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Petriciolet, J. Silvestre-Albero, Synthesis of denim waste-based adsorbents and
their application in water defluoridation, Journal of Molecular Liquids (2016), doi:
10.1016/j.molliq.2016.06.005

This is a PDF file of an unedited manuscript that has been accepted for publication.
As a service to our customers we are providing this early version of the manuscript.
The manuscript will undergo copyediting, typesetting, and review of the resulting proof
before it is published in its final form. Please note that during the production process
errors may be discovered which could affect the content, and all legal disclaimers that
apply to the journal pertain.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositorio Institucional de la Universidad de Alicante

https://core.ac.uk/display/43566429?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.molliq.2016.06.005
http://dx.doi.org/10.1016/j.molliq.2016.06.005


AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
 

1 

 

SYNTHESIS OF DENIM WASTE-BASED ADSORBENTS AND THEIR APPLICATION IN 

WATER DEFLUORIDATION  

D.I. Mendoza-Castillo 
1,2

, H.E. Reynel-Ávila 
1,2, A. Bonilla-Petriciolet 

1*
, J. Silvestre-Albero 

3
  

1
 Departamento de Ingeniería Química, Instituto Tecnológico de Aguascalientes, Aguascalientes, 

México, 20256. 

2 
CONACYT, Cátedras Jóvenes Investigadores, México, D.F., 03940 

3 
Departamento de Química Inorgánica, Universidad de Alicante, Apartado 99, E-03080 Alicante, 

Spain 

 

ABSTRACT. This study evaluates the application of denim fiber scraps as a precursor for the 

synthesis of adsorbents for water treatment via pyrolysis and their application in water 

defluoridation. The best pyrolysis conditions for the synthesis of this novel adsorbent have been 

identified and a metal doping route with different salts of Al
3+

, La
3+

 and Fe
3+

 was proposed to 

improve its fluoride adsorption behavior. Different spectroscopic and microscopic techniques (i.e., 

FTIR, XPS, XRF, SEM) were used to characterize the precursor and adsorbents, and to analyze the 

surface interactions involved in the fluoride removal mechanism. Experimental results showed that 

these adsorbents were effective for fluoride adsorption showing uptakes up to 4.25 mg/g. The Si-O-

metal-F interactions appear to be highly relevant for the fluoride removal. This study highlights the 

potential of denim textile waste as a raw material for the production of added-value products, thus 

minimizing their associated disposal cost. It also highlights the performance of denim textile waste 

as a precursor of adsorbents for addressing relevant environmental concerns such as fluoride 

pollution.  
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1. INTRODUCTION 

Activated carbon is recognized as a universal adsorbent for water pollution control due to its 

versatility in terms of efficiency, tailored physicochemical properties and excellent performance at 

different operational conditions [1]. To date, different studies have reported the preparation of a 

variety of carbon-based adsorbents for the removal of priority water pollutants including organic 

and inorganic compounds [2-5]. The synthesis and production of activated carbons for water 

treatment mainly rely on the use of lignocellulosic materials such as woods, agricultural residues 

and crops [1,6]. However, several authors have highlighted the relevance of identifying alternative 

precursor sources and the application of a proper method for the adsorbent production with the aim 

of reducing purification costs, especially in developing countries.   

Wastes and sub-products of different industrial sectors can be used as alternatives in the 

preparation of low-cost adsorbents [1,7-10]. It is important to highlight that the application of waste 

materials for the synthesis of added-value products is an attractive approach due to environmental 

and economical issues involved in urban solid wastes management and disposal. In this sense, 

several urban wastes have been described in the literature for the preparation of adsorbents 

including tires, polymeric residues, sewage sludge, buffing dust and textiles [1,5,8,11,12]. These 

studies showed that the physicochemical properties of the synthesized material strongly depend on 

both the precursor and the synthesis conditions used.  

Textile wastes can be classified as reusable materials with large potential for the production of 

value-added materials for water pollution control [8,11,13]. Solid waste management is a major 

issue in the textile industrial sector that can substantially increase production costs due to actual 

disposal strategies. For instance, the denim manufacturing industry is rated as one of the most 

polluting among all industrial sectors and its operations generate a significant volume of solid 

wastes that contain yarns and fibers loaded with dyes and various kinds of chemicals [13,14]. 

Overall, it has been estimated that textile residues comprise between 1 to 5 % of the composition of 

municipal solid wastes [15] and, consequently, they represent an important source of waste residues 

with large potential in materials science and energy related applications due to their high cellulosic 

content (cotton basis).  

As stated above, several studies have analyzed the potential application of textile wastes as raw 

material for the preparation of adsorbents [8,11,16,17]. However, these studies have mainly focused 

on the determination of the synthesis conditions and the study of the physicochemical properties 

(e.g., textural parameters, functional groups) of the adsorbents, while the evaluation of these 
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adsorbents in water purification is scarce. The study of textile waste-based materials is fundamental 

for determining their capabilities and limitations in water purification processes. 

In this paper, the synthesis of denim waste-based adsorbents via pyrolysis and their application 

in water defluoridation have been reported. Fluoride ions are considered priority toxic pollutants in 

the water used for human consumption. Indeed, different regions worldwide have reported the 

presence of natural occurring fluoride pollution in groundwater [18]. For instance, several cities in 

Mexico face severe environmental pollution problems due to high fluoride concentrations in the 

groundwater supply sources, with the corresponding toxicity effects for human beings [19]. 

Although there are commercial bone chars and activated aluminas available for the removal of this 

specific pollutant [20-23], these adsorbents lack an appropriate cost-performance trade-off. 

Consequently, the development of new highly-efficient adsorbents for water defluoridation is of 

paramount importance. 

In the present study, the preparation of a novel adsorbent from denim fiber scraps using a 

pyrolysis process was evaluated and the best synthesis conditions to achieve a tailor-designed 

adsorbent were identified. Furthermore, a metal-doping procedure was used to improve the 

adsorption performance of these adsorbents and thermodynamic studies for water defluoridation 

were performed. XPS, XRF, SEM and FTIR studies were conducted to gain knowledge on the 

adsorbent surface chemistry and to understand the removal mechanism. Experimental results 

showed the potential use of a waste material from the denim industry to face a critical water 

pollution concern currently present in Mexico and other countries.  

TILE WASTE MINIMISATION 

2. METHODOLOGY 

2.1. Denim wastes used as an adsorbent precursor  

Denim fiber scraps were obtained from a local textile manufacturer located in Aguascalientes, 

Mexico. The physical appearance of these textile wastes, including their SEM micrograph, is shown 

in Figures 1a and 1c. These scraps were obtained from the outcome of a manufacturing process 

step, in which denim was washed with pumice stone. Thus, the obtained denim scraps are composed 

of cotton fiber loaded with indigo dyes (which causes its blue color). They also contain inorganic 

elements such as Si, Al, Mg and Fe [13]. These denim wastes were washed using deionized water, 

dried and stored for their further use in the preparation of fluoride adsorbents. 

 

2.2 Pyrolysis of denim wastes  

The preparation of denim-based adsorbents was performed via pyrolysis. Adsorbents were 

synthesized at different conditions using a factorial design of 20 experiments, as shown in Table 1. 
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These conditions include different temperatures (500 – 900 °C), residence times (2 and 4 h) and 

heating rates (5 and 10 °C/min). Specifically, 3 g of denim wastes were packed into a quartz sample 

holder and submitted to a thermal treatment with a Carbolite Eurotherm CTF 12165/550 tubular 

furnace, according to the pyrolysis conditions of Table 1. All adsorbents were synthesized using a 

N2 flow rate of 100 mL/min. The impact of the selected pyrolysis variables on the adsorbent 

performance was determined with an ANOVA statistical analysis and the best conditions were 

identified after considering the fluoride uptake as the response variable for the experimental design. 

The denim-based adsorbents obtained according to Table 1 were washed with deionized water until 

a constant pH was reached and dried for 24 h prior their use in fluoride adsorption experiments. 

Removal tests were carried out by triplicate at batch conditions using fluoride solutions with an 

initial concentration of 50 mg/L. Conditions for these adsorption experiments were: 30 °C, pH 7, 

adsorbent-solution ratio of 5 g/L and equilibrium time of 120 h. The mean value from replicates of 

removal experiments was used for the data analysis.  

Fluoride concentrations in aqueous solution were quantified with the ion selective electrode 

method [24] and a mass balance was employed for the calculation of the adsorption capacities (q, 

mg/g) 

m

VFF
q

f 


 )][]([ 0

                                                                                                              (1) 

where [F
-
]0 and [F

-
]f are the initial and final fluoride concentrations obtained in the adsorption 

experiments (both given in mg/L), V is the volume of fluoride solution in L, and m is the adsorbent 

amount used in the removal experiments given in g, respectively.  

 

2.3 Metal doping of denim-based adsorbents  

Experimental results reported in Table 1 were used to identify the best pyrolysis conditions to 

achieve a tailor-designed adsorbent for fluoride adsorption. However, the effective removal of 

persistent water pollutants such as fluoride ions usually implies the application of specific activation 

strategies to improve the adsorbent performance. A metal doping procedure was tested using 

different salts of La
3+

, Al
3+

 and Fe
3+

. Note that the surface modification with multivalent metallic 

species offers several advantages for enhancing the fluoride uptakes in traditional materials such as 

activated carbons and bone char [23,25,26]. For the metal doping, 1 g of textile-based adsorbent 

was mixed with 10 mL of the metallic solution with an initial concentration of 200 mg/L. The 

mixture adsorbent-metallic solution was stirred at 150 rpm using different impregnation times and 

temperatures. Table 2 shows the experimental design used for this surface modification with 

metallic solutions. Metal-doped materials were washed with deionized water before being used in 
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the adsorption studies. The fluoride adsorption capacity of the modified adsorbents was the 

response variable of this experimental stage, while the studied variables were: the nature of the 

metallic salt (chloride, sulfate and nitrate) used for metal doping, the impregnation time (2 and 6 h) 

and temperature (30 and 60 °C). This experimental design allowed the analysis of the effect of the 

doping variables on fluoride uptake and the identification of the best conditions to achieve an 

optimum adsorption performance. Fluoride removal experiments were performed at the same 

conditions used in the experimental design of the pyrolized samples.  

Fluoride adsorption isotherms and kinetics were determined for the best modified materials. 

These studies were performed at 30 °C and pH 7 using a mass-solution ratio of 5 g/L and an 

adsorbent particle size of ~ 0.67 mm. Equilibrium adsorption experiments were carried out using 

fluoride solutions with initial concentrations from 5 to 150 mg/L. The adsorption and intraparticle 

diffusion rates and the maximum adsorption capacities of selected adsorbents were calculated.  

 

2.4 Analysis of surface interactions and characterization of denim-based adsorbents 

Different spectroscopic and microscopic techniques were used to characterize the precursor and 

denim-based adsorbents including the analysis of surface interactions involved in the fluoride 

removal process. These techniques were Fourier Transform Infrared Spectroscopy (FTIR), X-ray 

Photoelectron Spectroscopy (XPS), Scanning Electron Microscopy (SEM), Energy Dispersive X-

ray (EDS) and X-ray fluorescence (XRF) spectroscopy. Nitrogen physisorption isotherms was also 

used to determine the textual parameters. A Bruker IFS 66/S spectrometer was utilized to perform 

FTIR analysis to characterize the functional groups of the samples, which were measured as pellets 

with KBr. FTIR Spectra were collected within a wavenumber range of 4000 - 400 cm
-1

 using a 4 

cm
-1

 resolution per scan. The surface chemistry was also analyzed with a K-ALPHA (Thermo 

Scientific) X-ray photoelectron spectrometer. XPS spectra were recorded using monochromatized 

incident Al X-ray radiation (Al Kα = 1486.6 eV) yielding a focused X-ray spot of 400 µm diameter 

at 3 mA × 12 kV. The morphology of raw textile precursor, pyrolyzed material and metal-doped 

adsorbents, prior and after fluoride removal, was observed by a SEM type JSM-840 JEOL 

microscope equipped with an EDS spectrometer (type UHV Dewar Si(Li), Bruker). This technique 

was also utilized to define the elemental composition of selected adsorbents. The samples were 

dispersed on an adhesive double-sided carbon tape and then mounted onto SEM cylinders for 

further coating with gold and charge dissipation during the analysis. The coated samples were 

observed using an electron beam energy of 20 keV. The elemental compositions of the metal-doped 

adsorbents were determined by XRF analysis using a sequential X-ray spectrometer (Philips Magix 

Pro), which was equipped with rhodium tube and beryllium window. Textural parameters of the 
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samples obtained at different pyrolysis conditions were determined from nitrogen adsorption-

desorption isotherms at 77 K using an automatic Micromeritics TriStar 3000 analyzer. Prior to their 

analysis, 0.1 g of these samples was degassed under vacuum at 300 °C overnight.  

 

3. RESULTS AND DISCUSSION 

3.1 Analysis of pyrolysis conditions, metal doping of denim-based adsorbents and their 

application in water defluoridation 

Figure 1b shows the typical appearance of the denim-based adsorbents obtained via pyrolysis 

whereas Figures 1d – 1f report SEM micrographs. All materials showed a non-porous structure with 

irregular shapes and rough texture. XRF results revealed that denim-based adsorbents contained 

different kind of oxides, see Figure 2. In particular, SiO2, Al2O3, Fe2O3 and K2O were the main 

oxides present in these samples. This implies that denim-based adsorbents contained a large fraction 

of silicon oxides (> 70 %) and minor fractions of other metal oxides (1 – 16 %).  

Figure 3 shows the yields and fluoride adsorption capacities for the adsorbents obtained using 

the pyrolysis conditions reported in Table 1. The adsorbent production yield ranged from 80.2 to 

82.3 % and, as expected, it slightly decreased with pyrolysis temperature. These yields are higher 

than those obtained for lignocellulosic-based adsorbents, which can be attributed to the presence of 

a high inorganic content in the textile precursor. Note that the yields of adsorbents obtained from 

the carbonization of different biomasses usually are very low (< 30 %) and, consequently, they 

impact the production costs. From an application point of view, the pyrolysis of denim wastes can 

be considered a high-yield route for the synthesis of alternative materials for water treatment.  

Fluoride uptakes of the denim-adsorbents ranged from 0.05 to 1.5 mg/g at tested preparation 

conditions. These results showed that the pyrolysis conditions are of paramount importance for 

determining the adsorbent performance. Consequently, they should be carefully selected to improve 

the final uptake. According to the statistical analysis of this experimental design, the pyrolysis 

temperature is the variable with the major impact on the adsorbent properties (p-level < 0.01); the 

defluoridation performance of adsorbents decreased with an increase in the synthesis temperature. 

The best fluoride uptakes of denim-based materials were obtained for a pyrolysis temperature of 

500 °C, residence time and heating rate of 2 h and 10 °C/min, respectively. These conditions 

provided the best compromise in terms of adsorbent yield and fluoride removal. The highest 

adsorption capacity obtained from Table 1 competes with fluoride uptakes reported for commercial 

bone chars [21,27] and other carbon-based adsorbents [28-30] whose fluoride uptakes ranged from 

1 to 4 mg/g.  
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For illustration, Figure 4 shows the results for the textural parameters of selected samples. 

Denim-based adsorbents have low BET surface areas (9.5  14.5 m
2
/g) and total pore volumes 

(0.030  0.046 cm
3
/g). All nitrogen adsorption-desorption isotherms are rather similar and they 

correspond to a predominantly microporous structure with a certain contribution from larger pores 

[31]. At low relative pressures, these isotherms are Type I since the adsorption and desorption 

branches remain nearly horizontal and parallel after an initial nitrogen uptake, which is the 

characteristic behavior of microporous materials [31]. At intermediate and high relative pressures, 

there is a further increase in the adsorbed amount that is characteristic of a type IV isotherm 

together with a hysteresis loop. This behavior indicates the presence of larger pores in the 

mesoporous range [31]. Traditional adsorbents used for fluoride removal (e.g., bone char and other 

activated carbons) usually show surface areas higher than 100 m
2
/g [21,29,32]. Under this scenario, 

it could be expected that these textile-based adsorbents may be ineffective for the fluoride 

adsorption due their poor textural parameters. However, the excellent results obtained in this study 

unambiguously confirm the critical role of the surface chemistry in the removal of persistent water 

pollutants. These adsorption properties of denim-based adsorbents are associated to the presence of 

inorganic elements on their surface, especially Al and Fe oxides. Note that recent studies have 

reported low-area activated carbons (i.e., < 2 m
2
/g) with fluoride uptakes from 1 to 2 mg/g [30].  

Figure 5 shows the fluoride adsorption capacities obtained for the adsorbents modified with 

different metallic solutions using the experimental conditions described in Table 2. Pollutant 

uptakes for metal-doped adsorbents ranged from 0.55 to 1.72 mg/g, for lanthanum-modified 

samples, from 0.63 to 2.47 mg/g for aluminum-modified samples, and from 0.12 to 1.47 mg/g for 

iron-modified samples, respectively. The impact of metal doping on adsorption properties is given 

by Fe
3+ 

< La
3+

 < Al
3+

 with an improvement of fluoride uptake up to 67 % for aluminum-modified 

samples. Fluoride ion is a hard base due to its high electronegativity and small ionic radius and, 

consequently, this anion has strong binding interactions with multivalent metallic species [26]. This 

fact explains the improved adsorption behavior of metal-modified denim-based adsorbents. Note 

that surface modification with multivalent metal ions offers several advantages for the preparation 

of fluoride adsorbents including better adsorbent yields and less severe activation conditions. 

ANOVA analysis for this specific experimental design indicated that the impregnation temperature 

used for metal doping was a relevant parameter to improve the fluoride uptake (i.e., p-level < 0.05). 

Indeed, these results showed that the efficiency of the surface modification with metals increased 

with the impregnation temperature. The best impregnation conditions for surface modification of 

these adsorbents were 60 °C and 6 h for lanthanum and aluminum solutions, and 60 °C and 2 h for 

iron solutions, respectively. Fluoride adsorption isotherms at 30 °C and pH 7 for the adsorbents 
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obtained with these metal doping conditions are reported in Figure 6. All adsorption isotherms 

correspond to a Langmuir-type shape. These isotherms showed that the highest fluoride removal 

was obtained with the aluminum-doped adsorbents (i.e., 4.25 mg/g), where the aluminum sulfate 

offered the best results. In fact, sulfate solutions were more effective than chloride and nitrate 

solutions for improving the adsorption properties of the denim-modified adsorbent. The Sips model 

fitted the fluoride adsorption isotherms and offered a satisfactory correlation of experimental data 

with low prediction errors (0.7 – 13.8 %), see Figure 6 and Table 3. This equation showed better 

correlation coefficients than those obtained for Langmuir and Freundlich isotherms.   

Adsorption kinetics for fluoride removal using the best metal-doped adsorbents are reported in 

Figure 7a. Rates (k1) for fluoride uptake ranged from 0.02 to 0.08 h
-1

, where the Al-doped adsorbent 

showed the faster removal. Note that these rates were calculated with the pseudo-first order model, 

which showed the best data fitting. The diffusion analysis using Weber-Morris plot indicated that, 

as expected, the intraparticle diffusion was not the rate-limiting step for fluoride removal on these 

adsorbents. The multi-linearity behavior of Figure 7b suggested that several steps may be involved 

in the fluoride adsorption. In fact, there was a predominant adsorption of fluoride ions on the 

external surface of these adsorbents, which was indicated by the sharp section of the plots. 

Calculated fluoride diffusion rates (kp) ranged from 0.19 to 0.34 mg/g h
0.5

 for tested adsorbents.  

 

3.2 Characterization of denim-based adsorbents and surface interactions involved in the 

fluoride removal mechanism 

FTIR spectroscopic measurements for raw samples and denim-based adsorbents are reported in 

Figure 8. Nomenclature used for these characterization results are as follows - Precursor: denim 

waste used for the preparation of the adsorbents; Pyrolyzed: best denim-material obtained from 

Table 1; C-Al: best aluminum-doped adsorbent; C-La: best lanthanum-doped adsorbent; and C-Fe: 

best iron-doped adsorbent. On the other hand, adsorbents loaded with fluoride ions were labeled as 

C-Al-F, C-La-F and C-Fe-F.  

The main FTIR bands of pumice and cellulose compounds were identified in the raw sample 

(i.e., denim fiber scraps). The peak at 3700 cm
-1

 corresponds to the stretching vibrations of OH 

bonds attached to polyhedral Al [33]. The broad band between 3000 and 3600 cm
-1

 is due to the 

stretching of OH groups [34,35], while the band at 2925 cm
-1

 and its shoulder at 2864 cm
-1

 are 

related to CH stretching and bending vibrations [13]. The absorption bands at 1640  1520 cm
-1

 can 

be associated to vibrations of OH groups of ketones, aldehydes, carboxylic acids and aromatic 

skeletal vibrations of cellulose [13,36]. The peaks at ~ 1320  1460 cm
-1

 could be associated to OH 

bending and CH vibrations of pyran ring, while the band at 700 cm
-1

 can be related to CH rocking 
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vibrations of cellulose composition [36,37]. The intense band located at 1040 cm
-1

 corresponds to 

asymmetric and symmetric stretching vibrations of the Si-O-Si groups [34]. Note that the Si-O 

bending and Al-O stretching bands are located in the range 800  620 cm
1 

[34,38,39]. The band 

associated with Si-O and Si-O-Fe stretching vibrations can be observed at 460 cm
-1

 [33]. It is clear 

that the presence of these groups in the FTIR spectrum are due to the minerals contained in the 

denim fiber scraps, which are derived from the washing with pumice stone [13,33].  

FTIR spectra of the denim-based adsorbent showed some changes due to the pyrolysis process. 

The bands located at 3435, 2925, 1640  1520 and 1460  1320 cm
-1

 that are related to water and 

organic groups decreased considerably, which can be explained in view of the decomposition of 

cellulose chains through dehydration, decarbonylation, ring-opening, glycosidic-bond breaking, 

aromatization and decarboxylation [39]. Note that the Si-O and Al-O groups remained unchanged 

after thermal treatment. With respect to the adsorbents doped with metallic ions, the bands 

associated to OH, Al-O and Si-O slightly shifted, while the band at 3700 cm
-1

 of the adsorbent 

treated with Fe solution disappeared. These findings imply the existence of some interactions 

between the metallic salts and the adsorbent surface [40]. The metal impregnation process caused 

the formation of new metallic interactions or oxide species leading to variations of the oxide 

contents [41]. Therefore, the relative content of Si, Al, Fe and K changed due to the possible 

substitution of some mobile cations (e.g., Na, Mg, K, Ca) for the trivalent ions (i.e., Al, La and Fe) 

on the adsorbent structure. For instance, the elemental composition (wt %) of the best Al-loaded 

adsorbent is O: 48.29, C: 21.23, Si: 17.12, Al: 6.97, K: 2.03, Na: 1.85, Fe: 1.1, Ca: 0.56, Mg: 0.45, 

S: 0.24 and P: 0.16 %. Note that FTIR spectra of the samples that underwent fluoride adsorption did 

not show remarkable changes in the bands. 

Table 4 and Figure 9 show the results obtained from XPS characterization of denim-based 

adsorbents. The deconvolution spectrum for Si 2p of raw denim-based adsorbent showed two peaks 

that can be attributed to Si-O at 104.28 eV [42,43] and to Si-O-X at 102.62 eV [38] where X = Na, 

Al, Mg, K and Ca. These elements are present in the raw precursor used for the preparation of the 

adsorbents [13]. This result was consistent with the O 1s spectrum that indicated the presence of 

two different chemical states of oxygen, see Table 4. The peaks at 532.46, 531.16 and 534.08 eV 

correspond to silica bonds (Si-O), the non-bridging oxygen (Si-O-X) and the O-H interactions from 

molecular water [38,43]. Changes in the deconvolution of Si 2p spectra were observed after metal 

doping of the denim-based adsorbents. These modified samples showed the presence of a 

symmetric single peak that can be associated with the incorporation of metallic ions (i.e., Al
3+

, La
3+

 

and Fe
3+

) on the adsorbent surface forming new Si-O-X interactions, where X = Al, La and Fe 

[26,38,43-46]. The presence of Si-O-Al bonds was confirmed by the binding energies of the Al 2p 
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peak at 74.87 eV, see Table 4 and Figure 9 [44,46]. For the case of Fe-loaded adsorbents, the peaks 

of Fe 2p spectrum suggested the presence of interactions Si-O-Fe [47,48], while the XPS results for 

La-loaded adsorbent showed the peak energy for the Si-O-La bond [49-51].  

After fluoride adsorption, some changes were observed in the intensity of the peaks associated 

with Si, Al, La and Fe bonds for all adsorbents and this result confirmed new interactions between 

fluoride and the surface metal species. It appears that fluoride ions interacted with metal-doped 

denim-based adsorbents via Si-O-X-F, where X = Al, Fe and La. At this point, it is important to 

highlight that peaks corresponding to F 1s appeared at 685.68, 686.33 and 685.42 eV (see Table 4 

and Figure 9) for aluminum-, lanthanum- and iron-doped adsorbents, which could correspond to 

metal-fluoride bonds [26,40]. 

 

4. CONCLUSIONS 

This study reports the application of denim fiber scraps for the synthesis of an effective and low-

cost adsorbent for water defluoridation. Proper experimental conditions for the pyrolysis of these 

textiles wastes have been identified and a subsequent metal doping step has been proposed to 

modify their surface properties and to enhance the fluoride uptakes. These novel adsorbents showed 

a fluoride uptake up to 4.25 mg/g even though they had a very low surface area. This removal 

performance was higher than those reported for traditional adsorbents employed in fluoride 

adsorption from aqueous solution. Analysis of removal mechanism suggested that the interactions 

Si-O-X-F (X = Al, La or Fe) could play an important role for fluoride removal using these 

materials. In summary, results of this study show that denim-based adsorbents are promising for 

water treatment and purification. The valorization of denim waste wastes for the production of 

adsorbents can be a key factor to reduce both the operational cost of textile industry and the 

environmental impact in terms of solid waste generation.   
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Figure captions. 

Figure 1. Physical appearance of a) raw denim wastes (i.e., adsorbent precursor) and b) denim-

based adsorbent and SEM images of c) precursor, d) denim-based adsorbent, e) aluminum-doped 

adsorbent and f) aluminum-doped adsorbent with fluoride ions.  

Figure 2. XRF results for the denim-based adsorbents with and with loaded fluoride ions. 

Figure 3. Yields and fluoride uptakes of denim-based adsorbents obtained via pyrolysis. Fluoride 

uptakes were determined using an initial fluoride concentration of 50 mg/L at pH 7 and 30 °C.  

Figure 4. N2 (●) adsorption – (○) desorption isotherms of selected denim-based adsorbents used 

for fluoride removal.   

Figure 5. Fluoride uptakes of denim adsorbents modified with different metallic salts. Fluoride 

uptakes were determined using an initial fluoride concentration of 50 mg/L at pH 7 and 30 °C. 

Figure 6. Adsorption isotherms of fluoride ions on denim-based adsorbents modified with 

metallic salts. Experimental conditions: 30 °C and pH 7.  

Figure 7. a) Kinetics and b) intraparticle diffusion analysis for the adsorption of fluoride ions on 

denim-based adsorbents doped with metallic ions. Experimental conditions: 20 mg/L of fluoride 

concentration, 30 °C and pH 7.  

Figure 8. FTIR spectra of raw precursor and denim-based adsorbents before (Pyrolyzed, C-Al, 

C-La, C-Fe) and after (C-Al-F, C-La-F, C-Fe-F) fluoride removal.  

Figure 9. Deconvolution of XPS spectra of denim-based adsorbents before (Pyrolyzed, C-Al, C-

La, C-Fe) and after (C-Al-F, C-La-F, C-Fe-F) fluoride removal. 

 

 

 

 

 

 

 

 

 

 

 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
 

17 

 

 

a) 

 

b) 

 
c) 

 

d) 

 
e) 

 

f) 

 
Figure 1.  

 

 

 

 

 

 

 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
 

18 

 

w
t,

 %
 

 
 Sample 

 

Figure 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
 

19 

 

q
e 

fo
r 

fl
u
o
ri

d
e 

re
m

o
va

l,
 m

g
/g

 

 

Y
ield

, %
 

 Sample  
Figure 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.0

0.3

0.6

0.9

1.2

1.5

5
2

5

5
4

5

5
2

1

5
4

1

6
2

5

6
4

5

6
2

1

6
4

1

7
2

5

7
4

5

7
2

1

7
4

1

8
2

5

8
4

5

8
2

1

8
4

1

9
2

5

9
4

5

9
2

1

9
4

1



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
 

20 

 

A
d
so

rb
ed

 v
o
lu

m
e,

 c
m

3
/g

 S
T

P
 

  

  

 

 

 Relative pressure, P/Po 

Figure 4.  

 

 

0

6

12

18

24

30

0.0 0.2 0.4 0.6 0.8 1.0

Adsorption Desorption

a) 521

0

6

12

18

24

30

0.0 0.2 0.4 0.6 0.8 1.0

b) 621

0

6

12

18

24

30

0.0 0.2 0.4 0.6 0.8 1.0

c) 721

0

6

12

18

24

30

0.0 0.2 0.4 0.6 0.8 1.0

d) 821

0

6

12

18

24

30

0.0 0.2 0.4 0.6 0.8 1.0

e) 921



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
 

21 

 

F
lu

o
ri

d
e 

a
d

so
rp

ti
o

n
 c

a
p

a
ci

ty
, 
m

g
/g

 

 
 

 Metal ion used in surface modification of denim-based adsorbent    Salt 
Figure 5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
 

22 

 

 

q
e,

 m
g
/g

 

a) La
3+ 

 
b) Al

3+ 

 
c) Fe

3+ 

 
 [F

-
]e, mg/L 

Figure 6.  

 

 

0.0

0.9

1.8

2.7

3.6

4.5

0 40 80 120 160

su cl NoCl-SO4
2- NO3

- Sips model

0.0

0.9

1.8

2.7

3.6

4.5

0 40 80 120 160

0.0

0.9

1.8

2.7

3.6

4.5

0 40 80 120 160



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
 

23 

 

 

 

q
t, 

m
g
/g

 

a) 

 
Time, h 

b) 

 
 Time 

0.5
, h

0.5 

Figure 7.  

 

 

 

 

 

 

 

 

0.0

0.5

1.0

1.5

2.0

2.5

0 18 36 54 72

Al Fe LnAl3+ La3+ Fe3+

Pseudo-first order model

0.0

0.4

0.8

1.2

1.6

2.0

0 2 4 6 8 10



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
 

24 

 

 

 

 

T
ra

n
sm

it
a
n
ce

 

 
 Wavelength, cm

-1
 

Figure 8. 

 

 

 

 

35010801810254032704000

Precursor

Pyrolyzed

C-Al

C-Al-F

C-La

C-La-F

C-Fe

C-Fe-F



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
 

25 

 

 

  

  

  

  

  
Figure 9.  

  

0

880

1760

2640

3520

4400

100101102103104105106107

Pyrolyzed

Si 2p

0

880

1760

2640

3520

4400

100101102103104105106107

C-Al

C-Al-F

Si 2p

0

880

1760

2640

3520

4400

100101102103104105106107

C-La

C-La-F

Si 2p

0

1000

2000

3000

4000

5000

100101102103104105106107

C-Fe

C-Fe-F

Si 2p

0

800

1600

2400

3200

4000

682684686688690

C-Al-F

C-La-F

C-Fe-F

F 1s

0

340

680

1020

1360

1700

72.5 73.5 74.5 75.5 76.5 77.5

C-Al

C-Al-F

Al 2p

0

400

800

1200

1600

2000

707710713716719722

C-Fe

Fe 2p

0

400

800

1200

1600

2000

707710713716719722

C-Fe-F

Fe 2p

0

700

1400

2100

2800

3500

826830834838842846

C-La

La 3d

0

700

1400

2100

2800

3500

826830834838842846

C-La-F

La 3d



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
 

26 

 

Table captions. 

Table 1. Experimental design used for the synthesis of denim-based adsorbents via pyrolysis. 

Nitrogen flow: 100 mL/min. 

Table 2. Experimental design used for the surface modification of denim-based adsorbents using 

metallic salts of La
3+

, Al
3+

 and Fe
3+

. 

Table 3. Results of Sips model for the correlation of fluoride adsorption isotherms using denim-

based adsorbents modified with metallic salts of La
3+

, Al
3+

 and Fe
3+

. 

Table 4. Results of XPS data analysis of denim-based adsorbents used in fluoride removal from 

aqueous solution.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
 

27 

 

 

Table 1. 

  Pyrolysis conditions 

Sample Nomenclature Temperature, °C Residence time, h Heating rate, °C/min 

1 525 500 2 5 

2 545  4 5 

3 521  2 10 

4 541  4 10 

5 625 600 2 5 

6 645  4 5 

7 621  2 10 

8 641  4 10 

9 725 700 2 5 

10 745  4 5 

11 721  2 10 

12 741  4 10 

13 825 800 2 5 

14 845  4 5 

15 821  2 10 

16 841  4 10 

17 925 900 2 5 

18 945  4 5 

19 921  2 10 

20 941  4 10 
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Table 2. 

   Reaction conditions for metal doping 

Experiment Metallic ion Type of metallic salt Temperature, °C Time, h 

1 La
3+

 Cl
-
 30 2 

2  NO3
-
  6 

3  SO4
2- 

 2 

4  Cl
-
  6 

5  NO3
-
  2 

6  SO4
2- 

 6 

7  Cl
-
 60 2 

8  NO3
-
  6 

9  SO4
2- 

 2 

10  Cl
-
  6 

11  NO3
-
  2 

12  SO4
2- 

 6 

13 Al
3+

 Cl
-
 30 2 

14  NO3
-
  6 

15  SO4
2- 

 2 

16  Cl
-
  6 

17  NO3
-
  2 

18  SO4
2- 

 6 

19  Cl
-
 60 2 

20  NO3
-
  6 

21  SO4
2- 

 2 

22  Cl
-
  6 

23  NO3
-
  2 

24  SO4
2- 

 6 

25 Fe
3+

 Cl
-
 30 2 

26  NO3
-
  6 

27  SO4
2- 

 2 

28  Cl
-
  6 

29  NO3
-
  2 

30  SO4
2- 

 6 

31  Cl
-
 60 2 

32  NO3
-
  6 

33  SO4
2- 

 2 

34  Cl
-
  6 

35  NO3
-
  2 

36  SO4
2- 

 6 
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Table 3.  

Metal-doped 

adsorbent 

 Parameters of Sips isotherm 
1 

 

Salt type qs, mg/g bs ns E, % 

La
3+ 

NO3
-
 1.19 0.05 1.43 0.70 ± 0.4 

 Cl
-
 1.76 0.02 1.27 4.56 ± 4.1 

 SO4
2-

 2.55 0.003 1.64 6.06 ± 6.9 

Al
3+

 NO3
-
 1.92 0.01 1.22 3.64 ± 4.4 

 Cl
-
 21.21 0.003 0.89 3.39 ± 2.4 

 SO4
2-

 5.00 0.33 0.40 13.82 ± 6.2 
Fe

3+ NO3
-
 0.96 0.01 1.86 4.69 ± 4.2 

 Cl
-
 1.60 0.01 1.68 7.45 ± 5.6 

 SO4
2-

 1.64 0.02 1.58 3.52 ± 1.8 

1 

s

s

n

es

n

ess

e
Fb

Fbq
q

][1

][
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Table 4. 

Sample O 1s Si 2p Al 2p La 3d Fe 2p F 1s 

Peak

, eV 

FW

HM, 

eV 

At. 

% 

Peak

, eV 

FW

HM, 

eV 

At. 

% 

Pea

k, 

eV 

FW

HM, 

eV 

At. 

% 

Peak

, eV 

FW

HM, 

eV 

At. 

% 

Peak

, eV 

FW

HM, 

eV 

At. 

% 

Peak

, eV 

FW

HM, 

eV 

At. 

% 

Pyroly

zed 

531.

16 

1.64 7.3

0 

102.

62 

1.49 8.6

5 

----

- 

----- ---

-- 

----- ----- ---

-- 

----- ----- ---

-- 

----- ----- ---

-- 

 532.
46 

1.98 25.
06 

104.
28 

1.49 4.6
7 

----
- 

----- ---
-- 

----- ----- ---
-- 

----- ----- ---
-- 

----- ----- ---
-- 

 534.
08 

1.86 8.1
9 

----- ----- ----
- 

----
- 

----- ---
-- 

----- ----- ---
-- 

----- ----- ---
-- 

----- ----- ---
-- 

C-Al 531.
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1.92 5.2

3 

102.
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1.76 11.

52 

74.

87 

1.88 8.

95 

----- ----- ---

-- 

----- ----- ---

-- 

----- ----- ---

-- 
 532.
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1.92 35.
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----- ----- ----

- 

----
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----- ---

-- 

----- ----- ---

-- 

----- ----- ---

-- 

----- ----- ---

-- 
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----- ----- ----
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----
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----- ---
-- 

----- ----- ---
-- 

----- ----- ---
-- 

----- ----- ---
-- 
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37 
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32 

1.74 9.1

4 

74.

81 

1.88 8.

12 

----- ----- ---

-- 

----- ----- ---

-- 
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49 
 532.

86 

1.92 12.

20 

----- ----- ----

- 

----

- 

----- ---

-- 

----- ----- ---

-- 

----- ----- ---

-- 

----- ----- ---

-- 
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----- ---
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----- ----- ---
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----- ----- ---
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----- ----- ---
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----- ---

-- 
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34 

----- ----- ---

-- 

----- ----- ---

-- 
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00 

----- ----- ----

- 

----

- 

----- ---

-- 
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----- ----- ---

-- 

----- ----- ---

-- 
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6 

----- ----- ----
- 

----
- 

----- ---
-- 

----- ----- ---
-- 

----- ----- ---
-- 

----- ----- ---
-- 
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F 
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35.

59 
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79 

1.78 9.3

2 

----

- 

----- ---

-- 

832.
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20 

----- ----- ---

-- 
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2.28 2.

95 
 533.

46 2.02 
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20 

----- ----- ----

- 

----

- 

----- ---

-- 
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0.

09 

----- ----- ---

-- 

----- ----- ---

-- 

 ----- ----- ----
- 

----- ----- ----
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----
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----- ---
-- 
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58 3.37 

0.
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----- ----- ---
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- 
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----- ---

-- 
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----- ----- ---

-- 

----- ----- ---

-- 
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----- ----- ---

-- 
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31 

----- ----- ---

-- 
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30 

----- ----- ----
- 

----
- 

----- ---
-- 

----- ----- ---
-- 
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05 
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31 

----- ----- ---
-- 

 534.

55 
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----- ----- ----

- 

----

- 

----- ---

-- 

----- ----- ---

-- 
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02 

----- ----- ---

-- 
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F 
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05 

1.92 8.3

1 
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71 
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35 

----

- 

----- ---

-- 

----- ----- ---

-- 
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39 

3.19 0.

48 

685.

42 

2.00 1.

37 

 532.
27 

1.92 32.
60 

----- ----- ----
- 

----
- 

----- ---
-- 

----- ----- ---
-- 

713.
96 

3.01 0.
17 

----- ----- ---
-- 

 534.

7 

1.92 1.8

6 

----- ----- ----

- 

----

- 

----- ---

-- 

----- ----- ---

-- 

719.

7 

3.37 0.

03 

----- ----- ---

-- 
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Highlights 

 Novel adsorbents for water defluoridation have been synthetized using denim wastes 

 These novel adsorbents were effective for fluoride adsorption  

 Si-O-metal-F interactions appear to be relevant for fluoride removal 

 Denim textile wastes have potential for the production of added value products in water 

treatment 


