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Abstract—Location Based Services (LBS) have been respon-
sible for several privacy breaches of their users in recent years
and a number of researchers have put forward solutions towards
making LBS more secure in regards to user location privacy.
However, the proposed protocols were rarely tested in real
conditions. This research study will create an artifact, an Android
application that implements one of the state-of-the-art protocols
for location privacy preservation, and test its performance to
determine if the state of the protocols is at a stage where it can
be implemented in real world applications. We have found that
the performance of our artifact in short distances is comparable
to real applications as it took 5 seconds to check proximity
between users in 25 meter radius. However, the computation
time increases drastically with increase in radius values and
the protocol took 72 seconds to check proximity for 100 meter
radius. Such time frames are insufficient as we believe most
users are not willing to wait so long for an application to
process their requests. Therefore we were unable to show that
the state-of-the-art location privacy-preserving algorithms are
ready for adaptation in real world applications, although certain
modifications to coordinate precision could correct that.

I. INTRODUCTION

Through using LBS in mobile applications users are able to
accomplish a large variety of different tasks, such as planning
a route from one location to another or obtaining informa-
tion about entertainment venues in the vicinity. Applications
such as these require the location of their user to provide
functionality and are categorized as Location Based Services
(LBS). By obtaining the location of their users these LBS
applications are able to provide a personalized experience to
their users, but unfortunately, at the same time endanger the
confidentiality of the user’s location. As a result, numerous
solutions aiming to improve the security of mobile LBS
applications have been created. This study aims to evaluate
the effectiveness of these solutions by building a mobile
application that incorporates them. The chosen algorithms will
then be evaluated in terms of efficiency and applicability. The
aim of the study is to determine whether privacy preserving
algorithms at their current state are sufficient enough for use
in real mobile applications on the market.

When choosing a privacy preserving methodology, we have
a number of options. Zhu et al [1] proposed a k-anonymity
protocol which bypasses Trusted Third Parties (TTP) with the
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help of homomorphic encryption. The resulting protocol kept
user data private from dishonest third parties and location
privacy attackers. On the other hand, a solution by Wu et al
[2] utilizing the k-anonymity model made it more difficult to
pinpoint the location of the real user for possible malicious 3rd
parties. However, if the amount of querying users is too small,
the conditions may be not met for the algorithm to function
properly. This is a notable disadvantage of the algorithm, as
like with many things, upon first implementation the user pool
is very limited.

As we can see, while various solutions can protect user
privacy in theory, they may have flaws that prevent them
from functioning properly when implemented. Our first goal
therefore is to evaluate the efficiency of the latest privacy
preserving algorithms as part of a mobile application in order
to determine if the state of current technology is efficient
enough for use in real market applications. Our second goal
is to determine if the flexibility of the algorithms in question
is wide enough that they could be adapted to other mobile
applications without limiting their functionality. This leads us
to the following research questions:

1. How efficient are the implementations of state-of-the-art
privacy-preserving location-proximity algorithms when inte-
grated into a mobile application?

1.1 How do they compare to other Location Based Service
mobile applications in regards to efficiency?

2. To what extent can such algorithms be applied to mobile
applications without limiting their functionality?

To answer these research questions we chose the construc-
tive research methodology. This method requires us to develop
an artifact and measure its performance. In our case, the
artifact is a mobile application that incorporates a state-of-the-
art algorithm. Data collection will consist of both quantitative
and qualitative methods. Quantitative method will be used
to measure the efficiency of the algorithm and it will be
performed by measuring the response time of our application
in seconds. Qualitative method will determine the applicability
of the algorithm by examining real mobile applications and de-
termining to what extent could they incorporate the algorithm
while maintaining the same function. Data analysis will be of
qualitative nature.



II. RELATED WORK
A. LOCATION PRIVACY

Location-privacy is a type of privacy that, as the name
suggests, is concerned in keeping the location of the user con-
fidential. Research shows mixed results on whether location-
privacy is important to users of LBS or not. Barkhuus and
Dey [3] paper compared two scenarios: location-tracking ser-
vices vs. location-aware services. They have conducted an
experimental case study on 16 participants where location
based services were hypothetical. The researchers found that
the participants had more privacy concerns regarding location
tracking services compared to location-aware services, but in
general were not overly concerned about mobile applications
of either type obtaining their location data. Nevertheless,
Barkhuus and Dey recommended focusing on developing
services around location-aware concept. In case of location-
tracking services, the researchers believe such services can
still be acceptable as long as users have the option to turn-off
the tracking capability at any time.

Xu and Gupta [4] developed a model to examine the
impact of privacy concerns on intention to use Location
Based Services (LBS). The model incorporated elements from
the Unified Theory of Acceptance and Use of Technology
(UTAUT). The model studies four elements which are: Privacy
Concerns, Effort Expectancy, Performance Expectancy (accu-
racy of LBS) and Personal Innovativeness and their impact on
intention to use LBS. The researchers found that performance
expectancy had a positive impact on participants’ intention to
use LBS and effort expectancy had a positive impact only for
inexperienced users, but privacy concerns had no direct effect.
However, interestingly privacy concerns negatively impact
performance and effort expectancy of the participants, thus
indirectly affecting user decision to use LBS mobile services.
This implies that privacy concerns are relevant to at least a
limited extent to user of LBS applications.

Zickuhr [5] conducted a survey to examine the level of
mobile LBS use by Americans. The findings show that the
use of such applications is rapidly growing, from 55% of
smartphone owners using LBS application in 2011 to 74% of
smartphone owners using LBS in 2012. Furthermore, taking
into account that smartphone ownership itself quickly grew
from 35% of adults in 2011 to 46% in 2012, it is safe to
assume that the importance of LBS privacy concerns, although
somewhat irrelevant now, will grow in the coming years.

B. METHODS FOR PRESERVING PRIVACY

When choosing a method for preserving location-privacy,
we are presented with a wide array of choices. One popular
strategy is a k-anonymity model, which masks the user sending
his data (in this case, location) together with similar real
data of other users to the server. This makes the original
user indistinguishable from the rest of the population and
thus anonymous. Wu et al [2] created a solution based on k-
anonimity model which implements split cloaking to generate
a set of distributed cloaking regions.” These regions provide

a higher volume of querying users to the client to distract the
client, thus making it harder to pinpoint the location of the real
user. However, if the amount of querying users is too small,
the conditions may be not met for the algorithm to function
properly. This is a notable disadvantage of the algorithm, as
like with many things, upon first implementation the user pool
is very limited. Another k-anonymity solution was proposed
by Gedik and Liu [6] with the aim to hinder location and time
sampling of users by LBS providers. The solution requires a
trusted server which would act as an intermediary between
users and LBS providers. The server would get data from
users, remove any identifying information (such as an IP
address) and perturb location and time data before sending
it out to LBS providers. What is unique about Gedik and
Liu’s proposal is that unlike previous k-anonimity models, the
solution allows users to personalize their level of anonymity
and the extent of location and time data perturbation. This is
advantageous as anonimyzing and perturbing data is costly,
but by allowing users to reduce the extent of it to the level
that they need allows the process to be faster. However, as
researchers noted, it is possible the levels of anonymization
and data perturbation set by users may cause conflict with
the quality of service offered by the application, which may
lead to failed high rate of failed anonimyzation, which is a
considerable issue for a proposal attempting to protect the
privacy of users.

Another method of approach is in utilizing homomorphic
encryption. Originally proposed by Rivest et al [7], homo-
morphic encryption makes it possible to perform mathe-
matical operation on data possible in its encrypted form.
Different types of homomorphic encryption exist, which al-
low to perform different operations. For example, additive
homomorphism allows performing additions. Improvements
by Gentry [8] increased homomorphic encryption ability to
modify encrypted data, by creating a single scheme which
was capable of performing both addition and multiplication as
well as improving its efficiency. The ability to perform such
operations on encrypted data allow it to remain confidential
while being handled by 3rd parties which makes a Trusted
Third Party (TTP) no longer necessary for preserving privacy.
In recent years the popularity of homomorphic encryption
increased with several researchers utilizing it in their privacy-
preservation protocols. Zhu et al [1] combines a k-anonymity
protocol and homomorphic encryption in their solution. The
resulting protocol avoids bottlenecks that are possible when
using traditional k-anonymity model with TTP, while at the
same time keeping user data private from dishonest third
parties and location privacy attackers. Solution by Hallgren et
al [9], called InnerCircle, also circumvents the need for TTP
by sending homomorphically encrypted coordinates of their
users. The encrypted coordinates of the two users are then
compared by using additive homomorphic encryption and a
result is returned to the requesting users, informing them if
the target user is within a certain range or not. As encryption
and decryption of data are costly in regards to processing
power (especially on a mobile device), using homomorphic



encryption to preserve privacy of mobile LBS raises concerns.
However, the use of paralellizability and other optimization
techniques should increase the efficiency of InnerCircle when
encrypting or decrypting the results.

Generating dummy data for LBS providers is also an option
when preserving location-privacy. One such solution was made
by Zhou et al. [10], who’s proposal concerns privacy in a more
general sense, but can also be applied to location-privacy. The
researchers claim that current Android OS permission system
is inflexible as it does not allow users to accept some but not all
permission requirements when installing apps, and that it also
does not allow to change these settings after the installation.
To remedy the situation Zhou et al. propose a system called
TISSA. TISSA allows users to choose what data an application
may get access to at any time after installation. In case an
application demands access to data that the user is unwilling
to provide, the system send dummy data as substitute, keeping
the real data private. The system was tested in Android OS and
successfully prevented leakage of information to restricted ap-
plications and caused no significant slow down to performance
of the phone. However, sending only dummy data may be
problematic as the application may require real data to function
properly. In such cases where genuine data is essential for the
proper function of a mobile application but the user wants to
keep their data private, solutions that send real data and mask
it with dummy locations may be preferable. Such solution has
been created by Kido et al. [11], who propose a system which
simultaneously sends mobile LBS providers real user data as
well as dummy data. As the LBS providers cannot distinguish
which data is real and which is fake, the anonymity of the
user is preserved. The solution by Kido et al. also implements
an algorithm for the generation of dummies in order to make
them more realistic. This makes it harder for LBS providers
to pinpoint the genuine user through the simple method of
discarding obviously fake data. Pinpointing becomes further
complicated with multiple different users sending data to the
LBS providers. However, the drawback of the solution is that it
causes communication delays with large number of users using
the service simultaneously. As the end goal of any solution is
to be widely adapted and highly used, this causes concern.

Puttaswamy et al [12] presented their own new technique
to secure location privacy which they called LocX. This
technique provides the client server with an encrypted data of
the user’s location which can only be decrypted using secret
keys. These secret keys are restricted to the social circle of the
user only and no 3rd party can decrypt the location details. A
prototype has been developed and it showed that it can be used
in commercial applications with minimum overhead. However,
unlike other algorithms mentioned in this section, the user’s
exact location is revealed to the person with the secret key,
which forces the users to limit their social circle to people they
trust with their location or risk losing confidentiality of their
location to untrustworthy people. Another concern is keeping
the secret keys secret: similar to regular passwords, the keys
can be leaked outside of trusted parties, in which in case it
can cause damage to the privacy of the users.

III. SYSTEM OVERVIEW
A. METHOD OF PRIVCY PRESERVATION

The mobile application will use the InnerCircle algorithm
[9]. This algorithm was chosen because of its use of homo-
morphic encryption, which is one of the safest methods to
preserve data confidentiality. Homomorphic encryption avoids
the need for TTP that regular k-anonymity models require,
and due to LBS providers only having access to encrypted
data, triangulation of user’s location is not possible as it
is with methods utilizing dummy data approach. Decryption
of coordinates is relatively power demanding which raises
concerns in regards to the efficiency of the InnerCircle proto-
col. However, optimization techniques such as multithreading
should reduce the negative effects on execution time of the
artifact, albeit at the cost of higher battery consumption.
In recent years homomorphic encryption became a popular
choice in privacy preservation protocols and as such, it is
a good representation of the state-of-the-art technology in
location-privacy preservation.

In InnerCircle algorithm, several cryptosystems where used
but in this research we have chosen to implement ElGamal’s
[14] encryption system using 1024 bit keys since it had
a notably fast performance in the original implementation.
When Alice sends a location-proximity request to Bob , Alice
constructs a location request. The location request contains
Alice’s public key, 3 ciphertexts which will be used by Bob
and the radius in which Bob’s proximity is to be checked.
When Bob receives the request, he will use the 3 ciphertexts
and his own coordinates to calculate the encrypted distance
and then compute the proximity result using the method
lessThan(). Bob then sends the proximity results which is
a shuffled list encrypted under Alice’s public key. The list
shuffling is needed so Alice does not know at which range
Bob was found. Last, Alice receives the result and decrypts
each ciphertext in the list using the method inProx() to check
if it contains a zero which means Bob is in range.

B. SYSTEM ARCHITECTURE

The mobile application that will serve as the artifact for this
constructive research study will be done for an Android OS.
Android OS was chosen because it has the most established
development environment for mobile application developers
when compared to other smartphones. The abundance of
resources for programming Android applications means the re-
searchers have the highest chances of successfully developing
a mobile application for this OS rather than other smartphones.

The architecture of the developed mobile system is of
Client-Server type. The system involves communication be-
tween two clients: client Alice, which is the user check-
ing the proximity, and client Bob, which is the user who’s
proximity is being checked. The system also employs two
servers: Application Server (deployed on Amazon AWS) and
Google Cloud Messaging Server (GCM). GCM Server allows
applications to push messages to Android devices without any
input from the receiver. This is convenient as it allows us



to avoid sending undefined amount of requests from mobile
devices to Application Server to check if any messages are
present. However, currently GCM Servers limit message size
to 4 kilobytes, which is not enough to transfer an encrypted
response from Bob. Therefore, Application Server is responsi-
ble for sending messages between the clients while the GCM
server is used only for notifying user mobile devices that a
message is ready to be retrieved from Application Server.
This allows us to transfer messages larger than 4 kb without
indefinitely checking if a message is available on the server.

A single communication request can be seen in Figure 1. It
starts when Alice chooses to check Bob’s proximity. Alice’s
phone generates a location request which is sent from mobile
phone to Application Server (1), then from Application Server
to GCM Server (2), and from GCM Server to Bob’s mobile
device (3). Bob then creates a proximity result using the
method lessThan() to return a list (4) which is sent directly to
the Server (5). The server notifies GCM server (6), which in
turn notifies Alice that the answer is ready to be retrieved (7).
Alice’s mobile device then retrieves the answer by sending
an answer request to the Application Server (8). When Alice
retrieves the answer, it is decrypted using the method inProx()
which will return true if Bob is in range (9), completing the
communication request.

As InnerCircle assumes Euclidean plane, the longitude and
latitude of both users was converted to “world” coordinates
using Google Maps API implementation. The researchers had
to implement a java version of the conversion method since
the original version was done in JavaScript.

IV. METHODOLOGY
A. RESEARCH SETTING

Our chosen research method is a Constructive Research
study. For this study we will develop a mobile application
that utilizes a state-of-the-art location-proximity algorithm
intended for preserving the privacy of the users. The perfor-
mance of the artifact will be measured and the results will be
analyzed.

The research process will start with the development of the
artifact. When the initial application is complete, collection of
data will begin. Optimization of the application will also be
undertaken simultaneously to data collection, as information
regarding the efficiency of the algorithm may reveal unsatis-
factory performance which can possibly be remedied. Once
the data collection process is completed, the researchers will
discuss and analyze the results, before finally concluding their
findings.

B. DATA COLLECTION AND ANALYSIS

When determining the efficiency of the algorithm in the
application, we will measure the Total Time of response of
the artifact and CPU usage in milliseconds 10 times for
ranges of 25, 50, 75 and 100 meters. The tests will be
performed on two different smartphone devices of different
advancement level, which should allow the researchers to
make educated assumptions on whether it is reasonable to

expect the InnerCircle protocol to be more efficient on future
devices as well. Each device will act as Alice and Bob to
measure how the phones handle both answer generation and
decryption of the messages. The devices used in testing the
artifact are:

o Samsung Galaxy S4 Mini: this smartphone model was
first released in July 2013 and utilizes 1.7 GHz dual-core
Krait 300 CPU processor.

e Nexus 5X: first released in October 2015, this device uses
a 1.8 GHz hexa core 64-bit ARMv8-A CPU processor.

When measuring the efficiency, Total Time represents the
amount of time it took in milliseconds for the application to
display the results to the user. It starts when the user opts to
locate a target by pressing the locate button, and ends when the
answer is available on the user’s phone. It is displayed in the
user’s screen together with the target’s in range result. In case
of multiple targets, the total time is calculated for each target
separately, starting at the same time for all targets and ending
for each target individually when their result is available on
the user’s phone.

The artifact’s CPU time is measured in milliseconds by
using method profiling feature of Android Device Monitor
tool, which is part of the Android Studio IDE. Monitoring
of smartphone devices began before a request was sent and
ended once the results were available to the requesting user.
Monitoring was restarted after each trial to reset the recorded
CPU time by the monitoring tool. The methods of which
CPU time is measured are LessThan() and inProx(). The
reason these methods are the ones measured is because they
are responsible for implementing the InnerCircle protocol.
Encryption of Alice’s coordinates is not taken into account
as it only requires several milliseconds and is irrelevant to the
efficiency of the artifact as a whole.

The efficiency of real applications will be measured by using
a stopwatch and recording the time from the moment user opts
to check location proximity to the moment the application
displays its results to the user. The data will be compared to
the artifact’s total time and CPU time usage, which will allow
us to determine if the efficiency of the algorithm is sufficient
enough to be successful in the market of mobile applications.

To determine the applicability of the application, we will
examine other LBS mobile applications and determine quali-
tatively if their functions can be supported by the algorithm. To
describe the applicability of the algorithm for each application
we will use the following three categories:

o Not Applicable - this is the case where the algorithm
is too limited to support the features of the mobile
application while keeping its functionality in tact.

o Limitedly Applicable - in this case, to incorporate the
algorithm the mobile application would require to make
minor changes to its features but would still be able to
maintain its purpose for the most part.

o Fully Applicable - the algorithm can be incorporated
into the mobile application without any changes in the
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Fig. 1. Sequence Diagram of a Communication Request.

functionality of the mobile application. This is the perfect
case.

The analysis of collected data will be of qualitative nature.
The researchers will determine if the algorithm is sufficiently
efficient by comparing its response time with response time of
other applications. The level of applicability of the algorithm
will be determined by examining the number of applications
that can or cannot incorporate the algorithm without significant
change in functionality.

C. VALIDITY THREATS

Runeson and Host [13] propose 4 types of validities that
are relevant to studies in the field of Software Engineering.
The four categories are Construct, Internal, External validities
and Reliability and they will be used to categorize the validity
threats to our study.

Construct validity revolves around how well the data the
researchers obtain corresponds to answering the goals of the
study. In our study we measure the efficiency and applicability
of location privacy-preserving protocols. Efficiency is defined
as the amount of time it took to carry out the protocol and
is measured by the time it took for the artifact to display
the results as well as the protocol time used by the CPU
of the smartphone device. These measurements allow us to
measure the efficiency of the protocol itself as well as when it
is used in a system containing GUI and server communication

elements. We believe these results correspond well with our
goals. On the other hand, applicability is determined by
rudimentary observation of real applications and determining
if their features could be replicated by the protocol. This
does not take into account much of the software elements of
the applications and their limitations, which could possibly
be incompatible with the protocols. Mitigation of this threat
would require us to analyze the coding and system architec-
ture of such applications, but as we do not have access to
such information, the threat will have to remain. Regardless,
taking into account both applicability and efficiency results we
believe our construct validity is sufficient.

Internal validity is determined based on whether the in-
vestigated factor can be affected by a third factor. In our
case, our results were obtained from private persons mobile
devices which had installed a number of different applications
on their phones. These applications could use CPU of the
phone at the same time as the artifact of the research study is
being executed, thus causing the artifact to run slower. This
makes it difficult to tell the real efficiency of the protocol in
real conditions, thus negatively affecting our internal validity.
Moreover, since the phones contained a different amount of
applications prior to testing, the slow down effect could have
been different for each device. This makes it difficult to tell
if the difference/similarity of the results recorded on different



devices was caused by different CPU processors or different
applications on the devices. However, the purpose of the study
is to test implementations of the state of the art privacy pre-
serving algorithms in real conditions. In reality, it is safe to say
that smartphone users will have many different applications in
their devices and as such, the protocol must be efficient even
with other applications running in the background to be useful
in real market mobile applications.

External Validity is concerned about the generalization
of the results and their relevance to other researchers. Our
artifact was developed in Android OS, therefore it is difficult
to judge if the application can be easily adapted to other
smartphone devices. In particular, GCM push notifications
are only supported by Android devices, meaning that the
implementation of the artifact would most certainly have to
change if developed on other OS. However, as Android is
one of the most popular OS currently on the market our
results regarding protocol efficiency and applicability would
be relevant to a large amount of application developers and
users worldwide. Furthermore, iOS system offers similar push
notification functionality to GCM, which we can assume
would allow the artifact to preserve similar architecture when
ported to iOS devices. Therefore, our external validity is high.

Reliability of a study was defined as the dependency of
the study results on researchers. A reliable study could be
replicated with the same results by other researchers. One of
the main threats to the reliability of our study is the artifact
itself: it is likely that if other researchers would implement
their own application, they would choose a different approach
which could affect the efficiency of the artifact. However, as
the code to the artifact of this study is publicly available on
GitHub (see Appendix A), researchers trying to replicate study
could use that repository to try and replicate results as close
as possible.

V. RESULTS
A. EFFICIENCY

The protocol was executed 10 times on each device in
ranges of 25, 50, 75 and 100 meters. Tests were started by
sending location-proximity requests from Samsung Galaxy S4
Mini device to Nexus 5X, for which the average of results
can be seen in Table I. Afterwards the same tests were done
for Nexus 5X to Samsung Galaxy S4 Mini proximity checks,
for which results are displayed in Table II. The outcome was
measured in total time and CPU time in milliseconds. Total
time represents the real time the protocol took to display the
results to the user, from the moment user opted to locate
someone until the result was available in their device. This
time includes encryption, decryption, answer generation and
communication between the devices and the server. CPU time
displays the amount of time answer generation and decryption
took in Bob and Alice’s smartphone devices respectively. CPU
Total Time displays the sum of time that encryption and
decryption took. The raw data for the tests can be seen in
Appendixes B and C.

Radius - CPU Time, | CPU Time, | CPU Total
(meters) e s Decryptioﬁ Answer Time
25 14703 3389.5 1539.6) 5279.1]
50 36804 12535.4 1387.1 19922.5
75 71984 26903.1 16409.1 43312.2
100 131384 A47649.8 28482.6 76132.4
TABLE I

PROTOCOL TESTING RESULT AVERAGES IN MILLISECONDS FOR
SAMSUNG GALAXY TO NEXUS PROXIMITY CHECKS.

Radius - CPU Time, | CPU Time, | CPU Total
[(meters) oz T Decrypti on Answer Time
25 15375 4139 3086.8 7225.8
50) 41963 15076.3 11485.6 26561.9
75 70462 330715 25265.1 58336.6
100 130635 57852 440557 101907.7
TABLE II

PROTOCOL TESTING RESULT AVERAGES IN MILLISECONDS FOR NEXUS
TO SAMSUNG GALAXY PROXIMITY CHECKS.

As the results show, the time for protocol executions
increases drastically with increase in radius. Mapping the
average speeds for Nexus-to-Samsung and Samsung-to-Nexus
into a line chart in Figure 2 suggests that the increase in time
is exponential, although more data points are required to say
for certain.

It is important to note that the parallelization of the InnerCir-
cle protocol was not implemented in our mobile application.
This has a notable negative effect on the efficiency of our
application, making it impractical to check location-proximity
within distances of 100 meters or higher. However, we be-
lieve that parallelization can be substituted by methodically
lowering the precision of the coordinates used as input in the
protocol. This will be discussed in more detail in section VI.

The efficiency of real Android applications was also tested
10 times for each application. The execution time of the ap-
plication was measured with a stopwatch, with the countdown
starting when the researchers opted to locate a target and
ending when the application provided the output. The results
for applications output and their averages can be seen in Table
III. It is worth to note that application Meet Me and Singles
Around Me used GPS to find the user’s location, with the latter
application never turning off GPS tracking.

B. APPLICABILITY

The applicability of location-proximity protocol to the ap-
plications is divided into 3 categories: Not Applicable, Limit-
edly Applicable and Fully Applicable. The applications were
selected by searching for “location social networking” query
on Google Play Store. This section will describe the selected
applications and justify why we believe a certain results had
to be given to the applications. The results are presented in
Table IV.

Meet-up: this application allows users to meet and chat with
people who have the same interests and get updates on whats
happening in their vicinity. This application was considered
fully applicable because it could use InnerCirle to find users
nearby instead of the current mechanism.



Meet Me |SKOUT Badoo LIMK Tagged ilrr;glﬁg Me Mico Meetlp Foursquare
1 218 23 1.75 1.7 31 6.13 3.19 1.86 1.64
2 204 296 227 1.71 275 .M 3.09 218 1.82
3 213 25 1.76 1.74 427 9.83 3.05 1.93 1.57
4 212 448 2.08 1.7 3M 6.66 311 1.67 1.56
5 215 3.83 223 1.59 36 8.24 3.27 1.66 1.58
B 1.83 3.9 239 1.6 2.71 3.29 3.04 1.76 1.79
7 207 3.3 213 275 283 5.93 29 1.73 1.58
a8 228 1.23 1.85 1.65 273 343 286 1.43 1.85
g 278 29 1.84 1.6 2.94 3.19 311 1.66 1.44
10 229 1.59 31 1.63 3.53 13.49 34 1.38 1.81
Ayerage 219 29 214 1.77 3T 7.34 31 1.73 1.65
TABLE III

EFFICIENCY RESULTS FOR REAL APPLICATIONS IN SECONDS.
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Fig. 2. Averages of Execution Times for Protocol in Different Ranges.

SKOUT: allows users to find people based on search criteria,
like age or gender. The application displays the results along
with found people’s distance from the user. As the application
shows precise distance which InnerCircle cannot do, the
application would need to change its functionality somewhat
to reduce the accuracy of its functions. Therefore InnerCircle
protocol is deemed as Limitedly Applicable.

Badoo: an application that allows users to find people
nearby their location and even notifies users when other users
are extremely close, such as crossing the same street at the
same time. This case was deemed to be Limitdly applicable
because Badoo displays the location of other users on a map:
this requires knowing precise coordinates, which InnerCircle
does not provide.

MeetMe: allows users to find and chat with people nearby
who have the same interests. The protocol for this application
was deemed to be fully applicable since MeetMe just finds
people nearby within a certain radius, just like InnerCircle
does.

LINK: another meet up application that connects users with
people nearby them. The application also allows user to create
groups based on location or interests. The protocol is fully
applicable for this application because it shows people nearby
without disclosing their location and this can be done with

InnerCircle.

Tagged: with this application the user can find people
based on age or location and chat with people nearby. The
protocol is fully applicable since Tagged shows people nearby
without showing their exact location, which can be done with
InnerCircle.

Singles Around Me: a dating application that connects user
with singles nearby based on the specified location range. The
user can also chat with and “’like” other users. This application
is limitidly applicable since it shows the exact location of the
users nearby and this is not supported by InnerCircle

Mico: allows user to discover people nearby and share
moments with other users. This application is limitedly appli-
cable since it shows the exact location of its users. However,
the feature of finding people nearby can be replicated by
InnerCircle.

Find My Friend: allows the users to locate their friends and
share their own location. The protocol is not applicable for
this mobile application as the application requires the exact
location of the user.

Family Locator: similarly to the previous application, Fam-
ily Locator allows users to locate their family members and
friends as well as share their own location. An option for
hiding/showing their location is also given for the users.
As this application provides precise location of its users,
InnerCircle protocol is not applicable.

VI. DISCUSSION
A. INFLUENCE OF SMARTPHONE DEVICES

Our results indicate that Nexus 5X generates answers faster
than Samsung Galaxy S4 Mini, but Samsung Galaxy S4
decrypts the messages faster than Nexus 5X. This contradicts
our assumption that Nexus X5, the newer device, would
carry out both processes faster. It is our belief that the two
devices handle encryption differently, with Samsung Galaxy
device generating longer messages which the Nexus device
then decrypts, explaining why the newer device decrypts
messages slower than the older one. We can also see that
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THE APPLICABILITY OF INNERCIRCLE ALGORITHM TO SELECTED
MOBILE APPLICATIONS.

proximity checks from Nexus to Samsung Galaxy were in
general slower than Samsung Galaxy to Nexus checks, likely
for the previously mentioned reason that Samsung Galaxy
device creates longer encrypted messages.

Although not implemented, the parallelization component of
InnerCircle could further affect the difference between android
devices. As there was only one thread running in the execution,
the protocol did not make use out of Samsung’s dualcore and
Nexus’s hexacore CPU processors. In case of multithreaded
optimization implementation, we believe hexacore processor
of Nexus could afford more threads running in parallel and
allow the artifact to run faster than dualcore processor of
Samsung. This is important to keep in mind, as our results
indicate that for the protocol to be efficient enough for use in
real world applications, optimization is necessary.

Overall, judging by the difference of answer generation
on our tested devices it seems that it can be expected that
the location privacy-preservation protocols will become more
efficient for use in real world applications as smartphone
devices become more advanced. This means that even though
some protocols may be too slow to be implemented in real
applications on the market right now, that may change in 2 or
3 years without the need to modify the protocols themselves.
However, it is important to keep in mind that a considerable
amount of people hold on to their old devices for years instead
of getting state-of-the-art phones upon their release. This is
particularly significant to protocols such as InnerCircle, which
involve considerable amount of computation on both Alice’s
and Bob’s devices.

B. EFFICIENCY

Based on the results for Samsung Galaxy-Nexus proximity
checks in radius of 100 meters we see it takes the algorithm
76 seconds to return the answer. Adding times required for
devices to communicate with servers and display GUISs, the
time required to receive output from the application further
increases the time. For comparison, a study by Narayanan et al
[15] implementing their own protocols in Android applications
found execution times to be 46 seconds for Protocol 1, which

is comparable to the InnerCircle time at 50 meter radius values.
Such time frames are unacceptable to most users as they are
not willing to wait so long for an application to provide a
service. Furthermore, it is reasonable to assume that Bob will
not always be stationary in his position while the answer is
generated on his phone. Given that 74 seconds are enough
time to cover a distance of 100 meters by foot (more so by
transportation vehicle), it is plausible that Bob’s position can
change to in/out of range before Alice receives an answer, thus
making it no longer valid.

Using InnerCircle algorithm with smaller radius values is
more feasible: it took the protocol 5 and 7 seconds to calculate
proximity for Galaxy-Nexus and Nexus-Galaxy proximity
requests respectively at 25 meter radius. These time frames
are much closer to the results of real applications, which
provide output to the users in range of 1 to 4 seconds on
average, with one application taking 7 seconds. However, real
application response time is not affected by the radius specified
by the users, so an user could locate people in other cities or
countries. This is not likely to happen in InnerCircle even
after implementation of all optimization techniques. As we
can see in Figure 2, the time taken to execute the protocol
increases drastically with small increases in radius values.
Protocol 2 from the previously mentioned Narayanan et al [15]
study takes 3 seconds to carry out which is sufficient time for
implementation in real applications. However, this protocol
does not use homomorphic encryption as Narayanan’s et al
Protocol 1 and Per Halgren’s et al [9] InnerCircle protocols,
and is less secure as Bob’s location can be easily revealed in
case Alice collaborates with the server.

Considering the results we obtained it seems that the answer
to our research question 1 is mixed: the efficiency of state-
of-the-art location-proximity algorithms is sufficient enough
in short distances, but is far too slow to be implemented as
part of real mobile applications using longer distances. In
regards to research question 1.1 we see similar results: the
protocols compare well to real LBS mobile applications in
small ranges, but quickly fall behind in longer radius values.
As the majority of mobile applications focus on distances
much longer than 100 meters, our research study has not found
enough evidence to suggest that the state-of-the-art location-
proximity algorithms are efficient enough for applications in
most mobile applications.

However, as mentioned previously, the multithreading com-
ponent of the protocol was not implemented, which has a
severe negative effect on the efficiency of the algorithm.
If implemented, multithreading component could reduce the
answer generation and message decryption on Bob’s and
Alice’s devices multiple times, depending on the amount of
CPU processors present on the devices. In theory, answer
generation and decryption should decrease twice for Samsung
Galaxy S4 Mini device as it has a dualcore CPU processor, and
six times for Nexus 5X as it has a hexacore CPU processor. In
this case, proximity checks from Samsung Galaxy to Nexus
would take 2, 7.4, 16.1 and 28.5 seconds for ranges of 25, 50,
75 and 100 meters. Proximity checks from Nexus to Samsung



Galaxy would take 2.2, 8.2, 18.1 and 31.6 seconds for the same
radius values. While these performance times are much faster
than the ones without parallelization component, they match
the performance of real market applications only at distances
of 25 and 50 meters, with performance for 50 meters radius
being equal to the slowest real application, Singles Around
Me. Therefore, it appears the protocol would still be inefficient
enough for use until more advanced smartphone devices are
available on the market and the answers to research questions
1 and 1.1 remain unchanged.

We believe there is an additional option for improving the
efficiency of the protocol that would allow to check proximity
in large radius values. This option involves manipulating the
precision of the coordinates used as input for the InnerCircle
algorithm. The precision of the coordinates depends on the
number of digits included after the decimal point. When
dealing with longitude and latitude degrees, the 8th decimal
digit denotes precision of 1.1 millimeters at the equator.
Reducing the values by each digit decreases the precision
of the coordinates by a factor of 10 (i.e. 7th digit denotes
precision of 11.1 millimeters and 6th digit denotes precision of
111.1 millimeters). With this approach application developers
can allow their users to check proximity in large radius values
through a combination of small radius values with imprecise
coordinates. For example, to allow Alice to check proximity
to Bob in more significant radius like real mobile applications,
such as 3000 meters, the mobile program could really check
the proximity in 27 meter range with precision of the world
coordinates equivalent to the 3rd decimal digit of longitude
and latitude degrees (approximately 111.1 meters). As this
approach would only affect world coordinates, but not the
radius values used in lessThan() method, the efficiency of the
algorithm should not be affected and the radius of 3000 meters
should be checked with the same performance it would take
to check proximity in the real 27 meter radius. That is, little
more than 5 to 7 seconds that it takes to check 25 meters
on average, depending on the Android device being used.
This would require configuration on the application developer
part to determine which radius and precision combinations
would provide the desired effect. As InnerCircle algorithm
uses world coordinates as input and not latitude and longitude
degrees, conversion would need to be determined for the
specific world coordinate system used by the application. One
negative side effect of this approach is that it increases the
range at the edge of the circle in which Bob’s coordinates
may be displayed incorrectly to Alice. However, this error
range would be equal to the precision value of the coordinates.
Using previous example, Alice would be able to check the
proximity of Bob in the radius of 3000 meters, with the error
range being 111.1 meters. Although real applications most
likely check the proximity with higher accuracy at the same
range, we believe the significance of the error range remains
small in comparison the the radius values in which proximity is
checked. Moreover, the application incorporating InnerCircle
protocol has the added bonus of guaranteeing that the location
privacy of its users stays intact, while the same cannot be said

about mobile applications without the protocol.

C. APPLICABILITY

Applicability of the protocols to real applications is some-
thing that is often not reviewed in depth by research papers.
Siksnys et al [16] briefly mention 2 friend location services
but does not explain them in detail or how the location
privacy-preserving algorithm could affect the applications if
it was implemented. Narayanan et al [15] provides use cases
where LBS mobile applications could be used and relate these
use cases to the protocols proposed in their research papers.
However, it is debatable whether the use cases themselves
are sufficient proof that the algorithm could be applicable
enough to be used in general applications. One obstacle in
implementing location privacy-preserving protocols in mobile
applications is the possible limitation of the application’s func-
tionality. In case the protocol can only apply to rarely used or
unknown applications, the protocol usefulness is questionable
regardless of its efficiency. For example, dummy location and
k-anonymity based protocols are suitable for situations where a
user would want to hide his location from service providers. In
mobile applications where location is shared between different
users instead such algorithms would not be applicable.

InnerCircle algorithm is created for cases where users are
allowed to see the proximity of other users, but not their
precise location. Applications that could adapt this protocol
can be venue adviser applications, which recommend their
users venues nearby their location, and augmented reality
mobile games which allow users to interact with other users
based on their location proximity (such as playing hide-and-
seek or tag). However augmented reality games do not appear
to be popular based on our application search on Google
Play store and venue advisers may require modification of the
InnerCircle protocol as the venues would be treated as Bob
and have their locations hidden from the user. This is clearly
not a desired effect for the venues like restaurants and bars,
which want the users to know their location.

It appears that the algorithm is most useful for applications
that facilitate interaction with strangers before a possible
meeting in reality. In such cases proximity between users is
important as users want to know in advance if the potential
meeting is possible, but at the same time want to keep their
location private as they have not built enough trust yet to reveal
it. As search on Google Play Store shows, such cases are rel-
evant to meet up and/or dating applications. Applications with
similar purpose but which focus on interaction between people
who already know each other (Find My Friends and Family
Locator, which focus on friends and family respectively) seem
to place less importance on location privacy and allow their
users to see the precise location of different users on a map.
For such applications InnerCircle is less applicable.

Overall, in regards to research question 2 the answer varies
greatly based on the purpose of the application. It appears
that state-of-the-art privacy-preserving location-proximity al-
gorithms can be applied relatively freely without limiting
the functionality to applications with the purpose of meeting



strangers through the internet. Importance of location privacy
in such applications is crucial, and as meet up and dating
applications are relatively popular in the mobile market, good
location privacy-preserving algorithm applicability means such
algorithms can become quite popular in mobile application
market.

D. MODIFICATION OF THE PROTOCOL

During the course of the study we have noticed that certain
modifications had to be made to the protocol to adapt its archi-
tecture to an Android application. First, the original algorithm
was capable of performing all its tasks in a single round trip.
However, when implementing the algorithm we noticed that
the messages between Alice and Bob were much too big to be
sent via GCM service, which limits the size of the messages to
4 kb. Having a server socket opened to receive server streamed
messages on users’ devices permanently was deemed as an
inadequate alternative as such solution would cause issues
like wasted computing power and possible program crashes,
among others. Instead, a combination of server sockets and
GCM service was used in the implementation of the artifact,
where GCM services were used to notify when a message is
available for the users to retrieve via regular socket servers. As
a result the implementation of InnerCircle protocol no longer
uses a single round trip and instead has none. This means
the communication times of our algorithm are much slower
than the original algorithm would have. Furthermore, the use
of 2 servers by our artifact means that the protocol is no
longer decentralized as intended. However, TTPs are still not
necessary as, thanks to homomorphic encryption, the servers
used by the artifact are unable to retrieve location data about
either Bob or Alice.

It is also worth to note that the original InnerCircle
protocol generated sum of squares for all values until the
maximum radius value allowed to be chosen by the users.
This optimization technique, while increasing the efficiency of
answer generation, consumed a considerable amount of time.
The researchers behind InnerCircle proposed creating sum of
squares since the distance in the protocol is always a sum
of two squares. The sum of squares was computed only for
the radius values used in the application, as this decreases the
time to generating the sum of squares. Furthermore, another
optimization technique related to the sum of squares is to
initialize the sum of squares and store the negated values for
each value of sum of square for the available radius values
encrypted under their public key in the mobile application
itself. This would reduce computation time by considerable
amount since lessThan() would retrieve the negated value from
the negated values list resulting in less computation.

VII. CONCLUSION

Our research study set out to determine whether privacy pre-
serving algorithms at their current state are sufficient enough
for use in real mobile applications on the market. For this
study we chose an algorithm that we believe represents state
of the art technology best and implemented it as part of

our artifact: an Android application that checks the location-
proximity between two users. We have found that due to
various limitations the protocol required several modifications
when implementing it in Android application. Applicability
wise the protocol could be applied to a number of popular
applications, in particular for the ones that facilitate meetings
in real life between strangers, such as meet up and dating
apps. However, the performance was sub-par, taking over a
minute to check proximity between two users at a radius
of 100 meters - a time that users would not be willing to
wait when using a mobile application. While implementing
full optimization techniques would increase the efficiency of
the protocol, we hypothesize that the efficiency of the artifact
would match real world applications at radius values 25 and
50 meters, while values at 75 meters and above would still be
falling short to be acceptable for potential users. One possible
option for overcoming this obstacle is manipulation of the
coordinate precision used as input for the privacy preserving
protocol. With less precise coordinates the algorithm can
effectively check the radius of 3000 meters with the time
required to check 27 meter radius - little more than 5 to
7 seconds - which would allow the protocol to be efficient
enough for implementation in real applications. Calibration
on the software developer part would be required to make
sure the values are accurate, but this solution should make
the algorithm efficient enough for use in large distance radius
values.

Further research on this topic could review the efficiency
of location-proximity privacy-preserving protocols after imple-
menting coordinate precision manipulation as a optimization
technique. Research examining in depth the effects on the
accuracy of proximity checking when using various precision
for coordinates could also be beneficial. Finally, recreation of
the study with different proximity checking algorithms could
determine if other state of the art methods for preserving
location privacy are more efficient.
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APPENDIX A

The artifact developed in this research study is available at the following location:

https://github.com/SimonasStirbys/InnerCircle

The latest commit is on May 30, 2016.

APPENDIX B

Tables for testing results in milliseconds for Nexus to Samsung Galaxy proximity checks at distances of 25, 50, 75 and
100 meters.

CPU, CPU,
Total Time Thcrution | Ansar CPU, Total
1 12774 3278 1862 5140
2 13814 33 1866 5197
3 14996 3395 1861 5256
4 14005 3266 1954 5220
b 14956 654 16861 5515
i 12503 3523 1949 5472
T 14606 3220 1861 5081
g 16457 3294 1955 5249
g 16638 3533 1859 5392
10 16197 3401 1868 5269
Awerage 14703 3390 1890 5280

TABLE ¥V

TESTING RESULTS FOR SAMSUNG GALAXY TO MEXUS PROXIMITY
CHECKS AT 25 METERS IN MILLISECONDS

CPU, CPU,
Total Time Decryption]. Answer CPU, Total
1 37600 12561 7290 19851
2 40844 13076 7702 20778
3 39763 12299 7150 19489
4 31514 12390 7145 19535
5 ITET0 12634 7681 20315
& 35759 11895 7681 19576
T 34907 12250 7085 19335
i Jgg 12509 7428 19937
) 35908 12794 1575 20374
10 34857 12841 7094 20035
Awerage 36804 12535 1387 19922

TAELE VI

TESTING RESULTS FOR SAMSUNG GALAXY TO NEXUS PROXIMITY
CHECKS AT 50 METERS IN MILLISECONDS.

CPU, CPU,
Total Tima Diaerulios . Anter CPU, Total
1 68090 26760 16336 43096
Fa 84781 27018 16344 43367
3 74530 26574 16402 42976
4 65060 26417 16408 42825
b 64429 27069 15904 42973
3 68002 270N 15562 42593
T 70385 26868 17120 43988
i 70255 27649 16465 44114
g 74129 26179 16558 42737
10 80175 27466 16987 44453
Average 71984 26803 16404 43312

TABLE VIl
TESTING RESULTS FOR SAMSUNG GALAXY TO NEXUS PROXIMITY
CHECKS AT 75 METERS IN MILLISECONDS.



CcPu, CPU,
Total Time B i || e CPU, Total
1 109087 47217 21727 74944
2 118666 47407 29152 76559
3 129919 47196 28765 75861
4 107755 47644 28268 75912
4] 125113 485920 28630 TTE50
B 153234 47847 29245 77092
T 116975 47878 2821 76095
i 119147 47284 27925 75209
g 191815 45164 28711 TRETS
10 142132 46941 28182 75123
Average 131384 47650 28483 76133

TABLE ¥III
TESTING RESULTS FOR SAMSUNG GALAXY TO MEXUS PRONIMITY
CHECKS AT 100 METERS IN MILLISECONDS.

APPENDIX C

Tables for testing results in milliseconds for Samsung Galaxy to Nexus proximity checks at distances of 25, 50, 75 and
100 meters.

CPU, CPU,
Tatal Time Fivcted  Aicacs CPU, Total
1 13514 4162 2997 71539
2 14982 4098 2931 7029
3 16590 4133 3051 7184
4 16368 4105 2979 7084
5 15187 4180 2927 7107
6 15896 4117 2934 T051
T 152568 4202 3037 7239
8 16688 4062 3713 7775
9 13719 4132 3202 T334
10 15546 4139 3097 7296
Ayerage 15375 4139 3087 T226

TABLE IX

TESTING RESULTS FOR NEXUS Tor SAMSUNG GALAXY PROXIMITY
CHECKS AT 25 METERS IN MILLISECONDS

CPU, CPU,
Total Time Dioitins | e CPU, Total
1 39524 15131 11278 26404
2 46712 15145 11088 26233
3 38783 15081 11879 26960
4 42749 15055 11634 266849
5 43848 15084 11674 26758
6 43296 15092 11624 26716
7 41757 14848 11613 26461
8 41995 15134 11415 26554
g 40883 15118 11299 26417
10 39685 15070 11352 26422
Average 41963 15076 11486 26562

TABLE X
TESTING RESULTS FOR NEXUS TO SAMSUNG GALAXY PROXIMITY
CHECKS AT 50 METERS IN MILLISECONDS.



CPU, CPU,
Tatal Time ol o, el CPU, Total
1 TE415 33038 25328 58366
2 79371 32920 25279 58199
E 78542 33099 25163 58262
4 82959 33094 26382 58476
5 77578 33046 25292 58338
] g2a54 I 25060 58164
T 81357 33092 25080 58182
8 79524 33117 25267 58384
9 78281 33174 25220 58394
10 7742 33031 25570 58601
Average 79462 33072 25265 58337

TABLE XI

TESTING RESULTS FOR NEXUS TO SAMSUNG GALAXY PROXIMITY
CHECKS AT 75 METERS IN MILLISECONDS.

CPL, CPU,
Total Time i k| G CPU, Total
1 125927 57781 43918 101699
2 134587 ATEI 46323 104154
3 126524 57881 43044 100925
4 129568 57847 43320 101217
5 130381 57903 43745 101648
B 126420 57659 43139 100798
T 128126 58013 43554 101567
8 130631 57925 43411 101336
g 137164 57877 45283 103160
10 137024 5TT53 44820 102573
Average 130635 57852 44056 101908

TABLE XII

TESTING RESULTS FOR NEXUS TO SAMSUNG GALAXY PROXIMITY
CHECKS AT 100 METERS IN MILLISECONDS.



