performing a sensitivity 

analysis to determine what the most relevant variables are. From this 

analysis, we also know what could be the effect of a given error. 

Roughly speaking, for this case of study, the maximum error is no larger 

than 5%. In any case, the final point must be checked against the 

process simulator.  

6.  If the error is small enough, the Kriging surrogates can be used to 

substitute the original one. If this is not the case we can increase the 



number of sampling points or reduce the trust-region. Again we have a 

tradeoff: a very large number of sampled points increase the CPU time 

for calibrating the Kriging that is itself an NLP problem. The bottleneck 

is the time required to invert the correlation matrix and the time needed 

to perform an interpolation. Also, small trust regions could eventually 

require resampling and recalibrating the Kriging models. As commented 

before, in this paper we follow an exhaustive sampling to minimize the 

number of resamplings and Kriging calibrations (algorithm 3 in the 

Biegler’s taxonomy (Biegler et al., 2014)). In the case in which the 

model cannot be considered accurate enough, a reduction of the domain 

is mandatory. In this case, we would follow a trust region approach 

following the algorithm presented by Caballero and Grossmann (2008). 

7. Solve the model given in Eq.(6). Note that for all units calculated 

directly from the flowsheet, derivative information is calculated by a 

finite difference scheme. However, if the numerical noise is small and 

the convergence is fast, this approach is satisfactory. For the rest of the 

model, derivatives are calculated either by automatic differentiation or 

even symbolically. 

8. The optimal solution of step 6 is not necessarily the optimal solution of 

the original model. If the original trust region does not cover the 

complete domain and the solution is in a boundary of the region, we 

must resample around the optimal point and repeat step 6. Even if we 

have an interior point, we cannot guarantee that the Karush-Kuhn-

Tucker (KKT) point of problem 6 is also the optimum of the original 

model, because we cannot guarantee the gradient matching property. In 

this case, we must perform a ‘gradient matching’ step by contracting the 

trust region around the optimal solution (resampling) and repeat step 6. 

If both solutions are inside a tolerance then the optimization finishes, if 

not we must contract the original trust region and repeat again from step 

6. It is important to remark that, in any case, the sampling points must 

be separated enough to avoid adjusting the numerical noise.  

 

4. Case study: sour water stripping plant 

In the petroleum refining industry, large volumes of water are used and 

large volumes of wastewater are produced (Joint Research Centre, 2013). 

Water is often in direct contact with some process streams (i.e. oil), 



therefore, it is very contaminated. This contaminated water is called sour 

water. The two most prevalent pollutants found in sour water are H2S and 

NH3, resulting from the destruction of organic sulfur and nitrogen 

compounds during desulfuration, denitrification, and hydrotreating. 

The aim of sour water treatment is to remove sulfides and ammonia from 

the water. There are several technologies for sour water treatments, 

stripping with steam or flue gas, air oxidation to convert sulfides to 

thiosulfates, or vaporization and incineration. In this work we have 

considered that the sour water is stripped by steam. 

The case study corresponds to the Sour Water Stripping (SWS) plant of a 

refinery located in Germany. The flowsheet was obtained from a work by 

Torres et al. (2013). This plant treats sour water coming from four different 

sources: an oil vacuum distillation unit, a fluid catalytic cracker and an 

amine regeneration fractionator, a crude distillation unit and a 

petrochemical complex with content in ethanol and ethyl tert-butyl ether 

(ETBE). 

The stream with ethanol and ETBE is sent to a stripper, where it is stripped 

with steam, recovering an ethanol-rich gas that is dispatched to the Fluid 

Catalytic Cracker (FCC) unit. 

The remaining water is sent to flash drums, where vapor and liquid 

hydrocarbons are removed. After the flash drums, the sour water is sent to 

the first set of strippers (strippers E1, E2 and E3 in Fig. 2) where, in contact 

with steam, ammonia and H2S are removed. The aim of the SWS plant is 

not only to remove pollutants from water but also to achieve a high 

recovery of ammonia and hydrogen sulfide, separately. Then, overhead 

streams are mixed and sent to a second stage, where a high purity of 

hydrogen sulfide is recovered by overhead (units E4, E5 and E6 in Fig. 2). 

The bottom, which contains the ammonia is sent to the ammonia stripper 

(units E7 and E8 in Fig. 2) where ammonia-rich gas is recovered (79% 

w/w). The sulfides and ammonia free-water streams are split to be recycled 

with the feed streams, to be reused in other refinery processes and to be 

sent to the flare (unit E9 in Fig. 2). 

< Insert Fig. 2 > 

Fig. 2. Complete flowsheet of the sour water stripping plant. The flowsheet 

has been obtained from a work by Torres et al. (2013) where the heat 

exchanger network has been removed. 



 

Two different property packages are used in the simulation; the NRTL 

model is used in streams and units involving ethanol and ETBE (streams 

S27-S35 and unit E3 in Fig. 2) and the SourPR model is applied to the rest 

of the model. 

The main objective is to optimize the SWS plant operating conditions, but 

changing the flows and temperatures of some streams directly affects the 

energy integration of the plant. Therefore, we will also redesign the heat 

exchanger network. In order to avoid a pre-specified heat exchanger 

configuration that could be inefficient, the first step consists of removing 

all heat exchangers in the flowsheet and substituting them by simple 

heaters and coolers. The development of an optimal heat exchanger 

network involving a relatively large number of process streams (in this case 

study there are 7 hot and 4 cool streams) is a challenging problem by itself. 

The simultaneous optimization and heat integration based on a 

superstructure approach (see for example Yee and Grossmann (1990)) 

results in a very large highly non-convex Mixed Integer non-Linear 

Programming (MINLP) problem. Instead, taking advantage of the fact that 

energy is the dominant cost in the HEN, we simultaneously optimize the 

energy consumption, for a given minimum approach temperature and the 

operating conditions, and then we design the optimal HEN. 

For fixed values of heat flows and input and output temperatures for all the 

streams involved in the heat exchanger design, the minimum utility 

consumption can be calculated either using the classical “Tableau” 

approach proposed by Linnhoff and Flower (1978) or using the 

transshipment problem (Papoulias & Grossmann, 1983). However, these 

approaches rely on the temperature interval concept. If the input and/or 

output temperatures are not fixed the temperature intervals could change. 

This is equivalent to introduce discontinuities and non-differentiabilities in 

the model. To overcome this difficulty, as far as we know, there are two 

alternatives; the first is the “pinch location method”, proposed by Duran 

and Grossmann (1986) and reformulated as a disjunctive problem by 

Grossmann et al. (1998). The second is an implicit enumeration approach 

proposed by Navarro-Amorós et al. (2013). Both approaches have similar 

numerical performance, however, the disjunctive version of the pinch 

location method (Grossmann et al., 1998) generates smaller size models, so 



in this paper we follow this approach. An overview of the pinch location 

method in its disjunctive formulation has been included in Appendix A.  

In order to avoid, as much as possible, getting trapped in a local optimum, 

we first optimize the flowsheet without taking into account heat integration. 

This intermediate step is used as the initial point of the complete model 

including heat integration and LCA analysis. 

All relevant data related to the input streams and equipment characteristics 

are included in Table 1.  

Specifications for output streams are in Table 2. All these specifications are 

transferred to the NLP model as constraints. 

 

The second step (according to the algorithm implementation section) 

consists of performing a sensitivity analysis to determine which units must 

be maintained in their original form in the flowsheet, which units must be 

substituted by Kriging surrogate models and if it is convenient or not to 

merge some units in a single surrogate model. There are three main criteria 

to decide whether to substitute a unit (or set of units) by a surrogate model: 

large CPU convergence times, unacceptable numerical noise, and lack of 

convergence in the complete space of the domain. The convergence is fast 

enough for all the units. However, all the stripping columns are slightly 

noisy and convergence of some units (E4, E5, E7 and E8) eventually 

requires good initial points. The rest of the unit operations, phase 

separators, pumps, valves, heater or coolers, are maintained in their original 

form in the process simulator. 

If we substitute each stripping column in the original model by a Kriging 

surrogate then some surrogate models have a large number of degrees of 

freedom. In particular, units E4 and E5 form a highly integrated system 

with a thermal couple (liquid stream from E4 to E5 and vapor stream from 

E5 to E4) and a recycle stream. Therefore, it is numerically more efficient 

to merge these two columns in a single surrogate. A similar situation 

appears with stripping columns E7 and E8. A scheme of the resulting 

flowsheet is shown in Fig. 3. 

< Insert Fig. 3 > 

Fig. 3. Simplified process flowsheet of the SWS plant. Note that unit ED is 

the result of merging the original columns E4 and E5 in a single surrogate 



model, and unit EC is the result of merging the original columns E7 and E8 

in a single surrogate model. For the sake of clarity, in the scheme, pumps, 

valves, coolers and heaters have been removed. 

 

The next step consists of removing all the “recycles” from the flowsheet 

and transferring this information to the NLP solver. As previously 

commented, letting the NLP solver converge the recycle information is 

numerically much more efficient than converging the complete flowsheet at 

each iteration. The original flowsheet contains 9 recycle streams. Three of 

these recycle streams form part of the integrated system E4-E5 and E7-E8. 

The rest must be explicitly transferred in the form of constraints to the NLP 

solver. Taking into account that each stream has c+2 degrees of freedom (c 

is the number of components in the stream), we explicitly add 30 

constraints to the NLP model. 

The efficiency of the stripping depends on the steam flow rate, feed 

composition, and temperature, number of trays and feed location. In this 

paper we have a fixed structure; therefore, we have only considered the 

steam flow rate, feed composition and feed temperature as variables. The 

maximum concentration of NH3 and H2S was fixed according to the legal 

limits of the industrial emissions of pollutants (see Table 2). 

One of the advantages of using a disaggregated approach is that, instead of 

using a single surrogate with a large number of independent variables, we 

calibrate a set of smaller surrogate models. If the number of degrees of 

freedom is not too large it is possible to follow the strategy proposed by 

Biegler et al. (2014), and perform exhaustive sampling a priori in order to 

minimize resampling and recalibration. Table 3 shows all the input-output 

Kriging models used in this example. Fig. 4 shows, as a typical example, 

the results from cross-validation, and Table 4 shows the parameters of all 

the Kriging models. The relatively low errors of all the Kriging surrogate 

models in the variables domain, allow us to use these models instead of the 

original ones. In any case, the final contraction step in order to ensure a 

KKT point is always performed. 

 

< Insert Fig. 4 > 

Fig. 4. Cross-validation for vapor obtained from unit ED. (a) mass flow 

H2S, (b) mass flow NH3, and (c) mass flow H2O. 



 

The first aim of this work is to minimize the costs of the SWS plant. As we 

are working with an existing plant, we optimize the operating costs of 

cooling water, vapor and coal for the generation of steam from water, and 

the investment costs related to the new HEN.  

Even though we do not explicitly include environmental impacts in the 

objective function we are also interested in evaluating the process from an 

environmental perspective. Specifically, in this work we use the ReCiPe 

indicator (Goedkoop et al., 2013), available in Ecoinvent Database v.3 

(Weidema et al., 2013). This metric is based on the principles of LCA. 

LCA is a methodology for evaluating the environmental loads associated 

with a product, process or activity (Guinée et al., 2002). During its 

application, energy and material used in a process are first identified and 

qualified. This information is translated into a set of environmental impacts 

that are aggregated into different groups. These impacts are finally used to 

evaluate diverse process alternatives that may be implemented in order to 

achieve environmental improvements. Today, LCA has become the main 

instrument to evaluate the environmental performance of chemical 

processes (Azapagic & Clift, 1999; Hoffmann et al., 2001; Petrie & 

Romagnoli, 2000). 

First, raw materials, water, steam and energy consumption per cubic meter 

of treated water are calculated. Then, land occupied by the plant is 

estimated in terms of amount of steel used in the plant. This inventory is 

used to characterize the environmental performance of the process. 

Regarding the raw materials consumption impact, the sour waters have not 

been considered as raw materials because they are byproducts from other 

parts of the petrochemical process. However, the fresh water entering to 

generate steam is included in the calculation of the impact. 

Seventeen categories of impacts are calculated, related to ecosystem 

quality, human health and resources depletion: agricultural land 

occupation, climate change (ecosystems), freshwater ecotoxicity, 

freshwater eutrophication, marine ecotoxicity, natural land transformation, 

terrestrial acidification, terrestrial ecotoxicity, urban land occupation, 

climate change (human health), human toxicity, ionizing radiation, ozone 

depletion, particulate matter formation, photochemical oxidant formation, 

fossil fuel depletion and metal depletion. 



The operating cost of the plant before optimization is $3.3974 million/year 

and the objective function of the problem without taking into account heat 

integration is $1.8245 million/year.  

 shows the values of the independent variables for the plant before 

optimization and the optimized plant, without heat integration. Even 

though, this is only an intermediate step it is interesting to compare the 

environmental impacts of this optimized plant and the base case. If we 

consider aggregated impacts according to the ReCiPe methodology 

(Ecosystem Quality, Human Health or Resources Depletion), the optimized 

plant presents a net reduction in the three indicators (Fig. 5). However, if 

we consider mid-point indicators, some of them increase with respect to the 

base case (Fig. 6). Even though this, is beyond the scope of this work, this 

result shows that other operating conditions could be of interest if some of 

these environmental indicators must be maintained at lower levels. 

 

< Insert Fig. 5 > 

Fig. 5. Comparison of the main impacts between plant before optimization 

and the optimized plant. 

 

< Insert Fig. 6 > 

Fig. 6. Comparison of the mid-point indicators between plant before 

optimization and the optimized plant. 

 

The optimal solution shows a reduction in steam consumption of 5.501 

ton/h. Although total impact decreases with respect to the base case, the 

indicator “photochemical oxidant formation” increases with respect to the 

plant before optimization, which is due to the increases in coal 

requirements. Besides this reduction, it is interesting to note that the 

flowrate of the recycle stream S1 goes to zero. Consequently, this stream 

can be removed from the process. 

Data of the streams involved in the heat integration including the input and 

output temperature intervals are shown in Table 6.  

 

Curiously, the optimal solution of this new model for the values of flows 

and temperatures is the same as the optimal solution of the non-heat 

integrated model. However, if we run the model removing the purity and 



recovery constraints –which is equivalent to maximize the heat integration 

without taking into account the rest of the model-, the total energy 

consumption is lower than that of the plant before optimization. But, this 

extra energy saving can be met by increasing the output temperatures of 

cold streams (S7, S19 and S28) -in the optimized model these temperatures 

are in their lower bounds-. Increasing some of these temperatures decreases 

the pollutants recovery in the strippers, as a consequence, the steam 

flowrate in the stripper must increase to maintain the same recovery, which 

results in an increase in utility consumption. It is worth remarking that this 

result is just coincidental and in general the non-heat integrated and heat 

integrated solutions are different. 

Even though the flows and temperatures are the same, utility consumption 

and environmental impacts are considerably reduced in the heat integrated 

flowsheet (see Fig. 7).  

Table 7 shows optimal values for the main streams in the process. The 

complete table is too large (93 material streams) and it is included as 

supplementary material. 

The final step consists of generating the HEN. In the literature, different 

approaches are proposed (a good review can be found in Furman and 

Sahinidis (2002)). In this paper, we used the superstructure approach 

presented by Yee and Grossmann (1990). Appendix A shows the equations 

of the “Pinch Location Method” in a GDP form, which was reformulated as 

an MINLP model (Grossmann et al., 1998).  

Fig. 7 shows the HEN obtained for our case study and Table 8 show the 

data and the results of the heat integration. 

< Insert Fig. 7 > 

Fig. 7. Heat exchanger network for the SWS plant. 

 

 

The operating costs of the heat integrated plant including utilities and the 

installed cost of the HEN are $0.6486 million/year, which is 80.9 % lower 

than the base case. 

All the models were simulated on Aspen HYSYS v.8.4 in a computer with 

a 2.60 GHz Pentium® Dual-Core Processor and 4 GB of RAM under 



Windows 7. Kriging surrogate models were calibrated using MATLAB 

(The Mathworks, 2014). As NLP solver, we use CONOPT (Drud, 1996) 

available through TOMLAB-MATLAB (Holmström, 1999). As MINLP 

solver, we use a proprietary implementation of a basic Branch and Bound 

algorithm also interfaced with TOMLAB-MATLAB. The complete model, 

objective function, explicit constraints, implicit models (models in the 

process simulator) and surrogate models, are written in a proprietary 

modeling language (Caballero et al., 2014) interfaced with TOMLAB.  

The CPU time used in the optimization of the stripping plant (including 

sampling, Kriging calibration and model optimization) was around 23 

minutes. 

Table 9 summarizes the utility needed on the economically optimized plant 

and on the heat integrated plant. 

The described HEN achieves heat recovery and hence lowers heating and 

cooling requirements (39.0 % and 24.9 %, respectively). This implies a 

reduction in the cooling water, steam, and coal requirements, with a 

reduction in the corresponding operating costs and a reduction in the 

impact by the water, steam and coal supply indexes. 

To evaluate the process from an environmental perspective, we use the 

ReCiPe Endpoint (H,A) indicator (Goedkoop 2013). Table 10 shows the 

inventory of the processes. All calculations are performed per m3 of treated 

water. 

In this case, we study the improvement of the process before and after 

performing the heat exchange network. In Table 11 we can see the final 

impact obtained in each process. As we can see, the final impact decreases 

when the heat integration is performed. 

 

Fig. 8 shows the three general categories of impact. Human health and 

resources depletion are the most affected categories. Impact after heat 

integration is reduced by about 49.5 % against the impact of the plant 

before optimization. 

< Insert Fig. 8 > 

Fig. 8. Comparison of the main impacts for the SWS plant. 

 



Fig. 9 shows the impacts ratios (compared with the base case) of the two 

alternatives studied. The impacts of each category are normalized by the 

impacts of the base case (𝐼𝑘
𝑛 = 𝐼𝑘

𝑖 /𝐼𝑘
𝐵𝐶), where Ik

n is the normalized impact 

of category k in process i, Ik
i is the categorized impact of category k in 

process i, and Ik
BC is the categorized impact of category k for the base case. 

< Insert Fig. 9 > 

Fig. 9. Impact ratios of the alternatives studied. 

 

There are some categories of impact, such as terrestrial ecotoxicity, natural 

land transformation, climate change (ecosystems), particulate matter 

formation and fossil depletion that have a significant improvement 

compared with the rest of the categories. After the economic optimization, 

some categories such as fresh water eutrophication, fresh water ecotoxicity, 

marine ecotoxicity, ozone depletion and climate change (human health) get 

worse with respect to the base case, but after the heat integration, all 

impacts are reduced against the base case.  

 

5. Conclusions 

Large scale flowsheet optimization involving «gray box models» has 

inherent numerical difficulties related to the lack of convergence of some 

modules, relatively large CPU times for converging some unit operations 

and the introduction of numerical noise that prevent the accurate estimation 

of derivatives. To overcome all these difficulties but at the same time 

maintain as much as possible the rigor and reliability of commercial 

process simulators, this paper proposes a hybrid approach in which some 

units are maintained in the process simulator, some units are substituted by 

surrogate models and we include the possibility of adding explicit 

constraints in equation form. These constraints can range from simple 

bounds to complete models in equation form. 

We used a disaggregated approach in which we substitute a large surrogate 

model by a set of smaller surrogate models. An important point consists of 

identifying which units/modules must be substituted by a surrogate model 

and which units could be merged in a single surrogate. In the case of 

chemical process simulators, the most important factors are the CPU time 



to converge, the numerical noise and the lack of convergence in the 

complete domain.  

In this work we have applied a Kriging interpolation model, with Gaussian 

extended exponential as spatial correlation functions, to the rigorous 

optimization of an SWS plant. In this optimization, the stripping columns 

(implicit black-box functions of the simulator) were substituted by Kriging 

metamodels. An analysis of degrees of freedom indicated that merging the 

models of some very integrated columns reduced the complexity of 

surrogate models and maintained rigor. In this way, surrogate models allow 

a fast interpolation of new values and have proven to be accurate and 

reliable. 

Economic optimization allows us 46.3 % savings against the plant before 

optimization, and it allows us to reduce the life cycle assessment of the 

stripping plant by around 15.1 %. 

HENs allows savings in energy (around 39 % in heating and 25 % in 

cooling) against a plant without heat integration, and they also allow us to 

reduce the LCA of the plant by around 49.5 %. 

Even though the optimization cannot guarantee the global optimum due to 

the non-convex character of the model. The procedure has proven to be 

robust, reliable and the final solution obtained is significantly better than 

the actual one. 
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Appendix A. The pinch location method in its disjunctive formulation 

The proposed model is based on the same principles as the model of Duran 

and Grossmann (1986). The basic idea relies on incorporating as a 

constraint in the process optimization the minimum utility target as a 

function of the flowrates and temperatures of the process streams. To 

accomplish this task, they proposed a set of inequalities that rely on a pinch 

location model and that gives rise to non-differentiabilities which are 



handled with a smooth approximation. The method consists of determining 

the pinch candidate with the maximum heat required from heating utilities 

above the pinch, ensuring that the candidate is a true pinch. 

The model proposed by Grossmann et al. (1998) is reformulated as a large 

MINLP problem, but it can be reduced to an MILP problem when dealing 

only with isothermal streams, thus guaranteeing the global optimum 

solution. 

 

A.1. Original simultaneous optimization and heat integration model 

The Duran and Grossmann (1986) model for the determination of 

simultaneous optimization and heat integration is given by the following 

model (assuming fixed x): 

𝑚𝑖𝑛: 𝐶𝑆𝑄𝑆 + 𝐶𝑊𝑄𝑊  

s.t. 

𝑄𝑆𝐼𝐴(𝑥)𝑝 − 𝑄𝑆𝑂𝐴(𝑥)𝑝 ≤ 𝑄𝑆    ∀𝑝 ∈ 𝑃 

∑𝐹𝑖(𝑇𝑖
𝑖𝑛 − 𝑇𝑖

𝑜𝑢𝑡)

𝑖∈𝐻

− ∑𝑓𝑗(𝑡𝑗
𝑜𝑢𝑡 − 𝑡𝑗

𝑖𝑛)

𝑗∈𝐶

+ 𝑄𝑆 − 𝑄𝑊 = 0  

𝑄𝑆, 𝑄𝑊, 𝑄𝑆𝐼𝐴, 𝑄𝑆𝑂𝐴, 𝐹𝑖 , 𝑓𝑗 , 𝑇𝑖 , 𝑡𝑗 ≥ 0 

where 

𝑄𝑆𝑂𝐴(𝑥)𝑝 = ∑𝐹𝑖[𝑚𝑎𝑥{0, 𝑇𝑖
𝑖𝑛 − 𝑇𝑝} − 𝑚𝑎𝑥{0, 𝑇𝑖

𝑜𝑢𝑡 − 𝑇𝑝}]

𝑖∈𝐻

 

𝑄𝑆𝐼𝐴(𝑥)𝑝 = ∑𝑓𝑖[𝑚𝑎𝑥{0, 𝑓𝑗
𝑜𝑢𝑡 − (𝑇𝑝 − ∆𝑇𝑚𝑖𝑛)}

𝑗∈𝐶

− 𝑚𝑎𝑥{0, 𝑓𝑗
𝑖𝑛 − (𝑇𝑝 − ∆𝑇𝑚𝑖𝑛)}] 

𝑇𝑝 = 𝑇𝑖
𝑖𝑛            𝑝 = 𝑖 ∈ 𝐻 

𝑇𝑝 = (𝑡𝑗
𝑖𝑛 + ∆𝑇𝑚𝑖𝑛)            𝑝 = 𝑗 ∈ 𝐶 

 

(A.1) 

In this model, QSOA is the heat available and QSIA is the heat needed 

above the potential pinch candidate, Fi and fi are the heat capacity flowrates 

of hot and cold streams respectively, and P stands for the set of pinch 

candidates of either hot or cold streams. 

This method has two main disadvantages. First, the model includes the max 

function in the determination of the heat available for exchange, which is 



non-differentiable at the value of 𝑇 = 𝑇𝑝. Second, smoothing functions 

avoid the non-differentiabilities of the max function, but the selection of 

the parameters can be non-trivial. 

Difficulties that are experienced with the Duran and Grossmann (1986) 

model were overcome with the disjunctive model proposed by Grossmann 

et al. (1998), who avoided non-differentiabilities and approximations.  

 

A.2. Disjunctive model 

The disjunctive model proposed by Grossmann et al. (1998) uses logic 

disjunctions to explicitly model the relative placement of streams for 

various potential pinch locations, and explicitly considers the non-

isothermal and isothermal streams as separate cases. 

Depending on the placement of the streams with respect to pinch 

temperature, three cases are possible, and only one of them can take place: 

1. The hot stream i lies completely above the pinch candidate. So all its 

heat content is available for exchange with the cold streams. This 

means that both inlet and outlet temperatures are higher than Tk
in for 

a pinch candidate k  H, or higher than tk
in+Tmin for candidate l  

C. The binary variable YHi
Above means that the hot stream i lies above 

the temperature of hot pinch candidate k, and the binary variable 

YCi
Above means that the hot stream i lies above the temperature of the 

cold pinch candidate plus Tmin. 

2. The hot stream i has inlet temperature above the pinch candidate and 

outlet temperature below it. Only a part of Qhot is available for heat 

exchange. The binary variables YHi
Middle and YCi

Middle represent the 

occurrence of this case for hot and cold pinch candidate streams 

respectively.    

3. The hot stream i has both inlet and outlet temperatures below the 

temperature of the pinch candidate, therefore, it cannot exchange 

heat with the cold streams above the pinch. The binary variables 

YHi
Below and YCi

Below represent the occurrence of this case for hot and 

cold pinch candidate streams respectively.    

There are three similar options regarding the position of a cold stream j 

with respect to the pinch candidate: 



1. The cold stream j lies completely above the pinch candidate. So all 

its heat content is available for exchange with the hot streams. The 

binary variable ZHj
Above represents the occurrence of stream j above 

the hot pinch candidate stream k, and the binary variable ZCj
Above 

means that the stream j lies above the cold stream pinch candidate l. 

2. The cold stream j has outlet temperature above the pinch candidate 

and inlet temperature below it. Only a part of its heat content is 

available for heat exchange above the pinch. The binary variables 

ZHj
Middle and ZCj

Middle represent the occurrence of this case for hot 

and cold pinch candidate streams respectively. 

3. The cold stream j has both inlet and outlet temperatures below the 

temperature of the pinch candidate, therefore, it cannot exchange 

heat with the hot streams above the pinch. The binary variables 

ZHj
Below and ZCj

Below represent the occurrence of this case for hot and 

cold pinch candidate streams respectively. 

This situation can be represented in general as a disjunction of three 

Boolean variables, each one taking a value of true when the constraints that 

define the case are satisfied, and false otherwise: 

𝑊𝐻𝑖
𝐴𝑏𝑜𝑣𝑒 ∨ 𝑊𝐻𝑖

𝑀𝑖𝑑𝑑𝑙𝑒 ∨ 𝑊𝐻𝑖
𝐵𝑒𝑙𝑜𝑤 𝑊𝐶𝑗

𝐴𝑏𝑜𝑣𝑒 ∨ 𝑊𝐶𝑗
𝑀𝑖𝑑𝑑𝑙𝑒 ∨ 𝑊𝐶𝑗

𝐵𝑒𝑙𝑜𝑤 

𝑊𝐻𝑖 ∈ {𝑇𝑟𝑢𝑒, 𝐹𝑎𝑙𝑠𝑒}, 𝑖 = 𝑘, 𝑙 𝑊𝐶𝑗 ∈ {𝑇𝑟𝑢𝑒, 𝐹𝑎𝑙𝑠𝑒}, 𝑗 = 𝑘, 𝑙 

The pinch point is located at the inlet temperature of a hot or a cold stream. 

We explicitly consider both cases: 

- The pinch is located at the inlet temperature of a hot stream, or 

- The pinch is located at the inlet temperature of a cold stream. 

Eq.(A.2) shows the three alternatives for a hot stream. 

[
 
 
 
 
 

𝑊𝐻𝑖
𝐴𝑏𝑜𝑣𝑒

[
 
 
 
 

𝑌𝐻𝑖
𝐴𝑏𝑜𝑣𝑒

𝑄𝐻𝑖 = 𝐹𝑖(𝑇𝑖
𝑖𝑛 − 𝑇𝑖

𝑜𝑢𝑡) = 𝑄𝑘,𝑖
ℎ𝑝

𝑇𝑖
𝑖𝑛 ≥ 𝑇𝑘

𝑖𝑛

𝑇𝑖
𝑜𝑢𝑡 ≥ 𝑇𝑘

𝑖𝑛

}𝑘 ∈ 𝐻

]
 
 
 
 

∨

[
 
 
 
 

𝑌𝐶𝑖
𝐴𝑏𝑜𝑣𝑒

𝑄𝐻𝑖 = 𝐹𝑖(𝑇𝑖
𝑖𝑛 − 𝑇𝑖

𝑜𝑢𝑡) = 𝑄𝑙,𝑖
𝑐𝑝

𝑇𝑖
𝑖𝑛 ≥ 𝑡𝑙

𝑖𝑛 + Δ𝑇𝑚𝑖𝑛

𝑇𝑖
𝑜𝑢𝑡 ≥ 𝑡𝑙

𝑖𝑛 + Δ𝑇𝑚𝑖𝑛

} 𝑙 ∈ 𝐶

]
 
 
 
 

]
 
 
 
 
 

∨    
 

(A.2) 



[
 
 
 
 
 
 

𝑊𝐻𝑖
𝑀𝑖𝑑𝑑𝑙𝑒

[
 
 
 
 

𝑌𝐻𝑖
𝑀𝑖𝑑𝑑𝑙𝑒

𝑄𝐻𝑖 ≥ 𝐹𝑖(𝑇𝑖
𝑖𝑛 − 𝑇𝑖

𝑜𝑢𝑡) = 𝑄𝑘,𝑖
ℎ𝑝

𝑇𝑖
𝑖𝑛 ≥ 𝑇𝑘

𝑖𝑛

𝑇𝑖
𝑜𝑢𝑡 ≤ 𝑇𝑘

𝑖𝑛

}𝑘 ∈ 𝐻

]
 
 
 
 

∨

[
 
 
 
 

𝑌𝐶𝑖
𝑀𝑖𝑑𝑑𝑙𝑒

𝑄𝐻𝑖 ≥ 𝐹𝑖(𝑇𝑖
𝑖𝑛 − [𝑡𝑖

𝑖𝑛 + Δ𝑇𝑚𝑖𝑛]) = 𝑄𝑙,𝑖
𝑐𝑝

𝑇𝑖
𝑖𝑛 ≥ 𝑡𝑙

𝑖𝑛 + Δ𝑇𝑚𝑖𝑛

𝑇𝑖
𝑜𝑢𝑡 ≤ 𝑡𝑙

𝑖𝑛 + Δ𝑇𝑚𝑖𝑛

} 𝑙 ∈ 𝐶

]
 
 
 
 

]
 
 
 
 
 
 

∨ 

[
 
 
 
 
 

𝑊𝐻𝑖
𝐵𝑒𝑙𝑜𝑤

[
 
 
 
 

𝑌𝐻𝑖
𝐵𝑒𝑙𝑜𝑤

𝑄𝑘,𝑖
ℎ𝑝

= 0

𝑇𝑖
𝑖𝑛 ≤ 𝑇𝑘

𝑖𝑛

𝑇𝑖
𝑜𝑢𝑡 ≤ 𝑇𝑘

𝑖𝑛

}𝑘 ∈ 𝐻

]
 
 
 
 

∨

[
 
 
 
 

𝑌𝐶𝑖
𝐵𝑒𝑙𝑜𝑤

𝑄𝑙,𝑖
𝑐𝑝

= 0

𝑇𝑖
𝑖𝑛 ≤ 𝑡𝑙

𝑖𝑛 + Δ𝑇𝑚𝑖𝑛

𝑇𝑖
𝑜𝑢𝑡 ≤ 𝑡𝑙

𝑖𝑛 + Δ𝑇𝑚𝑖𝑛

} 𝑙 ∈ 𝐶

]
 
 
 
 

]
 
 
 
 
 

∀𝑖 ∈ 𝐻  

Eq.(A.3) shows the three alternatives for a cold stream. 

[
 
 
 
 
 
 

𝑊𝐶𝑗
𝐴𝑏𝑜𝑣𝑒

[
 
 
 
 
 

𝑍𝐻𝑗
𝐴𝑏𝑜𝑣𝑒

𝑄𝐶𝑗 = 𝑓𝑗(𝑡𝑗
𝑜𝑢𝑡 − 𝑡𝑗

𝑖𝑛) = 𝑞𝑘,𝑗
ℎ𝑝

𝑡𝑗
𝑖𝑛 ≥ 𝑇𝑘

𝑖𝑛 − Δ𝑇𝑚𝑖𝑛

𝑡𝑗
𝑜𝑢𝑡 ≥ 𝑇𝑘

𝑖𝑛−Δ𝑇𝑚𝑖𝑛

}𝑘 ∈ 𝐻

]
 
 
 
 
 

∨

[
 
 
 
 

𝑍𝐶𝑗
𝐴𝑏𝑜𝑣𝑒

𝑄𝐶𝑗 = 𝑓𝑗(𝑡𝑗
𝑜𝑢𝑡 − 𝑡𝑗

𝑖𝑛) = 𝑞𝑙,𝑗
𝑐𝑝

𝑡𝑗
𝑖𝑛 ≥ 𝑡𝑙

𝑖𝑛

𝑡𝑗
𝑜𝑢𝑡 ≥ 𝑡𝑙

𝑖𝑛

} 𝑙 ∈ 𝐶

]
 
 
 
 

]
 
 
 
 
 
 

∨    

[
 
 
 
 
 
 

𝑊𝐶𝑗
𝑀𝑖𝑑𝑑𝑙𝑒

[
 
 
 
 
 

𝑍𝐻𝑗
𝑀𝑖𝑑𝑑𝑙𝑒

𝑄𝐶𝑗 ≥ 𝑓𝑗(𝑡𝑗
𝑜𝑢𝑡 − [𝑇𝑘

𝑖𝑛−Δ𝑇𝑚𝑖𝑛]) = 𝑞𝑘,𝑗
ℎ𝑝

𝑡𝑗
𝑖𝑛 ≤ 𝑇𝑘

𝑖𝑛 − Δ𝑇𝑚𝑖𝑛

𝑡𝑗
𝑜𝑢𝑡 ≥ 𝑇𝑘

𝑖𝑛−Δ𝑇𝑚𝑖𝑛

}𝑘 ∈ 𝐻

]
 
 
 
 
 

∨

[
 
 
 
 
 

𝑍𝐶𝑗
𝑀𝑖𝑑𝑑𝑙𝑒

𝑄𝐶𝑗 ≥ 𝑓𝑗(𝑡𝑗
𝑜𝑢𝑡 − 𝑡𝑙

𝑖𝑛) = 𝑞𝑙,𝑗
𝑐𝑝

𝑡𝑗
𝑖𝑛 ≤ 𝑡𝑙

𝑖𝑛

𝑡𝑗
𝑜𝑢𝑡 ≥ 𝑡𝑙

𝑖𝑛

} 𝑙 ∈ 𝐶

]
 
 
 
 
 

]
 
 
 
 
 
 

∨ 

[
 
 
 
 
 
 

𝑊𝐶𝑗
𝐵𝑒𝑙𝑜𝑤

[
 
 
 
 
 

𝑍𝐻𝑗
𝐵𝑒𝑙𝑜𝑤

𝑞𝑘,𝑗
ℎ𝑝

= 0

𝑡𝑗
𝑖𝑛 ≤ 𝑇𝑘

𝑖𝑛 − Δ𝑇𝑚𝑖𝑛

𝑡𝑗
𝑜𝑢𝑡 ≤ 𝑇𝑘

𝑖𝑛 − Δ𝑇𝑚𝑖𝑛

}𝑘 ∈ 𝐻

]
 
 
 
 
 

∨

[
 
 
 
 

𝑍𝐶𝑗
𝐵𝑒𝑙𝑜𝑤

𝑞𝑙,𝑗
𝑐𝑝

= 0

𝑡𝑗
𝑖𝑛 ≤ 𝑡𝑙

𝑖𝑛

𝑡𝑗
𝑜𝑢𝑡 ≤ 𝑡𝑙

𝑖𝑛

} 𝑙 ∈ 𝐶

]
 
 
 
 

]
 
 
 
 
 
 

∀𝑗 ∈ 𝐶  

(A.3) 

 

The total amount of heating utility QS that is required above a pinch 

candidate is given by an energy balance above the pinch, and the total 

cooling utility requirement QW is given by a general energy balance. The 

rest of the model can be written as follows: 



𝑚𝑖𝑛: 𝐶𝑆𝑄𝑆 + 𝐶𝑊𝑄𝑊  

s.t. 

𝑄𝑆 + ∑𝑄𝐻𝑖

𝑖∈𝐻

= 𝑄𝑊 + ∑𝑄𝐶𝑗

𝑗∈𝐶

 

𝑄𝑆 ≥ ∑𝑞𝑘,𝑗
ℎ𝑝

𝑗∈𝐶

− ∑𝑄𝑘,𝑖
ℎ𝑝

𝑖∈𝐻

                𝑘 ∈ 𝐻 

𝑄𝑆 ≥ ∑𝑞𝑙,𝑗
𝑐𝑝

𝑗∈𝐶

− ∑𝑄𝑙,𝑖
𝑐𝑝

𝑖∈𝐻

                 𝑙 ∈ 𝐶 

𝑄𝐻𝑖 = 𝐹𝑖(𝑇𝑖
𝑖𝑛 − 𝑇𝑖

𝑜𝑢𝑡)                   𝑖 ∈ 𝐻 

𝑄𝐶𝑗 = 𝑓𝑗(𝑡𝑗
𝑜𝑢𝑡 − 𝑡𝑗

𝑖𝑛)                      𝑗 ∈ 𝐶 

(A.4) 

 

Appendix B. Maxmin approach 

The ‘maxmin’ approach distribute a set of points in a domain maximizing 

the minimum distance between two points. 

The maxmin problem can be formulated as an NLP problem as follows: 

- Consider the distribution of N points (i) in a D-dimensional space (d) 

𝑥𝑖,𝑑 = d dimension component of point i 

max min {𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑖,𝑗} 

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑖,𝑗 = √∑(𝑥𝑖,𝑑
2 − 𝑥𝑗,𝑑

2 )

𝐷

𝑑=1

           ∀𝑖, 𝑗 ∈ 𝑃𝑜𝑖𝑛𝑡𝑠 𝑖 ≠ 𝑗⁄  

0 ≤ 𝑥𝑖,𝑑 ≤ 1 

 

In order to avoid maximizing over the result of the min operation that 

introduces non-differentiabilities, the previous problem can be 

reformulated transferring the min operation to the constraints and using the 

auxiliary variable α (the intermediate variable ‘distance’ can also be 

removed). 

max𝛼 



𝑠. 𝑡.     𝛼 ≤ √∑(𝑥𝑖,𝑑
2 − 𝑥𝑗,𝑑

2 )

𝐷

𝑑=1

           ∀𝑖, 𝑗 ∈ 𝑃𝑜𝑖𝑛𝑡𝑠 𝑖 ≠ 𝑗⁄             

            0 ≤ 𝑥𝑖,𝑑 ≤ 1 

Alternatively instead of minimizing the distance, it is possible, without 

modifying the result, minimize the square of the distance. The only 

modification proposed in the previous problem consists of fixing 2D points 

to the extremes of the interval to avoid extrapolations in the optimization 

near the ‘corners’ of the hypercube. 

As an example, Fig B.1 shows the distribution of 40 points using the 

maxmin approach vs a random selection. 

< Insert Fig B.1> 

Fig B.1. Distribution of 40 points: maxmin approach (left), random 

selection of points (right). 

 

The idea of fixing 2D sampling points to the “corners” of the hypercube that 

defines the domain of the Kriging model is simply to avoid 

‘extrapolations’. We have numerically checked that results are much more 

accurate if we avoid any possible extrapolation. For example, Fig B.2 

represents 30 points distributed using the maxmin approach in a two-

dimensional space. The lines define the boundaries of the convex hull of 

that set of points. We can only perform interpolations inside the convex 

hull region. If we fix the points (0,0), (0,1), (1,0) and (1,1), the convex hull 

includes all the domain.  

< Insert Fig B.2> 

Fig B.2. Convex hull of 30 points using the maxmin approach in which 

corners are not explicitly selected as sampled points. 
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Fig. 1. Flowchart of Kriging based NLP optimization algorithm. 
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Fig. 2. Complete flowsheet of the sour water stripping plant. The flowsheet has been 

obtained from a work by Torres et al. (2013) where the heat exchanger network has 

been removed. 

  



 

 

 

 

 

Fig. 3. Simplified process flowsheet of the SWS plant. Note that unit ED is the result of 

merging the original columns E4 and E5 in a single surrogate model, and unit EC is the 

result of merging the original columns E7 and E8 in a single surrogate model. For the 

sake of clarity, in the scheme, pumps, valves, coolers and heaters have been removed. 

  

 

To desalter

To WWTU

To FCC

To RSU

To WWTU

To ammonia 

recovery

To Flare

Steam

Steam

Steam Steam

Steam

To be 

reused

From vacuum 

distillation unit

From FCC 

fractionators

From crude 

distillation unit

Light gases

Oil phases

Light gases

Oil phases

Light gases

Oil phases

E1

E2

E3

ED

E6

EC

E9

Flash drums Sour water 

stripping

Sulfur recovery

Ammonia recovery

Ammonia recovery

From a 

petrochemical 

complex

Sour

gas



 

 

Fig. 4. Cross-validation for vapor obtained from unit ED. (a) mass flow H2S, (b) mass 

flow NH3, and (c) mass flow H2O. 

  



 

 

Fig. 5. Comparison of the main impacts between plant before optimization and 

optimized plant. 
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Fig. 6. Comparison of the mid-point indicators between plant before optimization and 

optimized plant. 
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Fig. 7. Heat exchanger network for the SWS plant. 

  



 

 

 

Fig. 8. Comparison of the main impacts for the SWS plant. 
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Fig. 9. Impact ratios of the alternatives studied. 

       

 

 

Fig. B.1. Distribution of 40 points: maxmin approach (left), random selection of points 

(right). 
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Fig. B.2. Convex hull of 30 points using the maxmin approach in which corners are not 

explicitly selected as sampled points. 

 

  



Table 1. Relevant data to streams and equipment. 

Streams          

 
From vacuum 

distillation unit 

From FCC 

fractionators 

From crude 

distillation unit 

Mass flow 

(kg/h) 
       

H2S 23.00 26.57 932.42 

NH3 0.00 0.00 0.00 

H2O 3,108.00 24,732.24 10,895.10 

N2 1.00 0.15 46.37 

CH4 80.00 12.08 3,709.32 

n-Decane 1.00 7.84 1.70 

Temperature 

(ºC) 
44.70 52.27 44.13 

Pressure 

(kPa) 
110.00 100 400.00 

 

Wash water of 

ethanol 

and ETBE streams 

      

Mass flow 

(kg/h) 
         

H2S 0.00       

NH3 0.00       

H2O 4,500.00       

ETBE 1.00       

ethanol 1,000.00       

Temperature 

(ºC) 
34.73       

Pressure 

(kPa) 
400.00       

Equipment          

 E1 E2 E3 E4 E5 E6 E7 E8 E9 

Trays 7 10 7 3 3 10 12 3 7 

Feed tray 3 - - - - - 4 - 4 

Poverhead 

(kPa) 
200 200 120 150 160 200 165 150 100 

Pbottoms 

(kPa) 
250 250 150 160 200 250 190 160 100 

 

  



Table 2. Specifications for the outputs streams. 

Specification Value 

Water to desalter [NH3] ≤ 50 ppm     [H2S] ≤ 10 ppm 

Water to be reused [NH3] ≤ 50 ppm     [H2S] ≤ 10 ppm 

Water to WWTU [NH3] ≤ 50 ppm     [H2S] ≤ 10 ppm 

Ethanol recovery ≥ 80% 

H2S removed ≥ 85% 

Gas to the flare [H2S] ≤ 15 ppm 

Ammonia-rich gas NH3 composition ≥ 79% w/w 

 

  



Table 3. Input-output Kriging models used. 

 Inputs Outputs 

E1 
Temperature (S7) 

Mass flow steam (S10) 

Recovery (H2S, NH3, H2O) (S11) 

Temperature (S11, S13), Diameter 

E2 
Temperature (S19) 

Mass flow steam (S22) 

Mass flow (H2S, NH3, H2O) (S23) 

Temperature (S23, S25), Diameter 

E3 
Temperature (S28) 

Mass flow steam (S31) 

Mass flow (Ethanol, H2O) (S32) 

Temperature (S34), Diameter 

ED 

Mass flow H2O (S55) 

Mass flow (H2S, NH3, 

H2O) (S44) 

Mass flow (H2S, NH3, H2O) (S51) 

Temperature (S57), Diameter 

E6 

Mass flow (H2S, NH3, 

H2O) (S58) 

Mass flow steam (S40) 

Mass flow (H2S, NH3, H2O) (S41) 

Temperature (S41, S42), Diameter 

EC 

Mass flow (H2S, NH3, 

H2O) (S59) 

Mass flow steam (S61) 

Mass flow (H2S, NH3, H2O) (S66, S71, 

S75) 

Temperature (S65, S71), Diameter E7, 

Diameter E8 

E9 

Mass flow H2O (S85) 

Mass flow (H2S, NH3, 

H2O) (S83) 

Mass flow (H2S, NH3, H2O) (S86) 

Temperature (S87), Diameter 

 

  



. 

Table 4. Parameters of the Kriging models 



 µ 2  
CPU 

time (s) 

recovery H2S 

(S11) 
0.9905 

1.8322·10-

4 
51.2398 102.4619 0.3906 

recovery 

NH3 (S11) 
0.9409 0.0052 49.8325 98.8359 0.2465 

recovery 

H2O (S11) 
0.1259 

4.7678·10-

4 
4.5785 6.4519 0.2351 

Temperature 

(S11) 
119.4329 0.2864 64.9716 78.2388 0.2410 

Temperature 

(S13) 
127.4196 0.0017 48.6678 98.7932 0.2480 

Diameter E1 1.0058 0.0019 21.2679 49.8229 0.2793 

H2S (S23) 54.8384 0.3371 30.3657 44.4215 1.2396 

NH3 (S23) 23.5720 8.0419 31.1464 39.8133 0.9832 

H2O (S23) 3.2565·103 1.1210·106 172.3468 22.2216 1.0001 

Temperature 

(S23) 
127.4165 

7.5451·10-

4 
30.3368 40.3506 1.0363 

Temperature 

(S25) 
119.5658 0.0494 68.0711 37.2476 1.9473 

Diameter E2 0.8781 0.0019 191.4413 26.7465 1.2153 

Ethanol 

(S32) 
479.5459 6.0242·103 13.0197 8.2794 1.4458 

H2O (S32) 788.7408 6.2387·103 14.5060 12.9042 1.1096 

Temperature 

(S34) 
108.1987 1.7976 29.2882 30.8195 1.3372 

Diameter E3 0.4664 
8.7215·10-

5 
34.9869 8.4743 1.4112 

H2S (S51) 172.0015 3.5525·103 1.8217 8.0369 7.9197 3.7908 14.5655 

NH3 (S51) 142.8340 5.2646·103 3.5769 1.0978 15.2870 2.8074 24.2176 

H2O (S51) 223.4028 2.0460·104 6.0966 0.7495 14.3038 3.7687 21.1290 

Temperature 

(S57) 
104.6240 19.2317 1.1404 0.1541 2.6022 113.1199 20.2154 

Diameter ED 1.6540 0.2527 96.8494 168.5284 247.2531 91.7464 4.2359 

H2S (S41) 186.2353 1.4950·103 7.3879 5.8182 1.5250 5.5275 13.8337 

NH3 (S41) 295.5981 7.1410·103 7.1511 0.0661 7.2842 11.5277 15.5380 

H2O (S41) 9.2640·102 4.8720·104 8.2278 0.6201 1.9402 9.3895 12.6332 

Temperature 

(S41) 
108.8436 3.3279 8.7663 0.9607 6.0040 10.5145 20.8880 

Temperature 

(S42) 
123.7736 3.4871 21.0310 0.2882 3.8454 12.7050 24.1590 

Diameter E6 0.5167 0.0039 175.8764 98.8710 143.0506 196.3369 6.2031 

H2S (S75) 23.2083 829.9996 7.5695 227.3983 1.3714 2.5050 17.1013 

NH3 (S75) 31.4673 5414.4000 135.2778 166.3338 170.3435 140.7423 4.2125 

H2O (S75) 3.0036 23.8063 141.3607 159.5560 169.8580 141.2453 8.0804 

H2S (S66) 0.2952 1.5235 127.8927 76.4676 205.2807 197.0875 4.8603 

NH3 (S66) 1.5943 13.5972 0.3761 2.6559 34.0324 26.1304 12.8347 

H2O (S66) 1.3601·104 3.9348·106 0.7795 1.2578 16.4600 0.8558 9.1953 



Temperature 

(S65) 
118.5636 0.0039 0.4320 2.6319 25.3956 26.7801 10.8941 

H2S (S71) 43.8709 1.6997·103 144.3157 136.7316 159.2865 138.6298 7.0768 

NH3 (S71) 100.8917 3.7155·103 133.0920 180.2039 124.6850 153.4176 5.3456 

H2O (S71) 655.2293 7.2195·103 136.8362 152.7180 145.4301 138.9548 5.9878 

Temperature 

(S71) 
51.5451 18.8377 127.8658 176.2773 141.4100 164.1774 7.9740 

Diameter E7 0.7450 0.0071 145.4363 141.8550 129.9919 168.3668 5.5577 

Diameter E8 1.0082 0.0599 151.4114 164.1734 158.8804 161.4596 5.6695 

H2S (S86) 18.4525 41.0718 0.0559 13.5375 15.1862 0.7849 12.4399 

NH3 (S86) 0.2665 0.0714 9.3878 14.8241 18.1175 0.2389 10.6068 

H2O (S86) 65.6713 0.9515 4.9754 5.5652 14.5044 3.1562 10.8457 

Temperature 

(S87) 
36.7473 0.2797 14.1687 2.8448 3.5022 3.4658 9.9497 

Diameter E9 0.4716 
3.9732·10-

5 
17.4777 1.9550 4.6635 1.0851 6.4787 



Table 5. Values of independent variables for the plant before optimization and the optimized plant. 

 Temperature (ºC)  Mass flow (kg/h) Cop 

($MM/year)  S7 S19 S28  S10 S22 S31 S40 S61 

Plant before 

optimization 
132.20 115.00 79.98  6,162.00 4,548.00 521.00 1,000.00 2,800.00 3.3974 

Optimized 

plant 
60.00 90.47 35.00  7,525.14 4,664.74 1,331.58 1,533.00 3,287.30 1.8245 

 



Table 6. Data of streams involved in the heat integration. 

 Tin (ºC) Tout (ºC) F·Cp (kW/ºC) Type 

H1 127.40 30.00 49.8952 Hot 

H2 127.40 45.00 47.3606 Hot 

H3 107.80 56.91 6.6028 Hot 

H4 111.30 69.00 242.1299 Hot 

H5 108.50 80.00 1.8687 Hot 

H6 118.60 35.00 27.1970 Hot 

H7 50.03 40.00 24.1778 Hot 

C1 50.06 60.00 38.8429 Cold 

C2 45.00 90.47 42.6701 Cold 

C3 34.73 35.00 6.2115 Cold 

C4 20.00 100.00 21.9798 Cold 

C5 100.00 100.10 1.1596·105 Cold 

C6 100.10 152.60 10.1238 Cold 



Table 7. Summary of the optimal values for the main streams of the SWS plant. 

 Temperature (ºC)  Mass flow (kg/h) Cop 

($MM/year)  S7 S19 S28  S10 S22 S31 S40 S61 

Optimized 

plant 
60.00 90.47 35.00 

 
7,525.14 4,664.74 1,331.58 1,533.00 3,287.30 0.6486 

 



Table 8. Summary of the results obtained through HEN model. 

Qheat 9,886.806 kW 

Qcool 15,582.425 kW 

Cop 0.6486 $MM/year 

Pinch point 100-110 ºC 

Tmin 10 ºC 

Exchanger Heat (kW) Exchange area (m2) 

1 868 100.771 

2 824 95.652 

3 315 59.198 

4 234 33.767 

5 386 27.957 

6 1940 204.850 

7 1758 137.803 

E1 9355 314.786 

E2 531 43.644 

E3 1665 211.572 

E4 1320 91.809 

E5 336 13.232 

E6 9927 337.229 

E7 53 1.660 

E8 2040 115.015 

E9 243 33.584 

 

  



Table 9. Summary of the minimum utility needed. 

 Qheat (kW) Qcool (kW) 
Cop 

($MM/year) 

Economically optimized 

plant 
16,212.640 20,755.100 1.8245 

Heat integrated plant 9,886.806 15,582.425 0.6486 

 

  



Table 10. Inventory of the different alternatives. 

 Units 
Plant before 

optimization 

Economic 

optimum 

Heat 

integrated 

steel    kg 0.0022 0.0022 0.0022 

electricity 
   

kWh 
0.8139 1.0277 1.0277 

steam    MJ 341.5092 121.2770 0.0000 

tap water    kg 22,665.0800 26,106.0600 19,655.8800 

coal    kg 18.7777 23.0341 16.3991 

 

Table 11. Final impact of the different alternatives. 

 Impact (points/m3 treated water) 

Plant before optimization 8.6342 

Economically optimized plant 7.3308 

Heat integrated plant 4.3587 

 


