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ABSTRACT:  

There are many models in the literature that have been proposed in the last decades aimed at assessing the 

reliability, availability and maintainability (RAM) of safety equipment, many of them with a focus on their 

use to assess the risk level of a technological system or to search for appropriate design and/or surveillance 

and maintenance policies in order to assure that an optimum level of RAM of safety systems is kept during all 

the plant operational life. This paper proposes a new approach for RAM modelling that accounts for 

equipment ageing and maintenance and testing effectiveness of equipment consisting of multiple items in an 

integrated manner. This model is then used to perform the simultaneous optimization of testing and 

maintenance for ageing equipment consisting of multiple items. An example of application is provided, which 

considers a simplified High Pressure Injection System (HPIS) of a typical Power Water Reactor (PWR). 

Basically, this system consists of motor driven pumps (MDP) and motor operated valves (MOV), where both 

types of components consists of two items each. These components present different failure and cause modes 

and behaviours, and they also undertake complex test and maintenance activities depending on the item 

involved. The results of the example of application demonstrate that the optimization algorithm provide the 

best solutions when the optimization problem is formulated and solved considering full flexibility in the 

implementation of testing and maintenance activities taking part of such an integrated RAM model. 

Keywords: Unavailability, costs, multi-objective optimization, ageing, multiple items, imperfect maintenance, 

testing intervals, maintenance intervals, NPP component. 
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NOTATION 

0   Baseline failure rate when the item is new 

RP   Renewal period  

   Linear ageing rate 

   Shape factor 

   Characteristic time 

   Maintenance effectiveness 

  Test efficiency 

  Cyclic or per-demand failure probability 


D
 Detected fraction of age-dependent stand-by failure rate 


U
 Undetected fraction of age-dependent stand-by failure rate 


UD

  Undetected fraction of age-dependent stand-by failure rate that is then detected 


UU

   Undetected fraction of age-dependent stand-by failure rate that remains undetected (section 2.1.2) 

TI  Surveillance test interval 

RI  Functional test interval 

L   Life of the item 

τ  Downtime for testing, 

σ Downtime for preventive maintenance, 

M  Preventive maintenance interval 

  Downtime for repair  

  Downtime for replacement 

u
D
  Unavailability due to detected failures 

u
UD

  Unavailability due to undetected failures by surveillance testing than are then detected by functional tests 

u
UU

  Unavailability due to undetected failures by both surveillance and functional tests 

u
T
   Unavailability due to testing 

 u
M

  Unavailability due to performing preventive maintenance 

u
C
  Unavailability due to performing corrective maintenance 

 u
O
  Unavailability due to replacement of the item 

tc   Cost contribution as a consequence of performing testing  

mc   Cost contribution as a consequence of performing preventive maintenance  

cc   Cost contribution as consequence of performing corrective maintenance 

 oc   Cost contribution associated with replacing   

  



1 INTRODUCTION 

 
Many models have been developed in the last decades to assess the reliability, availability and maintainability 

(RAM) of safety equipment. RAM models are developed mainly to assess the risk level of technological 

systems and/or with a focus on their use to search for appropriate design and/or surveillance and maintenance 

policies in order to assure that an optimum level of RAM of safety systems is kept during all the plant 

operational life [1-3]. 

Complexity of RAM modelling has evolved along this years in an attempt to capture the equipment behaviour 

in a more realistic way. For example, most of RAM models that were integrated into standard Probabilistic 

Safety Assessment (PSA), which is the most used tool for safety and risk management in Nuclear Power 

Plants (NPPs), do not addresses explicitly neither the effect of equipment ageing nor effectiveness of 

maintenance and testing programs, which could have a significant impact on the conclusions drawn from PSA 

studies and applications, particularly when NPP are operated at an advanced age or during long term 

operation. The reason is that equipment ageing and maintenance effectiveness would most likely result in 

large uncertainty of current component unreliability and unavailability models that support standard PSA 

quantification, particularly for aged equipment. Fortunately, these effects are limited often implicitly by 

adopting a living PSA or at least updating the standard PSA regularly, which is mandatory by current 

regulation in many countries. 

In recent years more attention has been paid on modelling explicitly how equipment ageing impacts RAM of 

safety components and systems. For example, analytical age-dependent unavailability models have been 

developed adopting linear ageing rates [1], which considers the impact of testing and maintenance activities at 

least implicitly [2-5]. Nowadays, one can find several proposals in the literature to integrate such a kind of 

RAM modelling into the so called Ageing PSA (APSA) [6-10].  

These studies propose RAM of components should be modelled as a function of the inherent reliability of the 

component, i.e. component failure rate imposed by design, the component ageing, which degrades the 

inherent reliability, and the effectiveness of test and maintenance activities, which improve the reliability 

degraded by ageing, i.e. there is an attempt to return component reliability back to its inherent value 

eventually, but normally impossible, in case of perfect maintenance activities. In particular, Ref. [6] 

demonstrates the importance of addressing explicitly the effectiveness of maintenance in managing equipment 

ageing and test efficiency in detecting hidden failures as this may impact the accurate planning and 

optimization of testing and maintenance activities based on RAM criteria. This is even more important when 

the component consists of multiple items, where every item may undertake specific maintenance and testing 

activities to cope with different degradation mechanisms and failure causes respectively affecting the multi-

items component.  

On the other hand, one can find in the literature an important number of works devoted to the optimization of 

test and maintenance intervals of safety systems at NPPs , for example using Genetic Algorithms (GAs), 



which that face either single-objective or multi-objectives adopting RAM plus costs as objectives and/or 

constraints functions [11-21, 25-30]. Some of them consider the impact of component ageing in the 

optimization of test and/or maintenance intervals [16-21]. Only several of them considers both test and 

maintenance interval optimization simultaneously [12, 14, 18, 20]. 

This paper proposes a new approach for RAM modelling that simultaneously accounts for equipment ageing 

and maintenance effectiveness and testing efficiency for equipment consisting of multiple items. This model 

is then used to face the problem of the multi-objective and simultaneous optimization of testing and 

maintenance intervals for ageing equipment consisting of multiple items. Resolution of such a problem bring 

a good chance to look for the best balance between component/system availability and cost of the resulting 

optimal test and maintenance intervals of multiple items components as it is shown in the example of 

application provided in this paper. The example of application considers a simplified High Pressure Injection 

System (HPIS) of a typical Pressurized Water Reactor (PWR). Basically, this system consists of ten 

components: three motor driven pumps (MDP) and seven motor operated valves (MOV). Both component 

types, MOV and MDP, consist of two items: the motor and pump in the case of the MDP and the actuator and 

valve in the case of MOV, which are treated separately. These components present different failure modes 

and behaviours, and also they undertake complex test and maintenance activities, i.e. multiple and different 

tasks, which depend on the particular item involved.  

2 RAM+C MODELS 

2.1 Model of a single item 

2.1.1 Age-dependent failure rate model incorporating imperfect maintenance 

As proposed in [6], the integration of testing and maintenance effectiveness was addressed in an improved 

APSA.  For application, specific ageing models for the failure rate need to be used in the equations for the 

unavailability and cost models to obtain specific numerical results which can be used to analyze the influence 

of ageing, imperfect maintenance and testing.  

So, the effect of maintenance on the age of the item and on its reliability is included based on a model of 

imperfect maintenance. Imperfect maintenance models consider that each maintenance activity reduces the 

age of the item by some degree, depending on its effectiveness. Among the different models of imperfect 

maintenance that can be found in the literature, this paper considers the Proportional Age Reduction (PAR) 

model and the Proportional Age Setback (PAS) model proposed in Refs. [2, 3]. The selection of the most 

appropriate model in each case depends on the item type, failure mechanism and sort of maintenance activity. 

In the PAR approach, each maintenance activity is assumed to reduce proportionally the item age gained from 

the previous maintenance. However, PAS model considers that the maintenance activity reduces 

proportionally, in a factor of  , the age that the item has immediately before it enters maintenance. In these 

models, the effect of maintenance is introduced by using an effectiveness parameter ranging in the 



interval [0, 1]. If 0 , the previous models simply are reduced to an "As Bad as Old" model (normally 

corrective maintenance), while if 1  are reduced to an "As Good as New" model (normally overhaul 

maintenance). For preventive maintenance,  ranges in interval ]0, 1[. 

In the literature, one can find different component reliability models proposed to address the effect of 

equipment ageing, such as linear model, Exponential, Weibull, etc [1].  

In this work, two reliability models, Weilbull and Linear, and the imperfect maintenance models presented 

above, PAS and PAR, are considered to model the age-dependent failure rate.  Weibull distribution is widely 

used in reliability and life data analysis to represent equipment ageing with time due to its versatility [3].  

Linear distribution is the simplest way to develop an age-dependent reliability model, which assumes that the 

failure rate has a linear behaviour with component age departing form an initial value. This assumption, when 

applicable, simplifies the modelling. In addition, one can find in the literature ageing factors proposed for 

several components in Nuclear Power Plants [1, 9]. 

According to [2, 3], considering a linear ageing model and imperfect maintenance models can be obtained an 

averaged standby failure rate, * , over the item’s life based on a double averaging process [3] which is given 

by: 
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where, 0  is the baseline failure rate when the item is new, M  is the maintenance interval, RP  is the renewal 

period and  is the linear ageing rate. 

According to [3], considering a Weibull ageing model and PAR or PAS model can be obtained an averaged 

standby failure rate, * , over the item’s life based on a double averaging process [24] which is given by: 
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where,   and    are the shape and scale factors, respectively. Note that the Weibull distribution simplifies to 

the linear one for shape factor equal to 2 and the scale factor equal to√  ⁄ .  



2.1.2 Age-dependent failure rate model addressing test efficiency  

By testing, component failures can be detected that may have occurred since the last test or the time when the 

component was last known to be operational. The main objective of surveillance test is to detect hidden 

failures so that the component can be restored to its operational state. For example, as proposed in Ref. [19], it 

can be seen like a testing coverage of failure mechanisms, where coverage is defined as a share of detected an 

undetected failures by testing. Alternatively, Ref. [10] defines test efficiency like the probability that a given 

failure is detected by the test.  

In both previous cases, test efficiency can be represented by a single parameter η . Ref. [9] and [10] give 

values of η for test efficiency of several component types. As a result, the consideration of a test efficiency 

splits the total age-dependent failure rate into two age-dependent failure rate modes: detected and undetected. 

UD* λλλ         (5) 

where the test efficiencyranges in the interval [0, 1]. In eqn. (5), the first contribution represents the age-

dependent failure rate associated with detected failures by testing, 
Dλ , and the second part represents the 

age-dependent failure rate associated with undetected failures by testing, 
Uλ , which can be derived using the 

corresponding formulation for 
*λ  using eqn. (1) to eqn. (4). 

*D ληλ         (6) 

*1 λη)(λU         (7) 

On the other hand, a large number of critical components overtakes functional tests mostly performed 

during refuelling of NPP, where the refuelling Interval (RI) ranges between 12 and 24 months, so that 

typically RI could be set equal to 18 months. The functional test often involves testing full performance of the 

component capacity, so that it performs very close to real conditions in case of emergency. Then, the 

efficiency of such a functional test should be very close to one in detecting hidden failures. Similarly to the 

surveillance tests, in reliability terminology, the functional test intervals (often adopting the RI) are called 

BAO intervals since the component age coming out of the test is basically the same as the component age 

going into the functional test, i.e. the component is as old with regard to its age. 

Thus, critical items for NPP safety may overtake at least two tests: one surveillance test and another 

functional test. Consequently, to address such a second or refuelling functional test, the undetected age-

dependent failure rate, given by eqn. (7), should split into two new contributions: detected and undetected 

after the refuelling functional test, to yield 

U
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where the test efficiency of the  refuelling functional testRranges also in the interval [0, 1], but very close 

to one now. In addition, eqn. (8) represents the age-depended failure rate contribution associated with 

detected failures only after the refuelling functional test, while eqn. (9) represents the age-dependent failure 

rate contribution associated with failures that remain undetected even after the refuelling functional test. 

The formulation proposed in eqns. (5) to (9) can accommodate a number of assumptions made in each 

application considered.  

2.1.3 Unavailability models 

The unavailability contributions of a single item normally in stand-by are divided into two categories: a) 

unavailability due to failures, i.e. unreliability effect, and b) unavailability due to testing and maintenance 

downtimes, named the downtime effect. 

a) Unreliability contributions 
Adopting the basis of the formulation of unreliability contributions in Ref. [6] considering the contributions 

introduced in sections 2.1.1 and  2.1.2, the item unavailability due to unreliability contributions can be 

evaluated using the following equations : 

TIλu DD 
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where u
D
 is the unreliability contribution due to detected failures by surveillance testing, u

UD
 is the 

unreliability contribution due to undetected failures by surveillance testing that are then detected by a second 

functional tests and u
UU

 is the unreliability contribution due to undetected failures by both surveillance and 

functional tests . In addition, the following notation has been used: 

 = cyclic or per-demand failure probability, 


D
= detected fraction of age-dependent stand-by failure rate (section 2.1.2), 


UD

 = undetected fraction of age-dependent stand-by failure rate that is then detected (section 2.1.2), 


UU

 = undetected fraction of age-dependent stand-by failure rate that remains undetected (section 2.1.2), 

TI = surveillance test interval, 

RI = functional test interval, 

L = life of the item.  



What concerns parameter L, it represents the item life as compared to the NPP design life. In case the item 

is not replaced by a new one over the NPP design life, then this parameter should be equal to the NPP design 

life. In case the item undertakes only time-directed overhaul maintenance, this parameter L should be equal to 

a constant replacement period.  

b) Downtime contributions 
Based on Ref. [6] addressing the age-dependent failure rate contribution corresponding to detected and 

repaired failures with the plant at power, as introduced in sections 2.1.1 and 2.1.2, the item unavailability due 

to detected downtimes for testing and maintenance contributions can be evaluated using the following 

equations: 

TI

τ
uT 

       (13) 

M

σ
uM 

       (14) 

μλu DC 

       (15) 

L

Γ
uO 
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Where, u
T
 represents the unavailability contribution due to testing, u

M
 is the unavailability contribution due to 

performing preventive maintenance, u
C
 is the unavailability contribution due to performing corrective maintenance, and 

u
O
 is the contribution due to replacement of the item, if any. In addition, the following new notation has been used: 

τ = downtime for testing, 

σ= downtime for preventive maintenance, 

M = the period to perform time-directed preventive maintenance,  

 = downtime for repair when there are no time limitations on conducting such a repair, 

 = downtime for replacement. 

2.1.4 Cost models 

The total cost used in the optimization problem considered in this paper include the contributions to the cost 

model of standby components, related with testing, corrective maintenance to restore the operability after a 

sudden failure and the failures discovered during test and the cost of preventive maintenance. The cost model 

for a single item can be evaluated using the following expressions [4]: 

T
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where tc  represents a yearly cost contribution as a consequence of the number the test performed on the 

single item over a year period, mc  represents a yearly cost contribution as a consequence of performing 

preventive maintenance on the single item over a year period, cc  represents a yearly cost contribution as 

consequence of performing corrective maintenance, and oc  is the yearly cost contribution associated with 

replacing the item with a periodicity RP.  

2.2 Model of a system consisting of components with multiple items 

2.2.1 Unavailability model 

The unavailability model of a system which consists of component with multiple U(x), can be evaluated by 

using the Fault Tree analysis. The solution of a Fault tree involves the determination of the Minimal Cut Sets 

(MCS), which represent the unique combinations of component items failure that can cause the system 

failure. Using the MCS, the system unavailability can be estimated as: 

 
j

k

jk xuxU )()(
       (21) 

where the sum in j extents to the number of MCS and the product in k extents to the number of basic events 

relevant to the corresponding MCS .In addition, jku  represents the unavailability associated with the basic 

event k belonging to the MCS number j, which can be evaluated using eqn. (10) to eqn. (16). 

2.2.2 Cost model 

The system total cost system, C(x), is obtained by summing the cost contributions of the different component 

items, thus is: 

 
n i i xcxC )()(          

(22) 

where, ci is the costs associated with the different cost contributors given by eqn. (17) to eqn. (20) for each 

component item, n, of the system. 

2.3 Parameters estimation  

Different imperfect maintenance models, as shown in previous sections, have been proposed to simulate the 

impact of maintenance activities on equipment reliability characteristics and, therefore, on unavailability and 

cost. Each of these models depend on a different set of parameters (effectiveness maintenance, failure rate …) 

that can be unknown or uncertain. So, the estimation of these parameters is a council task in modelling the 

equipment behavior. Usually, the estimation of those parameters is performed for “Bad as old” and “Good as 



new” models. So, it is difficult to find works in the literature focused on maintenance effectiveness and 

reliability parameters estimation simultaneously [22, 23]. 

In this paper, the estimation of the failure process, such as ageing factor and the maintenance effectiveness 

have been used to adopt in each case the ageing failure rate model (Linear or Weibull) or the imperfect 

maintenance model (PAS and PAR).  In order to perform this parameters estimation the methodology 

proposed in [24] has been used which is based on the Maximum Likehood Estimation (MLE). The maximum 

likelihood estimation (MLE) approach provides estimators, called maximum likelihood estimators, of the 

parameters involved in the imperfect maintenance models presented in previous section. Maximum likelihood 

estimates of parameters are those values which make the likelihood function as large as possible, that is, that 

maximize the probability of the observed data. In this paper the Nelder-Mead Simplex (NMS) method [31] is 

used to maximize the likelihood function.  

3. OPTIMIZATION PROBLEM 

 

As said before, the objective of this study is to obtain the optimal test and maintenance intervals for a given 

safety system under unavailability and cost criteria by means of formulating and solving a multiple objective 

optimization problem (MOP). In general, MOP includes a set of parameters (decision variables), a set of 

objective functions and a set of constraints. Objective functions and constraints are defined in terms of the 

decision variables. The optimization goal can be formulated to minimize a multi-objetive function of the 

form: 

))(,),(),(()( 21 xxxxy nffff      (23) 

subjected to the vector of constraints 

)0)(,,0)(,0)(()( 21  xxxx ngggg     (24) 

where x is the decision vector and  y is  the objective vector. 

In particular, for the problem analyzed in this paper, the frequency of surveillance test and/or maintenance 

task act as decision variables in vector x, and the objective and constraints vectors are given by:  

))(),(()( xxxy CUf      (25) 

))(,)(()( ii CCUUf  xxxy     (26)  

where U(x) is the system unavailability given by eqn. (21)  and C(x) is the system cost that is evaluated 

considering eqn. (22).  

The optimization problem has been solved using the fast elitist non-dominated Sorting Genetic Algorithm 

(NSGA-II) [32].  NSGA-II is the second version of the “Non-dominated Sorting Genetic Algorithm”, which 

solves non-convex and non-smooth single and multi-objective optimization problems. It is an upgrade version 



of its antecessor and its features are: all the individual solutions are sorted according to the level of non-

domination, it implements elitism which stores all non-dominated solutions, and hence enhancing 

convergence properties and it adapts a suitable automatic mechanics based on the crowding distance in order 

to guarantee diversity and spread of solutions. 



4. APPLICATION CASE 

 

The example of application considers a simplified High-Pressure Injection System (HPIS) of a 3-loops 

Pressurized Water Reactor (PWR) [25]. HPIS is normally in stand-by and consists of three motor driven 

pumps (MDP) and seven motor operated valves (MOV) organized as shown in Figure 1. Note, there may be 

different configurations in other plants. Under accidental conditions, the HPIS can be used to remove heat 

from the Reactor Coolant System in those events in which steam generators are unavailable. For example, in 

case of a Small-Break Loss-Of-Coolant Accident the HPIS safety function draws water from the Refueling 

Water Storage Tank (RWST) and discharges it into the cold legs of the Reactor Cooling System through any 

of the two injection paths. Normally, MDP discharge into the injection paths A and B through MOV 3 and 5, 

although crossover MOV 4, 6 and 7 provide alternative flow paths in case of failure of the normal feed.  

 

Figure. 1. High Pressure Injection (HPIS) system 

 

Motor-operated valves and motor-driven pumps consist of two items each, which are treated separately, the 

motor and pump in the case of the MDP and actuator and valve in the case of MOV [24, 25]. These 

components present different failure and cause modes and behaviours, and also they undertake complex test 

and maintenance activities, i.e. multiple and different tasks, which depend on the particular item involved. 

Figures 2 and 3 provide an overview of the relationships considered between components, items, failure and 

cause modes, surveillance tests and maintenance activities. 

 

Figure 2. Overview of basic interactions for MDP 

 

Figure 3. Overview of basic interactions for MOV 

 

Reliability and maintainability models and parameters were fitted using the methodology proposed in [24, 25] 

and the operational data and maintenance history, i.e. maintenance effectiveness (), imperfect maintenance 

model (PAS/PAR), per-demand failure probability (), stand-by failure rate (0), ageing model 

(Linear/Weibull) and ageing factor ().  The results obtained after the estimation process are summarized 

in Table 1, which shows the most appropriate reliability and maintenance simulation models. 

 

 

Table 1. Models and parameters obtained in the estimation process 

 



In addition, values of test efficiency of both surveillance and functional test were taken from NUREG/CR-

5587 [10]. As said, test efficiency can be formulated in terms of the percentage of the total failure rate that is 

detected by the test. Note that TI represents a surveillance test while RI represents a functional test, which 

almost always is performed during refueling period, being the last one most effective in detecting failures. 

Both tests have associated an effectiveness,  for surveillance tests and RI for functional test. Other 

parameters like M, L, maintenance durations (corrective, preventive and overhaul maintenance), test durations 

and test intervals, which have been taken from NPP data, are shown in Table 2. 

Table 3 shows the unitary costs per activity and component-item used to calculate the several cost 

contributions, which have been taken from Ref. [2].  

 

Table 2. Data of tests and maintenance for MDP and MOV 

 

Table 3. Component item cost parameters  

 

The objective of this paper is focused on performing a multi-objective optimization under cost and 

unavailability criteria of testing and maintenance intervals of the multi-item MDPs and MOVs of the HPIS 

system, considering equipment ageing, maintenance effectiveness and test efficiency in an integrated manner.  

In this optimization process, only surveillance tests (TI) are considered as decision variable because RI is 

fixed to a constant value equal to 13140 hours, which represents the functional test performed every refueling 

period (18 months) of the NPP. Typical values of TI are established within the Technical Specifications of the 

NPP. In particular, Techs Specs of the HPIS establish a value of TI=2184 hours for both MDP and MOV, as it 

is shown in Table 2. In addition, Techs Specs of NPP use to establish the development of surveillance test 

adopting either a sequential or staggered test strategy. Then, every component is not tested as stand-alone 

component, instead of this, several components are tested under the same test strategy, so that, they must 

share the same test periodicity. Accordingly, Table 4 shows surveillance tests of the ten components of the 

HPIS have been grouped into three test strategies {TI1, TI2, TI3}, which represents that all components in the 

same group share the same TI. 

On the other hand, what concerns scheduling of maintenance activities as decision variables, Table 4 shows 

four groups of maintenance intervals for the HPIS system. The first two {M1, M2} apply to all MOV of the 

system, where M1 refers to maintenance activities of the mechanical part, the valve, while M2 refers to 

maintenance activities of the electrical part, the actuator. Similarly, {M3, M4} apply to all MDP of the 

system, where M3 refers to the mechanical part, the pump, and M4 to the electrical part, the motor. It is 

assumed initially that all preventive maintenance strategies are performed with the same maintenance interval, 

M, equal to 4320 hours. This assumption will change depending on the optimization case as described in the 

following. 



 

 

Table 4. Decision variables: Test and Maintenance Intervals. 

 

Multi-Objective optimization under cost and unavailability criteria has been performed using the non-

dominated Sorting Genetic Algorithm (NSGA-II) [32] toolbox in Matlab using eqn. (25) as objective 

function. Relevant parameters used in the optimization process are showed in Table 5. 

 

Table 5. NSGA-II parameters 

 

Six optimization cases has been developed adopting, in part or as a whole, the set of decision variables 

presented in Table 4. Lower and upper bounds have been adopted for the decision variables, which allows 

searching for solutions in the desired domain of feasible ones. Thus, TIi (i = 1,3) must range in the interval 

[24, 80000] while Mj (j=1,4) must range in the interval [720, 80000]. As said, the initial surveillance test and 

maintenance intervals are TIi = 2184 and Mj = 4320 ( i=1,3 and j=1,4).  

Table 6 shows the six optimization problems that have been formulated and solved. All cases adopts the same 

objective function consisting of both unavailability and costs for the HPIS, which are calculated using 

reliability and maintenance data showed in Tables 1 to 3, and the initial or optimized values for the decision 

variables in Table 4 depending on the particular case. The NSGA-II algorithm with the same parameters 

shown in Table 5 is used for all six cases. 

 

Table 6. Cases studied 

 

Cases 1 to 3 adopt test efficiency equal to one. This means unavailability of each component resets to the 

residual value, normally zero, after the surveillance test, i.e. the surveillance test is able to detect whatever 

hidden failure of the component and therefore it is assumed the component is available after the test provided 

that the component is not found failed at the test. Cases 4 to 6 considers a test efficiency for each MDP and 

MOV equal to 0.6 and 0.4, respectively, which are taken from NUREG 5587 [10]. In addition, Case 1 and 4 

address surveillance test interval (TI) optimization only. Case 2 and 5 address optimization of both 

surveillance test intervals (TI) and maintenance intervals (M). Case 3 and 6 address are similar to the previous 

one. However, now maintenance is grouped either by electrical or by mechanical maintenance, considering 

that maintenance for each group share the same period. Therefore, now M1 is set equal to M3 and M2 is set 

equal to M4.  

Figure 4 and Figure 5 show the results of the optimization process. Figure 4 shows the Pareto Fronts 

corresponding to Cases 1 to 3. Figure 5 shows the Pareto Fronts corresponding to Cases 4 to 6.  



Figure 4 shows that better results are obtained when the whole set of TI and M are considered in the decision 

making of the optimization problem (Cases 2 and 3) as compared to the worst results found for the case where 

only the set of TI is optimized (Cases 1). The value of unavailability and cost obtained are significantly lower 

in Cases 2 and 3. In addition, better results are found under Case 2 as compared to Case 3 in terms of optimal 

unavailability and cost for the HPIS. This means that the best results can be found by including the whole set 

of decision variables and allowing flexibility in the decision making. Note that in Case 3 maintenance 

activities are grouped under electrical and mechanical types only and therefore the decision space is reduced. 

Similar results can be found in Figure 5.  

On the other hand, by comparing Figures 4 and 5, one can realize the importance of surveillance test 

efficiency, since the unavailability of the HPIS is underestimated in all cases represented in Figure 4. In 

addition, when a test efficiency lower than one is considered, which is a more realistic assumption based on 

data available, there is no so big difference between grouping or not maintenance activities into electrical and 

mechanical types, see Cases 5 and 6 in Figure 5 as compared to their corresponding Cases 2 and 3 in Figure 4. 

 

Figure 4. Pareto Front obtained for Cases 1 to 3 

  

Figure 5. Pareto Front obtained for Cases 4 to 6 

 

7. CONCLUDING REMARKS 

Many approaches have been suggested in the past to optimize the surveillance test and maintenance intervals 

of a system based on various analytical unavailability and cost models. Most of these approaches do not 

consider simultaneously and explicitly the impact of equipment ageing, maintenance effectiveness and 

surveillance testing efficiency, in particular for components consisting of multiple items.  

This paper proposes a new approach for RAM modelling that simultaneously accounts for equipment ageing 

and maintenance effectiveness and testing efficiency for equipment consisting of multiple items. This model 

is then used to face the problem of the multi-objective and simultaneous optimization of testing and 

maintenance intervals for ageing equipment consisting of multiple items. 

The results obtained in the application case show substantial differences, mainly in the assessment of the 

HPIS system unavailability, when ageing and both maintenance effectiveness and testing efficiency are 

considered explicitly. Thus, the example of application shows that maintenance effectiveness in managing 

ageing and test efficiency in detecting hidden failures have a significant impact on the results found, so that, 

future research should be directed towards the estimation, or even improvement, of maintenance effectiveness 

and test efficiency and the assessment of their effect on failure causes and failure modes affecting RAM of 

safety equipment, since they impact the accurate planning and optimization of testing and maintenance 

activities based on RAM criteria. 



The results of the example of application demonstrate that the optimization algorithm provide the best 

solutions when the optimization problem is formulated and solved considering full flexibility in the 

implementation of testing and maintenance activities taking part of such an integrated RAM model of 

multiple items components. Thus, the multi-objective optimization problem provide a Pareto front of 

solutions corresponding with different values of the decision variables (test and maintenance). Each one of the 

set of optimal (and different) combination of test and maintenance intervals corresponds to one realization of 

the Pareto front, which provides balance between system unavailability and total cost. In NPP operation, 

decision maker would select the most appropriate combination of above optimized set that corresponds to the 

necessary balance between unavailability and cost.   
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Figure. 1. High Pressure Injection (HPIS) system 
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Figure 2. Overview of basic interactions for MDP 
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Figure 3. Overview of basic interactions for MOV 
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Figure 4. Pareto Front obtained for Cases 1 to 3 

  

Figure 5. Pareto Front obtained for Cases 4 to 6 

 

Table 1.  Models and parameters obtained in the estimation process 
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 Motor operated valve (MOV) Motor driven pump (MDP)  

 
Valve Actuator Pump Motor Units 

ρ 1.81E-03 1.25E-05 5.18E-04 1.25E-05 [-] 

λ0 6.80E-06 7.00E-06 2.30E-05 3.89E-06 [1/h] 

IM model PAR PAS PAR PAS -- 

 0.76 0.84 0.77 0.29 -- 

Ageing Model Linear Weibull Linear Weibull -- 

 1.73E-09 -- 2.37E-09 -- [h
-2

] 

 --  4.87  --  7.47  -- 

 --  33347  --  15397  -- 

 

 

 

 

 

 

 

 

Table 2.  Data of tests and maintenance for MDP and MOV 

 Motor operated valve (MOV) Motor driven pump (MDP)  

 
Valve Actuator Pump Motor Units 

σ 1 1 10 10 [h] 

TI 2184 2184 2184 2184 [h] 

 {1, 0.6} {1, 0.6} {1,0.44} {1,0.44} -- 

RI 13140 13140 13140 13140 [h] 

RI 1 1 1 1 -- 

τ 1 1 4 4 [h] 

 2,6 2,6 24 24 [h] 

Γ 6 6 50 50 [h] 

L 122640 122640 122640 122640 [h] 

 

Table 3. Component item cost parameters  

 Units Valve Actuator  Pump Motor  

ct [€/year] 400 400 100 100 

cc [€/year] 25920 2880 2808 312 

cm [€/year] 7200 800 720 80 

co [€/year] 32400 3600 3240 360 

 

Table 4. Decision variables: Test and Maintenance Intervals. 

 Interval Component Item Type of 



Maintenance/Test 

Maintenance strategy M1 V1, V2,V3,V4,V5,V6,V7 Valve Mechanical 

M2 V1, V2,V3,V4,V5,V6,V7 Actuator Electrical 

 M3 PA, PB, PC Pump Mechanical 

 M4 PA, PB, PC Motor Electrical 

Testing strategy TI1 V1, V2 -- Surveillance Test 

TI2 V3, V5, PA, PB, PC -- Surveillance Test 

TI3 V4, V6, V7 -- SurveillanceTest 

 

Table 5. NSGA-II parameters 

Parameter Value 

Generations 1000 

Population Size 100 

Crossover rate 2/7 

Crossover type Arithmetic Crossover 

Mutation rate 2/7 

Mutation type Gaussian Mutation 

Stopping criteria Maximum generations number 

 

 

Table 6. Cases studied 

Case # Test Effectiveness 

{MDP, MOV) 

 Description Decision variables 

Case 1 {1,1} TI optimization  {TI1, TI2, TI3} 

Case 2 {1,1} TI  and M optimization  {TI1, TI2, TI3, M1, M2, M3, M4} 

Case 3 {1,1} TI  and M optimization 

Maintenance grouped by type of  

maintenance: electrical or mechanical  

{TI1, TI2, TI3, M1, M2, M3, M4} 

being: 

M1=M3 

M2=M4  

Case 4 {0.6, 0.4} TI optimization  {TI1, TI2, TI3} 

Case 5 {0.6, 0.4} TI  and M optimization  {TI, TI2, TI3, M1, M2, M3, M4} 

Case 6 {0.6, 0.4} TI  and M optimization  

Maintenance grouped by type of 

maintenance: electrical or mechanical  

{TI1, TI2, TI3, M1, M2, M3, M4} 

being: 

M1=M3 

M2=M4        

 

Highlights 

New approach for RAM modelling 
 

Equipment ageing and maintenance effectiveness and testing efficiency explicitly in 

RAM models 
 

Equipment consisting of multiple items 
 

Multiple objective optimization problem (MOP) under unavailability and cost criteria 



 

Simultaneous optimization of testing and maintenance intervals 
 




