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Abstract 

 

Technical Debt refers to sub-optimal solutions in software development that affect the life 

cycle properties of a system. Source Code Technical Debt is considered to be a problem for 

many software projects, as neglecting Technical Debt on actively developed software will 

increase the required effort to maintain the software as well as to extend it with new features. 

However, refactoring Technical Debt also requires effort which is why it must be investigated 

if the Technical Debt is worth resolving. To be able to make such decisions, the existing 

Technical Debt must be correctly identified and presented in an understandable way. This 

thesis addresses the problem by conducting a case study at Ericsson, where Technical Debt in 

a large industrial C/C++ project has been investigated. The investigation was done by 

designing a measurement system based on ISO standard 15939:2007 and reviewing 

Technical Debt measurement tools suitable for its construction. The investigation also 

included correlating the resulting Technical Debt measurements with maintenance effort by 

applying triangulation of several methods. This allowed the Technical Debt types to be 

prioritized based on their correlation strength. The chosen Technical Debt measures are 

presented as a unified indicator that indicates file refactoring priority in order to support 

decision-making regarding Technical Debt Management, so that additional maintenance 

effort can be avoided in the future. 
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Vocabulary 

 

 

TD: Technical Debt. 

 

Measurement System: Aggregation of measures into a joint indicator. 

 

Effort: Hour spent to complete a specific commit. 

 

Modified LoC: Modified line(s) of code of a file/commit. 

 

Commit: Code changes and additions submitted to a versioning system. 

 

Commit Difficulty: Modified LoC per hour spent ratio. 

 

On-site: Refers to the work environment at the company. 

 

StDev: Standard Deviation. 

 

Lightweight Tool: A tool that does not require extensive setup/installation.  
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1. Introduction 
Technical Debt (TD) refers to sub-optimal solutions in software development that affect the 

life cycle properties of a system. According to Nugroho et al. [5], neglecting TD on actively 

developed software can cause inefficiency and expansion difficulties in the system, and such 

overhead cost is considered as the interest of TD. If TD is not properly managed, the growth 

of TD over time will result in the growth of the interest, which will increase the required 

effort to maintain the software as well as extending with new features [5]. This is a problem 

that can cause severe long-term consequences [1]. For example, TD was estimated to cost the 

global software industry 500 billion dollars in 2010 [1]. 

 

A common type of TD is Source Code TD, which refers to short-term solutions in coding. A 

common cause of Source Code TD is the rapid evolution of software and frequent deadlines 

present in Agile processes, as they can drive developers to using such short-term solutions 

[1]. Examples of Source Code TD include Code Duplication and high Cyclomatic 

Complexity [5]. Another TD type measurable on source code level is Non-Allowed 

Dependencies between components. Martini et al. [2] claim this is an especially severe type 

of TD, due to the fact that these dependencies might cause ripple effects when changes in the 

source code are made. 

 

An important factor to take into account is that TD also requires effort to resolve, referred to 

as the principal of TD [3]. Therefore, it is important to decide when to pay the principal 

during TD Management. To be able to make such decisions, the existing TD must be 

correctly identified and presented in an understandable way. As such, this thesis measures 

and visualizes source code level TD measures in an industrial context as a joint indicator. 

This thesis also analyzes correlation strength between the chosen TD measures and commit 

difficulty, in order to indicate which measures has the strongest impact on maintenance effort 

within the case context. This combination in turn supports decision-making concerning TD 

Management. These procedures are based on approaches [3], metrics [5][6][7] and best 

practices [20][21][22][23] from previous literature. This case study was conducted with an 

agile development team at an Ericsson site, using suitable TD measurement tools identified 

during the course of the project. In order to measure TD interest, comparisons have been 

made between occurrence-levels of measured TD types and levels of maintenance effort, by 

investigating historical data spanning approximately three months. 

 

1.1 Purpose 
The purpose of this study is to identify and apply suitable methods/tools for identifying, 

quantifying, presenting and prioritizing source code level TD in C/C++ applications. This 

included correlating these TD measurements with maintenance effort measured as modified 

LoC per hour in commits, where effort has been manually specified in the accompanying 

message. This allows the TD types to be prioritized based on their correlation strength to 

increased maintenance effort. Their correlation strength represents the severity of their 

interest. 

 

1.2 Scope 
This is a holistic case study [4], meaning that the study is delimited to one case (due to the 

established contract with the company in question). The scope is limited to identifying and 

visualizing Source Code TD from historical/current data to allow for validation of the found 

TD, by using a combination of build-integratable tools, ad-hoc parsers and manual processes. 

This study has measured TD in production code specifically rather than testing code, as 
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requested within the case context. The restriction to build-integratable tools is due to context 

specific requirements. Estimating future TD accumulation and interest payments is outside 

the scope of this thesis, due to time restrictions. Focusing on gathering measures from 

relatively current data has given the opportunity to discuss TD qualitatively, as it is easier for 

team members to discuss data on their recent work. 

 

The generalizability of the correlation and validation results of this study are limited since the 

case only covers a single development team from a department of a large company, and 

mainly one large application out of four. The correlation process, tool recommendations and 

measurement system should however be of interest to companies in similar contexts and 

maintainers of C/C++ projects of any size. This includes the method for finding difficult 

commits, based on specifying effort as hours spent and comparing to modified LoC, which 

could easily be applied to other programming languages. 

 

1.3 Research Questions 
The following research questions have been used to fulfill the purpose of this study: 

 RQ1: How can an understandable aggregation of multiple source code level TD types 

be designed and implemented? 

 RQ2: How can source code level TD be measured in large industrial C/C++ projects? 

 RQ3: How can interest be used to prioritize source code level TD types? 

 

1.4 Main Contributions 
The main contributions of this thesis are: 

 A measurement system based on ISO standard 15939:2007 [15], that indicates 

refactoring priority of files based on levels of several TD types. This answers RQ1. 

 A mapping of Source Code TD tools for C/C++, with accompanying 

recommendations. This answers RQ2. 

 A process for correlating specific TD types and overall TD to commit difficulty, 

allowing for TD type prioritization. This answers RQ3. 

 

1.5 Thesis Outline 
The second chapter first presents a thorough explanation of TD and the chosen TD types, 

followed by a review of related research. The third chapter then provides a detailed 

description of the processes and accompanying methods that were used to reach the study‟s 

three main contributions, while the fourth chapter presents the results of constructing a 

realization of the measurement system, reviewing tools, correlating TD with effort and 

presenting TD types as a unified indicator. These contributions and how they answer the 

research questions are then discussed in the fifth chapter. Finally, the conclusions of this 

study and the significance of its contributions are summarized in the sixth chapter. 
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2. Theoretical Background 
This chapter provides further details on TD and related concepts, and details the TD types 

that were chosen for this study. The technique for measuring the interest of the TD types is 

also detailed. Finally, a review of related research is presented, and this study‟s placement 

with regards to the existing literature is explained. 

 

2.1 TD Overview 
As outlined by Li et al. [9], TD can be split into several areas (all including both interest 

and principal) based on the origin of a compromise. On the other hand, that which is not 

TD includes unimplemented features as well as runtime properties such as performance, 

but existing TD may be the underlying cause. This study focuses on the area of Source 

Code TD while touching upon Architecture TD and Defect TD as well. According to Li et 

al. [9], Source Code TD includes such types as Code Duplication and over-complex code, 

while Defect TD refers to unmanaged defects and Architectural TD refers to architectural 

decisions that reduce maintainability. Architecture TD can be measured through source 

code, by analyzing dependencies against an intended architecture as well as by analyzing 

the amount of dependencies in general [9]. Defect TD is also studied through source code, 

and is essentially covered by standard static verification tools. 

 

The areas that this study focuses on have received plenty of attention in the past. In fact, Li 

et al. [9] state that over half of their 94 reviewed studies concern Source Code TD to some 

degree. They emphasize that this is related to the amount of available tools, as well as the 

fact that most team members work with source code on a daily basis. They also reason that 

Source Code TD is a form of TD that the team members themselves should be able to 

resolve. As can be seen in section 2.2 however, major studies on these TD areas have used 

measurement tools that cannot be used in the context of this case study (due to language 

incompatibility or tool unavailability), hence why one of this study‟s goals is to answer 

RQ2. 

 

TD Management (TDM) is also divided, in this case into activities centered on either 

dealing with existing TD or preventing potential future TD [9]. Out of these categories, this 

study focuses mainly on TD Identification, as it is the first step to engaging in other TDM 

activities such as TD Monitoring, Prioritization, Communication and Documentation. This 

study lacks the statistical sample rate required for estimations of future TD, hence the focus 

on other activities.  
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Figure 1: TD overview 

 

2.1.1 Chosen TD Types 
The TD types that were chosen for measurement (see Fig. 1) within the case context are: 

 

2.1.1.1 Code Complexity: McCabe Cyclomatic Complexity 

Cyclomatic Complexity relies on each function in a source code file being graded with one 

point for each independent path through the function. When a function is graded >15, that 

function is considered complex [6]. This measure was chosen based on its frequent use for 

maintainability predictions in previous research [3][5][6][7][11][13]. Higher complexity 

potentially increases maintenance cost due to its effect on source code readability, and this 

extra cost can be interpreted as the interest of this TD type [7]. Additionally, the amount of 

test cases/complexity of test code required to verify that the method works as intended 

increases with its Cyclomatic Complexity (essentially one case per point is required for full 

branch coverage). High Cyclomatic Complexity can also affect the changeability of a 

method [13], due in part to the reduced readability. As Cyclomatic Complexity is a method 

based measure, certain steps are required to transform it into an unbiased file-level rating 

(the principle used by Antinyan et al. [6] was followed), which is explained in detail in 

section 3.2.1.2. 

 

2.1.1.2 Code Complexity: Halstead Error/Delivered Bugs 

Another form of code complexity is Halstead Error (also known as Halstead Delivered 

bugs). This measure is derived from other measures in the Halstead suite, which at its core 
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is based on the number of unique and total operands, and the number of unique and total 

operators, in a method [19]. Halstead Error specifically estimates the defect proneness of a 

method. The measure it is derived from is incorporated into Hewlett-Packard‟s 

Maintainability Index [11], but Halstead Error itself has not been used in any of the 

previous literature reviewed as part of this study. This measure was chosen mainly as a 

byproduct of it being available in one of the tools used in this study, and it was also the 

easiest to explain out of the available Halstead measures (which is vital for a measure to be 

adopted by team members, according to Heitlager et al. [13]). The interest of this measure 

is the amount of time spent dealing with any impact of these possible defects, as well as 

increased source code review difficulty due to the complexity required to get a high 

Halstead Error value. This method level measure also requires certain steps to transform it 

into a file-level rating, which is explained in detail in section 3.2.1.2. 

 

2.1.1.3 Code Duplication 

Code Duplication is commonly created during the development and maintenance of large 

software systems [12]. Excessive amounts of duplication in a system can potentially 

influence many quality attributes, while also rendering a system larger than it needs to be 

[13]. According to sources used by Grundèn & Lexell [1], Code Duplication violates 

separation of concerns, and can impact the modifiability, testability, reusability and 

understandability of a system. This risk of high and varied impact is due to the fact that 

refactoring may need to be applied in all places the code is duplicated, rather than one central 

file. It can also be quite difficult to find all instances where a certain block is duplicated [12]. 

Manual investigation is often required to judge the severity of a duplicated block [12], thus 

duplication is measured in this study to assist in such investigations. 

 

2.1.1.4 Static Analysis Issues 

Automatic static analysis tools analyze code looking for issues that might cause faults or 

might degrade some dimensions of software quality [3]. These issues can be either general 

or highly language-specific. The interest that these issues can cause is the amount time that 

was used to identify and deal with the effects of these defects, while refactoring them 

ensures they have no effect even if the effect would have been trivial. Most ASA tools 

divide the issues they can detect into separate priority categories by default. As these tools 

can measure a multitude of issues this study makes a restriction to measuring only the 

issues that the tool itself considers as the most important, in order to reduce false-positives. 

 

2.1.1.5 Dependency Count 

Dependency count („includes‟ in C/C++) is a very basic form of coupling (equivalent to 

ATFD used by Rapu et al. [10]). As changes in a file can lead to required changes in files 

that depend on it, having many dependencies is a form of TD due to higher risk of change 

cascade. Izurieta & Bieman [17] also claim that as dependencies increase, the system 

becomes harder to extend. This measure was selected over more “lower-level” coupling 

measures that prioritize dependencies based on how they are used, as the initially intended 

coupling measurement tool did not work on-site, and manually analyzing 

dispersed/intensive coupling [14] requires quite complex algorithms. 

 

2.1.1.6 Non-Allowed Dependencies 

Non-Allowed Dependencies are a form of Modularity Violation, and refer to dependencies 

that do not follow the original architecture [1]. According to results by Zazworka et al. [3] 

Modularity Violations, which they measure in the form of Non-Allowed Dependencies, 

point to change-prone files. As extra refactoring is a typical form of TD interest, Non-
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Allowed Dependencies can be interpreted as a form of TD. According to Grundèn & Lexell 

[1], Non-Allowed Dependencies often occur in rapidly evolving software, where the 

architecture cannot follow. Another factor that creates Non-Allowed Dependencies is that 

developers may not be aware of what is allowed [1]. Non-Allowed Dependencies can 

require extra changes in other files due to the existence of the dependency. If Non-Allowed 

Dependencies exist that are unknown, this might cause time estimations to be inaccurate 

and delay releases of features [2]. The reason this would be unknown is that Non-Allowed 

Dependencies cause inconsistency against existing architecture documentation, meaning 

the documentation can no longer be trusted. This measure relies on the existence of a 

defined architecture, which provides the rules that dependencies are validated against 

[1][2]. One such diagram was available for one large application on-site, allowing this 

measure to be implemented. 

 

2.1.2 Chosen TD Interest Indicator 
As discussed by Grundèn & Lexell [1], producing accurate estimations of TD interest and 

principal are both difficult and time-consuming, which is why this study does not focus on 

estimations. As detailed in section 3.3.2, this study instead uses modified LoC divided by 

hours spent working on a commit to indicate the interest of TD types found in the related 

files (in order to answer RQ3). This method, which is less reliant on estimations even 

though the effort value is still partially estimated by the team members, has not been used 

in the related research encountered during the literature review phase. Its purpose was to 

produce more accurate correlations with raw effort, compared to previous studies using 

effort surrogates. Compared to change frequency (which is the most similar interest 

indicator in previous studies), this method instead measures the difficulty of individual 

changes rather than how often these changes occur. With change frequency change size is 

ignored while modified LoC per hour instead prioritizes changes based on change size 

divided by time. A benefit to change frequency however, is that it is a file level measure 

while modified LoC per hour is limited to commit level. As can be seen by the case context 

specific correlation results (see section 4.5), the effort indicator has a major weakness in 

regards to sample size. Enough commits with effort specified need to be produced (while 

change frequency can be applied naturally to the entire commit history). 

 

2.2 Related Research 
Zazworka et al. [3] have studied TD identification using four approaches (code smells, 

grime, ASA Issues and Modularity Violations). Their results show that different 

approaches find TD in different parts of the code. Their results also indicate that certain 

types of TD (from Source Code or Architecture area) are of higher priority based on their 

likelihood to cause defects and/or require changes. Their study is however limited to a 

single (large) open source project written in Java, which has also affected their choice of 

tools for each of the four approaches. Even so, their findings were of great interest to apply 

in the context of this study such as their assessments of God Classes (files with high 

Cyclomatic Complexity and number of dependencies [10]), Modularity Violations, and 

Dispersed Coupling. Their prioritization is based on correlation strength, which is 

calculated by applying Pearson‟s Correlation, Conditional Probability, Chance Agreement 

and Cohen‟s Kappa to the two phenomena being studied, and is replicated in this study. 

 

Zazworka et al. [7] have also evaluated human identification of TD and compared it to 

automated identification. For human identification a TD template accompanied by a short 

questionnaire was used, whose questions have affected how this study intends to extract 

similar information during qualitative investigation of team members‟ work. Their results 
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indicate that human identification finds different forms of TD compared to tool usage, 

which is why this study plans to do both to make sure it is focusing on the right forms. The 

tools used in this study are not applicable in the case context, but they highlight that the so 

called “priority 1”-issues in the tool FindBugs was especially helpful. This study in turn 

also focuses on measuring for defects that fall into the highest category when using the 

identified FindBugs alternatives. Zazworka et al. [7] also achieve similar success with code 

smells related to coupling as they did in their previous work [3]. 

 

Another study was partially conducted at Ericsson by Antinyan et al. [6], and focuses on 

identifying risk areas in code. They define risky code as “files that are fault prone, difficult-

to-manage or difficult to maintain” which aligns well with definitions of (Source Code) TD 

such as the one given by Zazworka et al. [3]. Their aim was to enable systematic tool-

assisted identification and prioritization of risks during Agile development. Their results 

are quite useful for this study as well, especially due to the similarities in case context. 

Specifically, their study provided an aggregated measure to take file-size into account when 

measuring McCabe‟s complexity, which allows code complexity to be measured at file 

instead of function level. Their refactoring prioritization method based on file complexity 

and change frequency within a specific time frame was however not used in this project, as 

change frequency was not measured. The tool they developed was not usable in this case 

context due to a change in code versioning system. 

 

Rieger et al. [12] propose visualization strategies for better communication and 

prioritization of Code Duplication based on research on both industrial and open source 

projects. As part of their study they also provide insight into identification of Code 

Duplication. They reason that refactoring of duplication is non-trivial due to required 

decisions on were shared blocks shall be allowed to remain. Refactoring of Code 

Duplication leans more towards manual investigation rather than automation [12]. They 

also present several metrics for duplication from which this study specifically uses what 

they call LCC (the amount of Code Duplication in a file). This metric tracks the number of 

lines whose clones can be found in the same or other files for each file in the system. Their 

polymetric views are quite cluttered however, and thus they were not reused in this study. 

 

Heitlager et al. [13] have provided an alternative maintenance measurement model to 

replace an older one (the Maintainability Index found in [11]). They disapprove of this 

older model due to obfuscation of which measures contributed to the derived index value, 

which in turn makes it difficult for team members to understand how to improve said value. 

They reason that providing measures that team members can easily influence improve the 

team members‟ acceptance of the model. To replace MI, they suggest a set of minimal 

requirements for a practical maintainability model based on source code analysis, by 

mapping source code metrics to sub-characteristics of maintainability from an ISO 

standard. This model has strong parallels to how Source Code TD is measured, as it shares 

metrics with TD-oriented studies such as [3][5][7]. As such, this model was kept in mind 

when choosing which derived measures this study would focus on. Heitlager et al. [13] also 

suggest threshold values for their derived measures, which they claim to be language and 

context independent based on experience and expert opinion from “dozens of industrial 

projects”. This argument is clearly lacking in validity since results from these projects are 

not presented, but these thresholds at least provide a starting point which then can be 

adjusted based on the case context. 
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From an industrial perspective, a master level thesis that aimed at finding methods for how 

to handle Non-Allowed Dependencies (a type of Modularity Violation) was recently 

written by Grunden & Lexell [1]. In order to find such methods, knowledge about how the 

problem behaves was explored in a real life context at Ericsson Radio base stations 

department. They successfully connected source level elements to components and found 

Modularity Violations between them through static analysis [1]. However, the tool they 

developed was not fully automatic, and they limited themselves to measuring Non-Allowed 

Dependencies only rather than including other TD types. This study also analyzes existing 

dependencies against a set of allowed dependencies, but uses a different tool for this 

purpose with an improved feature set. Grunden & Lexell [1] also derive an indicator for 

prioritizing Modularity Violations, following the steps of ISO standard 15939:2007 [15]. 

This standard was deemed suitable for defining the indicator created from measures used in 

this project as well. 

 

Nugroho et al. [5] focus on empirically estimating TD through estimation of Repair Effort 

(RE) as well as estimation of (extra) maintenance effort. An ideal quality level is extracted, 

and the gap between the current and ideal quality level is said to represent the current TD 

level. The estimated extra maintenance effort (interest) is based on historical maintenance 

costs, current quality level and current TD level.  Similarly to Zazworka et al. [7], they 

advocate the usage of historical data as grounds for future TD estimations. Metrics were 

measured on a file/function level and threshold values were chosen based on previous 

statistical studies, which made them suitable for this study as well. The tool they have used 

to extract these measurements however is commercial and thus not usable for this case 

study, as the only commercial tools used were already purchased since previously on-site, 

or had free trials available. 

 

From the data Nugroho et al. [5] extract from applications they estimate RE which ties the 

existing TD both to the percentage of source code that needs changing as well as the 

amount of man-months required. Specifically the man-month component requires feedback 

from technology experts tied to the application in question in order to set an accurate value. 

Due to the expert knowledge required, as well as the difficulty in identifying ideal quality 

levels and historical maintenance costs, their methodologies have not been used in this 

study. Their strategy of making estimations based on historical data is quite suitable for the 

case context, and would allow for a more quantitative approach. There is however a major 

limitation in the fact that the study was only performed on Java projects. Potentially a lot of 

rework would be needed in order to adapt their process to other languages. 

 

2.3 Study Placement 
While there are several relevant studies in both the areas of Source Code TD and 

Architecture TD, concerning the TDM activities of Identification/Monitoring/Prioritization/ 

Communication, these studies are also quite different, so there was an opportunity to 

combine/compare several successful methods while also further validating them. The 

method for measuring interest (hours spent per modified LoC in a commit) is also 

potentially less complex and more accurate than interest indicators used in previous studies 

such as [3][5][6]. Certain methods encountered in previous research where only partially 

used ([6][12][13]) or not used at all ([5][11]) in this study, but the tool alternatives 

presented as part of the results (see section 4.3.1) should assist those who wish to apply 

unused TD processes on C/C++ projects as well. 
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3. Methods 
In this chapter the research methodology of this study is described. First, a visual overview of 

the research process is presented followed by details on the research setting and the involved 

stakeholders. The procedures used for constructing the measurement system, selecting tools 

and measuring TD and effort are then described in detail. Finally, the procedures for 

analyzing commit difficulty, correlating TD levels with maintenance effort and for validating 

results are detailed. 

 

Fig. 2 shows an overview of the research process, which visually explains in which order 

each action was performed. The actions in the figure will be explained in detail throughout 

this chapter. Fig. 2 also shows which action(s) are prerequisites for other actions to be started. 

Prerequisites that involve multiple actions are represented as join nodes, showing which 

actions are required before the next steps in the process can be performed. A prerequisite that 

connects to multiple actions are represented as fork nodes. Conditional prerequisites are 

presented as decision nodes, using their conditions as labels. At the decision node, the 

process can only move in the direction where the condition is fulfilled. 
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Figure 2: Research process activity diagram 
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3.1 Research Setting 
This study was conducted at a large telecom company in Gothenburg, Ericsson. This site 

provided an actively updated C/C++ project for analysis with the selected TD measurement 

tools through the implemented measurement system. The site also affected who was 

interviewed concerning human identification of TD as well as the tool result/correlation result 

and process validation. Although the results are limited to this specific context, such as the 

criteria for the tool selection and which TD types were prioritized, the design of the 

measurement system and the method for TD prioritization can be applied to other contexts. 

 

3.1.1 Stakeholders 
This section describes the stakeholders that have affected this study. 

 

Product Guard 

The product guard was one of the initiators of this thesis work. This stakeholder impacted this 

study by deciding that the scope should focus on production code, and also affected which 

agile development team participated in the study. 

 

Software Expert 

The software expert was the on-site supervisor of the thesis work, and a senior member of the 

assigned development team. Several suggestions were received through weekly status 

meetings as well as confirmation of the work that has been done to that current point. The 

first and most significant of these suggestions was to use effort in commits as an interest 

indicator, which allowed this study to differentiate itself from previous research. Besides the 

weekly meetings, the software expert was most of the time also available for further 

guidance. Especially his information regarding on-site procedures was used during work 

environment setup and additional configurations. This stakeholder was also involved in both 

human identification of TD and validation of the chosen TD measures, tools and the final 

correlation results. 

 

Tool Expert 

The tool expert was from a different team at the same site, and configured, provided 

instructions and directed to documentation for two proprietary tools available on-site. This 

included semi-frequent email correspondence. The tool expert also participated and provided 

feedback at many of the weekly meetings, including validation of chosen measures and on 

the TD measurement & visualization process. 

 

Team Members 

The members of the assigned development team. They have provided the commits with effort 

specified in the commit message. It is their rate of work that is compared to TD level before 

the work was done. 

 

3.2 Data Collection 
To guide the data collection towards answering the research questions, related literature was 

reviewed to gain increased domain knowledge regarding TD Management and to find 

applicable theories and accompanying measures for which TD types should be measured, 

visualized and evaluated for maintenance effort impact. The resulting data collection methods 

are described in this section. The section starts with describing the measurement system and 

which TD types are used with it. Next, it is explained how human TD identification was 

conducted and how it affected the measurement system. This is followed by an explanation of 
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the evaluation criteria that were used to select tools for the measurement system 

implementation, and descriptions of how they were used to collect TD measurements. 

Finally, the process for collecting commit data is detailed. 

 

3.2.1 Measurement System 
Based on the steps of ISO standard 15939:2007 [15], guidelines from Staron & Meding 

[20][21] and from Staron et al. [22][23] a measurement system was defined to combine TD 

measures in order to answer RQ1. Measurement systems are used to combine measurements 

from multiple measures and to evaluate them based on system-specific criteria, which results 

in joint indicator(s) [20]. These indicators simplify the presentation of results to stakeholders, 

and are more efficient to manage than the separate measures they are built from. According to 

Staron & Meding [20], a measurement system needs to be designed around satisfying 

information needs connected to a specific stakeholder. This is because there needs to be a 

person or a group of people that is interested in the information that the measurement system 

provides [22]. This is necessary to ensure that the measures are suitable, and that enough of 

them have been identified [21]. Staron & Meding [21] also stress that measurement systems 

should not be based around what base measures are technically feasible, as they see it as the 

opposite of their top-down approach. In the case of this study however, the information need 

from the product guard and software expert was: “Is the existing (source code) TD causing 

noticeable interest?” which can be only be analyzed for the types of TD that are in fact 

technically feasible to measure within the case context.  

 

To analyze TD impact based on the TD visible at source code level, the indicator: “How 

many/which TD types does the source code file have too much of?” was chosen. The purpose 

of this indicator is to find files with high TD levels and compare if they were modified in 

commits that were more difficult. The TD types used for this indicator are based on the 

following information needs identified from the initial project discussion with the product 

guard and software expert: 

 

 Is the code in a certain file too complex? 

 Is the code in a certain file duplicated in the same or another file? 

 Does a certain file contain any high priority issues? 

 Does a certain file interact with a lot of other files? 

 Does a certain file violate predefined rules for interaction with other files? 

 

An additional possible information need was discovered when reviewing tool capabilities, 

namely: 

 

 Is a certain file estimated to contain defects? 

 

Out of the stakeholders with information needs, the software expert has had the largest 

impact on the resulting measurement system due to participation in weekly progress 

meetings. The indicator was thus designed to assist the team members in knowing which files 

could cause their work to take longer than expected (see Fig. 3). This points out which files 

are prime candidates for refactoring tasks. 

 

The measures that make up the indicator were chosen based on recommendations from 

previous literature. Clarity to team members was also prioritized, based on the concepts of 

each measure and on how their measurement results can be improved. The indicator was also 

supposed to be updated to prioritize the measures that were proven to be important through 



 

  13 

 

correlation with commit difficulty. This would have led to certain measures being excluded. 

As no such correlations could be proven however (see Table 2 in section 4.5), the indicator 

was not updated. Possible changes based on qualitative validation from the software expert 

are discussed in section 5.1.3. 

 

3.2.1.1 Measurement System Design 

The following list provided by Staron & Meding [20] explains the elements in a measurement 

system. Fig. 3 displays how these elements have been mapped in this study‟s measurement 

system. 

 

Measurement System Element Definitions from Staron & Meding [20] 

 Interpretation: How the indicator addresses the information need. 

 Indicator: The indicator that is used to address the information need. 

 Analysis model: Thresholds, targets, or patterns that are used to determine the need 

for action or further investigation, or to describe the level of confidence in a given 

result. 

 Derived measure: A measure that is defined as a function of two or more values of 

base measures. 

 Measurement function: Algorithm or calculation performed to combine two or more 

base measures. 

 Base measure: A measure defined in terms of an attribute and the method for 

quantifying it. In this study values that are “pre-derived” by tools are treated as base 

measures, as other measures are in turn derived from them. This allows the graphical 

model to be shown at a higher level of abstraction. 

 Measurement method: Logical sequence or operations, described generically, used 

in quantifying an attribute with respect to a specified scale. 

 Attribute: Property or characteristics of an entity that can be distinguished 

quantitatively or qualitatively by human or automated means. 

 Entity: Object that is to be characterized by measuring its attributes.
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Figure 3: Measurement System design based on ISO standard 15939:2007
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3.2.1.2 TD Measure Definitions & Calculations 

The TD measures, measurement functions and analysis models seen in Fig. 3 are described in 

detail in this section (including the relevant equations). The TD types themselves are 

explained in section 2.1.1. 

 

Type: Cyclomatic Complexity 

 Base measure: The score of each function i in a file (MCi). 

 Derived Measure: The sum of the file‟s function scores (TOTAL_MC), the score 

sum of the file‟s methods with complexity >15 (HIGH_MC), and %_MC which 

stands for the percentage of TOTAL_MC that is made up of HIGH_MC, i.e. the ratio 

of the file‟s complexity that comes from too complex methods. This measure was 

originally used by Antinyan et al. [6], who claim that this measure was accepted by 

stakeholders at both Volvo and Ericsson in said study. The threshold of 15 complexity 

for a file to be complex is used from previous studies [5][6], and it is also the default 

value in the tested McCabe tools. 

 Analysis Model: Is %_MC ≥ 50? This threshold is based on a file-wise McCabe 

threshold specified by Heitlager et al. [13]. 15 Cyclomatic Complexity falls within 

their definition of moderate complexity rather than high, hence the large percentage. 

While %_MC is slightly different from how Heitlager et al. [13] calculate file-wise 

McCabe, the tests performed to compare the two file-wise indicators resulted in 

highly similar percentages. 

 Equations: 

HIGH_MC = ∑   
      MCi for all MCi > 15 in a file  (Eq. 1) 

%_MC = (HIGH_MC/TOTAL_MC)*100  (Eq. 2) 

 

Type: Halstead Error 

 Base measure: The predicted error for each function i in a file (HRi). 

 Derived Measure: The sum of predicted errors for the file using only functions with 

HR ≥ 1 (SUM_HR). This threshold was chosen based on the goal of only showing 

intuitive measures to team members [13]. As such, a method is only counted as too 

complex if it is predicted to contain at least one error. There are two ways to calculate 

Halstead Error (resulting in different values), one based on Halstead Effort and one 

based on Halstead Volume. Coleman et al. [11] consider Halstead Volume to be a 

more accurate indicator of maintainability than Halstead effort. The documentation 

for the Halstead effort based tool also mentions that their Halstead Error value is often 

lower than the true amount of errors. Due to those arguments the Halstead Error 

calculation based on Halstead volume was chosen. Details on how to measure 

Halstead measurements in C/C++ code can be found in the documentation of the tool 

CMT++ [19], and to calculate Errors(delivered bugs) using Volume Effort
2/3

 is 

replaced with Volume in the delivered bugs equation. 

 Analysis Model: Is there at least one function in the file with HR ≥ 1 (SUM_HR ≥ 

1)? Assuming zero-tolerance for predicted errors. 

 Equations: 

SUM_HR = ∑   
      HRi for all HRi  ≥ 1 in a file  (Eq. 3) 

 

Type: Code Duplication 

 Base measure: Set of duplicated blocks (DUP_B), where the line number it starts on 

and size is known for (DUP_Bi). The Code Duplication tool used in this study is 

token-based, which means it can also detect duplication within a line of source code 
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rather than just if the entire line is duplicated (as a side-effect it also ignores 

indentation). Severity is specified by how many characters are allowed to be identical 

in sequence on each line. The threshold used for severity is the same as the threshold 

used in the tool‟s official documentation (100). 

 Derived Measure: The number of lines containing Code Duplication in the file after 

eliminating block overlap and blocks with DUP_B < 6 (DUP_LOC) and the ratio 

between DUP_LOC and the file‟s total LoC (%_DUP_LOC). The restriction to blocks 

that contain six lines or more is based on a recommendation for avoiding false-

positives and flooding of trivial data from Heitlager et al. [13]. 

 Analysis Model: Is DUP_LOC ≥ 100? OR Is %_DUP_LOC ≥ 10%? The percentage 

threshold taken from Heitlager et al.‟s work [13], while the LoC based threshold is 

used to find large duplication blocks in exceptionally large files (%_DUP_LOC does 

not account well for file-size). 

 Equations: 

DUP_LOC = ∑      
     DUP_Bi ∪ DUP_Bi+1  (Eq. 4) 

%_DUP_LOC = (DUP_LOC / TOTAL_LOC)*100  (Eq. 5) 

 

Type: Static Analysis Issues 

 Base measure: Each individual High Priority Issue in a file (ISSUEi) (filtering out 

types that have been labeled as false-positive by team members). 

 Derived Measure: Total High Priority Issues count in a file (#_ISSUES)  

 Analysis Model: Is #_ISSUES > 0? (assuming zero-tolerance policy on issues). 

 Equations: 

 #_ISSUES = ∑   
     ISSUEi   (Eq. 6) 

 

Type: Dependency Count 

 Base measure: Each individual dependency to files within the application that a file 

has (DEPi). 

 Derived Measure: Total dependency count to files within the application that a file 

has (#_DEP). 

 Analysis Model: Is #_DEP ≥ 40? (This is the threshold used for ATFD by Rapu et al. 

[10]). 

 Equations: 

 #_DEP = ∑   
     DEPi    (Eq. 7) 

 

Type: Non-Allowed Dependencies 

 Base measure: Each individual Modularity Violation a file contains (MVi) (based 

only on components visible in the available diagram). 

 Derived Measure: Total Modularity Violations count a file contains (#_MV). 

 Analysis Model: Is #_MV > 0? (assuming zero-tolerance on violations). 

 Equations: 

 #_MV = ∑   
     MVi    (Eq. 8) 

 

3.2.2 Human TD Identification 
As part of answering RQ1, TD identification from team members was performed with the 

intention of helping to discover any additional factors affecting maintenance effort not found 

through the measurement system. This was done through a semi-structured group interview 

with three of the team members including the software expert. The fact that this TD 

identification was carried out as a group interview was due to how team members expressed 
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that filling in TD templates/questionnaires as outlined in by Zazworka et al. [7] was less 

optimal for them. They also wanted to reach a joint answer to the questions through 

discussion, rather than producing separate answers. This was motivated by claiming that the 

quality of the answers would be improved. This group interview was recorded and 

transcribed per recommendation of Runeson & Höst [4], so that the results could be further 

analyzed. The questions used can be seen in Appendix B. Said questionnaire also contains 

definitions based on material by Li et al. [9], which were used to introduce team members to 

TD concepts/types in a similar fashion as by Zazworka et al. [7] in order to align them with 

TD terminology. 

 

3.2.3 Tool Evaluation & Selection 
In order to answer RQ2 and to provide the TD measurements necessary for RQ1 and RQ3, a 

tool search was conducted to find and evaluate software analysis tools that might provide the 

measures outlined in designed measurement system (see Fig. 3). Several searching strategies 

have been used to find the tools that were evaluated. As mentioned previously, tools used in 

the reviewed previous literature were either incompatible with C/C++ or otherwise 

unavailable, and thus have not been evaluated. Instead, the current set of tools was discovered 

through searches based on these key sentences: 

 

 Measuring “TD type” in C/C++ 

 C/C++ alternative to “tool from literature” 

 C/C++ technical debt tool 

 C/C++ static analysis tool 

 C/C++ source code analysis tool 

 

These tools were evaluated based not only on their ability to provide the necessary 

measures/the data that those measures can be derived from, but also on context-specific 

requirements regarding licensing, build integration and automation. Specifically, proprietary 

tools were considered unsuitable unless they were already licensed on-site. The requirements 

with regards to integratability were that tools should not require manual manipulation of a 

GUI in order to take measurements. It was considered acceptable however to view the final 

results in a GUI similar to the “radiators” already used on-site. These “radiators” refer to 

colour-coded status pages, which has been used for the visualization of the measurement 

system as well (see Table 4). The output formats of the tools were also examined to assess if 

the results could be accessed outside the tools themselves. The higher priority tools based on 

these criteria were tested on-site on the production code, in order to arrive at a selection of 

tools covering all TD types. The evaluation results have been mapped to a table (see Table 1), 

and motivations have been provided for the tool selections that became part of the 

measurement system implementation. The TD types where ad-hoc parsers are required in 

order to avoid proprietary tools are also highlighted, and rough outlines on the required 

functionality of such code has been determined. 

 

3.2.4 Collection of TD Measures 
Measurements for the measures outlined in Fig. 3 were gathered by using the selected tools 

combined with ad-hoc derived measure parsers and indicator parser. All source code written 

during the study follows the throwaway prototype agile practice [24], as the time available 

for development was limited. As the accuracy of the derived measures is essential, the speed 

of the calculation was compromised instead. These measurements were taken both within the 

scope of each commit (to provide the TD measurements that are compared to commit 



 

  18 

 

difficulty as part of RQ3), and within the full application scope (to provide the measurements 

that are aggregated and visualized and as part of RQ1 and the final validation of results). 

 

3.2.4.1 Measure TD in Commit Scope 

The commit scope measurements were performed on the parent versions of files modified in 

commits with effort specified. This was done to evaluate the status of file(s) before the 

commit was made, to analyze how much TD the team members may have had to deal with. 

Rather than analyzing all files in a commit, only enough files to cover the sources of at least 

90% of the modified source code is analyzed. This exclusion of files was due to commits 

often containing files with only one to three modified LoC, where said modification consists 

of “informing” that something new was added in another part of the code. It was decided that 

it was unreasonable to expect that TD levels in files with such minor changes would have had 

any noticeable impact. When discussing this with one team member, they indicated that they 

generally saw modified LoC as equal value within a specific commit (outside of the described 

“one to three lines”-case). 

 

Two special cases of change can also be encountered in commits; file creation and file 

deletion. When creation and deletion is the result of a filename change, the lines modified 

through deletion and the lines modified through addition should remain uncounted. For file 

deletion it was decided to not count the associated LoC, as deleting a file rarely requires 

much work. For file creation however, the associated LoC are counted as part of the total 

modified LoC, but the TD levels of the new file are not evaluated. In essence, TD in related 

files may have affected the difficulty of creating the new file, but TD incurred while creating 

the file should not have affected the commit‟s ratio negatively. 

 

3.2.4.2 Measure TD in Application Scope 

The application scope measurements were taken in order to discuss the current TD state of 

the system with the software expert, while also providing the opportunity to validate the 

usefulness of the measures (and thus how well they answer RQ2) using strategically selected 

examples of large measurements found in the production code. The presentation of the 

measures also provided validation on how well the goals of aggregation and understandability 

from RQ1 are achieved. The measurement examples were chosen based on the following 

criteria: 

 

 %_MC: A function with high Cyclomatic Complexity but low Halstead Error was 

chosen to evaluate Cyclomatic Complexity in isolation. 

 SUM_HR: A function with high Halstead Error but low Cyclomatic Complexity was 

chosen to evaluate Halstead Error in isolation. 

 DUP_LOC: A large block of duplicated lines that occurred twice in the same file was 

chosen, in order to extract information on why such duplication exists. 

 #_ISSUES: An example for each discovered issue category was chosen, in order to 

evaluate if there were still false-positive categories left to filter out. 

 #_DEP: The smallest file with over-threshold #_DEP was chosen, in order to extract 

information on why it needs to have so many dependencies. 

 #_MV: A file with many Non-Allowed Dependencies in the opposite direction of 

what the architecture diagram shows was chosen in order to illustrate that cyclic 

dependencies exist on the component level of the application. 
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3.2.5 Collection of Commit Data 
In order to measure the difficulty of the commits, the effort specified in the commit message 

and the modified LoC was collected. These measurements were used as part of answering 

RQ3. 

 

3.2.5.1 Effort Measurement 

In this study, effort was retrieved in the form of hours spent on commits. This effort value 

was manually specified in each commit‟s accompanying message by the team members 

involved in this study. These commits with effort specified are this study‟s unit of analysis. 

The team members decided together with the software expert that such effort should only be 

specified in production code commits rather than testing code commits. This was due to there 

being more interest in improving the system rather than the test code applied to it. Another 

consideration was that looking at both types of commits together would cause too much 

variation in the data. The downside of this restriction was its effect on the amount of commits 

available to analyze during the course of this study, as the testing code commits were about 

as frequent as production code commits. 

 

3.2.5.2 Modified LoC Measurement 

An amount of modified LoC can also be extracted from these commits, and it is through 

calculating the ratio of modified LoC per hour for each commit that they can be compared. 

The resulting ratio becomes a difficulty grade for the commit, where a lower ratio indicates 

that the modified LoC in the commit were more expensive to produce. This extra effort may 

be a manifestation of TD interest, and is treated as such in comparisons with TD levels in 

order to answer RQ3. Likewise, high ratio commits could indicate lack of TD. In this study 

pure modified LoC was used, which means blanks, whitespace and comments are ignored 

when counting. This was chosen rather than the modified LoC value provided by Git, as it 

was discovered that even indentation changes were counted by Git as a modified LoC. This 

change led to much more accurate modified LoC values and calculated ratios. 

 

3.3 Data Analysis 
This section describes how the collected data was analyzed. The first subsection explains how 

two separate approaches, MAD-Median-rule and 20% Trimmed Mean, were used to 

determine a representative mean for the set of modified LoC per hour ratios. The next 

subsection details how theory triangulation was applied through three correlation methods, 

Pearson‟s Correlation & Conditional Probability & Cohen‟s Kappa, in order to reduce the 

risk of correlations being found due to chance. Two of the methods used also required that 

values be transformed to “1” and “0” based on a chosen condition. These conditions are 

explained in detail following the method equations. The final subsection describes the two 

forms of validation that were conducted during this study in order to evaluate the quality of 

analysis results with regards to the research questions and stakeholder expectations. 

 

3.3.1 Commit Difficulty Analysis 
The set of modified LoC and the set of hours spent values gathered from the available 

commits were examined for two purposes. The first purpose was to investigate the commits 

that appeared to have a large amount of extra effort per LoC (based on their modified LoC 

per hour ratio) by contacting the commit author and attempting to elicitate a reason behind 

the difficulty. Such reasons may be relatable to established TD types. None of these commits 

had a statistically large amount of extra effort however, as no such commits exist in this 

study‟s sample population of commits with effort. 
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The second purpose was to calculate the correlation strength between sets of modified LoC 

values and sets of effort values. Two such sets have been used; one using the MAD-Median-

rule [18], and one based on trimming the dataset by 20% at both ends. Both of these methods 

deal with finding the true mean, and are among the methods recommended by Wilcox [18]. 

The MAD-Median-rule was specifically chosen over other alternatives that were 

recommended in the same book [18], as it identified a larger number of commits as unusually 

easy. This was considered preferable as it allowed for a larger contrast in correlations. The 

20% Trimmed method was chosen due to it being described as a good compromise between 

the mean and the median (which is the same as 50% trimming) [18]. For the MAD-Median-

rule based dataset, the commits with the four largest ratios were identified as outliers and 

removed, while the commits with the four largest and four smallest ratios were removed in 

the 20% Trimmed dataset. The equations used are detailed below: 

 

The Mad-Median-rule: 

 
         

    
            (Eq. 9) 

 

 

       
   

      
     (Eq. 10) 

 

where 

 

MAD, is the Median Absolute Deviation 

MADN, is the Median Absolute Deviation Normalized 

 

 

Median Absolute Deviation: 

 

                             (Eq. 11) 

 

where 

 

X1, …, Xn, is the sample value 

M, is the sample median 

 

 

20% Trimmed: 

 

    
 

      
                                                (Eq. 12) 

 

where 

 

n, is the sample size 

g, is the amount of trimmed values 
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The correlation algorithms that are applied between modified LoC and maintenance effort are 

detailed in section 3.3.2. If the two datasets can be correlated, the average modified LoC per 

hour ratio could possibly be used to increase the amount of available commits for effort 

correlation, which would help increase the small sample size (which is the main weakness of 

the “effort in commit message”-method). More specifically, the average ratio could be used 

to investigate recent commits from team members outside of the current team, by contacting 

them and asking if more (or less) time was spent than what the ratio ± two Standard 

Deviations (StDev) expected. These commits need to be recent, due to the difficulty of 

discussing time spent on commits older than one to two weeks. A normally distributed 

commit would have an effort value between modified LoC divided by ratio – two StDev and 

modified LoC divided by ratio + two StDev. If the commit is instead a negative outlier it 

could also be qualitatively investigated for reason(s) behind its difficulty. During this study 

however, the correlation between modified LoC and effort did not become strong enough to 

consider contacting team members outside the team until the very end of the project. 

 

3.3.2 TD & Effort Correlation Process 
An important factor in TD Management is knowing the interest of existing TD, as it allows 

refactoring to be prioritized for the TD types that have a more noticeable impact. To achieve 

this goal (RQ3), effort spent on commits were specified as hours by team members, and 

Zazworka et al.‟s [3] process to find significant correlations has been applied between the 

commits‟ TD occurrences and the commits‟ modified LoC per hour ratios. This process 

combines Pearson‟s Correlation, Conditional Probability, Chance Agreement and Cohen‟s 

Kappa to compare if the relation is detected by several different algorithms. A strong 

correlation between a TD type and the maintenance effort indicates that the TD type‟s interest 

is large. The choice to use Zazworka et al.‟s [3] combined process was due to the risk of 

biased correlation results if for example only Pearson‟s is used. By having more than one 

viewpoint on the correlation, theory triangulation [4] can be achieved, thus improving the 

certainty that the relation in fact exists. 

 

Through the equations in this section, three indicators for correlation strength are calculated, 

and any relation where at least two out of three indicators result in a “1” in their 

corresponding Ω(...) function is considered as high correlation strength. The dataset values 

need to be transformed into “1” and “0” (representing true and false for dataset-specific 

conditions) for all equations in this section except Pearson‟s Correlation. These 

transformations are explained in section 3.3.2.4. 

 

3.3.2.1 Pearson’s Correlation 

The Pearson‟s Correlation calculation is used to check if two datasets increase together or if 

one dataset increases while the other decreases in a linear pattern. This type of calculation is 

widely used in defect prediction models as well as for maintainability predictions [3]. The 

calculation itself can be represented by the Pearson‟s Correlation Coefficient, r. The equation, 

Eq. 13, requires two datasets { x1, ..., xn } and { y1, ..., yn } where n is the total amount of data 

points. The result of Eq. 14 is the dataset mean value. 
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  (Eq. 13) 

 

where 

 

  
 

 
 ∑   

           and   
 

 
 ∑   

          (Eq. 14) 

 

The r-value will be between -1 and 1, where an r-value closer to 1 reflects a positive linear 

correlation and an r-value closer to -1 reflects a negative linear correlation. To be able to use 

the Pearson r-value as a significance indicator, the significant Pearson functions 

Ω(PearsonPos) or Ω(PearsonNeg) are used to determine if the correlation is strong enough. 

The threshold r-value depends on if it is modified LoC & effort or TD occurrences & commit 

difficulty that are being compared. When comparing modified LoC with effort a threshold of 

0.6 is used, just as by Zazworka et al. [3], as these variables are expected to have a positive 

correlation. When comparing TD occurrences with commit difficulty however, the r-value 

threshold is -0.6, as a negative correlation is expected. This is due to commit difficulty being 

represented by the commit‟s modified LoC per hour ratio, which means that a decreasing 

difficulty is represented by an increasing ratio. As it is expected that less TD occurrences 

will cause the ratio to increase, a negative threshold is thus chosen. The r-values of -0.6 and 

0.6 have the same significance; it is only the type of correlation they describe that differs. 

 

Following Zazworka et al.‟s [3] technique, the significance level for the Pearson‟s result must 

also be at least 0.05 (same as 95%, can be checked in the following table in [25]). This is 

used to make it more difficult to achieve significance at low sample sizes, as a guard against 

bias. The significance functions (Eq. 15 & Eq. 16) will result in either “0” or “1”, where “1” 

equates to strong correlation and “0” interprets to no correlation. 

 

                {
                                            

                                                                                  
  (Eq. 15) 

 

                {
                                               

                                                                                    
  (Eq. 16) 

 

3.3.2.2 Conditional Probability and Chance Agreement 

Conditional Probability is used in pairwise comparisons to understand the probability of 

event A occurring given that event B has already occurred, and vice versa [18][3]. 

Conditional Probability can be used for software defects and maintainability predictions [3], 

but first it requires that all values are transformed into “1” and “0” (representing true & false 

for a specific condition per dataset). The equation for the Conditional Probability, P( A | B ) 

or P( B | A ), is calculated in this manner: 
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        (Eq. 17) 

 

             
          

      
        (Eq. 18) 

 

where 

 

P( A ), is the probability that event A occurs.  

P( B ), is the probability that event B occurs. 

P( A ⋂ B ), is when the event A and B occur simultaneously. 

 

The result of the equations Eq. 17 & Eq. 18 is a probability of 0 to 100%. To be able to use 

this calculation as a significance indicator the Chance Agreement needs to be calculated as 

well. The Chance Agreement is used to understand the probability of event A and event B 

occurring simultaneously by chance. 

 

                                                                           
(Eq. 19) 

The Chance Agreement probability will also range between 0 to 100%. The significant 

Conditional Probability functions Ω(ConditionalAB) or Ω(ConditionalBA) are used to 

determine if the correlation strength is high enough to be counted as an indicator. The 

threshold for the Conditional Probability value is 60% [3], as seen in Eq. 20 & Eq. 21. 

 

                 {
                                                          
                                                                                                               

 

 (Eq. 20) 

 

 

                 {
                                                          
                                                                                                               

      (Eq. 21) 

 

3.3.2.3 Cohen’s Kappa 

Cohen‟s Kappa is used to determine the strength of the agreement and disagreement of two 

datasets transformed into “1” and “0” values [3]. Once the datasets‟ values have been 

transformed, Cohen‟s Kappa can be calculated by counting where the two datasets ( x, y ) 

values are in agreement by both being “1” or “0”, while in any other case they will be in 

disagreement. 

         
 ∑   

       

 
       {

                 

                
   (Eq. 22) 

 

where 

 

Pr( a ), is the proportionate agreement between the two datasets divided by the total number 

of dataset values, n. 

 

Once Pr( a ) is calculated, the Chance Agreement, P( Chance ), is also needed since it is used 

as a variable in the Cohen‟s Kappa calculation. 
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    (Eq. 23) 

 

To use the Cohen‟s Kappa as a correlation indicator the following significance function 

Ω(Kappa) is used, where the threshold value has been set to 0.60 [3]. 

 

           {
                          
                                          

    (Eq. 24) 

 

 

3.3.2.4 Dataset Transformation Strategies 

The goal of the correlation process is to analyze the strength of relation between specific 

over-threshold TD types/all over-threshold TD combined and commit difficulty, as well as 

between modified LoC and effort. As mentioned previously, to apply all methods besides 

Pearson‟s Correlation, this requires the values of the datasets to be transformed into sets of 

“1” and “0” [3]. 

 

Transformations of Specific Over-Threshold TD and Commit Difficulty 

For analyzing the relation between specific over-threshold TD types and commit difficulty, 

comparisons are made between if over-threshold levels of a TD type was found in at least one 

file in a commit (over all commits with effort) to two separate transformations of the 

modified LoC per hour ratios. For the over-threshold TD transformations, a “1” signifies that 

at least one TD occurrence high enough to cross the threshold was found in the commit; 

while “0” represents that no such occurrences were found. One of the modified LoC per hour 

ratio transformations that this is compared against is if the ratio was pointed out as normal or 

as a positive outlier (unusually high ratio) by performing the MAD-Median-rule based 

equation. For the MAD-Median-rule based modified LoC per hour ratio transformation, a “1” 

signifies that the ratio was within a normal distribution, while a “0” signifies that it was a 

positive outlier. The choice to focus on positive rather than negative outliers (unusually low 

ratio) was due to how the dataset only contained outliers in that direction. Relational strength 

in this comparison is based on if the TD occurs when the ratio is normal and doesn‟t occur 

when the ratio is a positive outlier. 

 

The other modified LoC per hour ratio transformation was based on if the commit was one 

Standard Deviation below the 20% Trimmed mean [18]. For the 20% Trimmed based 

modified LoC per hour transformation, a “1” indicates that the commit was more difficult 

than usual compared to the 20% Trimmed mean. Based on recommendations by Wilcox [18], 

this conversion should have been based on two Standard Deviations, but the sample in this 

study contained no data points that were that far below the 20% Trimmed mean, so one 

Standard Deviation was used instead. This means that the Conditional Probability/Chance 

Agreement/Cohen‟s Kappa values for all comparisons related to 20% Trimmed are too 

lenient (The MAD-Median-rule based calculations were conducted to replace them). As such, 

only the results related to the MAD-Median-rule based method are shown in sections 4.4-4.5, 

while the results related to 20% Trimmed are shown in Appendix A. The Conditional 

Probability, Chance Agreement and Cohen‟s Kappa results are used together with the 

Pearson Correlation results between each specific TD type occurrence datasets to each of the 

two commit datasets, where the comparisons to the first commit set has had the specific TD 

occurrence values belonging to the outlier commits identified via MAD-Median-rule 

removed, and the comparisons to the other commit set has had the specific TD occurrence 

values belonging to the trimmed commits removed. 
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Transformations of Overall Over-Threshold TD and Commit Difficulty 

For analyzing the relation between overall over-threshold TD occurrences and commit 

difficulty, the set of over-threshold TD occurrences per commit was transformed in two 

ways. One transformation assigns a commit as “1” if the total over-threshold occurrences 

were two Standard Deviations above the total over-threshold occurrences mean for all 

commits with effort. This is then compared to the MAD-Median-rule based transformation of 

the modified LoC per hour ratios. The other transformation is based on total over-threshold 

TD occurrences being one Standard Deviation above the total over-threshold occurrences 

mean and is compared to the 20% Trimmed based transformation of the modified LoC per 

hour ratios. These results are used together with the Pearson‟s Correlation results of the two 

datasets, where the comparisons to the first commit set has had the total over-threshold TD 

occurrence values belonging to the outlier commits identified via MAD-Median-rule 

removed, and the comparisons to the other commit set has had the total over-threshold TD 

occurrence values belonging to the trimmed commits removed. 

 

Transformations of Modified LoC and Effort 

For analyzing the relation between modified LoC and effort, the sets of modified LoC and 

effort were both transformed in two ways. One comparison converts values to “1” if they are 

two Standard Deviations above their respective sample means, while the other transformation 

is based on one Standard Deviation. These results are used together with the Pearson‟s 

Correlation results of the two dataset pairs, where the first pair has had the modified LoC and 

effort values belonging to the outlier commits identified via MAD-Median-rule removed, and 

the other pair has the modified LoC and effort values belonging to the trimmed commits 

removed. 

 

3.3.3 Validation 
Two forms of validation have been conducted during this study; qualitative TD results 

analysis and validation of the measurement system as well as the maintenance effort 

correlations. The first validation form was done at several points during the course of this 

study, where the software expert was shown TD tool results in order to identify false-

positives. The tool results have also been compared between similar tools and to manual 

calculations, in order to verify their correctness. 

 

The second validation form was conducted through a semi-structured interview with the 

software expert in order to validate the measurement system, the measures it is made of and 

the correlation results between these measures and maintenance effort. The questions that 

were used during this interview can be seen in Appendix C. A summarizing transcript of this 

interview was also written and later confirmed to be accurate by the software expert. A short 

interview with a tool expert was also conducted to validate how well the measurement system 

implementation conformed to the on-site requirements for automation. The purpose of all this 

validation was to gain stakeholder feedback regarding how well the research questions were 

answered based on the software expert‟s comments on the related contributions.  
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4. Results 
This section presents the analysis results of this study. First, the final implementation of the 

measurement system is shown, which details how TD tools were combined with ad-hoc 

parsers and manual processes in order to implement the design previously seen in Fig. 3. This 

is followed by an explanation of how the human TD identification through the semi-

structured group interview resulted in changes to the visualization of the measurement 

system‟s indicator. The final version of the measurement system implementation is used to 

answer RQ1. 

 

The measurement system implementation is followed by showing the results of mapping 

C/C++ compatible TD measurement tools capable of measuring the intended measures. The 

motivations for why certain tools were ultimately selected for the measurement system 

implementation are also detailed. These results provide an answer to RQ2. 

 

After going through the two first contributions, the results of commit difficulty analysis and 

the correlations to TD types that were made possible through it are presented, showing how 

RQ3 was answered. 

 

Finally, the results of the validation interview with the software expert are detailed, which 

shows how well the research questions were answered from this stakeholder‟s point of view. 

This includes validation of the measurement system and the way its results are presented 

(RQ1), validation of the measures and the examples of them found in production code using 

the selected tools (RQ2) and validation of the correlation results including the process to 

evaluate correlational strength (RQ3). 

 

4.1 Measurement System Implementation 
In this section a visual outline of the measurement system implementation is provided (see 

Fig. 4). The process contains the selected tools and ad-hoc parsers that are further detailed in 

sections 4.3.2.1-4.3.2.6. The overview details how the base measures are extracted, how the 

derived measures are calculated and how the joint indicator is constructed and visualized. The 

output formats of file-creation actions are also specified. While this implementation uses two 

proprietary tools (Coverity SA and Coverity AA), the measures they extract could potentially 

also be covered with a combination of open source alternatives and ad-hoc parsers. 
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Figure 4: Measurement system implementation 
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4.2 Human TD Identification 
A questionnaire for assisting in human identification of TD was designed (see appendix B), 

which was then used as part of a semi-structured group interview. One such group interview 

was performed, with a length of 90 minutes. This interview helped to point out which parts of 

the application the team commonly modified, which parts the team considered to be more 

complex, and which parts of the application the team believed likely to remain unchanged. It 

also helped indicate which parts of the application the team were most interested in 

improving. When comparing the parts of the source code that team members considered 

complicated to where files with over-threshold amounts of TD were discovered, a 

discrepancy was detected. This was due to the fact that these files were occasionally outside 

the complicated part of the application. This implies that either the team members‟ view of 

the application does not reflect its actual state, or otherwise the chosen TD measures are not 

what are causing significant maintenance effort. The former would prove the need for the 

measurement system, but as the correlation results show (see section 4.5) it may well be the 

latter that is the true reason. 

 

Besides making comparisons, the results from the group interview also resulted in a filter for 

which files are visible in the visualization of the measurement system, as the team members 

stressed the fact that they were not interested in seeing TD in unit testing and stub files. This 

filtering prevents information overflow by hiding these uninteresting files, which contributed 

to answering RQ1 as it is easier for team members to interpret results that are limited to the 

relevant parts of the application. 

 

4.3 Tool Evaluation & Selection Results 
As part of this study multiple source code analysis tools were reviewed to find the most 

suitable tools for implementing the designed measurement system (see Fig. 3) in the case 

context. The tools evaluated have been mapped in a table according to evaluation criteria 

outlined in section 3.2.3, which include integratability, functionality and output format 

support. Recommendations for which of these tools to use as well as which to avoid are also 

provided, based on testing the tools within the case context. 

 

4.3.1 Tool Mapping 
The results of the tool review (see Table 1) and the necessary details to understand the 

mapping are detailed below: 

 

4.3.1.1 Table Details 

Language Support (ignoring languages irrelevant for the context) 

Name = Supports both C/C++ 

Name = Supports C++ only 

 

Integratability Grade (context specific) 

A = Commandline interface (should work “out-of-the-box”) 

B = Eclipse plugin OR commandline interface + some setup/libraries required 

C = Eclipse plugin + some setup/libraries required 

D = Anything more complicated with commandline/plugin OR standalone GUI 

 

Integratability Clarifications 

Commandline is preferable due to possibilities for automation. Eclipse plugins can be used to 

detect TD during development rather than at commit time (several plugins can be installed on 
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the same eclipse version, so a variety of measures can be measured in one place). Standalone 

GUI tools are unsuitable due to limited measure scope or limited interaction with other tools 

(or plugins). They also lack the ability for automation. 

 

Licenses 

For links to the definitions of the licences listed in Table 1, see Appendix D. 

CMR = commercial off-the-shelf software. 

 

Supported Measures 

COM = Code complexity related metrics. 

DUP = Code Duplication related metrics. 

LOC = Lines of code related metrics. 

ASA = Common general/language specific issues. 

MV = Modularity Violations (Non-Allowed Dependencies). 

COUP = Coupling related metrics. 

 

Output Formats 

TXT = Raw text file or similar. 

XML = File using xml tag system. 

CSV = Comma separated values file. 

HTML = Results displayable in browser, which is often the most readable format. 

OUT = Output directly in eclipse/tool GUI. 
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4.3.1.2 Tool Table 

Table 1: Tool capabilities & ratings 

GENERAL TD TYPES OUTPUT 

TOOL 
INTEGRAT

ABILITY 
LICENSE 

COM/DUP/LOC/COUP/

ASA/MV 

TXT/XML/CSV/HTML/

OUT 

PMD A BSD-4 DUP TXT/CSV/XML 

SonarQube D CMR COM/DUP/LOC/COUP OUT 

OCLint B BSD-3 COM/ASA TXT/XML/HTML 

GitInspector B GPLv3 LOC TXT/XML/HTML 

CppCheck B GPLv3 ASA XML/HTML 

CCCC B GPLv2 COM/LOC/COUP XML/HTML 

Dependometer D VPL MV/COUP HTML 

CONQAT C ALv2 DUP/MV/ASA XML/HTML 

YASCA A GPLv2 DUP/ASA HTML 

CodeAnalyzer D GPLv2 LOC TXT/CSV/HTML/OUT 

Metriculator C EPL COM/LOC/COUP TXT/XML/HTML/OUT 

UCC A USC COM/LOC TXT/CSV 

Lizard B MIT COM/LOC XML 

Complexity B GPLv2 COM/LOC TXT 

Pmccabe B GPLv2 COM/LOC TXT 

CLOC A GPLv2 LOC TXT/CSV/XML 

Coverity SA D CMR COM/LOC/ASA CSV/XML/OUT 

Coverity AA D CMR MV/COUP TXT/OUT 

Structure101 D CMR MV/COUP TXT/OUT 

CMT++ A CMR COM/LOC TXT/XML/HTML 
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4.3.2 Tool Selection Motivations 
Through attempting to install and use most of the tools listed above on-site, a set of suitable 

tools to cover all chosen TD types were selected. Gaps that can be covered by ad-hoc parsers 

in order to avoid proprietary tools were also identified. Only the tools ranked A or B and the 

tools SonarQube, Coverity SA, Coverity AA and Structure101 have been tested. Sections 

4.3.2.1-4.3.2.6 detail the final tool selections and ad-hoc parsers for each TD category. 

SonarQube appeared to be highly suitable for visualizing several of the TD types together, 

but the commercial C/C++ plugin takes several hours to complete its analysis. This made 

SonarQube unusable in this study as SonarQube could not support analyzing several commits 

per day. 

 

4.3.2.1 Category: COM 

For this category, UCC proved to be most suitable non-proprietary tool for McCabe 

Cyclomatic Complexity, due to its ease of use and potential for integration. A major flaw that 

separates it from the proprietary solutions Coverity SA and CMT++ is the lack of direct link 

to source code. UCC still provides function/file name and function McCabe value, but it is 

then required to find the method manually for further investigation. The HTML output of 

CCCC provides such source code links, but this tool did not work on-site (even though it 

worked when testing on a random C++ project retrieved from GitHub). 

 

For other forms of code complexity from the identified tools, Halstead metrics are 

measurable by the proprietary tools Coverity SA and CMT++. These two tools also support 

calculating both versions of Halstead Error (Halstead Effort based and Halstead Volume 

based). In order to measure Halstead without proprietary tools, one would need to write code 

that counts operators and operands in source code files based on the descriptions in CMT++:s 

documentation [19]. 

 

After considering the many steps required to get Coverity SA complexity results and the 

transparency on how CMT++:s Halstead metrics are calculated [19], CMT++ stands out as 

the best choice for measuring the COM category of measures, as it is both highly integratable 

and automatable. Its biggest flaw is its lack of the “link-to-source-code”-functionality 

previously described. However in this case context Coverity SA was used instead, due to 

their existing licenses. From the tool results, %_MC and SUM_HR is programmatically 

derived by code written during the project. 

 

4.3.2.2 Category: DUP 

For this category, PMD was chosen due to its commandline interface and many output 

formats. It is only the Copy-Paste Detector (CPD) module of PMD that is used in this study. 

The other identified DUP tools are built on top of PMD, and YASCA:s HTML output is 

useful for improving result readability and visual link to source code. However PMD:s 

eclipse plugin is not very useful, as it does not provide any syntax highlighting of the 

duplicated code. The tradeoff for these alternate visualizations of PMD results is the negative 

effect on integratability, which is why the tool‟s default commandline interface is used 

instead. The (XML) output of the tool is currently fed into excel in order to perform a custom 

sort (FIRST BY filename THEN BY block_start THEN BY block_size). The sorted results 

are parsed programmatically to combine overlapping blocks, before summing the remaining 

blocks to derive the DUP_LOC measure for each file. The parser source code was written 

manually during the project. 
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4.3.2.3 Category: LoC 

For this category, CLOC was the best alternative both for measuring total LoC of a file as 

well as comparing differences between two versions of the same file. This is due to how it 

can ignore whitespace differences (such as indentation changes), while also clearly separating 

its results between blank lines, comment lines and code lines. This made it easy to extract the 

true value of modified LoC in a commit, which was often quite different from what the Git 

diff reported. 

 

4.3.2.4 Category: ASA 

For this category, CppCheck appears to be the most suitable non-proprietary alternative 

(when comparing functional similarity to the ASA Issues tool used by Zazworka et al. [3], 

which is for Java only). It should be configured to only look for errors and warnings, in order 

to avoid trivial issues. This study was able to use CppCheck together with the High Impact 

Issue categories from Coverity SA, thanks to the existing licence and build integration of 

Coverity on-site. CPPCheck does not find the same issues as Coverity SA, and also lacks the 

source code link functionality. The issues found by Coverity SA also contained less false-

positives according to the software expert than validated them. The found issues from each 

tool are programmatically parsed by source code written during the project, to count 

#_ISSUES for each individual file after filtering out the false-positive types. 

 

4.3.2.5 Category: Coup 

The tool CCCC would have been an obvious choice for this category if it had worked on the 

on-site code, as it can measure some of the more specific method-level coupling measures 

mentioned by D‟Ambros et al. [14]. File-level dependency count is used instead, more 

specifically the number of dependencies to other files from the same application rather than 

to language-specific system libraries. This can be analyzed manually through the GUI:s of 

Coverity AA and Structure101, or by looking directly in the source code. To fulfill the 

automation requirements, an ad-hoc parser is used to parse out the number of dependencies 

per file automatically. 

 

4.3.2.6 Category: MV 

For this category, Dependometer was not a suitable alternative due to it not supporting C 

code. However, both Coverity AA and Structure101 were usable for this measure. Both those 

tools are similar in functionality to the tool developed by Grundèn & Lexell[1], in that they 

require a model to verify against to detect Non-Allowed Dependencies. Coverity AA reads 

package/file structure from this existing source code, while Structure101 requires a Doxygen 

file generated from the code. From the input both tools construct a full model of the system. 

In these models a subsection of the chosen abstraction level can easily be selected and a new 

diagram generated from it. The resulting diagram can then be modified with dependency 

arrows, and any dependencies that do not follow a manually added path are registered as a 

violation. As the entire source code has been parsed, a diagram abstracted to component level 

still reports the files inside the components that participate in the violation (significantly 

reducing the amount of arrows required). The MV file extracted from Coverity AA or 

Structure101 is then parsed with an ad-hoc derived measure parser to calculate #_MV per 

file. The dependency treeviews in these tools also allow for manual analysis of how the Non-

Allowed Dependencies are used, which can be used to prioritize them. 

 

As Structure101 has the same functionality as Coverity AA but requires running Doxygen on 

source code with the required annotations (to map the structure), Coverity AA is the better 

choice. To measure Non-Allowed Dependencies without proprietary tools, a text parser 
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program that analyzes includes based on the component the file belongs to would need to be 

written. 

 

4.4 Commit Difficulty Analysis 
Before performing correlations on the commit modified LoC and effort values, the commits 

with the lowest ratios (in this case the three most difficult commits) were qualitatively 

investigated to learn about potential causes. One of these “difficult” commits was pointed out 

to be due to a build configuration change that required changes in the source code for 

compatibility, which while arguably being a form of TD is also a highly specific and rare 

occurrence. The remaining two commits could have been affected more strongly by general 

TD levels in the modified files. To compare commit TD levels to commit difficulty however, 

it had to be determined which commits were unusually difficult (or easy). 

 

4.4.1 Outliers via MAD-Median-rule  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Modified LoC per hour ratio for each commit 

 

The average modified LoC per hour for the set of commits with effort (after removing 

outliers based on applying the MAD-Median-rule [18] to the modified LoC per hour ratios) 

was calculated in order to produce a line representing the mean of the normal values in the 

sample (see Fig. 5). A line representing the MAD-Median-rule is also drawn, to show which 

commits were branded as positive outliers (unusually easy). Each bar represents a single 

commit and as can be seen in Fig. 5 four commits were identified as outliers. The diagram 

based on 20% Trimmed [18] (see Fig. 6) can be seen in Appendix A. 
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4.4.2 Correlation between Modified LoC & Effort 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: Chart showing distribution of commit modified LoC/effort pairs 

 

The current result of Pearson‟s Correlation on the set of commit modified LoC and the set of 

commit effort, after excluding positive outliers found via the MAD-Median-rule, is 0.76. The 

manually added line in Fig. 6 represents Pearson‟s Correlation and helps visualize the result 

of the equation (the further the commits are from the line the less normal the distribution is). 

These results show that the average ratio is a fair indicator of how many LoC can be 

produced per hour when taking into account the range between one Standard Deviation 

below/above this average. This was strengthened by the fact that the final, 25th commit had a 

ratio that fell inside the range for the average ratio of the previous 24 commits. 

 

4.5 TD & Effort Correlation Results 
In order to analyze the impact existing TD has had on commits with effort, over-threshold TD 

occurrences in files before they were modified has been compared to the modified LoC per 

hour ratio of the related commits following the proccess described in section 3.3.2. Table 2 

shows the modified LoC per hour ratio of each commit, as well as the occurrences of files 

with too high quantities of a TD type, both for each type separately and for all of them 

combined. As the diagram used for measuring Non-Allowed Dependencies only covered one 

application, the #_MV measure was not applicable (n/a) to several commits. The colour 

coding represents the commits that were unusually easy (green) and if the TD occurrences 

were enough to be transformed to “1” (red) when performing the Conditional Probability, 

Chance Agreement and Cohen‟s Kappa calculations. From Table 2 it is easily visible that 

commit difficulty and over-threshold TD occurrences is not perfectly related, as the most 

difficult commit is not the one with the most occurrences. It also shows that certain TD types 

were more/less frequently found at above threshold levels. Rather than the TD type actually 

being more/less frequent, this could instead be an indication that the related thresholds are too 

low/high. 
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Table 2: Modified LoC per hour & TD occurrences for each commit with effort 

 

While certain inferences can be made by examining Table 2, the correlations needed to be 

calculated to reach more detailed results. Table 3 shows the results of the comparisons made 

between occurrences of each TD type separately and the modified LoC per hour ratios, 

occurrences of all the TD types combined and the modified LoC per hour ratios, and finally 

between modified LoC and effort, through applying the process from section 3.3.2. More 

specifically, the high total TD row shows the results for comparing the sum of indicator 

values for all analyzed files in each commit to the corresponding commit ratios. These are the 

results based on the MAD-Median-rule [18]. The results based on 20% Trimmed mean [18] 

can be seen in Appendix A. 

 

The correlational strength columns refer to if high enough values were reached in the three 

correlation algorithms (Pearson‟s, Conditional and Cohen‟s). There are two of these columns 

as the Conditional Probability strength depends on which condition was initially filled. For 

example, the probability of a commit being normally distributed given that it has at least one 

occurrence of %_MC is higher than the probability of a normally distributed commit having 

an %_MC occurrence (84.62% vs 52.38%). It is possible for the Conditional Probability to 

only be strong enough in one direction. As previously mentioned, ≥2/3 correlational strength 

is the threshold for significant correlation. This was only achieved between modified LoC 

and hours spent, which indicates that the work pace of the participating team is quite 

Commit 
MLoC/h 

Ratio 
McCabe Halstead Issues Duplication 

High 

Dep  
MV 

Total 

TD 

1 0.013 0 0 0 0 0 n/a 0 

2 0.086 0 0 0 1 0 n/a 1 

3 0.2 0 0 1 0 0 n/a 1 

4 0.708 2 3 0 2 0 n/a 7 

5 3.6 0 2 0 1 1 0 4 

6 3.9 1 2 1 1 2 1 8 

7 5 0 0 0 0 0 0 0 

8 5.04 8 7 2 17 3 4 37 

9 7 4 4 1 4 1 2 16 

10 7.125 2 1 1 1 1 1 7 

11 7.875 2 2 1 1 1 1 8 

12 8.8 1 2 0 1 0 n/a 4 

13 10.67 1 5 2 5 1 2 16 

14 12 0 3 1 2 1 3 10 

15 17.33 0 1 0 1 0 0 2 

16 20 1 1 1 1 1 2 7 

17 23.4 0 1 0 2 1 n/a 4 

18 24.1 1 0 0 1 0 n/a 2 

19 24.25 2 3 0 3 2 2 12 

20 25 0 0 0 0 0 1 1 

21 32 0 0 0 0 0 n/a 0 

22 47.95 2 7 0 6 0 n/a 15 

23 62 0 1 0 1 1 n/a 3 

24 114.9 3 6 0 3 0 1 13 

25 121.3 0 1 0 0 0 n/a 1 
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consistent. The multiple relations with 1/3 strength are as of yet inconclusive, as they could 

potentially become stronger or weaker if the amount of commits with effort were to increase. 

Note that the negative Pearson result between specific/combined TD types and commit 

difficulty shows that both the specific- and the combination of all TD types have had an 

effect (even if it‟s small), as decreasing difficulty is represented by an increasing modified 

LoC per hour ratio. 

 

Table 3: Correlations based on MAD-Median-rule Dataset 

TD Type Pearsons Conditional 

Probability 

commit|TD & 

TD|commit 

Chance 

Agreement 

Cohen's 

Kappa 

Correlation 

strength 

commit|TD 

(x/3) 

Correlation 

strength 

TD|commit 

(x/3) 

McCabe -0.18 84.62% & 52.38% 51% 0.35 1/3 0/3 

Halstead -0.20 77.78% & 66.67% 65% 0.31 1/3 1/3 

Issues  -0.26 100% & 42.86% 40% 0.39 1/3 0/3 

Duplication -0.13 84.21% & 76.19% 68% 0.41 1/3 1/3 

High Dep 

Count 

-0.04 91.67% & 52.38% 49% 0.40 1/3 0/3 

Modularity 

Violations  

-0.09 90.91% & 76.92% 74% 0.39 1/3 1/3 

High Total 

TD  

-0.15 100% & 4.76% 19% 0.17 1/3 0/3 

Modified 

LOC / Effort   

0.76 100% & 33.33% 85% 0.63 3/3 2/3 

 

4.6 Validation of the Results 
The tool results for the TD types have been successfully validated for correctness manually 

by comparing them to either similar tools or to manual calculations. This validation was 

considered successful as these comparisons showed the same or highly similar values. The 

indicator and measures used by the measurement system as well as the tools that were used to 

produce measurements have also been evaluated by the software expert on several occasions. 

The last of these occasions consisted of an extensive semi-structured interview towards the 

end of the project, where the final correlation results were discussed in addition to the 

measurement system and tool results. The following two subsections provide more details on 

the tool results analysis and the final validation. 

 

4.6.1 Qualitative TD Results Analysis 
By gathering the chosen TD measures from a few of the available commits with effort, data 

was presented to the software expert in order to help with detecting false-positives. For ASA 

Issues, three different types of High Impact Issues were detected via Coverity SA in the 

analyzed commits. Two out of these issues were agreed to be “real”, while the third was 

proven to be false-positive. The detected Non-Allowed Dependencies were also validated to 
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be positive, but the team members were unsure of their importance. The discovered Code 

Duplication was validated by the authors of this study, by comparing the outlined duplication 

blocks with the referred starting lines in other files as well as in the file itself. This 

comparison showed that the detected duplication blocks did indeed exist. The effect of the 

initial validation was that the source code to derive #_ISSUES was updated to not count the 

false-positive issue type, which in turn caused less files to be registered as over-threshold for 

that measure. 

 

4.6.2 Final Validation 
During the interview with the software expert, described in section 3.3.3.2, each TD type was 

first described in detail while summarized TD results of all files in the current application 

version were shown (see Table 4). The software expert was then asked to prioritize the types. 

Based on the type descriptions the expert pointed out that the files that contained a 

combination of high McCabe, high Halstead Error and many dependencies were files that had 

critical responsibilities and therefore are very complex. The expert also claimed that 

refactoring these very complex files was not worth it (based on the files with all three TD 

types visible in the summary) as they are not changed often enough. The expert also thought 

that Non-Allowed Dependencies was interesting, but was skeptical to them being refactored 

due to the potentially massive rework required. To put it simply, the principal was 

hypothesized to be more expensive than the interest, which would be consistent with the 

weak correlation results. On the other hand, duplication was not considered to be important at 

all for refactoring. 

 

The interview then continued by asking about recent challenges and which parts of the code 

they originated from. This was then compared to the high TD files shown in the summary. 

The expert concluded that components that had been pointed during human identification of 

TD were still the most challenging components, and the comparison results were similar as 

well. It was still the case that files with large amounts of several TD types were commonly 

from components indicated as complex.  
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Table 4: Visualization of TD results per file 

DUP_LOC %_DUP_LOC %_MC HR_SUM #_ISSUES #_DEP #_MV #_HIGH_TD_TYPES 

179 3.33% 50.10% 8.73776 3 43 2 6 

114 2.03% 68.90% 13.24837 0 22 1 4 

49 3.87% 80.80% 4.779 1 27 0 3 

73 16.44% 56.60% 1.22255 0 7 0 3 

204 52.71% 96.97% 2.30561 0 12 0 3 

29 1.81% 22.26% 0 2 41 3 3 

84 2.41% 60.38% 7.81148 0 30 1 3 

24 6.61% 60.00% 1.71337 0 15 1 3 

0 0.00% 34.75% 4.19038 0 14 1 2 

0 0.00% 94.04% 1.30544 0 13 0 2 

0 0.00% 69.67% 2.38057 0 17 0 2 

0 0.00% 0.00% 1.23451 0 62 0 2 

0 0.00% 61.29% 0 0 15 1 2 

0 0.00% 33.17% 1.50526 0 25 2 2 

0 0.00% 100.00% 2.07229 0 9 0 2 

16 12.90% 0.00% 0 0 10 1 2 

... ... ... ... ... ... ... ... 

0 0.00% 68.52% 0 0 6 0 1 

0 0.00% 0.00% 0 0 9 1 1 

0 0.00% 23.84% 0 0 14 2 1 

 

After discussing challenges, the interview then moved on to showing detailed tool results as 

well as selected examples from the production code where high levels of specific TD types 

had been found. These examples were chosen based on the strategies specified in section 

3.2.4.2. This was used to validate if the tool results were expected and if they appeared to not 

be false-positive. The expert was also asked to reprioritize the TD types after seeing the 

detailed results. One Coverity issue was considered unexpected, as the expert could not 

explain its existence. For the other source code examples, it was considered clear why they 

were indicated to contain the specific TD type. Due to the unexpected issue, the priority of 

Coverity issues was increased in the expert‟s opinion. CppCheck issues on the other hand 

were considered to only consist of false-positives, thus being irrelevant. High dependency 

count was also considered irrelevant, with the motivation that the files with many 

dependencies were required by design to have them. Specifically those files were responsible 

for startup configuration of the application. The expert‟s opinion on McCabe and Halstead 

Error was practically unchanged. For McCabe specifically, the expert also claimed that in the 

shown example it was better to have everything in one sequence rather than separating into 

smaller methods. 

 

The software expert also claimed that based on the chosen example, refactoring Code 

Duplication may be difficult in C specifically due to its lack of templates (a C++ construct 

that is used to create generic files and functions). He also claimed that duplication refactoring 

would be simple in C++ through the usage of such templates. The duplication results were 

also the the most difficult TD type to show, due to lack of good visualization. For example, 

investigating a block that is duplicated twice in the same file requires the file to be opened 

twice, so that both block starts can be viewed simultaneously. Modularity Violations were 
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also shown to contain less false-positives than expected, and the expert seemed to judge them 

to be more important after seeing the example, as it proved that cyclic dependencies existed 

on the component level. 

 

When asked which of these examples the expert would consider refactoring, the specific 

Coverity issue was considered the only candidate, while Modularity Violations were in need 

of further investigation. The expert had no particular opinions regarding the correlation 

results, as seen in Table 3, as none of them showed an existing strong correlation between TD 

and maintenance effort. The expert was also aware that these results did not prove lack of 

correlation as the sample size was small. 

 

Shortly after, the build-integratability of the TD measurement & visualization process was 

validated by the tool expert, through showing and explaining Fig. 4. This expert concluded, 

based on the explanations, that mainly Code Duplication was not integratable enough. This 

was because of the manual “sorting data in excel”-step. 

 

5. Discussion 
In this chapter, the three main contributions of this study, the measurement system (answers 

RQ1), the tool mapping (answers RQ2) and the process to measure TD impact on 

maintenance effort (answers RQ3), and their results are discussed together with the processes 

that were used to create them. The resulting discussion is used to motivate why these three 

contributions answer their respective research questions and why they can be considered as 

contributions both from an academic perspective and a practical one. The validity of the 

results and how they were produced are also discussed and suggestions for changes, 

improvements and future work are highlighted. Finally, the limitations and ethical 

ramifications of this study are clarified. 

 

5.1 Measurement System Discussion 
One of the main contributions of this study is its measurement system for discovering files in 

need of refactoring, which aggregates several TD types and visualizes the result in order to 

answer RQ1. This in turn shows team members where in the system maintainability can be 

improved to avoid additional maintenance effort in the future. The understandable 

visualization allows experts to assess if the identified TD is in need of refactoring or if it can 

be postponed. The measurement system is a contribution to both practice and academia, as it 

can be applied on at least the design level (see Fig. 3) to other systems, either by team 

members or by researchers. The measures used in the system could even be changed to other 

source code level TD types (or different base/derived measures related to the currently used 

types) with other thresholds, while still using the overall indicator for refactoring priority 

based on TD levels found through source code analysis. Changing, adding or even removing 

measures is not an issue, due to the modular design of the measurement system. In the 

following three subsections we discuss how well the system fulfills best practice 

requirements, how correctly the activities to create it were conducted and how reliable its 

results are. 

 

5.1.1 Measurement System Requirements 
Staron et al. [20] have specified requirements for measurement system creation frameworks, 

and through several of these requirements (requirements 1,3,5,6 in [20]) it also becomes 

apparent how they believe the measurement system itself should be. Their first requirement 

of realizing ISO standard 15939:2007 [15] is certainly fulfilled, as evident by Fig. 3. As we 
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incorporate two tools that were already available on-site (Coverity SA and Coverity AA) we 

have also achieved their third requirement, collecting data from existing tools in the 

company, to a degree. Requirement six, measurement system modularity, has also been 

fulfilled, as seen in Fig. 4, since the model is separated in different stages which represent 

base measures, derived measures and indicators. Specifically, from the tools we receive the 

base measures and through the ad-hoc parsers the derived measures and the indicator. The 

indicator is later visualized as an Excel sheet with color coded prioritization. 

 

In regards to their fifth requirement, updating the measurement system without updating the 

source code, it is partially achieved in the measurement system. While the analysis models 

connected to the refactoring urgency indicator would need to be changed in the code, certain 

sub-indicators can effectively be ignored by passing an empty file representing that TD type 

to the source code that builds the indicator and rates files (see Fig. 4). For adding measures 

with their own sub-indicators, new code can be written that modifies the output file of the 

original, to add the new measurements on top of the existing measurements. The initial steps 

in Fig. 4 that create the base and derived measures could potentially also be connected to 

another indicator based on all or part of those measures, through new code. 

 

5.1.2 Measurement System Activities 
Staron et al. [22] have also outlined the activities that should take place during the creation of 

measurement systems. Several of these activities were also conducted in this study, while 

others were either overlooked or performed either incorrectly or partially Regarding 

information needs elicitation, the product guard and software expert had a general idea of TD 

related measures that they thought had potential to be interesting. As the overall information 

need was to discover if the existing TD was causing noticeable interest, previous TD 

literature was also studied to find the TD measures that appeared to cause high amounts of 

interest. Thus, our elicitation was not entirely stakeholder based, but we believe this extra 

step was needed to determine how TD and its interest could feasibly be measured. The 

purpose of knowing the cost of this interest was to know if it needed to be dealt with, which 

is why this information need was interpreted as which files have the highest refactoring 

priority (from a TD perspective). Performing the refactoring is analogous to paying the 

principal of the TD. The fact that the indicator is displayed on a per-file basis was based more 

on the assumption that refactoring one high TD file is preferable to refactoring several 

medium TD files. The stakeholders found the proposed indicator acceptable, but we did not 

involve them in its design to the degree they should have been according to Staron et al. [22]. 

 

For the analysis models the stakeholders were not involved beyond validation, as it was 

decided to use thresholds defined as “case independent” in previous literature where 

available, such as Heitlager et al.‟s duplication threshold [13]. This is in direct violation of 

Staron et al.‟s recommendations [22], but the stakeholders were not familiar enough with the 

TD types to have any case-specific thresholds in mind at the start of the study. Halstead 

Error, Modularity Violations and ASA Issues also did not have thresholds in previous 

literature, which led to arbitrary, but intuitive, thresholds such as zero-tolerance for defects, 

violations and issues. Also, only methods with a whole Halstead Error or more were 

considered as too complex, rather than taking the file‟s entire Halstead Error score in account. 

Both the thresholds from previous research and the self-selected thresholds are discussed in 

section 5.2. The derived measures and their measurement functions, besides SUM_HR, were 

also defined based on previous literature while the base measures were largely identified 

from the beginning in the form of the TD types stakeholders were interested in. 
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Regarding the entity and its associated attributes, commits were considered by the 

stakeholders to be an ideal representation of the work that was performed. The commits also 

had the added benefit of allowing comparisons between files with high TD and files that were 

modified in difficult commits, through effort specified in commit messages. The 

measurement system‟s specification and architecture have also been detailed in Fig. 3 and 

Fig. 4 respectively. Fig. 4 also details the necessary information sources in the form of files. 

The necessary measurement instruments have been developed through a combination of 

existing tools and ad-hoc parsers, which in turn realize the measures and indicator specified 

in Fig. 3. However, ultimately the measurement system has not been fully integrated within 

the case context due to the weak effort correlation results and validation results on certain 

measures, as discussed in section 5.4.4. 

 

5.1.3 Measurement System Result Reliability 
Staron & Meding [23] also provide guidelines for assessing the quality of a measurement 

system‟s results. Regarding the quality of this study‟s results, the conclusion is that it is 

mixed. For example, the accessibility of the information is not optimal as the system has not 

been fully integrated on-site (several automatable parts are still performed manually rather 

than by scripting). As a result, it takes around 30-40 minutes to perform all the steps in Fig. 4. 

The timeliness of the information was accurate however, as it was obtained from either the 

system state before the commit being examined (in order find the possible impact TD could 

have had on the commit) or on the latest version of the system (to provide up-to-date 

examples of where the TD levels are high). 

 

The results for the current system status were shown during the validation interview, where 

they were confirmed by the software expert in a sense that they believed that the TD types 

did in fact exist in their shown examples. However, %_MC, SUM_HR, #_DEP were 

considered less believable as their examples were considered to not need refactoring. This 

was also true for several ASA Issue categories due to false-positives. The volume of the data 

was based on the parts of the source code that the software expert was interested in seeing TD 

results for, and only files that have over-threshold levels of at least one TD type are included. 

This also contributed to the conciseness of the results. The design choice to visualize sub-

indicators on the same row as the refactoring urgency indicator also contributes to 

conciseness. 

 

The base and derived measures are also visible on their own inside separate pages in the same 

Excel file. While the same file filters have been applied to these pages, the format of this data 

is different from the indicator page, affecting the overall consistency. This data is however 

still required, in order to determine where in the high TD files the TD was found. Based on 

the validation results, all Excel pages have an adequate level of understandability, although 

DUP_LOC and %_DUP_LOC was more difficult to display compared to the other measures 

(especially when a block is present multiple times in the same file). 

 

A quality that the measurement system results lack within the case context is completeness. 

As the TD types that are measured do not have a strong correlation to commit difficulty, the 

model may be missing a measure that does have this strong correlation. The measures 

provide correct results, but evidently in this case they were not the correct measures for 

finding causes of significant extra effort. The information was still highly relevant for this 

study however, as it was required for answering RQ1, and for providing the TD that was 

analyzed for correlation to effort as part of RQ3. 
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5.2 Measures Discussion 
The base and derived measures that make up the measurement system and were gathered 

through tools found through answering RQ2 have had different levels of success in regards to 

stakeholder acceptance and usefulness. However, the measures that were less successful in 

this context may be highly suitable in others. In any case, the measures used in this study are 

based on a combination of recommended TD types from the existing literature, and thus 

provide an excellent starting point for investigating TD for both team members from other 

contexts as well as for researchers in future studies. In the following six subsections, the 

process of gathering and evaluating each measure is discussed as well as their validation 

results. The results for where these measures were used in correlations to answer RQ3 are 

discussed as a whole in section 5.4.4, as none of the measures are strongly correlated. 

 

5.2.1 McCabe Cyclomatic Complexity: %_MC 
The threshold used for %_MC (complexity of complex methods divided by the file 

complexity sum) was actually from another file-wise McCabe measure defined by Heitlager 

et al. [13]. However, this other measure was tested on several commits together with %_MC, 

and the resulting percentages were always very close. The other measure is based around 

LoC in complex methods divided by total LoC in a file. There are several reasons why this 

file-wise McCabe measure is worse than %_MC. First of all it was not possible to measure 

pure LoC (no comments, no blanks) for methods, which causes complex methods with many 

comments/blanks to seem worse than they are. In essence, calculating based on LoC ratio 

causes lines that have zero McCabe to be counted as complex. The other measure also 

requires separate thresholds depending on complexity level (such as 5% for source code with 

100 or more complexity [13]) as methods with the same amount of LoC can have differences 

in complexity. On the other hand, %_MC already incorporates separate complexity values in 

its calculation. This means that it is theoretically easier to achieve 50% complexity with 

%_MC (although again, for the sampled commits the results were still close). 

 

Regarding validation of this measure, the software expert and tool expert have both voiced 

hesitation on the usefulness of refactoring Cyclomatic Complexity in general. Specifically the 

software expert considered it to be better for readability to keep the related source code to one 

method in the shown production code example, rather than jumping between several smaller 

methods. The tool expert also voiced concerns on the mathematical validity of converting a 

method level measure to a file-wise one. As mentioned previously %_MC was however 

accepted by several stakeholders from the same company in the study it originates from [6] 

(named Effective_M%). Thus there are conflicting opinions. In the end, %_MC should still 

be more mathematically sound than Heitlager et al.‟s [13] measure, for the previously 

mentioned reasons. 

 

5.2.2 Halstead Error: SUM_HR 
The threshold used for Halstead Error and its file-level representation was exploratory, as 

Halstead Error was not used in any of the reviewed previous literature. However the software 

expert agreed that the reasoning to only count methods that reached a full error felt intuitive, 

and did not explicitly state that the example would be made worse through refactoring (unlike 

with the %_MC example). 

 

In our opinion, the example with high Halstead Error but low Cyclomatic Complexity 

appeared less readable than the example with reversed conditions. This was due to how the 

constructs that cause Cyclomatic Complexity (“if” and “else” statements, “switch” 
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statements, loops etc.) are often quite self-contained, so the high Cyclomatic Complexity 

example could easily be read in stages. 

 

5.2.3 Code Duplication: DUP_LOC & %_DUP_LOC 
The threshold for %_DUP_LOC was taken from Heitlager et al. [13], while the threshold for 

DUP_LOC was an arbitrary figure based on what we considered to be an excessively large 

duplication block. As part of the %_DUP_LOC calculation it is compared to the amount of 

pure LoC, which means that the percentage can become inflated if the duplicated blocks 

contained comments. If the comparison had been to pure LoC plus comment lines instead, the 

percentages would risk being too low, as the duplication block may not have had any 

comments, even if the file itself has plenty. In the end, this did not have a significant effect, 

as most files with %_DUP_LOC ≥ 10% but not DUP_LOC ≥ 100 had a percentage that was 

several units above 10%. 

 

Regarding the validation of these measures, the software expert agreed that excessive 

duplication should be avoided, and that the tool was able to find real duplication. Through the 

chosen example we were also able to gain new insights from the software expert in how 

refactoring of duplication in C specifically may in some cases be more difficult than expected 

(due to the lack of templates from C++). The measurement function for this derived measure 

is in need of modifications to take such situations in mind and ignore them, possibly through 

keyword recognition. This was however not possible during the timeframe of the study. 

 

5.2.4 ASA Issues: #_ISSUES 
The threshold for this category was based on an assumption of zero-tolerance for High 

Priority Issues. This assumption was strengthened by the existing commit procedure within 

the case context, which stops commits if issues from another (excluded from the tool 

mapping), proprietary tool are found. As ASA Issues are already actively refactored on-site, 

the correlation for this measure was never expected to be high. Additionally, a lot of the 

discovered issues did end up being confirmed as false-positive by the software expert. There 

was however one interesting issue, and the existing policies regarding committing proves that 

this is a measure that is already prioritized. It appears that the issue type is more important 

than the total number, even within the same priority level. However, the frequency of false-

positives may very well be due to the real issues being fixed before any commit is made. 

Thus, the validation and correlation results for this measure are perhaps the most case 

specific results. 

 

5.2.5 Dependency Count: #_DEP 
The threshold that was used to indicate too many dependencies is taken from Rapu et al. [10]. 

As it turns out, only four files out of over a thousand actually reached this threshold, and the 

software expert considered that these files are not refactorable due to their complex 

responsibilities. From an improvement perspective this measure was thus not very useful, but 

it did manage to only point out complex files, meaning it could be very useful from an 

informative perspective when dealing with unfamiliar applications (to determine the “core” 

files). 

 

5.2.6 Non-Allowed Dependencies: #_MV 
The threshold for this category was based on an assumption that Non-Allowed Dependencies 

could be considered as a type of High Priority Issue. As previously mentioned it was only 

possible to measure for one application, but it was easy to verify by hand that the tool results 
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were not false-positive (through examination of dependencies directly in a file). The software 

expert considered the diagram that was inputted into the tool to be relatively up-to-date, and 

found the results interesting as they showed circular dependencies on a component level. This 

was considered as a possible target for refactoring. Our opinion is that the tool used for this 

measure also serves an informative purpose, as it is easy to read how everything in the 

application is connected in the dependency treeview before even adding the manually 

specified diagram. 

 

5.3 Tool Evaluation Discussion 
Another of the main contributions of this study is the identification of C/C++ compatible TD 

measurement tools (see Table 1) and the evaluations of several of these tools that were used 

to answer RQ2 (see sections 4.3.2.1-4.3.2.6). Although these tools allegedly support other 

programming languages as well, that aspect has not been verified during this study and as 

such the tool evaluation results are the most context-specific contribution. Still, any system 

made in C/C++ should be analyzable by the selected tools, whether it be by team members 

themselves or as part of a future research project. This remedies the gap identified in existing 

literature regarding how to apply existing TD theories in a C/C++ context. The identified 

gaps regarding open source tool support for certain TD types also highlights possible future 

projects to develop such alternatives. 

 

The set of tools that were found and considered build-integratable were tested on-site at 

Ericsson to assess their actual compatibility towards the case context‟s work process. 

Completing the tool mapping with information from this on-site testing addresses RQ2. 

There may definitely exist tools that were overlooked, but for the purposes of this study, the 

tools found through this method, with some additional ad-hoc parsers, were enough to 

implement the planned measurement system (see Fig. 3). Currently however, two TD 

categories require proprietary tools, which puts a limit on where the measurement system can 

be used. Another limitation of the measurement system is that it focuses on providing a quick 

overview of TD levels in a file. The indicator will point out files with large amounts of TD, 

but the tool results for each measure still need to be examined if a decision to refactor is made 

(in order to see exactly where in the file the TD is located). This led to a visualization design 

containing separate pages for each TD type in addition to the main indicator page. Based on 

results with the tools used for Non-Allowed Dependencies (Coverity AA and Structure101) it 

was also realized that those tools can detect a form of documentation debt as well, as the 

found Non-Allowed Dependencies can show where the documented architecture differs from 

the real architecture. 

 

The selected tools were considered as sufficiently integratable due to potential for 

automation, but reaching this automation still requires work. For calculating (%)DUP_LOC, 

%_MC, SUM_HR, #_ISSUES and #_DEP, this is just a matter of creating scripts that link 

together commandline arguments to run the tools and the ad-hoc parsers. For measuring 

#_MV however there is an upfront cost in that a diagram must be designed at least once. A 

separate tool from the Coverity suite can then be used to analyze source code for Non-

Allowed Dependencies. 

 

The ad-hoc derived measure parsers were mainly necessary to reformat tool outputs to make 

them compatible with the ad-hoc indicator parser. Doing this formatting through code 

eliminates several manual steps. As this code was developed as a throwaway prototype [24], 

it did not take too much time away from the study to create it (approximately two days). 
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However, if an open source version of the measurement system was to be created then these 

ad-hoc parsers should be improved (which is why they are not publicly available). 

 

As seen in Table 1, open source tools for McCabe and Code Duplication are readily 

available. On the other hand, the tested open source ASA Issues tool is inferior to the 

proprietary alternative, and tools for Halstead Error and Non-Allowed Dependencies are 

proprietary-exclusive. As the case context requirement was to support both programming 

languages, the open source tool Dependometer (Non-Allowed Dependencies for C++) has 

been ignored. To solve the “lack of open source solutions”-issue, there are several steps to 

take. While Non-Allowed Dependencies may be easier to implement as a case specific 

solution, a generic Halstead calculation tool should not only be feasible but also fairly simple, 

as the creators of CMT++ describe in detail how Halstead metrics are calculated for C/C++ 

code [19]. 

 

For Code Duplication, the visualization of results from PMD also has room for improvement, 

especially in regards to its Eclipse plugin. Specifically, the plugin would benefit immensely 

both from highlighting of duplication blocks, and context menus for navigating from a block 

to the other occurrences of the same block. The current solution for calculating the 

duplication in a specific file is also dependent on manually sorting and removing unnecessary 

data from the results in Excel, due to how PMD mixes the block‟s start and size values with a 

copy of the actual block, resulting in output files with several thousand lines of data. This 

step of the measurement system could be sped up by removing the block copies 

programmatically instead of manually deleting their column in Excel. 

 

There is also a feature gap in the tested LoC category tools. None of them can provide the 

non-blank, non-comment LoC for a single function rather than a whole file. It would have 

been interesting to use such a value in comparisons, as many of the TD types have base 

measures on function level as well. 

 

5.4 Commit Difficulty Analysis & Correlation Discussion 
The final main contribution of this study is the process for assessing if a certain TD type (or 

TD overall) is responsible for increased commit difficulty. This will show if the TD has had a 

tangible interest, whose level can be used for the prioritization mentioned in RQ3. To make 

this assessment the commits themselves were graded for difficulty, which allows both 

unusually difficult and unusually easy commits to be identified. We believe modified LoC 

divided by time spent on a commit is a more accurate representation of maintenance effort 

compared to previously used interest indicators such as change frequency and defect density, 

as one is actual effort and the other two are effort surrogates. A more accurate representation 

of interest in turn improves TD Management decision making, where the goal is to assess if 

the interest is larger than the principal estimated by experts. As per the goals of this study, we 

have provided one such accurate representation and a process for how to compare it to TD 

levels, which is adoptable by team members independently or as part of future research 

projects. The following four subsections discuss the reliability of how commit difficulty was 

calculated and how it was used in correlations, as well as possible improvements. 

 

5.4.1 Measuring Commit TD 
When measuring the commit TD levels that were used to correlate with commit difficulty as 

part of RQ3, it was chosen to exclude files with significantly less modified LoC compared to 

other files in the same commit. This restriction allowed for faster analyzing of the commits 

with few large changes followed by one to three modified LoC in multiple files. A potentially 
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more accurate solution would have been to link a file change to the method that was modified 

rather than the entire file. This would have allowed for less deriving as many TD types are 

initially measured on method level. It is also more likely that TD in the specific method has 

had a negative effect on the change compared to the TD levels of the entire file. These results 

could then be converted back to a file-level indicator based on the amount of high TD 

methods the file has. However, as far as we are aware there is no easy way to link a file 

modification in a Git commit to the specific method that was changed. Also, there is a 

weakness in the method-based approach due to the fact that new methods are much more 

common than new files, and that the modifications can consist of new and modified methods 

in the same file. In the end, correlating commit difficulty to file-level rather than method-

level TD measurements trades accuracy for simplicity. 

 

5.4.2 Calculating Average Ratio 
As previously stated, the average ratio (and all correlations based on it) was recalculated 

using the MAD-Median-rule [18], as the previous usage of 20% Trimmed and one Standard 

Deviation from the trimmed mean was too lenient. It was chosen to try a different method 

rather than changing the previous one to be based on two Standard Deviations, as no 

correlations existed even on the too lenient level. These methods were needed to find the 

threshold for transforming commit ratios into “1” or “0” for several of the correlation 

algorithms that were used to answer RQ3. In the end, no strong correlations were found 

between TD and commit difficulty anyway, but the mean from the MAD-Median-rule sample 

should be closer to the population mean compared to the trimmed one. 

 

5.4.3 Correlating Modified LoC & Effort 
Based on the correlation results, there is a strong relation between time spent and modified 

LoC, as the commits where a lot of source code was modified are often the commits that took 

large amounts of time to complete. In a way this is not surprising as 21 of 25 commits are 

within a normal distribution according to the MAD-Median-rule. The Pearson‟s result for this 

correlation should be valid, and we are also satisfied with how modified LoC and effort 

values were transformed to “1” and “0”, as the resulting datasets pair high modified LoC with 

large effort, thus being consistent with the Pearson‟s result. 

 

5.4.4 Correlating TD & Commit Difficulty 
As seen in section 4.5, no significant correlations between specific over-threshold TD types 

and commit difficulty or overall over-threshold TD and commit difficulty were found. As it 

stands now, lack of correlation cannot be proven either, due to the sample size. It is likely that 

the low number of commits with effort is a major factor, but these results still warrant the 

question; are the right TD types being measured? This study has at least covered Source Code 

TD extensively, but perhaps the true causes of significant interest lie in a different TD area 

such as build-, test-, infrastructure- or versioning TD. The correlation results do indicate that 

the chosen TD types have an interest cost, as the Pearson‟s Correlation value is negative as 

expected. The value is just not significant enough based on Zazworka et al.‟s [3] thresholds. 

When comparing to the value required for 95% significance level with 23 degrees of freedom 

[25], one finds that the threshold from the significance table [25] is actually lower than 0.6, 

but the TD correlation results of this study do not reach this more lenient threshold either. 

You can still prioritize the TD types by their interest as intended by RQ3, but their priority 

would be as low as their interest. 

 

One thing that we in hindsight wish had been done differently would have been to challenge 

the notion that effort should only be specified on production code commits and not test code 
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commits. The argument that these commit types are too different could have been 

circumvented by keeping two commit datasets, with separate ratios and correlation results. 

This could have also been used to analyze if the commit types truly are as different as was 

assumed, by comparing the two datasets. 

 

For the correlation process we are slightly doubtful regarding the correctness of how the 

results are transformed to be used in Conditional Probability, Chance Agreement and 

Cohen‟s Kappa (while the Pearson‟s results should be without any issue). We believe that it 

makes sense to attempt to pair occurrence of TD with commits that were not unusually easy, 

but perhaps the “1” and “0” for specific over-threshold TD type occurrence should have been 

based on deviation from mean, rather than if the commit had at least one occurrence. The 

conditions for becoming “1” rather than “0” may be too lenient for the transformed specific 

TD type occurrence datasets. One issue however is that different TD types have more/less 

frequent occurrences, so that their occurrence datasets also have different means. This was 

the reasoning for choosing the “one or more occurrence”-approach. The differences in 

occurrence also affect the overall TD correlation results, as certain TD types may be more 

important. The threshold for becoming “1” in transformation could potentially be divided into 

a chain of thresholds for each TD type instead, where at least one threshold has to be 

fulfilled. As it stands now, commits with many occurrences of less important TD may have 

been treated as more important than they actually were. 

 

5.5 Validity 
In this section the overall validity of this study is discussed using the three types of validity 

outlined by Runeson & Höst [4]. 

 

5.5.1 Construct Validity 
To ensure the construct validity of the tool mapping, the tools themselves were tested. In 

order to select tools that gather accurate measurements, data triangulation was performed by 

trying out several tools both to choose the most suited for the case context as well as to 

compare if they give (almost) identical measurements on the same measures. However due to 

the lack of measurement overlap Code Duplication could not be compared between tools. 

Also, the other tools with the DUP category were based on PMD, making result comparison 

pointless. 

 

The construct validity of the process this study uses for TD and effort correlation should be 

similar to its original use by Zazworka et al. [3], where they claim that the thresholds were set 

higher than strictly necessary (based on their findings from previous literature) in order to 

reduce uncertainty. However, The TD interest surrogates they correlate to are different. They 

also applied this process and measured TD from system versions rather than commits, which 

potentially could mean their dataset values were much closer to each other (many files are 

present in every system version). These similarities should support their smaller sample size 

(13 system versions vs 25 commits). In any case, a process designed for correlating over 

system versions has been used to correlate over commits instead, which may be less suitable. 

 

To ensure the construct validity of human validation of measurements/indicator, this study 

aimed to organize and visualize the measurement system results in an understandable way as 

per the recommendation of Kruchten et al. [8]. Based on the validation interview results, this 

was also successful. In regards to construct validity of the validation interviews themselves 

the guidelines by Martini et al. [2] were followed. This included summarizing major findings 

and presenting them to the interviewee, to ensure their answers had not been misunderstood. 
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5.5.2 Internal Validity 
The internal validity of the method that was used to find extra effort is potentially affected by 

several outside factors, such as varying skill levels in the participating team members. 

Another factor is that the accuracy of the effort values different team members provide may 

not be perfect. However the team members already use a reporting system based on hours in 

their work, which makes the effort in commit method fit in fairly naturally. The fact that 

modified LoC and Effort was strongly correlated over the commits from seven different team 

members also implies that there is not that much variation in the skill levels (most commits 

were similar productivity-wise). The validity of each separate measure that is correlated to 

this effort is discussed in sections 5.2.1-5.2.6.  

 

Regarding the correlation process itself, the triangulation gained from using several 

correlation algorithms should ensure result validity for the specific sample they are applied 

to. As mentioned previously however, Conditional Probability, Chance Agreement and 

Cohen‟s Kappa require that the values in the examined datasets are transformed into “1” and 

“0” for pairwise comparisons. Section 3.3.2.4 details how these transformations were 

determined. We believe that the decision criterias for these transformations makes sense, but 

it was still a decision that had to be made based on intuition rather than scientific background. 

Ultimately the decision on how to transform the values had a significant effect on the results 

of the related methods. The results of Pearson‟s Correlation are based on the untransformed 

data, and are thus not affected. 

 

Extra effort could also hypothetically be a byproduct of paying back principal rather than 

dealing with interest. To examine this, the levels of system-wide TD were compared between 

the end of January and the end of April (the time-range for the commits with effort). The 

results in Table 5 show that only a minimal reduction in TD levels has occurred, and the team 

members themselves claim that none of the commits with effort were specifically TD 

refactoring tasks. This shows that the effort spent during this time-period did not include any 

major attempts at paying back principal. Specifically, the columns in Table 5 represent: 

 

 Point: The point in time.  

 DUP__LOC Total: The total amount of duplicate LoC  

 #_MC Total: The number of functions with too high Cyclomatic Complexity (>15) 

 #_HR Total: The number of functions with too high Halstead Error (≥1)  

 #_ISSUES Total: The number of High Priority Issues. 

 #_DEP Total: The number of files with too many dependencies (≥40). 

 #_MV Total: The number of Non-Allowed Dependencies. 

 Files with Extensive TD: The number of files with over-threshold levels of at least 

one TD measure. 

 

Table 5. System-wide TD at two points in time 

Point DUP_LOC 

Total 

#_MC 

Total 

#_HR 

Total 

#_ISSUES 

Total 

#_DEP 

Total 

#_MV 

Total 

Files with 

Extensive TD 

Start 1562 57 25 23 4 101 131 

End 1519 54 24 18 4 101 122 
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5.5.3 External Validity 
For external validity, the generalizability of the correlation and validation results is limited 

since the case only covers a single department of a large company. Especially the validity of 

the (lack of) TD correlation to effort may be insufficient due to the lack of commits that 

specify effort. For the overall generalizability of this study, two strategies described by 

Wieringa and Denava [26] have been considered. The Statistical Learning strategy could be 

considered slightly applicable, as the Mad-Median-rule based mean ratio of the 24 previous 

commits turned out to be an accurate predictor of the 25th commit‟s ratio (as it‟s ratio was 

less than one StDev away from the current Mad-Median-rule based mean). This would imply 

that the ratio can be used to for example judge if a future commit within the case context is 

more difficult than expected. As Statistical Learning is designed for discovering statistical 

patterns in large sample sizes [26], it is unlikely that this ratio will hold if it were to be 

applied to commits made by other teams from the case context. A strategy that fits better with 

this study is the Case-based Generalization, which consists of the following three steps [26]: 

 

1. Observe case event. 

2. Explain the event architecturally. 

3. Generalize the theory to architecturally similar cases. 

 

The observed event in this study is the impact of existing TD on commit difficulty, while the 

architecture is the commits with effort specified as well as the measurement tools that were 

used to measure if the levels of the chosen TD types are above the specified thresholds. In 

order to replicate this architecture in similar cases it can be generalized by replacing the 

commits (which of course would happen anyway), with/without also replacing the 

measurement tools. By changing tools this makes the study generalizable even to other 

programming languages, as long as the necessary measures can be measured. Additionally, 

the correlation process, tool recommendations and measurement system implementation 

should be of interest to companies in similar contexts and maintainers of C/C++ projects of 

any size. This includes the method for finding difficult commits, based on specifying effort as 

hours spent and comparing to modified LoC, which could easily be applied to other 

programming languages. 

 

5.6 Limitations 
The study is delimited to one case (due to the established contract with the company in 

question). The scope is limited to identifying and visualizing for easier validation of Source 

Code TD from historical/current data. The possibility of build integration was considered an 

important criterion during tool selection due to the fact that the product guard and software 

expert in the case context explicitly declared their requirement for lightweight tools that do 

not require big changes to their current process. Using lightweight tools was also considered 

to be a key factor for making sure tool setup/configuration would not take up too much of the 

time designated for this study. This led to preference being given to tools available on-site 

(whose functionality otherwise requires open source tools and ad-hoc parsers to mimic) as 

they were already integrated. 

 

Our amount of measures are also to a degree limited compared to previous studies such as 

[3], as we can only measure what the tools we have found and the code we have written can 

measure. This limitation stems from the fact that C/C++ support is required. Specifically one 

of the four approaches from [3] is not covered at all (Grime), although it is also the approach 

most closely tied to object-oriented programming [16][17] (which is not relevant to the case 

context). For effort correlations we were also mainly limited to one of four applications, due 
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to it being the one that was most actively worked on by the team members that specify effort. 

The on-site experts we validated measurements with also ended up being limited in number 

(the two expert stakeholders). Finally, there is a major limitation in using modified LoC per 

hour as an indicator of extra effort in that it is a manual process that is heavily affected both 

by people forgetting to write effort in some of their commits, as well as the number of people 

who participate to begin with. This limitation can cause the time needed to gather enough 

commits with effort to become extensive. The process of choosing “irregular” commits to 

study (unusually low or high modified LoC per hour) also falls apart if commits are too 

similar (dataset is free of outliers). 

 

5.7 Ethical Ramifications 
This study uses information from the team members such as effort, which was the software 

expert‟s own suggestion, and the other team members also voluntarily chose to provide the 

data. However, the effort that is provided in the commits by the team members could 

potentially be used to grade their performance. Even though the data presented in this report 

cannot be connected specifically to any member as we avoided mentioning the names of the 

team members, the commits with effort are still available inside the company. As such the 

effort values can be accessed by other development teams and managers. However, the team 

members were already required to specify their total amount of hours worked, as part of the 

company procedure. Specifying effort in commits should not be much worse from an ethical 

perspective, although the mandatory time specifications are less accessible by others. There 

should be no cause for concern regarding comparison of commit effort to the existing work 

time reporting schedule. This is due to the fact that it is already known that the commits with 

effort do not cover the effort spent on commits of testing code, which there are plenty of. 

 

We have carefully reviewed this report to avoid publishing any company sensitive 

information. It will also be further reviewed for this purpose within the company itself. To 

have full consent of the information during the interviews the participants were asked if 

recording the session was acceptable, and it was also explained what the results would be 

used for. 

 

6. Conclusion 
Technical Debt (TD) in the form of Source Code TD is considered to be a problem for many 

software projects; especially in projects using Agile methodology as the rapid software 

evolution and frequent deadlines causes developers to use more short-term solutions. To 

neglect TD instead of properly managing it will result in growth of TD interest, which will 

increase both the effort required to maintain software as well as to extend it with new 

features. However, to be able to properly manage TD it must be correctly identified and 

presented in an understandable way. This thesis addressed this by measuring and visualizing 

source code level TD measures in an industrial context as a joint indicator. This thesis also 

analyzed the correlation strength between the chosen TD measures and commit difficulty, in 

order to indicate which measures had the strongest impact on maintenance effort within the 

case context. Conducting the study in such a context has also allowed for the results to be 

validated by expert team members. The key findings of this study are: 

 

 A measurement system based on ISO standard 15939:2007 that indicates refactoring 

priority of files based on levels of several TD types: A measurement system that 

combines tools, ad-hoc parsers and manual processes to identify files in need of 

refactoring has been designed and implemented. This in turn shows team members 
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where in the system maintainability can be improved to avoid additional maintenance 

effort in the future. The measurement system‟s indicator and its visual representation 

provide answers for the aggregation and understandability parts of RQ1 respectively. 

This visualization has also been confirmed as suitable by stakeholders on-site. 

 

The measurement system has a modular design, as it was expected to disable 

measures based on correlation results and stakeholder feedback. Due to the case 

specific nature however, the measures that were less correlated to effort or less useful 

to stakeholders in this context may be more important and useful in others. In any 

case, the measures used in this study provide a starting point for investigating TD in 

other contexts. Further research could also integrate additional TD type measures into 

the file-level indicator. While the implementation of the measurement system is 

limited to measuring TD in C/C++ systems, it should be applicable at the design level 

(see Fig. 3) to systems written in other languages. 

 

 A mapping of Source Code TD tools for C/C++, with accompanying 

recommendations: Tools for measuring different forms of TD through C/C++ source 

code have been mapped based on the TD types they can measure, the output formats 

they provide and how integratable they are within the case context. Most of these 

tools have also been tested on-site to ensure their functionality, and a selection of 

recommended tools has been established. The tool results and how those results are 

presented provide multiple answers to RQ2. However, open source tool support for 

Halstead metrics and Non-Allowed Dependencies is lacking, which may prevent 

further research in certain contexts unless such tools are developed. 

 

The selected tools have also been confirmed by stakeholders to fulfill their 

integratability requirements, besides the tool for duplication. That specific tool is in 

need of additional coding to automatically derive measures from its results. Any 

system made in C/C++ should be analyzable by the selected tools, which remedies the 

gap identified in existing literature regarding how to apply existing TD theories in 

such a context. The identified gaps regarding open source tool support for certain TD 

types also highlights possible future projects to develop such alternatives. 

 

 A process for correlating specific TD types and overall TD to commit difficulty, 

allowing for TD type prioritization: By rating the difficulty of commits through their 

ratio of modified LoC per hour, the TD levels of these commits can then be correlated 

to a more accurate representation of effort spent, thus answering RQ3. This will show 

which (if any) of the TD types are strongly correlated to increased commit difficulty. 

This process is also programming language independent, as all it requires is change 

size and the time taken to make said change. 

 

By applying triangulation of several correlation methods, it is ensured that the overall 

process only finds relations that are truly strong. As shown with this study‟s results, 

none of the chosen measures were strongly correlated, which is consistent with the 

stakeholders‟ opinions on the urgency of the problems that the measures indicate 

(based on examples in their own production code). However, they did agree that the 

examples were at least minor problems, which is consistent with the fact that the 

correlation results show a minor relation. Of course, these results may very well be 

skewed by the small sample size (25 commits over approximately three months). The 

correlation result between modified LoC and effort shows the commits are in fact not 
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that different however, so the sample size may have been large enough to make case-

specific inferences. 

 

The prioritization process could possibly be refined further in future studies, by 

evaluating the TD levels of the previous state of modified functions rather than the 

previous state of modified files. It would also be valuable to conduct a comparison 

study that uses modified LoC per hour and effort surrogates from previous studies in 

order to establish which of these interest indicators is the most suitable. 

 

In summary, the findings of this study will aid others to identify, quantify, present and 

prioritize Source Code TD in C/C++ applications. The design of the measurement system and 

the process for prioritizing TD types through correlation strength can also be applied to any 

programming language that TD can be measured for. By implementing the designed 

measurement system based contextual needs, files with high levels of multiple TD types will 

be identified which can then be taken into account during TD Management. This will in turn 

improve decision making regarding when and where to conduct refactoring. 
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Appendix A - Results for One StDev from 20% Trimmed 
 

Table 6: Normal or one StDev below 20% Trimmed mean table 

TD Type Pearsons Conditional 

Probability 

commit|TD 

& 

TD|commit 

Chance 

Agreement 

Cohen's 

Kappa 

Correlation 

strength 

commit|TD 

(x/3) 

Correlation 

strength 

TD|commit 

(x/3) 

McCabe -0.36 15.38% & 

33.33% 

49% 0.25 0/3 0/3 

Halstead -0.47 16.67% & 

50% 

39% 0.19 0/3 0/3 

Issues  -0.48 22.22% & 

33.33% 

57% 0.35 0/3 0/3 

Duplication -0.29 21.05% & 

66.67% 

36% 0.23 0/3 1/3 

High Dep 

Count 

-0.37 16.67% & 

33.33% 

51% 0.28 0/3 0/3 

Modularity 

Violations  

-0.09 9.1% &  

50% 

30% 0.16 0/3 0/3 

High Total 

TD  

-0.39 0% &  

0% 

74% 0.40 0/3 0/3 

Modified 

LOC / Effort   

0.98 33.33% & 

33.33% 

79% 0.53 1/3 1/3 
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Figure 7: Modified LoC per hour ratio for each commit 20% Trimmed 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8: Chart showing distribution of commit modified lines/commit effort pairs 20% 

Trimmed 
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Appendix B - TD Questionnaire with Definitions List 
 

Technical Debt Definition 
Technical debt (TD) is a metaphor reflecting technical compromises that yield short-term 

benefits with a risk of causing long-term side-effects. Neglecting TD on actively developed 

software can cause inefficiency and expansion difficulties in the system, and such overhead 

cost is referred to as the interest of TD. If TD is not properly managed, the growth of TD over 

time will result in the growth of the interest, which will increase the required effort to 

maintain the software (which includes extending it with new features). However, repayment 

of TD also requires effort (referred to as the principal of TD). Therefore, it is important to 

decide when to pay the principal during TD management. 

  

Out of the TD types (see glossary), our study focuses on Code TD, while also touching upon 

Architecture TD through modularity violations as well as Defect TD by evaluating issue 

categories not covered by Lint. If we manage to find correlations between commits that 

needed extra effort and certain subcategories of these TD areas, then that would also be an 

indicator of Infrastructure TD (lack of support). 

  

Regarding TD management activities (see glossary), our study focuses mainly on TD 

Identification (which is required for TD Monitoring, Communication & Documentation). By 

correlating TD measures to effort, we will also be able to perform TD Prioritization. 

  

As a complementary source of data for TD identification, we would very much like you to 

answer the following questions. Your answers may lead to further discussion, and they may 

also point out TD in the application that our current tools do not cover. 

  

Questions 
  

1. If you were forced to address TD in the application to make it more maintainable for 

the future (i.e. excluding new features or bug fixes), which part of the code would you 

spend your time on? Why? 

  

2. Which part of the application, that you think contains TD, will not be changed in the 

foreseeable future? 

  

3. What kind of “code compromise” would you personally like to keep track of, or find 

out about earlier? 

  

4. What do you consider to be extra time consuming when working on/with the 

application? 

  

5. What do you consider to be “poor” code that can still be found within the application? 

Where can it be found? 
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Questionnaire Glossary  
  

Technical Debt Types 

TD can be split into ten areas based on the origin of the compromise [9]: 

  

Requirements TD 
Refers to differences between an existing requirements specification and the actual product, 

under domain assumptions and constraints. 

  

Documentation TD 
Refers to insufficient, incomplete, or outdated documentation. 

  

Test TD 
Refers to lack of tests/test coverage. 

  

Build TD 
Refers to flaws in a software system, in its build system, or in its build process that make the 

build overly complex and difficult. 

  

Versioning TD 
Refers to problems in source code versioning, such as unnecessary code forks. 

  

Infrastructure TD 
Refers to sub-optimal configurations of development-related processes, technologies and 

supporting tools. 

  

Architectural TD 
Refers to architecture decisions that make compromises in certain internal quality aspects, 

such as maintainability. 

  

Design TD 
Refers to technical shortcuts taken during detailed design. 

  

Code TD 
Refers to code that violates general or context specific coding practices/coding rules. 

  

Defect TD 
Refers to defects, bugs, or failures found in software systems. 

  

Not TD 
Things that are not TD include logical correctness as well as runtime properties such as 

performance. 
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Technical Debt Management 

Technical debt management (TDM) is divided into activities centered on either dealing with 

existing TD or preventing potential future TD [9]. These activities include: 

  

TD Identification 
Deals with detecting TD caused by intentional or unintentional technical decisions in a 

software system through specific techniques, such as static code analysis. 

  

TD Measurement 
Deals with quantifying the benefit and cost of known TD through estimation techniques, or 

estimates the level of the overall TD in a system. 

  

TD Prioritization 
Deals with ranking identified TD according to certain predefined rules to support deciding 

which TD items should be repaid first and which TD items can be tolerated until later. 

  

TD Prevention 
Deals with preventing potential TD from being incurred. 

  

TD Monitoring 
Deals with tracking the changes of the cost and benefit of unresolved TD over time. 

  

TD Repayment 
Deals with resolving TD through techniques such as reengineering and refactoring. 

  

TD Communication 
Deals with making identified TD visible to stakeholders so that it can be discussed and 

further managed. 

  

TD Documentation 
Deals with representing TD in a uniform manner, addressing the concerns of particular 

stakeholders. 
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Appendix C - TD & Correlation Validation Questions 
 

Asked after explaining TD type concepts 

 Do you have any questions regarding the TD types we have explained? 

 Which of the TD types would you consider important/not important just based on our 

definitions? 

 

Tying summarized results to recent challenges 

 Can you describe any time-consuming problems encountered by you or anyone else 

from the team during the last two weeks? 

 Do any of our summary results for the time-consuming file(s), highlight the 

function(s) that caused extra work? 

 

After showing detailed tool results and examples in the production code 

 Were any of these results unexpected to you (concerning the code areas they point 

out)? 

 How would you reprioritize the TD types after seeing the tool results and our selected 

examples? 

 Which (if any) of our selected examples would you consider refactoring first? 

 

Asked after showing correlation results 

 What do you think of relative importance between TD types according to the 

correlation results? 

 

Assessing tool integratability after detailing result summarizing process 

 Based on our explanations of the tools and our result summarizing process, how well 

do they fulfill your integratability requirements? 
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Appendix D - Tool Licence List 
 

 GPLv2 = http://www.gnu.org/licenses/gpl-2.0.html 

 GPLv3 = http://www.gnu.org/copyleft/gpl.html 

 LGPLv3 = http://www.sonarqube.org/downloads/license/ 

 ALv2 = http://www.apache.org/licenses/LICENSE-2.0 

 BSD-4 =  https://spdx.org/licenses/BSD-4-Clause 

 BSD-3 = http://docs.oclint.org/en/dev/devel/license.html 

 VPL = http://source.valtech.com/display/dpm/License 

 EPL = https://www.eclipse.org/legal/epl-v10.html 

 USC = http://csse.usc.edu/csse/affiliate/private/license.txt 

 MIT = http://opensource.org/licenses/MIT 
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