

Chalmers University of Technology

University of Gothenburg

Department of Computer Science and Engineering

Göteborg, Sweden, June 2015

Identifying Technical Debt Impact on Maintenance

Effort
- An Industrial Case Study
Master of Science Thesis in the Programme Software Engineering

ERIC BRITSMAN

ÖZGÜR TANRIVERDI

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Göteborgs universitets publikationer - e-publicering och e-arkiv

https://core.ac.uk/display/43560033?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The Author grants to Chalmers University of Technology and University of Gothenburg the

non-exclusive right to publish the Work electronically and in a non-commercial purpose

make it accessible on the Internet.

The Author warrants that he/she is the author to the Work, and warrants that the Work does

not contain text, pictures or other material that violates copyright law.
The Author shall, when transferring the rights of the Work to a third party (for example a

publisher or a company), acknowledge the third party about this agreement. If the Author has

signed a copyright agreement with a third party regarding the Work, the Author warrants

hereby that he/she has obtained any necessary permission from this third party to let

Chalmers University of Technology and University of Gothenburg store the Work

electronically and make it accessible on the Internet.

Identifying Technical Debt Impact on Maintenance Effort
- An Industrial Case Study

ERIC BRITSMAN,
ÖZGÜR TANRIVERDI

© ERIC BRITSMAN, June 2015.
© ÖZGÜR TANRIVERDI, June 2015.

Supervisor: ANTONIO MARTINI

Examiner: MIROSLAW STARON

Chalmers University of Technology
University of Gothenburg
Department of Computer Science and Engineering
SE-412 96 Göteborg
Sweden
Telephone + 46 (0)31-772 1000

Department of Computer Science and Engineering
Göteborg, Sweden, June 2015

Abstract

Technical Debt refers to sub-optimal solutions in software development that affect the life

cycle properties of a system. Source Code Technical Debt is considered to be a problem for

many software projects, as neglecting Technical Debt on actively developed software will

increase the required effort to maintain the software as well as to extend it with new features.

However, refactoring Technical Debt also requires effort which is why it must be investigated

if the Technical Debt is worth resolving. To be able to make such decisions, the existing

Technical Debt must be correctly identified and presented in an understandable way. This

thesis addresses the problem by conducting a case study at Ericsson, where Technical Debt in

a large industrial C/C++ project has been investigated. The investigation was done by

designing a measurement system based on ISO standard 15939:2007 and reviewing

Technical Debt measurement tools suitable for its construction. The investigation also

included correlating the resulting Technical Debt measurements with maintenance effort by

applying triangulation of several methods. This allowed the Technical Debt types to be

prioritized based on their correlation strength. The chosen Technical Debt measures are

presented as a unified indicator that indicates file refactoring priority in order to support

decision-making regarding Technical Debt Management, so that additional maintenance

effort can be avoided in the future.

Acknowledgements

We would like to give a special thanks to our academic supervisor Antonio Martini for his

continuous support and suggestions throughout this thesis work. We would also like to thank

our on-site supervisor Patrik and the development team at Ericsson for providing the commits

necessary for this thesis work. Additional thanks are also in order to Patrik due to his

suggestions for and confirmations of the work through weekly meetings. Furthermore, we are

grateful to Per for helping us to get started with the on-site tools used in this study. Last but

not least, it has been a great experience to conduct this thesis work at Ericsson, so many

thanks goes to Pär for initiating the project.

Özgür Tanriverdi and Eric Britsman, 2015-05-22.

Vocabulary

TD: Technical Debt.

Measurement System: Aggregation of measures into a joint indicator.

Effort: Hour spent to complete a specific commit.

Modified LoC: Modified line(s) of code of a file/commit.

Commit: Code changes and additions submitted to a versioning system.

Commit Difficulty: Modified LoC per hour spent ratio.

On-site: Refers to the work environment at the company.

StDev: Standard Deviation.

Lightweight Tool: A tool that does not require extensive setup/installation.

Table of Contents
1. Introduction .. 1

1.1 Purpose ... 1

1.2 Scope... 1

1.3 Research Questions .. 2

1.4 Main Contributions ... 2

1.5 Thesis Outline ... 2

2. Theoretical Background .. 3

2.1 TD Overview .. 3

2.1.1 Chosen TD Types ... 4

2.1.1.1 Code Complexity: McCabe Cyclomatic Complexity .. 4

2.1.1.2 Code Complexity: Halstead Error/Delivered Bugs .. 4

2.1.1.3 Code Duplication ... 5

2.1.1.4 Static Analysis Issues ... 5

2.1.1.5 Dependency Count ... 5

2.1.1.6 Non-Allowed Dependencies .. 5

2.1.2 Chosen TD Interest Indicator ... 6

2.2 Related Research .. 6

2.3 Study Placement ... 8

3. Methods ... 9

3.1 Research Setting ...11

3.1.1 Stakeholders.. 11

3.2 Data Collection ...11

3.2.1 Measurement System .. 12

3.2.1.1 Measurement System Design ... 13

3.2.1.2 TD Measure Definitions & Calculations ... 15

3.2.2 Human TD Identification .. 16

3.2.3 Tool Evaluation & Selection .. 17

3.2.4 Collection of TD Measures ... 17

3.2.4.1 Measure TD in Commit Scope .. 18

3.2.4.2 Measure TD in Application Scope ... 18

3.2.5 Collection of Commit Data ... 19

3.2.5.1 Effort Measurement ... 19

3.2.5.2 Modified LoC Measurement .. 19

3.3 Data Analysis ..19

3.3.1 Commit Difficulty Analysis ... 19

3.3.2 TD & Effort Correlation Process .. 21

3.3.2.1 Pearson‟s Correlation ... 21

3.3.2.2 Conditional Probability and Chance Agreement ... 22

3.3.2.3 Cohen‟s Kappa ... 23

3.3.2.4 Dataset Transformation Strategies ... 24

3.3.3 Validation ... 25

4. Results ...26

4.1 Measurement System Implementation ...26

4.2 Human TD Identification ...28

4.3 Tool Evaluation & Selection Results ...28

4.3.1 Tool Mapping ... 28

4.3.1.1 Table Details .. 28

4.3.1.2 Tool Table .. 30

4.3.2 Tool Selection Motivations .. 31

4.3.2.1 Category: COM .. 31

4.3.2.2 Category: DUP ... 31

4.3.2.3 Category: LoC .. 32

4.3.2.4 Category: ASA ... 32

4.3.2.5 Category: Coup .. 32

4.3.2.6 Category: MV .. 32

4.4 Commit Difficulty Analysis ...33

4.4.1 Outliers via MAD-Median-rule .. 33

4.4.2 Correlation between Modified LoC & Effort ... 34

4.5 TD & Effort Correlation Results ..34

4.6 Validation of the Results ..36

4.6.1 Qualitative TD Results Analysis .. 36

4.6.2 Final Validation .. 37

5. Discussion ..39

5.1 Measurement System Discussion ...39

5.1.1 Measurement System Requirements .. 39

5.1.2 Measurement System Activities ... 40

5.1.3 Measurement System Result Reliability... 41

5.2 Measures Discussion ..42

5.2.1 McCabe Cyclomatic Complexity: %_MC .. 42

5.2.2 Halstead Error: SUM_HR .. 42

5.2.3 Code Duplication: DUP_LOC & %_DUP_LOC ... 43

5.2.4 ASA Issues: #_ISSUES .. 43

5.2.5 Dependency Count: #_DEP .. 43

5.2.6 Non-Allowed Dependencies: #_MV .. 43

5.3 Tool Evaluation Discussion ..44

5.4 Commit Difficulty Analysis & Correlation Discussion45

5.4.1 Measuring Commit TD ... 45

5.4.2 Calculating Average Ratio .. 46

5.4.3 Correlating Modified LoC & Effort ... 46

5.4.4 Correlating TD & Commit Difficulty ... 46

5.5 Validity ...47

5.5.1 Construct Validity... 47

5.5.2 Internal Validity .. 48

5.5.3 External Validity... 49

5.6 Limitations ..49

5.7 Ethical Ramifications ...50

6. Conclusion ...50

References ...53

Appendix A - Results for One StDev from 20% Trimmed56

Appendix B - TD Questionnaire with Definitions List58

Appendix C - TD & Correlation Validation Questions61

Appendix D - Tool Licence List ..62

 1

1. Introduction
Technical Debt (TD) refers to sub-optimal solutions in software development that affect the

life cycle properties of a system. According to Nugroho et al. [5], neglecting TD on actively

developed software can cause inefficiency and expansion difficulties in the system, and such

overhead cost is considered as the interest of TD. If TD is not properly managed, the growth

of TD over time will result in the growth of the interest, which will increase the required

effort to maintain the software as well as extending with new features [5]. This is a problem

that can cause severe long-term consequences [1]. For example, TD was estimated to cost the

global software industry 500 billion dollars in 2010 [1].

A common type of TD is Source Code TD, which refers to short-term solutions in coding. A

common cause of Source Code TD is the rapid evolution of software and frequent deadlines

present in Agile processes, as they can drive developers to using such short-term solutions

[1]. Examples of Source Code TD include Code Duplication and high Cyclomatic

Complexity [5]. Another TD type measurable on source code level is Non-Allowed

Dependencies between components. Martini et al. [2] claim this is an especially severe type

of TD, due to the fact that these dependencies might cause ripple effects when changes in the

source code are made.

An important factor to take into account is that TD also requires effort to resolve, referred to

as the principal of TD [3]. Therefore, it is important to decide when to pay the principal

during TD Management. To be able to make such decisions, the existing TD must be

correctly identified and presented in an understandable way. As such, this thesis measures

and visualizes source code level TD measures in an industrial context as a joint indicator.

This thesis also analyzes correlation strength between the chosen TD measures and commit

difficulty, in order to indicate which measures has the strongest impact on maintenance effort

within the case context. This combination in turn supports decision-making concerning TD

Management. These procedures are based on approaches [3], metrics [5][6][7] and best

practices [20][21][22][23] from previous literature. This case study was conducted with an

agile development team at an Ericsson site, using suitable TD measurement tools identified

during the course of the project. In order to measure TD interest, comparisons have been

made between occurrence-levels of measured TD types and levels of maintenance effort, by

investigating historical data spanning approximately three months.

1.1 Purpose
The purpose of this study is to identify and apply suitable methods/tools for identifying,

quantifying, presenting and prioritizing source code level TD in C/C++ applications. This

included correlating these TD measurements with maintenance effort measured as modified

LoC per hour in commits, where effort has been manually specified in the accompanying

message. This allows the TD types to be prioritized based on their correlation strength to

increased maintenance effort. Their correlation strength represents the severity of their

interest.

1.2 Scope
This is a holistic case study [4], meaning that the study is delimited to one case (due to the

established contract with the company in question). The scope is limited to identifying and

visualizing Source Code TD from historical/current data to allow for validation of the found

TD, by using a combination of build-integratable tools, ad-hoc parsers and manual processes.

This study has measured TD in production code specifically rather than testing code, as

 2

requested within the case context. The restriction to build-integratable tools is due to context

specific requirements. Estimating future TD accumulation and interest payments is outside

the scope of this thesis, due to time restrictions. Focusing on gathering measures from

relatively current data has given the opportunity to discuss TD qualitatively, as it is easier for

team members to discuss data on their recent work.

The generalizability of the correlation and validation results of this study are limited since the

case only covers a single development team from a department of a large company, and

mainly one large application out of four. The correlation process, tool recommendations and

measurement system should however be of interest to companies in similar contexts and

maintainers of C/C++ projects of any size. This includes the method for finding difficult

commits, based on specifying effort as hours spent and comparing to modified LoC, which

could easily be applied to other programming languages.

1.3 Research Questions
The following research questions have been used to fulfill the purpose of this study:

 RQ1: How can an understandable aggregation of multiple source code level TD types

be designed and implemented?

 RQ2: How can source code level TD be measured in large industrial C/C++ projects?

 RQ3: How can interest be used to prioritize source code level TD types?

1.4 Main Contributions
The main contributions of this thesis are:

 A measurement system based on ISO standard 15939:2007 [15], that indicates

refactoring priority of files based on levels of several TD types. This answers RQ1.

 A mapping of Source Code TD tools for C/C++, with accompanying

recommendations. This answers RQ2.

 A process for correlating specific TD types and overall TD to commit difficulty,

allowing for TD type prioritization. This answers RQ3.

1.5 Thesis Outline
The second chapter first presents a thorough explanation of TD and the chosen TD types,

followed by a review of related research. The third chapter then provides a detailed

description of the processes and accompanying methods that were used to reach the study‟s

three main contributions, while the fourth chapter presents the results of constructing a

realization of the measurement system, reviewing tools, correlating TD with effort and

presenting TD types as a unified indicator. These contributions and how they answer the

research questions are then discussed in the fifth chapter. Finally, the conclusions of this

study and the significance of its contributions are summarized in the sixth chapter.

 3

2. Theoretical Background
This chapter provides further details on TD and related concepts, and details the TD types

that were chosen for this study. The technique for measuring the interest of the TD types is

also detailed. Finally, a review of related research is presented, and this study‟s placement

with regards to the existing literature is explained.

2.1 TD Overview
As outlined by Li et al. [9], TD can be split into several areas (all including both interest

and principal) based on the origin of a compromise. On the other hand, that which is not

TD includes unimplemented features as well as runtime properties such as performance,

but existing TD may be the underlying cause. This study focuses on the area of Source

Code TD while touching upon Architecture TD and Defect TD as well. According to Li et

al. [9], Source Code TD includes such types as Code Duplication and over-complex code,

while Defect TD refers to unmanaged defects and Architectural TD refers to architectural

decisions that reduce maintainability. Architecture TD can be measured through source

code, by analyzing dependencies against an intended architecture as well as by analyzing

the amount of dependencies in general [9]. Defect TD is also studied through source code,

and is essentially covered by standard static verification tools.

The areas that this study focuses on have received plenty of attention in the past. In fact, Li

et al. [9] state that over half of their 94 reviewed studies concern Source Code TD to some

degree. They emphasize that this is related to the amount of available tools, as well as the

fact that most team members work with source code on a daily basis. They also reason that

Source Code TD is a form of TD that the team members themselves should be able to

resolve. As can be seen in section 2.2 however, major studies on these TD areas have used

measurement tools that cannot be used in the context of this case study (due to language

incompatibility or tool unavailability), hence why one of this study‟s goals is to answer

RQ2.

TD Management (TDM) is also divided, in this case into activities centered on either

dealing with existing TD or preventing potential future TD [9]. Out of these categories, this

study focuses mainly on TD Identification, as it is the first step to engaging in other TDM

activities such as TD Monitoring, Prioritization, Communication and Documentation. This

study lacks the statistical sample rate required for estimations of future TD, hence the focus

on other activities.

 4

Figure 1: TD overview

2.1.1 Chosen TD Types
The TD types that were chosen for measurement (see Fig. 1) within the case context are:

2.1.1.1 Code Complexity: McCabe Cyclomatic Complexity

Cyclomatic Complexity relies on each function in a source code file being graded with one

point for each independent path through the function. When a function is graded >15, that

function is considered complex [6]. This measure was chosen based on its frequent use for

maintainability predictions in previous research [3][5][6][7][11][13]. Higher complexity

potentially increases maintenance cost due to its effect on source code readability, and this

extra cost can be interpreted as the interest of this TD type [7]. Additionally, the amount of

test cases/complexity of test code required to verify that the method works as intended

increases with its Cyclomatic Complexity (essentially one case per point is required for full

branch coverage). High Cyclomatic Complexity can also affect the changeability of a

method [13], due in part to the reduced readability. As Cyclomatic Complexity is a method

based measure, certain steps are required to transform it into an unbiased file-level rating

(the principle used by Antinyan et al. [6] was followed), which is explained in detail in

section 3.2.1.2.

2.1.1.2 Code Complexity: Halstead Error/Delivered Bugs

Another form of code complexity is Halstead Error (also known as Halstead Delivered

bugs). This measure is derived from other measures in the Halstead suite, which at its core

 5

is based on the number of unique and total operands, and the number of unique and total

operators, in a method [19]. Halstead Error specifically estimates the defect proneness of a

method. The measure it is derived from is incorporated into Hewlett-Packard‟s

Maintainability Index [11], but Halstead Error itself has not been used in any of the

previous literature reviewed as part of this study. This measure was chosen mainly as a

byproduct of it being available in one of the tools used in this study, and it was also the

easiest to explain out of the available Halstead measures (which is vital for a measure to be

adopted by team members, according to Heitlager et al. [13]). The interest of this measure

is the amount of time spent dealing with any impact of these possible defects, as well as

increased source code review difficulty due to the complexity required to get a high

Halstead Error value. This method level measure also requires certain steps to transform it

into a file-level rating, which is explained in detail in section 3.2.1.2.

2.1.1.3 Code Duplication

Code Duplication is commonly created during the development and maintenance of large

software systems [12]. Excessive amounts of duplication in a system can potentially

influence many quality attributes, while also rendering a system larger than it needs to be

[13]. According to sources used by Grundèn & Lexell [1], Code Duplication violates

separation of concerns, and can impact the modifiability, testability, reusability and

understandability of a system. This risk of high and varied impact is due to the fact that

refactoring may need to be applied in all places the code is duplicated, rather than one central

file. It can also be quite difficult to find all instances where a certain block is duplicated [12].

Manual investigation is often required to judge the severity of a duplicated block [12], thus

duplication is measured in this study to assist in such investigations.

2.1.1.4 Static Analysis Issues

Automatic static analysis tools analyze code looking for issues that might cause faults or

might degrade some dimensions of software quality [3]. These issues can be either general

or highly language-specific. The interest that these issues can cause is the amount time that

was used to identify and deal with the effects of these defects, while refactoring them

ensures they have no effect even if the effect would have been trivial. Most ASA tools

divide the issues they can detect into separate priority categories by default. As these tools

can measure a multitude of issues this study makes a restriction to measuring only the

issues that the tool itself considers as the most important, in order to reduce false-positives.

2.1.1.5 Dependency Count

Dependency count („includes‟ in C/C++) is a very basic form of coupling (equivalent to

ATFD used by Rapu et al. [10]). As changes in a file can lead to required changes in files

that depend on it, having many dependencies is a form of TD due to higher risk of change

cascade. Izurieta & Bieman [17] also claim that as dependencies increase, the system

becomes harder to extend. This measure was selected over more “lower-level” coupling

measures that prioritize dependencies based on how they are used, as the initially intended

coupling measurement tool did not work on-site, and manually analyzing

dispersed/intensive coupling [14] requires quite complex algorithms.

2.1.1.6 Non-Allowed Dependencies

Non-Allowed Dependencies are a form of Modularity Violation, and refer to dependencies

that do not follow the original architecture [1]. According to results by Zazworka et al. [3]

Modularity Violations, which they measure in the form of Non-Allowed Dependencies,

point to change-prone files. As extra refactoring is a typical form of TD interest, Non-

 6

Allowed Dependencies can be interpreted as a form of TD. According to Grundèn & Lexell

[1], Non-Allowed Dependencies often occur in rapidly evolving software, where the

architecture cannot follow. Another factor that creates Non-Allowed Dependencies is that

developers may not be aware of what is allowed [1]. Non-Allowed Dependencies can

require extra changes in other files due to the existence of the dependency. If Non-Allowed

Dependencies exist that are unknown, this might cause time estimations to be inaccurate

and delay releases of features [2]. The reason this would be unknown is that Non-Allowed

Dependencies cause inconsistency against existing architecture documentation, meaning

the documentation can no longer be trusted. This measure relies on the existence of a

defined architecture, which provides the rules that dependencies are validated against

[1][2]. One such diagram was available for one large application on-site, allowing this

measure to be implemented.

2.1.2 Chosen TD Interest Indicator
As discussed by Grundèn & Lexell [1], producing accurate estimations of TD interest and

principal are both difficult and time-consuming, which is why this study does not focus on

estimations. As detailed in section 3.3.2, this study instead uses modified LoC divided by

hours spent working on a commit to indicate the interest of TD types found in the related

files (in order to answer RQ3). This method, which is less reliant on estimations even

though the effort value is still partially estimated by the team members, has not been used

in the related research encountered during the literature review phase. Its purpose was to

produce more accurate correlations with raw effort, compared to previous studies using

effort surrogates. Compared to change frequency (which is the most similar interest

indicator in previous studies), this method instead measures the difficulty of individual

changes rather than how often these changes occur. With change frequency change size is

ignored while modified LoC per hour instead prioritizes changes based on change size

divided by time. A benefit to change frequency however, is that it is a file level measure

while modified LoC per hour is limited to commit level. As can be seen by the case context

specific correlation results (see section 4.5), the effort indicator has a major weakness in

regards to sample size. Enough commits with effort specified need to be produced (while

change frequency can be applied naturally to the entire commit history).

2.2 Related Research
Zazworka et al. [3] have studied TD identification using four approaches (code smells,

grime, ASA Issues and Modularity Violations). Their results show that different

approaches find TD in different parts of the code. Their results also indicate that certain

types of TD (from Source Code or Architecture area) are of higher priority based on their

likelihood to cause defects and/or require changes. Their study is however limited to a

single (large) open source project written in Java, which has also affected their choice of

tools for each of the four approaches. Even so, their findings were of great interest to apply

in the context of this study such as their assessments of God Classes (files with high

Cyclomatic Complexity and number of dependencies [10]), Modularity Violations, and

Dispersed Coupling. Their prioritization is based on correlation strength, which is

calculated by applying Pearson‟s Correlation, Conditional Probability, Chance Agreement

and Cohen‟s Kappa to the two phenomena being studied, and is replicated in this study.

Zazworka et al. [7] have also evaluated human identification of TD and compared it to

automated identification. For human identification a TD template accompanied by a short

questionnaire was used, whose questions have affected how this study intends to extract

similar information during qualitative investigation of team members‟ work. Their results

 7

indicate that human identification finds different forms of TD compared to tool usage,

which is why this study plans to do both to make sure it is focusing on the right forms. The

tools used in this study are not applicable in the case context, but they highlight that the so

called “priority 1”-issues in the tool FindBugs was especially helpful. This study in turn

also focuses on measuring for defects that fall into the highest category when using the

identified FindBugs alternatives. Zazworka et al. [7] also achieve similar success with code

smells related to coupling as they did in their previous work [3].

Another study was partially conducted at Ericsson by Antinyan et al. [6], and focuses on

identifying risk areas in code. They define risky code as “files that are fault prone, difficult-

to-manage or difficult to maintain” which aligns well with definitions of (Source Code) TD

such as the one given by Zazworka et al. [3]. Their aim was to enable systematic tool-

assisted identification and prioritization of risks during Agile development. Their results

are quite useful for this study as well, especially due to the similarities in case context.

Specifically, their study provided an aggregated measure to take file-size into account when

measuring McCabe‟s complexity, which allows code complexity to be measured at file

instead of function level. Their refactoring prioritization method based on file complexity

and change frequency within a specific time frame was however not used in this project, as

change frequency was not measured. The tool they developed was not usable in this case

context due to a change in code versioning system.

Rieger et al. [12] propose visualization strategies for better communication and

prioritization of Code Duplication based on research on both industrial and open source

projects. As part of their study they also provide insight into identification of Code

Duplication. They reason that refactoring of duplication is non-trivial due to required

decisions on were shared blocks shall be allowed to remain. Refactoring of Code

Duplication leans more towards manual investigation rather than automation [12]. They

also present several metrics for duplication from which this study specifically uses what

they call LCC (the amount of Code Duplication in a file). This metric tracks the number of

lines whose clones can be found in the same or other files for each file in the system. Their

polymetric views are quite cluttered however, and thus they were not reused in this study.

Heitlager et al. [13] have provided an alternative maintenance measurement model to

replace an older one (the Maintainability Index found in [11]). They disapprove of this

older model due to obfuscation of which measures contributed to the derived index value,

which in turn makes it difficult for team members to understand how to improve said value.

They reason that providing measures that team members can easily influence improve the

team members‟ acceptance of the model. To replace MI, they suggest a set of minimal

requirements for a practical maintainability model based on source code analysis, by

mapping source code metrics to sub-characteristics of maintainability from an ISO

standard. This model has strong parallels to how Source Code TD is measured, as it shares

metrics with TD-oriented studies such as [3][5][7]. As such, this model was kept in mind

when choosing which derived measures this study would focus on. Heitlager et al. [13] also

suggest threshold values for their derived measures, which they claim to be language and

context independent based on experience and expert opinion from “dozens of industrial

projects”. This argument is clearly lacking in validity since results from these projects are

not presented, but these thresholds at least provide a starting point which then can be

adjusted based on the case context.

 8

From an industrial perspective, a master level thesis that aimed at finding methods for how

to handle Non-Allowed Dependencies (a type of Modularity Violation) was recently

written by Grunden & Lexell [1]. In order to find such methods, knowledge about how the

problem behaves was explored in a real life context at Ericsson Radio base stations

department. They successfully connected source level elements to components and found

Modularity Violations between them through static analysis [1]. However, the tool they

developed was not fully automatic, and they limited themselves to measuring Non-Allowed

Dependencies only rather than including other TD types. This study also analyzes existing

dependencies against a set of allowed dependencies, but uses a different tool for this

purpose with an improved feature set. Grunden & Lexell [1] also derive an indicator for

prioritizing Modularity Violations, following the steps of ISO standard 15939:2007 [15].

This standard was deemed suitable for defining the indicator created from measures used in

this project as well.

Nugroho et al. [5] focus on empirically estimating TD through estimation of Repair Effort

(RE) as well as estimation of (extra) maintenance effort. An ideal quality level is extracted,

and the gap between the current and ideal quality level is said to represent the current TD

level. The estimated extra maintenance effort (interest) is based on historical maintenance

costs, current quality level and current TD level. Similarly to Zazworka et al. [7], they

advocate the usage of historical data as grounds for future TD estimations. Metrics were

measured on a file/function level and threshold values were chosen based on previous

statistical studies, which made them suitable for this study as well. The tool they have used

to extract these measurements however is commercial and thus not usable for this case

study, as the only commercial tools used were already purchased since previously on-site,

or had free trials available.

From the data Nugroho et al. [5] extract from applications they estimate RE which ties the

existing TD both to the percentage of source code that needs changing as well as the

amount of man-months required. Specifically the man-month component requires feedback

from technology experts tied to the application in question in order to set an accurate value.

Due to the expert knowledge required, as well as the difficulty in identifying ideal quality

levels and historical maintenance costs, their methodologies have not been used in this

study. Their strategy of making estimations based on historical data is quite suitable for the

case context, and would allow for a more quantitative approach. There is however a major

limitation in the fact that the study was only performed on Java projects. Potentially a lot of

rework would be needed in order to adapt their process to other languages.

2.3 Study Placement
While there are several relevant studies in both the areas of Source Code TD and

Architecture TD, concerning the TDM activities of Identification/Monitoring/Prioritization/

Communication, these studies are also quite different, so there was an opportunity to

combine/compare several successful methods while also further validating them. The

method for measuring interest (hours spent per modified LoC in a commit) is also

potentially less complex and more accurate than interest indicators used in previous studies

such as [3][5][6]. Certain methods encountered in previous research where only partially

used ([6][12][13]) or not used at all ([5][11]) in this study, but the tool alternatives

presented as part of the results (see section 4.3.1) should assist those who wish to apply

unused TD processes on C/C++ projects as well.

 9

3. Methods
In this chapter the research methodology of this study is described. First, a visual overview of

the research process is presented followed by details on the research setting and the involved

stakeholders. The procedures used for constructing the measurement system, selecting tools

and measuring TD and effort are then described in detail. Finally, the procedures for

analyzing commit difficulty, correlating TD levels with maintenance effort and for validating

results are detailed.

Fig. 2 shows an overview of the research process, which visually explains in which order

each action was performed. The actions in the figure will be explained in detail throughout

this chapter. Fig. 2 also shows which action(s) are prerequisites for other actions to be started.

Prerequisites that involve multiple actions are represented as join nodes, showing which

actions are required before the next steps in the process can be performed. A prerequisite that

connects to multiple actions are represented as fork nodes. Conditional prerequisites are

presented as decision nodes, using their conditions as labels. At the decision node, the

process can only move in the direction where the condition is fulfilled.

10

Figure 2: Research process activity diagram

 11

3.1 Research Setting
This study was conducted at a large telecom company in Gothenburg, Ericsson. This site

provided an actively updated C/C++ project for analysis with the selected TD measurement

tools through the implemented measurement system. The site also affected who was

interviewed concerning human identification of TD as well as the tool result/correlation result

and process validation. Although the results are limited to this specific context, such as the

criteria for the tool selection and which TD types were prioritized, the design of the

measurement system and the method for TD prioritization can be applied to other contexts.

3.1.1 Stakeholders
This section describes the stakeholders that have affected this study.

Product Guard

The product guard was one of the initiators of this thesis work. This stakeholder impacted this

study by deciding that the scope should focus on production code, and also affected which

agile development team participated in the study.

Software Expert

The software expert was the on-site supervisor of the thesis work, and a senior member of the

assigned development team. Several suggestions were received through weekly status

meetings as well as confirmation of the work that has been done to that current point. The

first and most significant of these suggestions was to use effort in commits as an interest

indicator, which allowed this study to differentiate itself from previous research. Besides the

weekly meetings, the software expert was most of the time also available for further

guidance. Especially his information regarding on-site procedures was used during work

environment setup and additional configurations. This stakeholder was also involved in both

human identification of TD and validation of the chosen TD measures, tools and the final

correlation results.

Tool Expert

The tool expert was from a different team at the same site, and configured, provided

instructions and directed to documentation for two proprietary tools available on-site. This

included semi-frequent email correspondence. The tool expert also participated and provided

feedback at many of the weekly meetings, including validation of chosen measures and on

the TD measurement & visualization process.

Team Members

The members of the assigned development team. They have provided the commits with effort

specified in the commit message. It is their rate of work that is compared to TD level before

the work was done.

3.2 Data Collection
To guide the data collection towards answering the research questions, related literature was

reviewed to gain increased domain knowledge regarding TD Management and to find

applicable theories and accompanying measures for which TD types should be measured,

visualized and evaluated for maintenance effort impact. The resulting data collection methods

are described in this section. The section starts with describing the measurement system and

which TD types are used with it. Next, it is explained how human TD identification was

conducted and how it affected the measurement system. This is followed by an explanation of

 12

the evaluation criteria that were used to select tools for the measurement system

implementation, and descriptions of how they were used to collect TD measurements.

Finally, the process for collecting commit data is detailed.

3.2.1 Measurement System
Based on the steps of ISO standard 15939:2007 [15], guidelines from Staron & Meding

[20][21] and from Staron et al. [22][23] a measurement system was defined to combine TD

measures in order to answer RQ1. Measurement systems are used to combine measurements

from multiple measures and to evaluate them based on system-specific criteria, which results

in joint indicator(s) [20]. These indicators simplify the presentation of results to stakeholders,

and are more efficient to manage than the separate measures they are built from. According to

Staron & Meding [20], a measurement system needs to be designed around satisfying

information needs connected to a specific stakeholder. This is because there needs to be a

person or a group of people that is interested in the information that the measurement system

provides [22]. This is necessary to ensure that the measures are suitable, and that enough of

them have been identified [21]. Staron & Meding [21] also stress that measurement systems

should not be based around what base measures are technically feasible, as they see it as the

opposite of their top-down approach. In the case of this study however, the information need

from the product guard and software expert was: “Is the existing (source code) TD causing

noticeable interest?” which can be only be analyzed for the types of TD that are in fact

technically feasible to measure within the case context.

To analyze TD impact based on the TD visible at source code level, the indicator: “How

many/which TD types does the source code file have too much of?” was chosen. The purpose

of this indicator is to find files with high TD levels and compare if they were modified in

commits that were more difficult. The TD types used for this indicator are based on the

following information needs identified from the initial project discussion with the product

guard and software expert:

 Is the code in a certain file too complex?

 Is the code in a certain file duplicated in the same or another file?

 Does a certain file contain any high priority issues?

 Does a certain file interact with a lot of other files?

 Does a certain file violate predefined rules for interaction with other files?

An additional possible information need was discovered when reviewing tool capabilities,

namely:

 Is a certain file estimated to contain defects?

Out of the stakeholders with information needs, the software expert has had the largest

impact on the resulting measurement system due to participation in weekly progress

meetings. The indicator was thus designed to assist the team members in knowing which files

could cause their work to take longer than expected (see Fig. 3). This points out which files

are prime candidates for refactoring tasks.

The measures that make up the indicator were chosen based on recommendations from

previous literature. Clarity to team members was also prioritized, based on the concepts of

each measure and on how their measurement results can be improved. The indicator was also

supposed to be updated to prioritize the measures that were proven to be important through

 13

correlation with commit difficulty. This would have led to certain measures being excluded.

As no such correlations could be proven however (see Table 2 in section 4.5), the indicator

was not updated. Possible changes based on qualitative validation from the software expert

are discussed in section 5.1.3.

3.2.1.1 Measurement System Design

The following list provided by Staron & Meding [20] explains the elements in a measurement

system. Fig. 3 displays how these elements have been mapped in this study‟s measurement

system.

Measurement System Element Definitions from Staron & Meding [20]

 Interpretation: How the indicator addresses the information need.

 Indicator: The indicator that is used to address the information need.

 Analysis model: Thresholds, targets, or patterns that are used to determine the need

for action or further investigation, or to describe the level of confidence in a given

result.

 Derived measure: A measure that is defined as a function of two or more values of

base measures.

 Measurement function: Algorithm or calculation performed to combine two or more

base measures.

 Base measure: A measure defined in terms of an attribute and the method for

quantifying it. In this study values that are “pre-derived” by tools are treated as base

measures, as other measures are in turn derived from them. This allows the graphical

model to be shown at a higher level of abstraction.

 Measurement method: Logical sequence or operations, described generically, used

in quantifying an attribute with respect to a specified scale.

 Attribute: Property or characteristics of an entity that can be distinguished

quantitatively or qualitatively by human or automated means.

 Entity: Object that is to be characterized by measuring its attributes.

14

Figure 3: Measurement System design based on ISO standard 15939:2007

 15

3.2.1.2 TD Measure Definitions & Calculations

The TD measures, measurement functions and analysis models seen in Fig. 3 are described in

detail in this section (including the relevant equations). The TD types themselves are

explained in section 2.1.1.

Type: Cyclomatic Complexity

 Base measure: The score of each function i in a file (MCi).

 Derived Measure: The sum of the file‟s function scores (TOTAL_MC), the score

sum of the file‟s methods with complexity >15 (HIGH_MC), and %_MC which

stands for the percentage of TOTAL_MC that is made up of HIGH_MC, i.e. the ratio

of the file‟s complexity that comes from too complex methods. This measure was

originally used by Antinyan et al. [6], who claim that this measure was accepted by

stakeholders at both Volvo and Ericsson in said study. The threshold of 15 complexity

for a file to be complex is used from previous studies [5][6], and it is also the default

value in the tested McCabe tools.

 Analysis Model: Is %_MC ≥ 50? This threshold is based on a file-wise McCabe

threshold specified by Heitlager et al. [13]. 15 Cyclomatic Complexity falls within

their definition of moderate complexity rather than high, hence the large percentage.

While %_MC is slightly different from how Heitlager et al. [13] calculate file-wise

McCabe, the tests performed to compare the two file-wise indicators resulted in

highly similar percentages.

 Equations:

HIGH_MC = ∑
 MCi for all MCi > 15 in a file (Eq. 1)

%_MC = (HIGH_MC/TOTAL_MC)*100 (Eq. 2)

Type: Halstead Error

 Base measure: The predicted error for each function i in a file (HRi).

 Derived Measure: The sum of predicted errors for the file using only functions with

HR ≥ 1 (SUM_HR). This threshold was chosen based on the goal of only showing

intuitive measures to team members [13]. As such, a method is only counted as too

complex if it is predicted to contain at least one error. There are two ways to calculate

Halstead Error (resulting in different values), one based on Halstead Effort and one

based on Halstead Volume. Coleman et al. [11] consider Halstead Volume to be a

more accurate indicator of maintainability than Halstead effort. The documentation

for the Halstead effort based tool also mentions that their Halstead Error value is often

lower than the true amount of errors. Due to those arguments the Halstead Error

calculation based on Halstead volume was chosen. Details on how to measure

Halstead measurements in C/C++ code can be found in the documentation of the tool

CMT++ [19], and to calculate Errors(delivered bugs) using Volume Effort
2/3

 is

replaced with Volume in the delivered bugs equation.

 Analysis Model: Is there at least one function in the file with HR ≥ 1 (SUM_HR ≥

1)? Assuming zero-tolerance for predicted errors.

 Equations:

SUM_HR = ∑
 HRi for all HRi ≥ 1 in a file (Eq. 3)

Type: Code Duplication

 Base measure: Set of duplicated blocks (DUP_B), where the line number it starts on

and size is known for (DUP_Bi). The Code Duplication tool used in this study is

token-based, which means it can also detect duplication within a line of source code

 16

rather than just if the entire line is duplicated (as a side-effect it also ignores

indentation). Severity is specified by how many characters are allowed to be identical

in sequence on each line. The threshold used for severity is the same as the threshold

used in the tool‟s official documentation (100).

 Derived Measure: The number of lines containing Code Duplication in the file after

eliminating block overlap and blocks with DUP_B < 6 (DUP_LOC) and the ratio

between DUP_LOC and the file‟s total LoC (%_DUP_LOC). The restriction to blocks

that contain six lines or more is based on a recommendation for avoiding false-

positives and flooding of trivial data from Heitlager et al. [13].

 Analysis Model: Is DUP_LOC ≥ 100? OR Is %_DUP_LOC ≥ 10%? The percentage

threshold taken from Heitlager et al.‟s work [13], while the LoC based threshold is

used to find large duplication blocks in exceptionally large files (%_DUP_LOC does

not account well for file-size).

 Equations:

DUP_LOC = ∑
 DUP_Bi ∪ DUP_Bi+1 (Eq. 4)

%_DUP_LOC = (DUP_LOC / TOTAL_LOC)*100 (Eq. 5)

Type: Static Analysis Issues

 Base measure: Each individual High Priority Issue in a file (ISSUEi) (filtering out

types that have been labeled as false-positive by team members).

 Derived Measure: Total High Priority Issues count in a file (#_ISSUES)

 Analysis Model: Is #_ISSUES > 0? (assuming zero-tolerance policy on issues).

 Equations:

 #_ISSUES = ∑
 ISSUEi (Eq. 6)

Type: Dependency Count

 Base measure: Each individual dependency to files within the application that a file

has (DEPi).

 Derived Measure: Total dependency count to files within the application that a file

has (#_DEP).

 Analysis Model: Is #_DEP ≥ 40? (This is the threshold used for ATFD by Rapu et al.

[10]).

 Equations:

 #_DEP = ∑
 DEPi (Eq. 7)

Type: Non-Allowed Dependencies

 Base measure: Each individual Modularity Violation a file contains (MVi) (based

only on components visible in the available diagram).

 Derived Measure: Total Modularity Violations count a file contains (#_MV).

 Analysis Model: Is #_MV > 0? (assuming zero-tolerance on violations).

 Equations:

 #_MV = ∑
 MVi (Eq. 8)

3.2.2 Human TD Identification
As part of answering RQ1, TD identification from team members was performed with the

intention of helping to discover any additional factors affecting maintenance effort not found

through the measurement system. This was done through a semi-structured group interview

with three of the team members including the software expert. The fact that this TD

identification was carried out as a group interview was due to how team members expressed

 17

that filling in TD templates/questionnaires as outlined in by Zazworka et al. [7] was less

optimal for them. They also wanted to reach a joint answer to the questions through

discussion, rather than producing separate answers. This was motivated by claiming that the

quality of the answers would be improved. This group interview was recorded and

transcribed per recommendation of Runeson & Höst [4], so that the results could be further

analyzed. The questions used can be seen in Appendix B. Said questionnaire also contains

definitions based on material by Li et al. [9], which were used to introduce team members to

TD concepts/types in a similar fashion as by Zazworka et al. [7] in order to align them with

TD terminology.

3.2.3 Tool Evaluation & Selection
In order to answer RQ2 and to provide the TD measurements necessary for RQ1 and RQ3, a

tool search was conducted to find and evaluate software analysis tools that might provide the

measures outlined in designed measurement system (see Fig. 3). Several searching strategies

have been used to find the tools that were evaluated. As mentioned previously, tools used in

the reviewed previous literature were either incompatible with C/C++ or otherwise

unavailable, and thus have not been evaluated. Instead, the current set of tools was discovered

through searches based on these key sentences:

 Measuring “TD type” in C/C++

 C/C++ alternative to “tool from literature”

 C/C++ technical debt tool

 C/C++ static analysis tool

 C/C++ source code analysis tool

These tools were evaluated based not only on their ability to provide the necessary

measures/the data that those measures can be derived from, but also on context-specific

requirements regarding licensing, build integration and automation. Specifically, proprietary

tools were considered unsuitable unless they were already licensed on-site. The requirements

with regards to integratability were that tools should not require manual manipulation of a

GUI in order to take measurements. It was considered acceptable however to view the final

results in a GUI similar to the “radiators” already used on-site. These “radiators” refer to

colour-coded status pages, which has been used for the visualization of the measurement

system as well (see Table 4). The output formats of the tools were also examined to assess if

the results could be accessed outside the tools themselves. The higher priority tools based on

these criteria were tested on-site on the production code, in order to arrive at a selection of

tools covering all TD types. The evaluation results have been mapped to a table (see Table 1),

and motivations have been provided for the tool selections that became part of the

measurement system implementation. The TD types where ad-hoc parsers are required in

order to avoid proprietary tools are also highlighted, and rough outlines on the required

functionality of such code has been determined.

3.2.4 Collection of TD Measures
Measurements for the measures outlined in Fig. 3 were gathered by using the selected tools

combined with ad-hoc derived measure parsers and indicator parser. All source code written

during the study follows the throwaway prototype agile practice [24], as the time available

for development was limited. As the accuracy of the derived measures is essential, the speed

of the calculation was compromised instead. These measurements were taken both within the

scope of each commit (to provide the TD measurements that are compared to commit

 18

difficulty as part of RQ3), and within the full application scope (to provide the measurements

that are aggregated and visualized and as part of RQ1 and the final validation of results).

3.2.4.1 Measure TD in Commit Scope

The commit scope measurements were performed on the parent versions of files modified in

commits with effort specified. This was done to evaluate the status of file(s) before the

commit was made, to analyze how much TD the team members may have had to deal with.

Rather than analyzing all files in a commit, only enough files to cover the sources of at least

90% of the modified source code is analyzed. This exclusion of files was due to commits

often containing files with only one to three modified LoC, where said modification consists

of “informing” that something new was added in another part of the code. It was decided that

it was unreasonable to expect that TD levels in files with such minor changes would have had

any noticeable impact. When discussing this with one team member, they indicated that they

generally saw modified LoC as equal value within a specific commit (outside of the described

“one to three lines”-case).

Two special cases of change can also be encountered in commits; file creation and file

deletion. When creation and deletion is the result of a filename change, the lines modified

through deletion and the lines modified through addition should remain uncounted. For file

deletion it was decided to not count the associated LoC, as deleting a file rarely requires

much work. For file creation however, the associated LoC are counted as part of the total

modified LoC, but the TD levels of the new file are not evaluated. In essence, TD in related

files may have affected the difficulty of creating the new file, but TD incurred while creating

the file should not have affected the commit‟s ratio negatively.

3.2.4.2 Measure TD in Application Scope

The application scope measurements were taken in order to discuss the current TD state of

the system with the software expert, while also providing the opportunity to validate the

usefulness of the measures (and thus how well they answer RQ2) using strategically selected

examples of large measurements found in the production code. The presentation of the

measures also provided validation on how well the goals of aggregation and understandability

from RQ1 are achieved. The measurement examples were chosen based on the following

criteria:

 %_MC: A function with high Cyclomatic Complexity but low Halstead Error was

chosen to evaluate Cyclomatic Complexity in isolation.

 SUM_HR: A function with high Halstead Error but low Cyclomatic Complexity was

chosen to evaluate Halstead Error in isolation.

 DUP_LOC: A large block of duplicated lines that occurred twice in the same file was

chosen, in order to extract information on why such duplication exists.

 #_ISSUES: An example for each discovered issue category was chosen, in order to

evaluate if there were still false-positive categories left to filter out.

 #_DEP: The smallest file with over-threshold #_DEP was chosen, in order to extract

information on why it needs to have so many dependencies.

 #_MV: A file with many Non-Allowed Dependencies in the opposite direction of

what the architecture diagram shows was chosen in order to illustrate that cyclic

dependencies exist on the component level of the application.

 19

3.2.5 Collection of Commit Data
In order to measure the difficulty of the commits, the effort specified in the commit message

and the modified LoC was collected. These measurements were used as part of answering

RQ3.

3.2.5.1 Effort Measurement

In this study, effort was retrieved in the form of hours spent on commits. This effort value

was manually specified in each commit‟s accompanying message by the team members

involved in this study. These commits with effort specified are this study‟s unit of analysis.

The team members decided together with the software expert that such effort should only be

specified in production code commits rather than testing code commits. This was due to there

being more interest in improving the system rather than the test code applied to it. Another

consideration was that looking at both types of commits together would cause too much

variation in the data. The downside of this restriction was its effect on the amount of commits

available to analyze during the course of this study, as the testing code commits were about

as frequent as production code commits.

3.2.5.2 Modified LoC Measurement

An amount of modified LoC can also be extracted from these commits, and it is through

calculating the ratio of modified LoC per hour for each commit that they can be compared.

The resulting ratio becomes a difficulty grade for the commit, where a lower ratio indicates

that the modified LoC in the commit were more expensive to produce. This extra effort may

be a manifestation of TD interest, and is treated as such in comparisons with TD levels in

order to answer RQ3. Likewise, high ratio commits could indicate lack of TD. In this study

pure modified LoC was used, which means blanks, whitespace and comments are ignored

when counting. This was chosen rather than the modified LoC value provided by Git, as it

was discovered that even indentation changes were counted by Git as a modified LoC. This

change led to much more accurate modified LoC values and calculated ratios.

3.3 Data Analysis
This section describes how the collected data was analyzed. The first subsection explains how

two separate approaches, MAD-Median-rule and 20% Trimmed Mean, were used to

determine a representative mean for the set of modified LoC per hour ratios. The next

subsection details how theory triangulation was applied through three correlation methods,

Pearson‟s Correlation & Conditional Probability & Cohen‟s Kappa, in order to reduce the

risk of correlations being found due to chance. Two of the methods used also required that

values be transformed to “1” and “0” based on a chosen condition. These conditions are

explained in detail following the method equations. The final subsection describes the two

forms of validation that were conducted during this study in order to evaluate the quality of

analysis results with regards to the research questions and stakeholder expectations.

3.3.1 Commit Difficulty Analysis
The set of modified LoC and the set of hours spent values gathered from the available

commits were examined for two purposes. The first purpose was to investigate the commits

that appeared to have a large amount of extra effort per LoC (based on their modified LoC

per hour ratio) by contacting the commit author and attempting to elicitate a reason behind

the difficulty. Such reasons may be relatable to established TD types. None of these commits

had a statistically large amount of extra effort however, as no such commits exist in this

study‟s sample population of commits with effort.

 20

The second purpose was to calculate the correlation strength between sets of modified LoC

values and sets of effort values. Two such sets have been used; one using the MAD-Median-

rule [18], and one based on trimming the dataset by 20% at both ends. Both of these methods

deal with finding the true mean, and are among the methods recommended by Wilcox [18].

The MAD-Median-rule was specifically chosen over other alternatives that were

recommended in the same book [18], as it identified a larger number of commits as unusually

easy. This was considered preferable as it allowed for a larger contrast in correlations. The

20% Trimmed method was chosen due to it being described as a good compromise between

the mean and the median (which is the same as 50% trimming) [18]. For the MAD-Median-

rule based dataset, the commits with the four largest ratios were identified as outliers and

removed, while the commits with the four largest and four smallest ratios were removed in

the 20% Trimmed dataset. The equations used are detailed below:

The Mad-Median-rule:

 (Eq. 9)

 (Eq. 10)

where

MAD, is the Median Absolute Deviation

MADN, is the Median Absolute Deviation Normalized

Median Absolute Deviation:

 (Eq. 11)

where

X1, …, Xn, is the sample value

M, is the sample median

20% Trimmed:

 (Eq. 12)

where

n, is the sample size

g, is the amount of trimmed values

 21

The correlation algorithms that are applied between modified LoC and maintenance effort are

detailed in section 3.3.2. If the two datasets can be correlated, the average modified LoC per

hour ratio could possibly be used to increase the amount of available commits for effort

correlation, which would help increase the small sample size (which is the main weakness of

the “effort in commit message”-method). More specifically, the average ratio could be used

to investigate recent commits from team members outside of the current team, by contacting

them and asking if more (or less) time was spent than what the ratio ± two Standard

Deviations (StDev) expected. These commits need to be recent, due to the difficulty of

discussing time spent on commits older than one to two weeks. A normally distributed

commit would have an effort value between modified LoC divided by ratio – two StDev and

modified LoC divided by ratio + two StDev. If the commit is instead a negative outlier it

could also be qualitatively investigated for reason(s) behind its difficulty. During this study

however, the correlation between modified LoC and effort did not become strong enough to

consider contacting team members outside the team until the very end of the project.

3.3.2 TD & Effort Correlation Process
An important factor in TD Management is knowing the interest of existing TD, as it allows

refactoring to be prioritized for the TD types that have a more noticeable impact. To achieve

this goal (RQ3), effort spent on commits were specified as hours by team members, and

Zazworka et al.‟s [3] process to find significant correlations has been applied between the

commits‟ TD occurrences and the commits‟ modified LoC per hour ratios. This process

combines Pearson‟s Correlation, Conditional Probability, Chance Agreement and Cohen‟s

Kappa to compare if the relation is detected by several different algorithms. A strong

correlation between a TD type and the maintenance effort indicates that the TD type‟s interest

is large. The choice to use Zazworka et al.‟s [3] combined process was due to the risk of

biased correlation results if for example only Pearson‟s is used. By having more than one

viewpoint on the correlation, theory triangulation [4] can be achieved, thus improving the

certainty that the relation in fact exists.

Through the equations in this section, three indicators for correlation strength are calculated,

and any relation where at least two out of three indicators result in a “1” in their

corresponding Ω(...) function is considered as high correlation strength. The dataset values

need to be transformed into “1” and “0” (representing true and false for dataset-specific

conditions) for all equations in this section except Pearson‟s Correlation. These

transformations are explained in section 3.3.2.4.

3.3.2.1 Pearson’s Correlation

The Pearson‟s Correlation calculation is used to check if two datasets increase together or if

one dataset increases while the other decreases in a linear pattern. This type of calculation is

widely used in defect prediction models as well as for maintainability predictions [3]. The

calculation itself can be represented by the Pearson‟s Correlation Coefficient, r. The equation,

Eq. 13, requires two datasets { x1, ..., xn } and { y1, ..., yn } where n is the total amount of data

points. The result of Eq. 14 is the dataset mean value.

 22

∑

√∑
 √∑

 (Eq. 13)

where

 ∑

 and

 ∑

 (Eq. 14)

The r-value will be between -1 and 1, where an r-value closer to 1 reflects a positive linear

correlation and an r-value closer to -1 reflects a negative linear correlation. To be able to use

the Pearson r-value as a significance indicator, the significant Pearson functions

Ω(PearsonPos) or Ω(PearsonNeg) are used to determine if the correlation is strong enough.

The threshold r-value depends on if it is modified LoC & effort or TD occurrences & commit

difficulty that are being compared. When comparing modified LoC with effort a threshold of

0.6 is used, just as by Zazworka et al. [3], as these variables are expected to have a positive

correlation. When comparing TD occurrences with commit difficulty however, the r-value

threshold is -0.6, as a negative correlation is expected. This is due to commit difficulty being

represented by the commit‟s modified LoC per hour ratio, which means that a decreasing

difficulty is represented by an increasing ratio. As it is expected that less TD occurrences

will cause the ratio to increase, a negative threshold is thus chosen. The r-values of -0.6 and

0.6 have the same significance; it is only the type of correlation they describe that differs.

Following Zazworka et al.‟s [3] technique, the significance level for the Pearson‟s result must

also be at least 0.05 (same as 95%, can be checked in the following table in [25]). This is

used to make it more difficult to achieve significance at low sample sizes, as a guard against

bias. The significance functions (Eq. 15 & Eq. 16) will result in either “0” or “1”, where “1”

equates to strong correlation and “0” interprets to no correlation.

 {

 (Eq. 15)

 {

 (Eq. 16)

3.3.2.2 Conditional Probability and Chance Agreement

Conditional Probability is used in pairwise comparisons to understand the probability of

event A occurring given that event B has already occurred, and vice versa [18][3].

Conditional Probability can be used for software defects and maintainability predictions [3],

but first it requires that all values are transformed into “1” and “0” (representing true & false

for a specific condition per dataset). The equation for the Conditional Probability, P(A | B)

or P(B | A), is calculated in this manner:

 23

 (Eq. 17)

 (Eq. 18)

where

P(A), is the probability that event A occurs.

P(B), is the probability that event B occurs.

P(A ⋂ B), is when the event A and B occur simultaneously.

The result of the equations Eq. 17 & Eq. 18 is a probability of 0 to 100%. To be able to use

this calculation as a significance indicator the Chance Agreement needs to be calculated as

well. The Chance Agreement is used to understand the probability of event A and event B

occurring simultaneously by chance.

(Eq. 19)

The Chance Agreement probability will also range between 0 to 100%. The significant

Conditional Probability functions Ω(ConditionalAB) or Ω(ConditionalBA) are used to

determine if the correlation strength is high enough to be counted as an indicator. The

threshold for the Conditional Probability value is 60% [3], as seen in Eq. 20 & Eq. 21.

 {

 (Eq. 20)

 {

 (Eq. 21)

3.3.2.3 Cohen’s Kappa

Cohen‟s Kappa is used to determine the strength of the agreement and disagreement of two

datasets transformed into “1” and “0” values [3]. Once the datasets‟ values have been

transformed, Cohen‟s Kappa can be calculated by counting where the two datasets (x, y)

values are in agreement by both being “1” or “0”, while in any other case they will be in

disagreement.

 ∑

 {

 (Eq. 22)

where

Pr(a), is the proportionate agreement between the two datasets divided by the total number

of dataset values, n.

Once Pr(a) is calculated, the Chance Agreement, P(Chance), is also needed since it is used

as a variable in the Cohen‟s Kappa calculation.

 24

 (Eq. 23)

To use the Cohen‟s Kappa as a correlation indicator the following significance function

Ω(Kappa) is used, where the threshold value has been set to 0.60 [3].

 {

 (Eq. 24)

3.3.2.4 Dataset Transformation Strategies

The goal of the correlation process is to analyze the strength of relation between specific

over-threshold TD types/all over-threshold TD combined and commit difficulty, as well as

between modified LoC and effort. As mentioned previously, to apply all methods besides

Pearson‟s Correlation, this requires the values of the datasets to be transformed into sets of

“1” and “0” [3].

Transformations of Specific Over-Threshold TD and Commit Difficulty

For analyzing the relation between specific over-threshold TD types and commit difficulty,

comparisons are made between if over-threshold levels of a TD type was found in at least one

file in a commit (over all commits with effort) to two separate transformations of the

modified LoC per hour ratios. For the over-threshold TD transformations, a “1” signifies that

at least one TD occurrence high enough to cross the threshold was found in the commit;

while “0” represents that no such occurrences were found. One of the modified LoC per hour

ratio transformations that this is compared against is if the ratio was pointed out as normal or

as a positive outlier (unusually high ratio) by performing the MAD-Median-rule based

equation. For the MAD-Median-rule based modified LoC per hour ratio transformation, a “1”

signifies that the ratio was within a normal distribution, while a “0” signifies that it was a

positive outlier. The choice to focus on positive rather than negative outliers (unusually low

ratio) was due to how the dataset only contained outliers in that direction. Relational strength

in this comparison is based on if the TD occurs when the ratio is normal and doesn‟t occur

when the ratio is a positive outlier.

The other modified LoC per hour ratio transformation was based on if the commit was one

Standard Deviation below the 20% Trimmed mean [18]. For the 20% Trimmed based

modified LoC per hour transformation, a “1” indicates that the commit was more difficult

than usual compared to the 20% Trimmed mean. Based on recommendations by Wilcox [18],

this conversion should have been based on two Standard Deviations, but the sample in this

study contained no data points that were that far below the 20% Trimmed mean, so one

Standard Deviation was used instead. This means that the Conditional Probability/Chance

Agreement/Cohen‟s Kappa values for all comparisons related to 20% Trimmed are too

lenient (The MAD-Median-rule based calculations were conducted to replace them). As such,

only the results related to the MAD-Median-rule based method are shown in sections 4.4-4.5,

while the results related to 20% Trimmed are shown in Appendix A. The Conditional

Probability, Chance Agreement and Cohen‟s Kappa results are used together with the

Pearson Correlation results between each specific TD type occurrence datasets to each of the

two commit datasets, where the comparisons to the first commit set has had the specific TD

occurrence values belonging to the outlier commits identified via MAD-Median-rule

removed, and the comparisons to the other commit set has had the specific TD occurrence

values belonging to the trimmed commits removed.

 25

Transformations of Overall Over-Threshold TD and Commit Difficulty

For analyzing the relation between overall over-threshold TD occurrences and commit

difficulty, the set of over-threshold TD occurrences per commit was transformed in two

ways. One transformation assigns a commit as “1” if the total over-threshold occurrences

were two Standard Deviations above the total over-threshold occurrences mean for all

commits with effort. This is then compared to the MAD-Median-rule based transformation of

the modified LoC per hour ratios. The other transformation is based on total over-threshold

TD occurrences being one Standard Deviation above the total over-threshold occurrences

mean and is compared to the 20% Trimmed based transformation of the modified LoC per

hour ratios. These results are used together with the Pearson‟s Correlation results of the two

datasets, where the comparisons to the first commit set has had the total over-threshold TD

occurrence values belonging to the outlier commits identified via MAD-Median-rule

removed, and the comparisons to the other commit set has had the total over-threshold TD

occurrence values belonging to the trimmed commits removed.

Transformations of Modified LoC and Effort

For analyzing the relation between modified LoC and effort, the sets of modified LoC and

effort were both transformed in two ways. One comparison converts values to “1” if they are

two Standard Deviations above their respective sample means, while the other transformation

is based on one Standard Deviation. These results are used together with the Pearson‟s

Correlation results of the two dataset pairs, where the first pair has had the modified LoC and

effort values belonging to the outlier commits identified via MAD-Median-rule removed, and

the other pair has the modified LoC and effort values belonging to the trimmed commits

removed.

3.3.3 Validation
Two forms of validation have been conducted during this study; qualitative TD results

analysis and validation of the measurement system as well as the maintenance effort

correlations. The first validation form was done at several points during the course of this

study, where the software expert was shown TD tool results in order to identify false-

positives. The tool results have also been compared between similar tools and to manual

calculations, in order to verify their correctness.

The second validation form was conducted through a semi-structured interview with the

software expert in order to validate the measurement system, the measures it is made of and

the correlation results between these measures and maintenance effort. The questions that

were used during this interview can be seen in Appendix C. A summarizing transcript of this

interview was also written and later confirmed to be accurate by the software expert. A short

interview with a tool expert was also conducted to validate how well the measurement system

implementation conformed to the on-site requirements for automation. The purpose of all this

validation was to gain stakeholder feedback regarding how well the research questions were

answered based on the software expert‟s comments on the related contributions.

 26

4. Results
This section presents the analysis results of this study. First, the final implementation of the

measurement system is shown, which details how TD tools were combined with ad-hoc

parsers and manual processes in order to implement the design previously seen in Fig. 3. This

is followed by an explanation of how the human TD identification through the semi-

structured group interview resulted in changes to the visualization of the measurement

system‟s indicator. The final version of the measurement system implementation is used to

answer RQ1.

The measurement system implementation is followed by showing the results of mapping

C/C++ compatible TD measurement tools capable of measuring the intended measures. The

motivations for why certain tools were ultimately selected for the measurement system

implementation are also detailed. These results provide an answer to RQ2.

After going through the two first contributions, the results of commit difficulty analysis and

the correlations to TD types that were made possible through it are presented, showing how

RQ3 was answered.

Finally, the results of the validation interview with the software expert are detailed, which

shows how well the research questions were answered from this stakeholder‟s point of view.

This includes validation of the measurement system and the way its results are presented

(RQ1), validation of the measures and the examples of them found in production code using

the selected tools (RQ2) and validation of the correlation results including the process to

evaluate correlational strength (RQ3).

4.1 Measurement System Implementation
In this section a visual outline of the measurement system implementation is provided (see

Fig. 4). The process contains the selected tools and ad-hoc parsers that are further detailed in

sections 4.3.2.1-4.3.2.6. The overview details how the base measures are extracted, how the

derived measures are calculated and how the joint indicator is constructed and visualized. The

output formats of file-creation actions are also specified. While this implementation uses two

proprietary tools (Coverity SA and Coverity AA), the measures they extract could potentially

also be covered with a combination of open source alternatives and ad-hoc parsers.

27

Figure 4: Measurement system implementation

 28

4.2 Human TD Identification
A questionnaire for assisting in human identification of TD was designed (see appendix B),

which was then used as part of a semi-structured group interview. One such group interview

was performed, with a length of 90 minutes. This interview helped to point out which parts of

the application the team commonly modified, which parts the team considered to be more

complex, and which parts of the application the team believed likely to remain unchanged. It

also helped indicate which parts of the application the team were most interested in

improving. When comparing the parts of the source code that team members considered

complicated to where files with over-threshold amounts of TD were discovered, a

discrepancy was detected. This was due to the fact that these files were occasionally outside

the complicated part of the application. This implies that either the team members‟ view of

the application does not reflect its actual state, or otherwise the chosen TD measures are not

what are causing significant maintenance effort. The former would prove the need for the

measurement system, but as the correlation results show (see section 4.5) it may well be the

latter that is the true reason.

Besides making comparisons, the results from the group interview also resulted in a filter for

which files are visible in the visualization of the measurement system, as the team members

stressed the fact that they were not interested in seeing TD in unit testing and stub files. This

filtering prevents information overflow by hiding these uninteresting files, which contributed

to answering RQ1 as it is easier for team members to interpret results that are limited to the

relevant parts of the application.

4.3 Tool Evaluation & Selection Results
As part of this study multiple source code analysis tools were reviewed to find the most

suitable tools for implementing the designed measurement system (see Fig. 3) in the case

context. The tools evaluated have been mapped in a table according to evaluation criteria

outlined in section 3.2.3, which include integratability, functionality and output format

support. Recommendations for which of these tools to use as well as which to avoid are also

provided, based on testing the tools within the case context.

4.3.1 Tool Mapping
The results of the tool review (see Table 1) and the necessary details to understand the

mapping are detailed below:

4.3.1.1 Table Details

Language Support (ignoring languages irrelevant for the context)

Name = Supports both C/C++

Name = Supports C++ only

Integratability Grade (context specific)

A = Commandline interface (should work “out-of-the-box”)

B = Eclipse plugin OR commandline interface + some setup/libraries required

C = Eclipse plugin + some setup/libraries required

D = Anything more complicated with commandline/plugin OR standalone GUI

Integratability Clarifications

Commandline is preferable due to possibilities for automation. Eclipse plugins can be used to

detect TD during development rather than at commit time (several plugins can be installed on

 29

the same eclipse version, so a variety of measures can be measured in one place). Standalone

GUI tools are unsuitable due to limited measure scope or limited interaction with other tools

(or plugins). They also lack the ability for automation.

Licenses

For links to the definitions of the licences listed in Table 1, see Appendix D.

CMR = commercial off-the-shelf software.

Supported Measures

COM = Code complexity related metrics.

DUP = Code Duplication related metrics.

LOC = Lines of code related metrics.

ASA = Common general/language specific issues.

MV = Modularity Violations (Non-Allowed Dependencies).

COUP = Coupling related metrics.

Output Formats

TXT = Raw text file or similar.

XML = File using xml tag system.

CSV = Comma separated values file.

HTML = Results displayable in browser, which is often the most readable format.

OUT = Output directly in eclipse/tool GUI.

 30

4.3.1.2 Tool Table

Table 1: Tool capabilities & ratings

GENERAL TD TYPES OUTPUT

TOOL
INTEGRAT

ABILITY
LICENSE

COM/DUP/LOC/COUP/

ASA/MV

TXT/XML/CSV/HTML/

OUT

PMD A BSD-4 DUP TXT/CSV/XML

SonarQube D CMR COM/DUP/LOC/COUP OUT

OCLint B BSD-3 COM/ASA TXT/XML/HTML

GitInspector B GPLv3 LOC TXT/XML/HTML

CppCheck B GPLv3 ASA XML/HTML

CCCC B GPLv2 COM/LOC/COUP XML/HTML

Dependometer D VPL MV/COUP HTML

CONQAT C ALv2 DUP/MV/ASA XML/HTML

YASCA A GPLv2 DUP/ASA HTML

CodeAnalyzer D GPLv2 LOC TXT/CSV/HTML/OUT

Metriculator C EPL COM/LOC/COUP TXT/XML/HTML/OUT

UCC A USC COM/LOC TXT/CSV

Lizard B MIT COM/LOC XML

Complexity B GPLv2 COM/LOC TXT

Pmccabe B GPLv2 COM/LOC TXT

CLOC A GPLv2 LOC TXT/CSV/XML

Coverity SA D CMR COM/LOC/ASA CSV/XML/OUT

Coverity AA D CMR MV/COUP TXT/OUT

Structure101 D CMR MV/COUP TXT/OUT

CMT++ A CMR COM/LOC TXT/XML/HTML

 31

4.3.2 Tool Selection Motivations
Through attempting to install and use most of the tools listed above on-site, a set of suitable

tools to cover all chosen TD types were selected. Gaps that can be covered by ad-hoc parsers

in order to avoid proprietary tools were also identified. Only the tools ranked A or B and the

tools SonarQube, Coverity SA, Coverity AA and Structure101 have been tested. Sections

4.3.2.1-4.3.2.6 detail the final tool selections and ad-hoc parsers for each TD category.

SonarQube appeared to be highly suitable for visualizing several of the TD types together,

but the commercial C/C++ plugin takes several hours to complete its analysis. This made

SonarQube unusable in this study as SonarQube could not support analyzing several commits

per day.

4.3.2.1 Category: COM

For this category, UCC proved to be most suitable non-proprietary tool for McCabe

Cyclomatic Complexity, due to its ease of use and potential for integration. A major flaw that

separates it from the proprietary solutions Coverity SA and CMT++ is the lack of direct link

to source code. UCC still provides function/file name and function McCabe value, but it is

then required to find the method manually for further investigation. The HTML output of

CCCC provides such source code links, but this tool did not work on-site (even though it

worked when testing on a random C++ project retrieved from GitHub).

For other forms of code complexity from the identified tools, Halstead metrics are

measurable by the proprietary tools Coverity SA and CMT++. These two tools also support

calculating both versions of Halstead Error (Halstead Effort based and Halstead Volume

based). In order to measure Halstead without proprietary tools, one would need to write code

that counts operators and operands in source code files based on the descriptions in CMT++:s

documentation [19].

After considering the many steps required to get Coverity SA complexity results and the

transparency on how CMT++:s Halstead metrics are calculated [19], CMT++ stands out as

the best choice for measuring the COM category of measures, as it is both highly integratable

and automatable. Its biggest flaw is its lack of the “link-to-source-code”-functionality

previously described. However in this case context Coverity SA was used instead, due to

their existing licenses. From the tool results, %_MC and SUM_HR is programmatically

derived by code written during the project.

4.3.2.2 Category: DUP

For this category, PMD was chosen due to its commandline interface and many output

formats. It is only the Copy-Paste Detector (CPD) module of PMD that is used in this study.

The other identified DUP tools are built on top of PMD, and YASCA:s HTML output is

useful for improving result readability and visual link to source code. However PMD:s

eclipse plugin is not very useful, as it does not provide any syntax highlighting of the

duplicated code. The tradeoff for these alternate visualizations of PMD results is the negative

effect on integratability, which is why the tool‟s default commandline interface is used

instead. The (XML) output of the tool is currently fed into excel in order to perform a custom

sort (FIRST BY filename THEN BY block_start THEN BY block_size). The sorted results

are parsed programmatically to combine overlapping blocks, before summing the remaining

blocks to derive the DUP_LOC measure for each file. The parser source code was written

manually during the project.

 32

4.3.2.3 Category: LoC

For this category, CLOC was the best alternative both for measuring total LoC of a file as

well as comparing differences between two versions of the same file. This is due to how it

can ignore whitespace differences (such as indentation changes), while also clearly separating

its results between blank lines, comment lines and code lines. This made it easy to extract the

true value of modified LoC in a commit, which was often quite different from what the Git

diff reported.

4.3.2.4 Category: ASA

For this category, CppCheck appears to be the most suitable non-proprietary alternative

(when comparing functional similarity to the ASA Issues tool used by Zazworka et al. [3],

which is for Java only). It should be configured to only look for errors and warnings, in order

to avoid trivial issues. This study was able to use CppCheck together with the High Impact

Issue categories from Coverity SA, thanks to the existing licence and build integration of

Coverity on-site. CPPCheck does not find the same issues as Coverity SA, and also lacks the

source code link functionality. The issues found by Coverity SA also contained less false-

positives according to the software expert than validated them. The found issues from each

tool are programmatically parsed by source code written during the project, to count

#_ISSUES for each individual file after filtering out the false-positive types.

4.3.2.5 Category: Coup

The tool CCCC would have been an obvious choice for this category if it had worked on the

on-site code, as it can measure some of the more specific method-level coupling measures

mentioned by D‟Ambros et al. [14]. File-level dependency count is used instead, more

specifically the number of dependencies to other files from the same application rather than

to language-specific system libraries. This can be analyzed manually through the GUI:s of

Coverity AA and Structure101, or by looking directly in the source code. To fulfill the

automation requirements, an ad-hoc parser is used to parse out the number of dependencies

per file automatically.

4.3.2.6 Category: MV

For this category, Dependometer was not a suitable alternative due to it not supporting C

code. However, both Coverity AA and Structure101 were usable for this measure. Both those

tools are similar in functionality to the tool developed by Grundèn & Lexell[1], in that they

require a model to verify against to detect Non-Allowed Dependencies. Coverity AA reads

package/file structure from this existing source code, while Structure101 requires a Doxygen

file generated from the code. From the input both tools construct a full model of the system.

In these models a subsection of the chosen abstraction level can easily be selected and a new

diagram generated from it. The resulting diagram can then be modified with dependency

arrows, and any dependencies that do not follow a manually added path are registered as a

violation. As the entire source code has been parsed, a diagram abstracted to component level

still reports the files inside the components that participate in the violation (significantly

reducing the amount of arrows required). The MV file extracted from Coverity AA or

Structure101 is then parsed with an ad-hoc derived measure parser to calculate #_MV per

file. The dependency treeviews in these tools also allow for manual analysis of how the Non-

Allowed Dependencies are used, which can be used to prioritize them.

As Structure101 has the same functionality as Coverity AA but requires running Doxygen on

source code with the required annotations (to map the structure), Coverity AA is the better

choice. To measure Non-Allowed Dependencies without proprietary tools, a text parser

 33

program that analyzes includes based on the component the file belongs to would need to be

written.

4.4 Commit Difficulty Analysis
Before performing correlations on the commit modified LoC and effort values, the commits

with the lowest ratios (in this case the three most difficult commits) were qualitatively

investigated to learn about potential causes. One of these “difficult” commits was pointed out

to be due to a build configuration change that required changes in the source code for

compatibility, which while arguably being a form of TD is also a highly specific and rare

occurrence. The remaining two commits could have been affected more strongly by general

TD levels in the modified files. To compare commit TD levels to commit difficulty however,

it had to be determined which commits were unusually difficult (or easy).

4.4.1 Outliers via MAD-Median-rule

Figure 5: Modified LoC per hour ratio for each commit

The average modified LoC per hour for the set of commits with effort (after removing

outliers based on applying the MAD-Median-rule [18] to the modified LoC per hour ratios)

was calculated in order to produce a line representing the mean of the normal values in the

sample (see Fig. 5). A line representing the MAD-Median-rule is also drawn, to show which

commits were branded as positive outliers (unusually easy). Each bar represents a single

commit and as can be seen in Fig. 5 four commits were identified as outliers. The diagram

based on 20% Trimmed [18] (see Fig. 6) can be seen in Appendix A.

 34

4.4.2 Correlation between Modified LoC & Effort

Figure 6: Chart showing distribution of commit modified LoC/effort pairs

The current result of Pearson‟s Correlation on the set of commit modified LoC and the set of

commit effort, after excluding positive outliers found via the MAD-Median-rule, is 0.76. The

manually added line in Fig. 6 represents Pearson‟s Correlation and helps visualize the result

of the equation (the further the commits are from the line the less normal the distribution is).

These results show that the average ratio is a fair indicator of how many LoC can be

produced per hour when taking into account the range between one Standard Deviation

below/above this average. This was strengthened by the fact that the final, 25th commit had a

ratio that fell inside the range for the average ratio of the previous 24 commits.

4.5 TD & Effort Correlation Results
In order to analyze the impact existing TD has had on commits with effort, over-threshold TD

occurrences in files before they were modified has been compared to the modified LoC per

hour ratio of the related commits following the proccess described in section 3.3.2. Table 2

shows the modified LoC per hour ratio of each commit, as well as the occurrences of files

with too high quantities of a TD type, both for each type separately and for all of them

combined. As the diagram used for measuring Non-Allowed Dependencies only covered one

application, the #_MV measure was not applicable (n/a) to several commits. The colour

coding represents the commits that were unusually easy (green) and if the TD occurrences

were enough to be transformed to “1” (red) when performing the Conditional Probability,

Chance Agreement and Cohen‟s Kappa calculations. From Table 2 it is easily visible that

commit difficulty and over-threshold TD occurrences is not perfectly related, as the most

difficult commit is not the one with the most occurrences. It also shows that certain TD types

were more/less frequently found at above threshold levels. Rather than the TD type actually

being more/less frequent, this could instead be an indication that the related thresholds are too

low/high.

 35

Table 2: Modified LoC per hour & TD occurrences for each commit with effort

While certain inferences can be made by examining Table 2, the correlations needed to be

calculated to reach more detailed results. Table 3 shows the results of the comparisons made

between occurrences of each TD type separately and the modified LoC per hour ratios,

occurrences of all the TD types combined and the modified LoC per hour ratios, and finally

between modified LoC and effort, through applying the process from section 3.3.2. More

specifically, the high total TD row shows the results for comparing the sum of indicator

values for all analyzed files in each commit to the corresponding commit ratios. These are the

results based on the MAD-Median-rule [18]. The results based on 20% Trimmed mean [18]

can be seen in Appendix A.

The correlational strength columns refer to if high enough values were reached in the three

correlation algorithms (Pearson‟s, Conditional and Cohen‟s). There are two of these columns

as the Conditional Probability strength depends on which condition was initially filled. For

example, the probability of a commit being normally distributed given that it has at least one

occurrence of %_MC is higher than the probability of a normally distributed commit having

an %_MC occurrence (84.62% vs 52.38%). It is possible for the Conditional Probability to

only be strong enough in one direction. As previously mentioned, ≥2/3 correlational strength

is the threshold for significant correlation. This was only achieved between modified LoC

and hours spent, which indicates that the work pace of the participating team is quite

Commit
MLoC/h

Ratio
McCabe Halstead Issues Duplication

High

Dep
MV

Total

TD

1 0.013 0 0 0 0 0 n/a 0

2 0.086 0 0 0 1 0 n/a 1

3 0.2 0 0 1 0 0 n/a 1

4 0.708 2 3 0 2 0 n/a 7

5 3.6 0 2 0 1 1 0 4

6 3.9 1 2 1 1 2 1 8

7 5 0 0 0 0 0 0 0

8 5.04 8 7 2 17 3 4 37

9 7 4 4 1 4 1 2 16

10 7.125 2 1 1 1 1 1 7

11 7.875 2 2 1 1 1 1 8

12 8.8 1 2 0 1 0 n/a 4

13 10.67 1 5 2 5 1 2 16

14 12 0 3 1 2 1 3 10

15 17.33 0 1 0 1 0 0 2

16 20 1 1 1 1 1 2 7

17 23.4 0 1 0 2 1 n/a 4

18 24.1 1 0 0 1 0 n/a 2

19 24.25 2 3 0 3 2 2 12

20 25 0 0 0 0 0 1 1

21 32 0 0 0 0 0 n/a 0

22 47.95 2 7 0 6 0 n/a 15

23 62 0 1 0 1 1 n/a 3

24 114.9 3 6 0 3 0 1 13

25 121.3 0 1 0 0 0 n/a 1

 36

consistent. The multiple relations with 1/3 strength are as of yet inconclusive, as they could

potentially become stronger or weaker if the amount of commits with effort were to increase.

Note that the negative Pearson result between specific/combined TD types and commit

difficulty shows that both the specific- and the combination of all TD types have had an

effect (even if it‟s small), as decreasing difficulty is represented by an increasing modified

LoC per hour ratio.

Table 3: Correlations based on MAD-Median-rule Dataset

TD Type Pearsons Conditional

Probability

commit|TD &

TD|commit

Chance

Agreement

Cohen's

Kappa

Correlation

strength

commit|TD

(x/3)

Correlation

strength

TD|commit

(x/3)

McCabe -0.18 84.62% & 52.38% 51% 0.35 1/3 0/3

Halstead -0.20 77.78% & 66.67% 65% 0.31 1/3 1/3

Issues -0.26 100% & 42.86% 40% 0.39 1/3 0/3

Duplication -0.13 84.21% & 76.19% 68% 0.41 1/3 1/3

High Dep

Count

-0.04 91.67% & 52.38% 49% 0.40 1/3 0/3

Modularity

Violations

-0.09 90.91% & 76.92% 74% 0.39 1/3 1/3

High Total

TD

-0.15 100% & 4.76% 19% 0.17 1/3 0/3

Modified

LOC / Effort

0.76 100% & 33.33% 85% 0.63 3/3 2/3

4.6 Validation of the Results
The tool results for the TD types have been successfully validated for correctness manually

by comparing them to either similar tools or to manual calculations. This validation was

considered successful as these comparisons showed the same or highly similar values. The

indicator and measures used by the measurement system as well as the tools that were used to

produce measurements have also been evaluated by the software expert on several occasions.

The last of these occasions consisted of an extensive semi-structured interview towards the

end of the project, where the final correlation results were discussed in addition to the

measurement system and tool results. The following two subsections provide more details on

the tool results analysis and the final validation.

4.6.1 Qualitative TD Results Analysis
By gathering the chosen TD measures from a few of the available commits with effort, data

was presented to the software expert in order to help with detecting false-positives. For ASA

Issues, three different types of High Impact Issues were detected via Coverity SA in the

analyzed commits. Two out of these issues were agreed to be “real”, while the third was

proven to be false-positive. The detected Non-Allowed Dependencies were also validated to

 37

be positive, but the team members were unsure of their importance. The discovered Code

Duplication was validated by the authors of this study, by comparing the outlined duplication

blocks with the referred starting lines in other files as well as in the file itself. This

comparison showed that the detected duplication blocks did indeed exist. The effect of the

initial validation was that the source code to derive #_ISSUES was updated to not count the

false-positive issue type, which in turn caused less files to be registered as over-threshold for

that measure.

4.6.2 Final Validation
During the interview with the software expert, described in section 3.3.3.2, each TD type was

first described in detail while summarized TD results of all files in the current application

version were shown (see Table 4). The software expert was then asked to prioritize the types.

Based on the type descriptions the expert pointed out that the files that contained a

combination of high McCabe, high Halstead Error and many dependencies were files that had

critical responsibilities and therefore are very complex. The expert also claimed that

refactoring these very complex files was not worth it (based on the files with all three TD

types visible in the summary) as they are not changed often enough. The expert also thought

that Non-Allowed Dependencies was interesting, but was skeptical to them being refactored

due to the potentially massive rework required. To put it simply, the principal was

hypothesized to be more expensive than the interest, which would be consistent with the

weak correlation results. On the other hand, duplication was not considered to be important at

all for refactoring.

The interview then continued by asking about recent challenges and which parts of the code

they originated from. This was then compared to the high TD files shown in the summary.

The expert concluded that components that had been pointed during human identification of

TD were still the most challenging components, and the comparison results were similar as

well. It was still the case that files with large amounts of several TD types were commonly

from components indicated as complex.

 38

Table 4: Visualization of TD results per file

DUP_LOC %_DUP_LOC %_MC HR_SUM #_ISSUES #_DEP #_MV #_HIGH_TD_TYPES

179 3.33% 50.10% 8.73776 3 43 2 6

114 2.03% 68.90% 13.24837 0 22 1 4

49 3.87% 80.80% 4.779 1 27 0 3

73 16.44% 56.60% 1.22255 0 7 0 3

204 52.71% 96.97% 2.30561 0 12 0 3

29 1.81% 22.26% 0 2 41 3 3

84 2.41% 60.38% 7.81148 0 30 1 3

24 6.61% 60.00% 1.71337 0 15 1 3

0 0.00% 34.75% 4.19038 0 14 1 2

0 0.00% 94.04% 1.30544 0 13 0 2

0 0.00% 69.67% 2.38057 0 17 0 2

0 0.00% 0.00% 1.23451 0 62 0 2

0 0.00% 61.29% 0 0 15 1 2

0 0.00% 33.17% 1.50526 0 25 2 2

0 0.00% 100.00% 2.07229 0 9 0 2

16 12.90% 0.00% 0 0 10 1 2

...

0 0.00% 68.52% 0 0 6 0 1

0 0.00% 0.00% 0 0 9 1 1

0 0.00% 23.84% 0 0 14 2 1

After discussing challenges, the interview then moved on to showing detailed tool results as

well as selected examples from the production code where high levels of specific TD types

had been found. These examples were chosen based on the strategies specified in section

3.2.4.2. This was used to validate if the tool results were expected and if they appeared to not

be false-positive. The expert was also asked to reprioritize the TD types after seeing the

detailed results. One Coverity issue was considered unexpected, as the expert could not

explain its existence. For the other source code examples, it was considered clear why they

were indicated to contain the specific TD type. Due to the unexpected issue, the priority of

Coverity issues was increased in the expert‟s opinion. CppCheck issues on the other hand

were considered to only consist of false-positives, thus being irrelevant. High dependency

count was also considered irrelevant, with the motivation that the files with many

dependencies were required by design to have them. Specifically those files were responsible

for startup configuration of the application. The expert‟s opinion on McCabe and Halstead

Error was practically unchanged. For McCabe specifically, the expert also claimed that in the

shown example it was better to have everything in one sequence rather than separating into

smaller methods.

The software expert also claimed that based on the chosen example, refactoring Code

Duplication may be difficult in C specifically due to its lack of templates (a C++ construct

that is used to create generic files and functions). He also claimed that duplication refactoring

would be simple in C++ through the usage of such templates. The duplication results were

also the the most difficult TD type to show, due to lack of good visualization. For example,

investigating a block that is duplicated twice in the same file requires the file to be opened

twice, so that both block starts can be viewed simultaneously. Modularity Violations were

 39

also shown to contain less false-positives than expected, and the expert seemed to judge them

to be more important after seeing the example, as it proved that cyclic dependencies existed

on the component level.

When asked which of these examples the expert would consider refactoring, the specific

Coverity issue was considered the only candidate, while Modularity Violations were in need

of further investigation. The expert had no particular opinions regarding the correlation

results, as seen in Table 3, as none of them showed an existing strong correlation between TD

and maintenance effort. The expert was also aware that these results did not prove lack of

correlation as the sample size was small.

Shortly after, the build-integratability of the TD measurement & visualization process was

validated by the tool expert, through showing and explaining Fig. 4. This expert concluded,

based on the explanations, that mainly Code Duplication was not integratable enough. This

was because of the manual “sorting data in excel”-step.

5. Discussion
In this chapter, the three main contributions of this study, the measurement system (answers

RQ1), the tool mapping (answers RQ2) and the process to measure TD impact on

maintenance effort (answers RQ3), and their results are discussed together with the processes

that were used to create them. The resulting discussion is used to motivate why these three

contributions answer their respective research questions and why they can be considered as

contributions both from an academic perspective and a practical one. The validity of the

results and how they were produced are also discussed and suggestions for changes,

improvements and future work are highlighted. Finally, the limitations and ethical

ramifications of this study are clarified.

5.1 Measurement System Discussion
One of the main contributions of this study is its measurement system for discovering files in

need of refactoring, which aggregates several TD types and visualizes the result in order to

answer RQ1. This in turn shows team members where in the system maintainability can be

improved to avoid additional maintenance effort in the future. The understandable

visualization allows experts to assess if the identified TD is in need of refactoring or if it can

be postponed. The measurement system is a contribution to both practice and academia, as it

can be applied on at least the design level (see Fig. 3) to other systems, either by team

members or by researchers. The measures used in the system could even be changed to other

source code level TD types (or different base/derived measures related to the currently used

types) with other thresholds, while still using the overall indicator for refactoring priority

based on TD levels found through source code analysis. Changing, adding or even removing

measures is not an issue, due to the modular design of the measurement system. In the

following three subsections we discuss how well the system fulfills best practice

requirements, how correctly the activities to create it were conducted and how reliable its

results are.

5.1.1 Measurement System Requirements
Staron et al. [20] have specified requirements for measurement system creation frameworks,

and through several of these requirements (requirements 1,3,5,6 in [20]) it also becomes

apparent how they believe the measurement system itself should be. Their first requirement

of realizing ISO standard 15939:2007 [15] is certainly fulfilled, as evident by Fig. 3. As we

 40

incorporate two tools that were already available on-site (Coverity SA and Coverity AA) we

have also achieved their third requirement, collecting data from existing tools in the

company, to a degree. Requirement six, measurement system modularity, has also been

fulfilled, as seen in Fig. 4, since the model is separated in different stages which represent

base measures, derived measures and indicators. Specifically, from the tools we receive the

base measures and through the ad-hoc parsers the derived measures and the indicator. The

indicator is later visualized as an Excel sheet with color coded prioritization.

In regards to their fifth requirement, updating the measurement system without updating the

source code, it is partially achieved in the measurement system. While the analysis models

connected to the refactoring urgency indicator would need to be changed in the code, certain

sub-indicators can effectively be ignored by passing an empty file representing that TD type

to the source code that builds the indicator and rates files (see Fig. 4). For adding measures

with their own sub-indicators, new code can be written that modifies the output file of the

original, to add the new measurements on top of the existing measurements. The initial steps

in Fig. 4 that create the base and derived measures could potentially also be connected to

another indicator based on all or part of those measures, through new code.

5.1.2 Measurement System Activities
Staron et al. [22] have also outlined the activities that should take place during the creation of

measurement systems. Several of these activities were also conducted in this study, while

others were either overlooked or performed either incorrectly or partially Regarding

information needs elicitation, the product guard and software expert had a general idea of TD

related measures that they thought had potential to be interesting. As the overall information

need was to discover if the existing TD was causing noticeable interest, previous TD

literature was also studied to find the TD measures that appeared to cause high amounts of

interest. Thus, our elicitation was not entirely stakeholder based, but we believe this extra

step was needed to determine how TD and its interest could feasibly be measured. The

purpose of knowing the cost of this interest was to know if it needed to be dealt with, which

is why this information need was interpreted as which files have the highest refactoring

priority (from a TD perspective). Performing the refactoring is analogous to paying the

principal of the TD. The fact that the indicator is displayed on a per-file basis was based more

on the assumption that refactoring one high TD file is preferable to refactoring several

medium TD files. The stakeholders found the proposed indicator acceptable, but we did not

involve them in its design to the degree they should have been according to Staron et al. [22].

For the analysis models the stakeholders were not involved beyond validation, as it was

decided to use thresholds defined as “case independent” in previous literature where

available, such as Heitlager et al.‟s duplication threshold [13]. This is in direct violation of

Staron et al.‟s recommendations [22], but the stakeholders were not familiar enough with the

TD types to have any case-specific thresholds in mind at the start of the study. Halstead

Error, Modularity Violations and ASA Issues also did not have thresholds in previous

literature, which led to arbitrary, but intuitive, thresholds such as zero-tolerance for defects,

violations and issues. Also, only methods with a whole Halstead Error or more were

considered as too complex, rather than taking the file‟s entire Halstead Error score in account.

Both the thresholds from previous research and the self-selected thresholds are discussed in

section 5.2. The derived measures and their measurement functions, besides SUM_HR, were

also defined based on previous literature while the base measures were largely identified

from the beginning in the form of the TD types stakeholders were interested in.

 41

Regarding the entity and its associated attributes, commits were considered by the

stakeholders to be an ideal representation of the work that was performed. The commits also

had the added benefit of allowing comparisons between files with high TD and files that were

modified in difficult commits, through effort specified in commit messages. The

measurement system‟s specification and architecture have also been detailed in Fig. 3 and

Fig. 4 respectively. Fig. 4 also details the necessary information sources in the form of files.

The necessary measurement instruments have been developed through a combination of

existing tools and ad-hoc parsers, which in turn realize the measures and indicator specified

in Fig. 3. However, ultimately the measurement system has not been fully integrated within

the case context due to the weak effort correlation results and validation results on certain

measures, as discussed in section 5.4.4.

5.1.3 Measurement System Result Reliability
Staron & Meding [23] also provide guidelines for assessing the quality of a measurement

system‟s results. Regarding the quality of this study‟s results, the conclusion is that it is

mixed. For example, the accessibility of the information is not optimal as the system has not

been fully integrated on-site (several automatable parts are still performed manually rather

than by scripting). As a result, it takes around 30-40 minutes to perform all the steps in Fig. 4.

The timeliness of the information was accurate however, as it was obtained from either the

system state before the commit being examined (in order find the possible impact TD could

have had on the commit) or on the latest version of the system (to provide up-to-date

examples of where the TD levels are high).

The results for the current system status were shown during the validation interview, where

they were confirmed by the software expert in a sense that they believed that the TD types

did in fact exist in their shown examples. However, %_MC, SUM_HR, #_DEP were

considered less believable as their examples were considered to not need refactoring. This

was also true for several ASA Issue categories due to false-positives. The volume of the data

was based on the parts of the source code that the software expert was interested in seeing TD

results for, and only files that have over-threshold levels of at least one TD type are included.

This also contributed to the conciseness of the results. The design choice to visualize sub-

indicators on the same row as the refactoring urgency indicator also contributes to

conciseness.

The base and derived measures are also visible on their own inside separate pages in the same

Excel file. While the same file filters have been applied to these pages, the format of this data

is different from the indicator page, affecting the overall consistency. This data is however

still required, in order to determine where in the high TD files the TD was found. Based on

the validation results, all Excel pages have an adequate level of understandability, although

DUP_LOC and %_DUP_LOC was more difficult to display compared to the other measures

(especially when a block is present multiple times in the same file).

A quality that the measurement system results lack within the case context is completeness.

As the TD types that are measured do not have a strong correlation to commit difficulty, the

model may be missing a measure that does have this strong correlation. The measures

provide correct results, but evidently in this case they were not the correct measures for

finding causes of significant extra effort. The information was still highly relevant for this

study however, as it was required for answering RQ1, and for providing the TD that was

analyzed for correlation to effort as part of RQ3.

 42

5.2 Measures Discussion
The base and derived measures that make up the measurement system and were gathered

through tools found through answering RQ2 have had different levels of success in regards to

stakeholder acceptance and usefulness. However, the measures that were less successful in

this context may be highly suitable in others. In any case, the measures used in this study are

based on a combination of recommended TD types from the existing literature, and thus

provide an excellent starting point for investigating TD for both team members from other

contexts as well as for researchers in future studies. In the following six subsections, the

process of gathering and evaluating each measure is discussed as well as their validation

results. The results for where these measures were used in correlations to answer RQ3 are

discussed as a whole in section 5.4.4, as none of the measures are strongly correlated.

5.2.1 McCabe Cyclomatic Complexity: %_MC
The threshold used for %_MC (complexity of complex methods divided by the file

complexity sum) was actually from another file-wise McCabe measure defined by Heitlager

et al. [13]. However, this other measure was tested on several commits together with %_MC,

and the resulting percentages were always very close. The other measure is based around

LoC in complex methods divided by total LoC in a file. There are several reasons why this

file-wise McCabe measure is worse than %_MC. First of all it was not possible to measure

pure LoC (no comments, no blanks) for methods, which causes complex methods with many

comments/blanks to seem worse than they are. In essence, calculating based on LoC ratio

causes lines that have zero McCabe to be counted as complex. The other measure also

requires separate thresholds depending on complexity level (such as 5% for source code with

100 or more complexity [13]) as methods with the same amount of LoC can have differences

in complexity. On the other hand, %_MC already incorporates separate complexity values in

its calculation. This means that it is theoretically easier to achieve 50% complexity with

%_MC (although again, for the sampled commits the results were still close).

Regarding validation of this measure, the software expert and tool expert have both voiced

hesitation on the usefulness of refactoring Cyclomatic Complexity in general. Specifically the

software expert considered it to be better for readability to keep the related source code to one

method in the shown production code example, rather than jumping between several smaller

methods. The tool expert also voiced concerns on the mathematical validity of converting a

method level measure to a file-wise one. As mentioned previously %_MC was however

accepted by several stakeholders from the same company in the study it originates from [6]

(named Effective_M%). Thus there are conflicting opinions. In the end, %_MC should still

be more mathematically sound than Heitlager et al.‟s [13] measure, for the previously

mentioned reasons.

5.2.2 Halstead Error: SUM_HR
The threshold used for Halstead Error and its file-level representation was exploratory, as

Halstead Error was not used in any of the reviewed previous literature. However the software

expert agreed that the reasoning to only count methods that reached a full error felt intuitive,

and did not explicitly state that the example would be made worse through refactoring (unlike

with the %_MC example).

In our opinion, the example with high Halstead Error but low Cyclomatic Complexity

appeared less readable than the example with reversed conditions. This was due to how the

constructs that cause Cyclomatic Complexity (“if” and “else” statements, “switch”

 43

statements, loops etc.) are often quite self-contained, so the high Cyclomatic Complexity

example could easily be read in stages.

5.2.3 Code Duplication: DUP_LOC & %_DUP_LOC
The threshold for %_DUP_LOC was taken from Heitlager et al. [13], while the threshold for

DUP_LOC was an arbitrary figure based on what we considered to be an excessively large

duplication block. As part of the %_DUP_LOC calculation it is compared to the amount of

pure LoC, which means that the percentage can become inflated if the duplicated blocks

contained comments. If the comparison had been to pure LoC plus comment lines instead, the

percentages would risk being too low, as the duplication block may not have had any

comments, even if the file itself has plenty. In the end, this did not have a significant effect,

as most files with %_DUP_LOC ≥ 10% but not DUP_LOC ≥ 100 had a percentage that was

several units above 10%.

Regarding the validation of these measures, the software expert agreed that excessive

duplication should be avoided, and that the tool was able to find real duplication. Through the

chosen example we were also able to gain new insights from the software expert in how

refactoring of duplication in C specifically may in some cases be more difficult than expected

(due to the lack of templates from C++). The measurement function for this derived measure

is in need of modifications to take such situations in mind and ignore them, possibly through

keyword recognition. This was however not possible during the timeframe of the study.

5.2.4 ASA Issues: #_ISSUES
The threshold for this category was based on an assumption of zero-tolerance for High

Priority Issues. This assumption was strengthened by the existing commit procedure within

the case context, which stops commits if issues from another (excluded from the tool

mapping), proprietary tool are found. As ASA Issues are already actively refactored on-site,

the correlation for this measure was never expected to be high. Additionally, a lot of the

discovered issues did end up being confirmed as false-positive by the software expert. There

was however one interesting issue, and the existing policies regarding committing proves that

this is a measure that is already prioritized. It appears that the issue type is more important

than the total number, even within the same priority level. However, the frequency of false-

positives may very well be due to the real issues being fixed before any commit is made.

Thus, the validation and correlation results for this measure are perhaps the most case

specific results.

5.2.5 Dependency Count: #_DEP
The threshold that was used to indicate too many dependencies is taken from Rapu et al. [10].

As it turns out, only four files out of over a thousand actually reached this threshold, and the

software expert considered that these files are not refactorable due to their complex

responsibilities. From an improvement perspective this measure was thus not very useful, but

it did manage to only point out complex files, meaning it could be very useful from an

informative perspective when dealing with unfamiliar applications (to determine the “core”

files).

5.2.6 Non-Allowed Dependencies: #_MV
The threshold for this category was based on an assumption that Non-Allowed Dependencies

could be considered as a type of High Priority Issue. As previously mentioned it was only

possible to measure for one application, but it was easy to verify by hand that the tool results

 44

were not false-positive (through examination of dependencies directly in a file). The software

expert considered the diagram that was inputted into the tool to be relatively up-to-date, and

found the results interesting as they showed circular dependencies on a component level. This

was considered as a possible target for refactoring. Our opinion is that the tool used for this

measure also serves an informative purpose, as it is easy to read how everything in the

application is connected in the dependency treeview before even adding the manually

specified diagram.

5.3 Tool Evaluation Discussion
Another of the main contributions of this study is the identification of C/C++ compatible TD

measurement tools (see Table 1) and the evaluations of several of these tools that were used

to answer RQ2 (see sections 4.3.2.1-4.3.2.6). Although these tools allegedly support other

programming languages as well, that aspect has not been verified during this study and as

such the tool evaluation results are the most context-specific contribution. Still, any system

made in C/C++ should be analyzable by the selected tools, whether it be by team members

themselves or as part of a future research project. This remedies the gap identified in existing

literature regarding how to apply existing TD theories in a C/C++ context. The identified

gaps regarding open source tool support for certain TD types also highlights possible future

projects to develop such alternatives.

The set of tools that were found and considered build-integratable were tested on-site at

Ericsson to assess their actual compatibility towards the case context‟s work process.

Completing the tool mapping with information from this on-site testing addresses RQ2.

There may definitely exist tools that were overlooked, but for the purposes of this study, the

tools found through this method, with some additional ad-hoc parsers, were enough to

implement the planned measurement system (see Fig. 3). Currently however, two TD

categories require proprietary tools, which puts a limit on where the measurement system can

be used. Another limitation of the measurement system is that it focuses on providing a quick

overview of TD levels in a file. The indicator will point out files with large amounts of TD,

but the tool results for each measure still need to be examined if a decision to refactor is made

(in order to see exactly where in the file the TD is located). This led to a visualization design

containing separate pages for each TD type in addition to the main indicator page. Based on

results with the tools used for Non-Allowed Dependencies (Coverity AA and Structure101) it

was also realized that those tools can detect a form of documentation debt as well, as the

found Non-Allowed Dependencies can show where the documented architecture differs from

the real architecture.

The selected tools were considered as sufficiently integratable due to potential for

automation, but reaching this automation still requires work. For calculating (%)DUP_LOC,

%_MC, SUM_HR, #_ISSUES and #_DEP, this is just a matter of creating scripts that link

together commandline arguments to run the tools and the ad-hoc parsers. For measuring

#_MV however there is an upfront cost in that a diagram must be designed at least once. A

separate tool from the Coverity suite can then be used to analyze source code for Non-

Allowed Dependencies.

The ad-hoc derived measure parsers were mainly necessary to reformat tool outputs to make

them compatible with the ad-hoc indicator parser. Doing this formatting through code

eliminates several manual steps. As this code was developed as a throwaway prototype [24],

it did not take too much time away from the study to create it (approximately two days).

 45

However, if an open source version of the measurement system was to be created then these

ad-hoc parsers should be improved (which is why they are not publicly available).

As seen in Table 1, open source tools for McCabe and Code Duplication are readily

available. On the other hand, the tested open source ASA Issues tool is inferior to the

proprietary alternative, and tools for Halstead Error and Non-Allowed Dependencies are

proprietary-exclusive. As the case context requirement was to support both programming

languages, the open source tool Dependometer (Non-Allowed Dependencies for C++) has

been ignored. To solve the “lack of open source solutions”-issue, there are several steps to

take. While Non-Allowed Dependencies may be easier to implement as a case specific

solution, a generic Halstead calculation tool should not only be feasible but also fairly simple,

as the creators of CMT++ describe in detail how Halstead metrics are calculated for C/C++

code [19].

For Code Duplication, the visualization of results from PMD also has room for improvement,

especially in regards to its Eclipse plugin. Specifically, the plugin would benefit immensely

both from highlighting of duplication blocks, and context menus for navigating from a block

to the other occurrences of the same block. The current solution for calculating the

duplication in a specific file is also dependent on manually sorting and removing unnecessary

data from the results in Excel, due to how PMD mixes the block‟s start and size values with a

copy of the actual block, resulting in output files with several thousand lines of data. This

step of the measurement system could be sped up by removing the block copies

programmatically instead of manually deleting their column in Excel.

There is also a feature gap in the tested LoC category tools. None of them can provide the

non-blank, non-comment LoC for a single function rather than a whole file. It would have

been interesting to use such a value in comparisons, as many of the TD types have base

measures on function level as well.

5.4 Commit Difficulty Analysis & Correlation Discussion
The final main contribution of this study is the process for assessing if a certain TD type (or

TD overall) is responsible for increased commit difficulty. This will show if the TD has had a

tangible interest, whose level can be used for the prioritization mentioned in RQ3. To make

this assessment the commits themselves were graded for difficulty, which allows both

unusually difficult and unusually easy commits to be identified. We believe modified LoC

divided by time spent on a commit is a more accurate representation of maintenance effort

compared to previously used interest indicators such as change frequency and defect density,

as one is actual effort and the other two are effort surrogates. A more accurate representation

of interest in turn improves TD Management decision making, where the goal is to assess if

the interest is larger than the principal estimated by experts. As per the goals of this study, we

have provided one such accurate representation and a process for how to compare it to TD

levels, which is adoptable by team members independently or as part of future research

projects. The following four subsections discuss the reliability of how commit difficulty was

calculated and how it was used in correlations, as well as possible improvements.

5.4.1 Measuring Commit TD
When measuring the commit TD levels that were used to correlate with commit difficulty as

part of RQ3, it was chosen to exclude files with significantly less modified LoC compared to

other files in the same commit. This restriction allowed for faster analyzing of the commits

with few large changes followed by one to three modified LoC in multiple files. A potentially

 46

more accurate solution would have been to link a file change to the method that was modified

rather than the entire file. This would have allowed for less deriving as many TD types are

initially measured on method level. It is also more likely that TD in the specific method has

had a negative effect on the change compared to the TD levels of the entire file. These results

could then be converted back to a file-level indicator based on the amount of high TD

methods the file has. However, as far as we are aware there is no easy way to link a file

modification in a Git commit to the specific method that was changed. Also, there is a

weakness in the method-based approach due to the fact that new methods are much more

common than new files, and that the modifications can consist of new and modified methods

in the same file. In the end, correlating commit difficulty to file-level rather than method-

level TD measurements trades accuracy for simplicity.

5.4.2 Calculating Average Ratio
As previously stated, the average ratio (and all correlations based on it) was recalculated

using the MAD-Median-rule [18], as the previous usage of 20% Trimmed and one Standard

Deviation from the trimmed mean was too lenient. It was chosen to try a different method

rather than changing the previous one to be based on two Standard Deviations, as no

correlations existed even on the too lenient level. These methods were needed to find the

threshold for transforming commit ratios into “1” or “0” for several of the correlation

algorithms that were used to answer RQ3. In the end, no strong correlations were found

between TD and commit difficulty anyway, but the mean from the MAD-Median-rule sample

should be closer to the population mean compared to the trimmed one.

5.4.3 Correlating Modified LoC & Effort
Based on the correlation results, there is a strong relation between time spent and modified

LoC, as the commits where a lot of source code was modified are often the commits that took

large amounts of time to complete. In a way this is not surprising as 21 of 25 commits are

within a normal distribution according to the MAD-Median-rule. The Pearson‟s result for this

correlation should be valid, and we are also satisfied with how modified LoC and effort

values were transformed to “1” and “0”, as the resulting datasets pair high modified LoC with

large effort, thus being consistent with the Pearson‟s result.

5.4.4 Correlating TD & Commit Difficulty
As seen in section 4.5, no significant correlations between specific over-threshold TD types

and commit difficulty or overall over-threshold TD and commit difficulty were found. As it

stands now, lack of correlation cannot be proven either, due to the sample size. It is likely that

the low number of commits with effort is a major factor, but these results still warrant the

question; are the right TD types being measured? This study has at least covered Source Code

TD extensively, but perhaps the true causes of significant interest lie in a different TD area

such as build-, test-, infrastructure- or versioning TD. The correlation results do indicate that

the chosen TD types have an interest cost, as the Pearson‟s Correlation value is negative as

expected. The value is just not significant enough based on Zazworka et al.‟s [3] thresholds.

When comparing to the value required for 95% significance level with 23 degrees of freedom

[25], one finds that the threshold from the significance table [25] is actually lower than 0.6,

but the TD correlation results of this study do not reach this more lenient threshold either.

You can still prioritize the TD types by their interest as intended by RQ3, but their priority

would be as low as their interest.

One thing that we in hindsight wish had been done differently would have been to challenge

the notion that effort should only be specified on production code commits and not test code

 47

commits. The argument that these commit types are too different could have been

circumvented by keeping two commit datasets, with separate ratios and correlation results.

This could have also been used to analyze if the commit types truly are as different as was

assumed, by comparing the two datasets.

For the correlation process we are slightly doubtful regarding the correctness of how the

results are transformed to be used in Conditional Probability, Chance Agreement and

Cohen‟s Kappa (while the Pearson‟s results should be without any issue). We believe that it

makes sense to attempt to pair occurrence of TD with commits that were not unusually easy,

but perhaps the “1” and “0” for specific over-threshold TD type occurrence should have been

based on deviation from mean, rather than if the commit had at least one occurrence. The

conditions for becoming “1” rather than “0” may be too lenient for the transformed specific

TD type occurrence datasets. One issue however is that different TD types have more/less

frequent occurrences, so that their occurrence datasets also have different means. This was

the reasoning for choosing the “one or more occurrence”-approach. The differences in

occurrence also affect the overall TD correlation results, as certain TD types may be more

important. The threshold for becoming “1” in transformation could potentially be divided into

a chain of thresholds for each TD type instead, where at least one threshold has to be

fulfilled. As it stands now, commits with many occurrences of less important TD may have

been treated as more important than they actually were.

5.5 Validity
In this section the overall validity of this study is discussed using the three types of validity

outlined by Runeson & Höst [4].

5.5.1 Construct Validity
To ensure the construct validity of the tool mapping, the tools themselves were tested. In

order to select tools that gather accurate measurements, data triangulation was performed by

trying out several tools both to choose the most suited for the case context as well as to

compare if they give (almost) identical measurements on the same measures. However due to

the lack of measurement overlap Code Duplication could not be compared between tools.

Also, the other tools with the DUP category were based on PMD, making result comparison

pointless.

The construct validity of the process this study uses for TD and effort correlation should be

similar to its original use by Zazworka et al. [3], where they claim that the thresholds were set

higher than strictly necessary (based on their findings from previous literature) in order to

reduce uncertainty. However, The TD interest surrogates they correlate to are different. They

also applied this process and measured TD from system versions rather than commits, which

potentially could mean their dataset values were much closer to each other (many files are

present in every system version). These similarities should support their smaller sample size

(13 system versions vs 25 commits). In any case, a process designed for correlating over

system versions has been used to correlate over commits instead, which may be less suitable.

To ensure the construct validity of human validation of measurements/indicator, this study

aimed to organize and visualize the measurement system results in an understandable way as

per the recommendation of Kruchten et al. [8]. Based on the validation interview results, this

was also successful. In regards to construct validity of the validation interviews themselves

the guidelines by Martini et al. [2] were followed. This included summarizing major findings

and presenting them to the interviewee, to ensure their answers had not been misunderstood.

 48

5.5.2 Internal Validity
The internal validity of the method that was used to find extra effort is potentially affected by

several outside factors, such as varying skill levels in the participating team members.

Another factor is that the accuracy of the effort values different team members provide may

not be perfect. However the team members already use a reporting system based on hours in

their work, which makes the effort in commit method fit in fairly naturally. The fact that

modified LoC and Effort was strongly correlated over the commits from seven different team

members also implies that there is not that much variation in the skill levels (most commits

were similar productivity-wise). The validity of each separate measure that is correlated to

this effort is discussed in sections 5.2.1-5.2.6.

Regarding the correlation process itself, the triangulation gained from using several

correlation algorithms should ensure result validity for the specific sample they are applied

to. As mentioned previously however, Conditional Probability, Chance Agreement and

Cohen‟s Kappa require that the values in the examined datasets are transformed into “1” and

“0” for pairwise comparisons. Section 3.3.2.4 details how these transformations were

determined. We believe that the decision criterias for these transformations makes sense, but

it was still a decision that had to be made based on intuition rather than scientific background.

Ultimately the decision on how to transform the values had a significant effect on the results

of the related methods. The results of Pearson‟s Correlation are based on the untransformed

data, and are thus not affected.

Extra effort could also hypothetically be a byproduct of paying back principal rather than

dealing with interest. To examine this, the levels of system-wide TD were compared between

the end of January and the end of April (the time-range for the commits with effort). The

results in Table 5 show that only a minimal reduction in TD levels has occurred, and the team

members themselves claim that none of the commits with effort were specifically TD

refactoring tasks. This shows that the effort spent during this time-period did not include any

major attempts at paying back principal. Specifically, the columns in Table 5 represent:

 Point: The point in time.

 DUP__LOC Total: The total amount of duplicate LoC

 #_MC Total: The number of functions with too high Cyclomatic Complexity (>15)

 #_HR Total: The number of functions with too high Halstead Error (≥1)

 #_ISSUES Total: The number of High Priority Issues.

 #_DEP Total: The number of files with too many dependencies (≥40).

 #_MV Total: The number of Non-Allowed Dependencies.

 Files with Extensive TD: The number of files with over-threshold levels of at least

one TD measure.

Table 5. System-wide TD at two points in time

Point DUP_LOC

Total

#_MC

Total

#_HR

Total

#_ISSUES

Total

#_DEP

Total

#_MV

Total

Files with

Extensive TD

Start 1562 57 25 23 4 101 131

End 1519 54 24 18 4 101 122

 49

5.5.3 External Validity
For external validity, the generalizability of the correlation and validation results is limited

since the case only covers a single department of a large company. Especially the validity of

the (lack of) TD correlation to effort may be insufficient due to the lack of commits that

specify effort. For the overall generalizability of this study, two strategies described by

Wieringa and Denava [26] have been considered. The Statistical Learning strategy could be

considered slightly applicable, as the Mad-Median-rule based mean ratio of the 24 previous

commits turned out to be an accurate predictor of the 25th commit‟s ratio (as it‟s ratio was

less than one StDev away from the current Mad-Median-rule based mean). This would imply

that the ratio can be used to for example judge if a future commit within the case context is

more difficult than expected. As Statistical Learning is designed for discovering statistical

patterns in large sample sizes [26], it is unlikely that this ratio will hold if it were to be

applied to commits made by other teams from the case context. A strategy that fits better with

this study is the Case-based Generalization, which consists of the following three steps [26]:

1. Observe case event.

2. Explain the event architecturally.

3. Generalize the theory to architecturally similar cases.

The observed event in this study is the impact of existing TD on commit difficulty, while the

architecture is the commits with effort specified as well as the measurement tools that were

used to measure if the levels of the chosen TD types are above the specified thresholds. In

order to replicate this architecture in similar cases it can be generalized by replacing the

commits (which of course would happen anyway), with/without also replacing the

measurement tools. By changing tools this makes the study generalizable even to other

programming languages, as long as the necessary measures can be measured. Additionally,

the correlation process, tool recommendations and measurement system implementation

should be of interest to companies in similar contexts and maintainers of C/C++ projects of

any size. This includes the method for finding difficult commits, based on specifying effort as

hours spent and comparing to modified LoC, which could easily be applied to other

programming languages.

5.6 Limitations
The study is delimited to one case (due to the established contract with the company in

question). The scope is limited to identifying and visualizing for easier validation of Source

Code TD from historical/current data. The possibility of build integration was considered an

important criterion during tool selection due to the fact that the product guard and software

expert in the case context explicitly declared their requirement for lightweight tools that do

not require big changes to their current process. Using lightweight tools was also considered

to be a key factor for making sure tool setup/configuration would not take up too much of the

time designated for this study. This led to preference being given to tools available on-site

(whose functionality otherwise requires open source tools and ad-hoc parsers to mimic) as

they were already integrated.

Our amount of measures are also to a degree limited compared to previous studies such as

[3], as we can only measure what the tools we have found and the code we have written can

measure. This limitation stems from the fact that C/C++ support is required. Specifically one

of the four approaches from [3] is not covered at all (Grime), although it is also the approach

most closely tied to object-oriented programming [16][17] (which is not relevant to the case

context). For effort correlations we were also mainly limited to one of four applications, due

 50

to it being the one that was most actively worked on by the team members that specify effort.

The on-site experts we validated measurements with also ended up being limited in number

(the two expert stakeholders). Finally, there is a major limitation in using modified LoC per

hour as an indicator of extra effort in that it is a manual process that is heavily affected both

by people forgetting to write effort in some of their commits, as well as the number of people

who participate to begin with. This limitation can cause the time needed to gather enough

commits with effort to become extensive. The process of choosing “irregular” commits to

study (unusually low or high modified LoC per hour) also falls apart if commits are too

similar (dataset is free of outliers).

5.7 Ethical Ramifications
This study uses information from the team members such as effort, which was the software

expert‟s own suggestion, and the other team members also voluntarily chose to provide the

data. However, the effort that is provided in the commits by the team members could

potentially be used to grade their performance. Even though the data presented in this report

cannot be connected specifically to any member as we avoided mentioning the names of the

team members, the commits with effort are still available inside the company. As such the

effort values can be accessed by other development teams and managers. However, the team

members were already required to specify their total amount of hours worked, as part of the

company procedure. Specifying effort in commits should not be much worse from an ethical

perspective, although the mandatory time specifications are less accessible by others. There

should be no cause for concern regarding comparison of commit effort to the existing work

time reporting schedule. This is due to the fact that it is already known that the commits with

effort do not cover the effort spent on commits of testing code, which there are plenty of.

We have carefully reviewed this report to avoid publishing any company sensitive

information. It will also be further reviewed for this purpose within the company itself. To

have full consent of the information during the interviews the participants were asked if

recording the session was acceptable, and it was also explained what the results would be

used for.

6. Conclusion
Technical Debt (TD) in the form of Source Code TD is considered to be a problem for many

software projects; especially in projects using Agile methodology as the rapid software

evolution and frequent deadlines causes developers to use more short-term solutions. To

neglect TD instead of properly managing it will result in growth of TD interest, which will

increase both the effort required to maintain software as well as to extend it with new

features. However, to be able to properly manage TD it must be correctly identified and

presented in an understandable way. This thesis addressed this by measuring and visualizing

source code level TD measures in an industrial context as a joint indicator. This thesis also

analyzed the correlation strength between the chosen TD measures and commit difficulty, in

order to indicate which measures had the strongest impact on maintenance effort within the

case context. Conducting the study in such a context has also allowed for the results to be

validated by expert team members. The key findings of this study are:

 A measurement system based on ISO standard 15939:2007 that indicates refactoring

priority of files based on levels of several TD types: A measurement system that

combines tools, ad-hoc parsers and manual processes to identify files in need of

refactoring has been designed and implemented. This in turn shows team members

 51

where in the system maintainability can be improved to avoid additional maintenance

effort in the future. The measurement system‟s indicator and its visual representation

provide answers for the aggregation and understandability parts of RQ1 respectively.

This visualization has also been confirmed as suitable by stakeholders on-site.

The measurement system has a modular design, as it was expected to disable

measures based on correlation results and stakeholder feedback. Due to the case

specific nature however, the measures that were less correlated to effort or less useful

to stakeholders in this context may be more important and useful in others. In any

case, the measures used in this study provide a starting point for investigating TD in

other contexts. Further research could also integrate additional TD type measures into

the file-level indicator. While the implementation of the measurement system is

limited to measuring TD in C/C++ systems, it should be applicable at the design level

(see Fig. 3) to systems written in other languages.

 A mapping of Source Code TD tools for C/C++, with accompanying

recommendations: Tools for measuring different forms of TD through C/C++ source

code have been mapped based on the TD types they can measure, the output formats

they provide and how integratable they are within the case context. Most of these

tools have also been tested on-site to ensure their functionality, and a selection of

recommended tools has been established. The tool results and how those results are

presented provide multiple answers to RQ2. However, open source tool support for

Halstead metrics and Non-Allowed Dependencies is lacking, which may prevent

further research in certain contexts unless such tools are developed.

The selected tools have also been confirmed by stakeholders to fulfill their

integratability requirements, besides the tool for duplication. That specific tool is in

need of additional coding to automatically derive measures from its results. Any

system made in C/C++ should be analyzable by the selected tools, which remedies the

gap identified in existing literature regarding how to apply existing TD theories in

such a context. The identified gaps regarding open source tool support for certain TD

types also highlights possible future projects to develop such alternatives.

 A process for correlating specific TD types and overall TD to commit difficulty,

allowing for TD type prioritization: By rating the difficulty of commits through their

ratio of modified LoC per hour, the TD levels of these commits can then be correlated

to a more accurate representation of effort spent, thus answering RQ3. This will show

which (if any) of the TD types are strongly correlated to increased commit difficulty.

This process is also programming language independent, as all it requires is change

size and the time taken to make said change.

By applying triangulation of several correlation methods, it is ensured that the overall

process only finds relations that are truly strong. As shown with this study‟s results,

none of the chosen measures were strongly correlated, which is consistent with the

stakeholders‟ opinions on the urgency of the problems that the measures indicate

(based on examples in their own production code). However, they did agree that the

examples were at least minor problems, which is consistent with the fact that the

correlation results show a minor relation. Of course, these results may very well be

skewed by the small sample size (25 commits over approximately three months). The

correlation result between modified LoC and effort shows the commits are in fact not

 52

that different however, so the sample size may have been large enough to make case-

specific inferences.

The prioritization process could possibly be refined further in future studies, by

evaluating the TD levels of the previous state of modified functions rather than the

previous state of modified files. It would also be valuable to conduct a comparison

study that uses modified LoC per hour and effort surrogates from previous studies in

order to establish which of these interest indicators is the most suitable.

In summary, the findings of this study will aid others to identify, quantify, present and

prioritize Source Code TD in C/C++ applications. The design of the measurement system and

the process for prioritizing TD types through correlation strength can also be applied to any

programming language that TD can be measured for. By implementing the designed

measurement system based contextual needs, files with high levels of multiple TD types will

be identified which can then be taken into account during TD Management. This will in turn

improve decision making regarding when and where to conduct refactoring.

 53

References

[1] J. Grundèn and B. Lexell, 'Finding Architectural Debt in Historical Data',

Master of Science Thesis Software Engineering, Chalmers University of

Technology | University of Gothenburg, 2014.

[2] A. Martini, J. Bosch and M. Chaudron, 'Architecture Technical Debt:

Understanding Causes and a Qualitative Model', in Software Engineering and

Advanced Applications (SEAA), 2014 40th EUROMICRO Conference on,

Verona, 2014, pp. 85-92.

[3] N. Zazworka, A. Vetro‟, C. Izurieta, S. Wong, Y. Cai, C. Seaman and F. Shull,

'Comparing four approaches for technical debt identification', Software Qual J,

vol. 22, no. 3, pp. 403-426, 2013.

[4] P. Runeson and M. Höst, 'Guidelines for conducting and reporting case study

research in software engineering', Empirical Software Engineering, vol. 14,

no. 2, pp. 131-164, 2009.

[5] A. Nugroho, J. Visser and T. Kuipers, 'An Empirical Model of Technical Debt

and Interest', in Proceedings of the 2nd Workshop on Managing Technical

Debt (MTD '11), Waikiki, Honolulu, USA, 2011, pp. 1-8.

[6] V. Antinyan, M. Staron, W. Meding, P. Osterstrom, E. Wikstrom, J. Wranker,

A. Henriksson and J. Hansson, 'Identifying Risky Areas of Software Code in

Agile/Lean Software Development: An Industrial Experience Report', in

Software Maintenance, Reengineering and Reverse Engineering (CSMR-

WCRE), 2014 Software Evolution Week - IEEE Conference on, Antwerp,

Belgium, 2014, pp. 154-163.

[7] N. Zazworka, R. Spínola, A. Vetro', F. Shull and C. Seaman, 'A Case Study on

Effectively Identifying Technical Debt', in Proceedings of the 17th

International Conference on Evaluation and Assessment in Software

Engineering (EASE‟13), Porto de Galinhas, PE, Brazil, 2013, pp. 42-47.

[8] P. Kruchten, R. Nord and I. Ozkaya, 'Technical Debt: From Metaphor to

Theory and Practice', IEEE Software., vol. 29, no. 6, pp. 18-21, 2012.

[9] Z. Li, P. Avgeriou and P. Liang, 'A systematic mapping study on technical

debt and its management', Journal of Systems and Software, vol. 101, pp. 193-

220, 2015.

[10] D. Rapu, S. Ducasse, T. Girba and R. Marinescu, 'Using history information to

improve design flaws detection', in Software Maintenance and Reengineering,

2004. CSMR 2004. Proceedings. Eighth European Conference on, Tampere,

Finland, 2004, pp. 223-232.

[11] D. Coleman, D. Ash, B. Lowther and P. Oman, 'Using metrics to evaluate

software system maintainability', Computer, vol. 27, no. 8, pp. 44-49, 1994.

 54

[12] M. Rieger, S. Ducasse and M. Lanza, 'Insights into system-wide code

duplication', in Reverse Engineering, 2004. Proceedings. 11th Working

Conference on, Washington, DC, USA, 2004, pp. 100-109.

[13] I. Heitlager, T. Kuipers and J. Visser, 'A Practical Model for Measuring

Maintainability', in Quality of Information and Communications Technology,

2007. QUATIC 2007. 6th International Conference on the, Lisbon, Portugal,

2007, pp. 30-39.

[14] M. D'Ambros, A. Bachelli and M. Lanza, 'On the Impact of Design Flaws on

Software Defects', in Quality Software (QSIC), 2010 10th International

Conference on, Zhangjiajie, China, 2010, pp. 23-31.

[15] Iso.org, 'ISO/IEC 15939:2007 - Systems and software engineering –

Measurement process', 2015. [Online]. Available:

http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnu

mber=44344. [Accessed: 22- Mar- 2015].

[16] C. Izurieta and J. Bieman, 'How Software Designs Decay: A Pilot Study of

Pattern Evolution', in Empirical Software Engineering and Measurement,

2007. ESEM 2007. First International Symposium on, Madrid. Spain, 2007,

pp. 449-451.

[17] C. Izurieta and J. Bieman, 'Testing Consequences of Grime Buildup in Object

Oriented Design Patterns', in Software Testing, Verification, and Validation,

2008 1st International Conference on, Lillehammer, Norway, 2008, pp. 171-

179.

[18] R. Wilcox, Modern statistics for the social and behavioral sciences. Boca

 Raton: Taylor & Francis, 2012.

[19] Verifysoft.com, 'Verifysoft → Halstead Metrics', 2015. [Online]. Available:

http://www.verifysoft.com/en_halstead_metrics.html. [Accessed: 03- May-

2015].

[20] M. Staron, W. Meding and C. Nilsson, 'A framework for developing

measurement systems and its industrial evaluation', Information and Software

Technology, vol. 51, no. 4, pp. 721-737, 2008.

[21] M. Staron and W. Meding, 'Using Models to Develop Measurement Systems:

A Method and Its Industrial Use', in IWSM '09 /Mensura '09 Proceedings of

the International Conferences on Software Process and Product Measurement,

Amsterdam, 2009, pp. 212 - 226.

[22] M. Staron, W. Meding, G. Karlsson and C. Nilsson, 'Developing measurement

systems: an industrial case study', J. Softw. Maint. Evol.: Res. Pract., vol. 23,

no. 2, pp. 89-107, 2011.

http://www.iso.org/iso/
http://www.iso.org/iso/
http://www.verifysoft.com/en_halstead_metrics.html

 55

[23] M. Staron and W. Meding, 'Ensuring Reliability of Information Provided by

Measurement Systems', in IWSM '09 /Mensura '09 Proceedings of the

International Conferences on Software Process and Product Measurement,

Amsterdam, 2009, pp. 1-16.

[24] I. Sommerville, Software engineering, 8th ed. Harlow, England: Addison-

Wesley, 2007.

[25] Radford.edu, 2015. [Online]. Available:

http://www.radford.edu/~jaspelme/statsbook/Chapter%20files/Table_of_Critic

al_Values_for_r.pdf[Accessed: 18- May- 2015].

[26] R. Wieringa and M. Daneva, 'Six strategies for generalizing software

engineering theories', Science of Computer Programming, vol. 101, pp. 136-

152, 2015.

http://www.radford.edu/~jaspelme/statsbook/Chapter%20files/Table_of_Critical_Values_for_r.pdf
http://www.radford.edu/~jaspelme/statsbook/Chapter%20files/Table_of_Critical_Values_for_r.pdf

 56

Appendix A - Results for One StDev from 20% Trimmed

Table 6: Normal or one StDev below 20% Trimmed mean table

TD Type Pearsons Conditional

Probability

commit|TD

&

TD|commit

Chance

Agreement

Cohen's

Kappa

Correlation

strength

commit|TD

(x/3)

Correlation

strength

TD|commit

(x/3)

McCabe -0.36 15.38% &

33.33%

49% 0.25 0/3 0/3

Halstead -0.47 16.67% &

50%

39% 0.19 0/3 0/3

Issues -0.48 22.22% &

33.33%

57% 0.35 0/3 0/3

Duplication -0.29 21.05% &

66.67%

36% 0.23 0/3 1/3

High Dep

Count

-0.37 16.67% &

33.33%

51% 0.28 0/3 0/3

Modularity

Violations

-0.09 9.1% &

50%

30% 0.16 0/3 0/3

High Total

TD

-0.39 0% &

0%

74% 0.40 0/3 0/3

Modified

LOC / Effort

0.98 33.33% &

33.33%

79% 0.53 1/3 1/3

 57

Figure 7: Modified LoC per hour ratio for each commit 20% Trimmed

Figure 8: Chart showing distribution of commit modified lines/commit effort pairs 20%

Trimmed

 58

Appendix B - TD Questionnaire with Definitions List

Technical Debt Definition
Technical debt (TD) is a metaphor reflecting technical compromises that yield short-term

benefits with a risk of causing long-term side-effects. Neglecting TD on actively developed

software can cause inefficiency and expansion difficulties in the system, and such overhead

cost is referred to as the interest of TD. If TD is not properly managed, the growth of TD over

time will result in the growth of the interest, which will increase the required effort to

maintain the software (which includes extending it with new features). However, repayment

of TD also requires effort (referred to as the principal of TD). Therefore, it is important to

decide when to pay the principal during TD management.

Out of the TD types (see glossary), our study focuses on Code TD, while also touching upon

Architecture TD through modularity violations as well as Defect TD by evaluating issue

categories not covered by Lint. If we manage to find correlations between commits that

needed extra effort and certain subcategories of these TD areas, then that would also be an

indicator of Infrastructure TD (lack of support).

Regarding TD management activities (see glossary), our study focuses mainly on TD

Identification (which is required for TD Monitoring, Communication & Documentation). By

correlating TD measures to effort, we will also be able to perform TD Prioritization.

As a complementary source of data for TD identification, we would very much like you to

answer the following questions. Your answers may lead to further discussion, and they may

also point out TD in the application that our current tools do not cover.

Questions

1. If you were forced to address TD in the application to make it more maintainable for

the future (i.e. excluding new features or bug fixes), which part of the code would you

spend your time on? Why?

2. Which part of the application, that you think contains TD, will not be changed in the

foreseeable future?

3. What kind of “code compromise” would you personally like to keep track of, or find

out about earlier?

4. What do you consider to be extra time consuming when working on/with the

application?

5. What do you consider to be “poor” code that can still be found within the application?

Where can it be found?

 59

Questionnaire Glossary

Technical Debt Types

TD can be split into ten areas based on the origin of the compromise [9]:

Requirements TD
Refers to differences between an existing requirements specification and the actual product,

under domain assumptions and constraints.

Documentation TD
Refers to insufficient, incomplete, or outdated documentation.

Test TD
Refers to lack of tests/test coverage.

Build TD
Refers to flaws in a software system, in its build system, or in its build process that make the

build overly complex and difficult.

Versioning TD
Refers to problems in source code versioning, such as unnecessary code forks.

Infrastructure TD
Refers to sub-optimal configurations of development-related processes, technologies and

supporting tools.

Architectural TD
Refers to architecture decisions that make compromises in certain internal quality aspects,

such as maintainability.

Design TD
Refers to technical shortcuts taken during detailed design.

Code TD
Refers to code that violates general or context specific coding practices/coding rules.

Defect TD
Refers to defects, bugs, or failures found in software systems.

Not TD
Things that are not TD include logical correctness as well as runtime properties such as

performance.

 60

Technical Debt Management

Technical debt management (TDM) is divided into activities centered on either dealing with

existing TD or preventing potential future TD [9]. These activities include:

TD Identification
Deals with detecting TD caused by intentional or unintentional technical decisions in a

software system through specific techniques, such as static code analysis.

TD Measurement
Deals with quantifying the benefit and cost of known TD through estimation techniques, or

estimates the level of the overall TD in a system.

TD Prioritization
Deals with ranking identified TD according to certain predefined rules to support deciding

which TD items should be repaid first and which TD items can be tolerated until later.

TD Prevention
Deals with preventing potential TD from being incurred.

TD Monitoring
Deals with tracking the changes of the cost and benefit of unresolved TD over time.

TD Repayment
Deals with resolving TD through techniques such as reengineering and refactoring.

TD Communication
Deals with making identified TD visible to stakeholders so that it can be discussed and

further managed.

TD Documentation
Deals with representing TD in a uniform manner, addressing the concerns of particular

stakeholders.

 61

Appendix C - TD & Correlation Validation Questions

Asked after explaining TD type concepts

 Do you have any questions regarding the TD types we have explained?

 Which of the TD types would you consider important/not important just based on our

definitions?

Tying summarized results to recent challenges

 Can you describe any time-consuming problems encountered by you or anyone else

from the team during the last two weeks?

 Do any of our summary results for the time-consuming file(s), highlight the

function(s) that caused extra work?

After showing detailed tool results and examples in the production code

 Were any of these results unexpected to you (concerning the code areas they point

out)?

 How would you reprioritize the TD types after seeing the tool results and our selected

examples?

 Which (if any) of our selected examples would you consider refactoring first?

Asked after showing correlation results

 What do you think of relative importance between TD types according to the

correlation results?

Assessing tool integratability after detailing result summarizing process

 Based on our explanations of the tools and our result summarizing process, how well

do they fulfill your integratability requirements?

 62

Appendix D - Tool Licence List

 GPLv2 = http://www.gnu.org/licenses/gpl-2.0.html

 GPLv3 = http://www.gnu.org/copyleft/gpl.html

 LGPLv3 = http://www.sonarqube.org/downloads/license/

 ALv2 = http://www.apache.org/licenses/LICENSE-2.0

 BSD-4 = https://spdx.org/licenses/BSD-4-Clause

 BSD-3 = http://docs.oclint.org/en/dev/devel/license.html

 VPL = http://source.valtech.com/display/dpm/License

 EPL = https://www.eclipse.org/legal/epl-v10.html

 USC = http://csse.usc.edu/csse/affiliate/private/license.txt

 MIT = http://opensource.org/licenses/MIT

http://www.gnu.org/licenses/gpl-2.0.html
http://www.gnu.org/licenses/gpl-2.0.html
http://h
http://h
http://h
http://h
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
http://h
http://h
http://docs.oclint.org/en/dev/devel/license.html
http://docs.oclint.org/en/dev/devel/license.html
http://h
http://h
https://www.eclipse.org/legal/epl-v10.html
https://www.eclipse.org/legal/epl-v10.html
http://csse.usc.edu/csse/affiliate/private/license.txt
http://csse.usc.edu/csse/affiliate/private/license.txt
http://opensource.org/licenses/MIT

