
CURVE FITTING WITH CONFIDENCE FOR PRECLINICAL
DOSE–RESPONSE DATA

MATHIAS CARDNER

Abstract. In the preclinical stage of pharmaceutical drug development, when investigating
the medicinal properties of a new compound, there are two important questions to address.
The first question is simply whether the compound has a significant beneficial effect compared
to vehicle (placebo) or reference treatments. The second question concerns the more nuanced
dose–response relationship of the compound of interest. One of the aims of this thesis is
to design an experiment appropriate for addressing both of these questions simultaneously.
Another goal is to make this design optimal, meaning that dose-levels and sample sizes are
arranged in a manner which maximises the amount of information gained from the experiment.
We implement a method for assessing efficacy (the first question) in a modelling environment
by basing inference on the confidence band of a regression curve. The verdicts of this method
are compared to those of one-way anova coupled with the multiple comparison procedure
Dunnett’s test. When applied to our empirical data sets, the two methods are in perfect
agreement regarding which dose-levels have an effect at the 5% significance level. Through
simulation, we find that our modelling approach tends to be more conservative than Dunnett’s
test in trials with few dose-levels, and vice versa in trials with many dose-levels. Furthermore,
we investigate the effect of optimally designing the simulated trials, and also the consequences
of misspecifying the underlying dose–response model during regression, in order to assess the
robustness of the implemented method.
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1. Introduction

1.1. Background. During the early development of a medicinal drug — when investigating
whether a certain compound has some beneficial effect — there are traditionally two different
strategies behind the statistical analyses performed [1]. The first strategy — which we shall
refer to as an efficacy study — is designed to determine, with statistical significance, whether
the compound actually does have a beneficial effect compared to control or reference treatments.
This design typically has relatively few dose-levels, with many observations made at each level
in order to yield statistical confidence in the results. The other strategy, which is model-based
in nature, is geared towards gaining more nuanced information about the dose–response profile
of the compound of interest [2]. This design typically has a larger number of dose-levels, spread
out in such a way that we gain insight into the mechanistic (functional) form of the underlying
phenomena, whilst sacrificing confidence by having fewer observations at each dose-level. It is
important to keep in mind that the total number of observations is limited by available resources
and, in the case of in vivo studies, by ethical considerations since animals are involved. The
major benefit of this model-based approach is that it can be used to estimate appropriate dose-
levels for future studies. If the target dose is incorrectly estimated, the recommended dose-level
for subsequent trials may be set too high, potentially causing concerns of toxicity and safety.
Alternatively, if the recommended dose-level is set too low, its beneficial effect may be too small
to detect in a confirmatory phase [3].

The overarching goal of this project is to devise a strategy for a statistical analysis which
addresses both of the above questions simultaneously. In other words, we aim to design an
experiment which lends insight both into the efficacy and the dose–response relationship of a
given compound. The most obvious reward is that of parsimony, since a successful synthesis of
the traditionally disparate experiments would save resources — both financially and ethically.
Moreover, it would be of value to experimenters who wish to gauge the mechanistic dose–response
relationship whilst retaining statistical confidence in the results. Say for instance that a researcher
is primarily interested in estimating the minimum effective dose (MED), defined as the smallest
dose which yields a clinically relevant and statistically significant effect [4]. Then an experimental
design could be optimised with respect to its ability of estimating the MED, in the sense of
minimising the variance of this estimate [5]. The methodology derived from our investigations will
be summarised in Section 6.2 as a guide for designing and analysing dose–response experiments.

Further nuance. It is worthwhile to make a few observations about the fundamental differences
between the two types of strategies mentioned above. In the efficacy study, the dose-levels are
considered to be qualitative, and the statistical analysis (e.g. anova) requires comparatively few
assumptions [1]. Conversely, in the model-based approach, assumptions must be made concerning
the underlying model of dose–response, which then describes a functional relationship between
the dose — now viewed as inherently quantitative — and the response. If the postulated model
is representative of the true dose–response relationship, then this more nuanced knowledge can
answer important questions. For instance, it can be used to estimate the dose which attains half
the maximal effect (ED50) or the minimum effective dose (MED) [3]. Thus, whereas inference
from the efficacy study is limited to the dose-levels at which observations were made, the model-
based approach can be used to interpolate the response within the range between the smallest
and largest dose administered (including the vehicle treatment). This increased flexibility comes
at the cost of more assumptions, which, if unrepresentative of the true phenomena, may yield
misleading results.

Granted, when an experiment has been performed and the measurements have been gathered,
there is nothing preventing us from using both of the above methodologies to analyse the data.
Notice that it is the experimental design (i.e. the arrangement of dose-levels and their sample
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sizes) which may make one of the methods more appropriate than the other. In light of this, an
important objective of this thesis is to investigate how the allocation of experimental resources
affects the inferences drawn from the different methodologies.

1.2. Pharmacological background. This thesis focuses on dose–response studies, in which a
drug is administered at various dose-levels and the corresponding response is measured. The
medicinally active substance is delivered in an inert substance (excipient) referred to as vehicle.
In order to measure the null effect — i.e. to establish a baseline response — it is appropriate
to include a treatment containing no active substance, but only the vehicle itself. This vehicle
treatment is a control expected to have no effect, and as such, it can be thought of as a type of
placebo. Since the vehicle treatment contains no trace of the active substance, it is appropriate to
associate it with a dose-level of zero. Furthermore, the dose-levels are generally spread out more
or less evenly on a logarithmic scale, in order to gauge the response across orders of magnitude.
Hence it is often appropriate to use a logarithmic transformation on the dose scale when plotting
the data. This however causes trouble with the vehicle, since the logarithm of zero is not (finitely)
defined, meaning that it is not obvious how to handle the vehicle treatment. One possible solution
is to adjust the response so that it becomes relative to the estimated baseline — for instance
by uniformly subtracting the mean vehicle response. We have not done this in the upcoming
figures, where the plots with a logarithmic dose scale simply omit the vehicle treatment. It will,
however, play an important role in accounting for the variability in the mean vehicle response
when we implement our method in Section 5.

1.3. Reading guide. As this thesis is written in the field of mathematical statistics applied to
pharmacology, it is intended for two audiences with different backgrounds. Since the author’s
knowledge of pharmacology was virtually nonexistent at the beginning of this project, the thesis
should hopefully be self-contained with respect to the pharmacological concepts involved. The
same can however not be said of its mathematical and statistical contents, which will primarily
appeal to those already acquainted with those fields. Therefore, we shall here offer a reading
guide intended to outline the topics most relevant to the reader without a statistical background.

In Section 2 we describe empirical dose–response data sets which set the stage for the subse-
quent analysis. This leads to Section 2.2 in which we introduce common dose–response models.
The literature review in Section 3 is the result of an extensive search for previous work addressing
our problem, albeit rather tangentially. Nevertheless, the fruits of this search include articles
and software which are highly useful for model-robust optimal design of dose–response trials.

Section 4 contains the mathematical and statistical methods we use throughout this thesis.
It begins with the theory of optimal design of experiments, which, given some postulated dose–
response model, determines the optimal allocation of experimental resources. In short, this
theory tells us how many dose-levels to include, where to place them, and how many subjects
to assign to each level. Granted, the resulting design will only be optimal from a mathematical
point of view, and may suggest dose-levels which are inconceivable in practice. This is later
addressed by software which rather lets the experimenter specify feasible candidate dose-levels
beforehand, from which the most efficient allocation is chosen.

In Sections 4.2 and 4.3 we discuss regression and the construction of confidence bands around
regression curves. This leads up to the key result in Section 5 in which we present our method
for assessing efficacy under a modelling approach. The judgements made by this method are
compared to those of one-way anova coupled with the multiple comparison procedure Dunnett’s
test, which controls the family-wise error rate when comparing each dose-level against the vehicle
treatment. (See Bretz et al. (2010) [6] for a detailed account of this test.) This is done through
comprehensive simulations of dose–response trials, the findings of which are presented in Section
6 containing our results and discussion. Section 6.2 outlines a method for designing and analysing
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dose–response studies using the R [7] package DoseFinding [8]. The conclusions in Section 7 give
a summary of our findings, as well as elaborations on avenues of future work.

2. Data exploration and modelling

2.1. Data. Our investigations are supported by data sets containing empirical in vivo dose–
response data for three different compounds, referred to as compounds A, B and C. For each
compound, two response variables have been measured (from the same physical sample). The
measured response quantities shall for each compound be referred to as response 1 and 2. Note,
however, that these responses do not necessarily measure the same quantity for different com-
pounds. For instance, response 1 of compound A may measure something different than does
response 1 of compound B.

Figures 1–6 display boxplots and scatterplots of all six data sets. Notice that the dose-levels
are logarithmically scaled in the scatterplots, meaning that the zero-dose vehicle treatment is
not included. The data are analysed using one-way anova coupled with Dunnett’s test [6],
which adjusts for multiplicity (see Section 4.3) when comparing each dose-level against vehicle.
Throughout this thesis we perform Dunnett’s test using the R [7] package multcomp [9]. We
say that a dose-level is active if it shows a statistically significant effect compared to the vehicle
treatment (at the given significance level, which in this thesis is set to 5%). The verdicts of
Dunnett’s test are recorded in the figure captions.
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Figure 1. Boxplot (left) and scatterplot (right) of the observed dose–response
data of compound A with respect to response 1. Dunnett’s test indicates that
the two highest dose-levels, 10 and 100, are active at the 5% significance level
(both with p-values smaller than 0.03%). The data clearly suggest an increasing
trend, with the possible exception of dose-level 1. The spread of the data at
each dose-level is symmetric about its mean, which is generally quite close to
its median. These statistics deviate most markedly at dose-level 10, due to a
blatant outlier. Furthermore, there is evidence of heteroscedasticity, with larger
variability at higher dose-levels — the exception being dose-level 1 whose data
is quite variable.
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Figure 2. Boxplot (left) and scatterplot (right) of the observed dose–response
data of compound A with respect to response 2. Dunnett’s test declares no
activity at significance level 5% (nor at 10%). The data indicate no apparent
trend. At each dose-level, the observations are spread symmetrically about the
mean, which tends to be slightly higher than the median. The heteroscedas-
ticity follows no simple pattern, though again the variability at dose-level 1 is
conspicuously large.
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Figure 3. Boxplot (left) and scatterplot (right) of the observed dose–response
data of compound B with respect to response 1. Dunnett’s test declares no
activity at significance level 5% (nor at 10%). The data indicate no monotonic
trend. The observations are quite skewed, though not uniformly in the same
direction, which disqualifies a monotone transformation. Heteroscedasticity ap-
pears erratic, with high variability in the vehicle treatment and two extreme
observations at dose-level 150.
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Figure 4. Boxplot (left) and scatterplot (right) of the observed dose–response
data of compound B with respect to response 2. Dunnett’s test indicates that
the highest dose-level, 450, is active at the 5% significance level (with a p-value
of 3%). Aside from the vehicle treatment, there is evidence of a decreasing trend.
The observations are fairly symmetrical around the means. Heteroscedasticity
is present in that variability appears to decrease with higher dose-levels.
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Figure 5. Boxplot (left) and scatterplot (right) of the observed dose–response
data of compound C with respect to response 1. Dunnett’s test declares no
activity at significance level 5% (nor at 10%). The data suggest no apparent
trend. The observations are quite symmetrical about the means, with no obvious
heteroscedasticity, barring a few outliers.
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Figure 6. Boxplot (left) and scatterplot (right) of the observed dose–response
data of compound C with respect to response 2. Dunnett’s test indicates that the
two highest dose-levels, 0.54 and 1.8, are active at the 5% significance level (both
with p-values smaller than 0.4%). The data clearly indicate a decreasing trend.
The observations are slightly positively skewed, perhaps indicating the propriety
of a monotone transformation. Indeed, a logarithmic transformation of the
response (which, for the sake of brevity, is not shown) does yield a dramatically
more symmetrical spread around the means. It also alleviates the ostensible
heteroscedasticity, with high variability in the vehicle treatment, as opposed to
the remarkably low variability at dose-level 1.8. The logarithmically transformed
data are however nearly homoscedastic.
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2.2. Mathematical models. Throughout this thesis we will consider the functional relationship
between an explanatory (predictor) variable x and a response variable y. Denoting the response
function by η we will write y = η(x, θ) where θ is a vector containing all parameters of the given
response function.

The Emax model and its derivatives. In pharmacodynamic modelling of dose–response relation-
ships, one of the most common choices is the so-called Emax model [10] which can be motivated
by using a biological interpretation [11]. Its response, in the case of an increasing dose–response
profile, is given by

η(x,E0, Emax,ED50) = E0 + Emax · x
ED50 + x

,

where E0 is the response at dose x = 0 (i.e. the vehicle response), Emax is the maximum effect
induced by the drug, and ED50 is the smallest dose which attains half the maximal effect. Notice
that Emax is the change in response relative to the baseline E0, meaning that the absolute
maximal response is Rmax = E0 + Emax.

The Emax model in the case of a decreasing dose–response relationship is analogous, with the
response function

η(x,E0, Imax, ID50) = E0 −
Imax · x
ID50 + x

,

where Imax is the maximum inhibition induced by the drug, and ID50 is the smallest dose which
attains half the minimal effect. Henceforth, the inhibitory model will be included in the model
with an increasing profile by allowing the parameter Emax to be negative.

The Emax model can be extended by raising the dose x and ED50 to a power h, which yields
the sigmoid Emax model given by

η(x,E0, Emax,ED50, h) = E0 + Emax · xh

EDh
50 + xh

.

The so-called Hill coefficient h is proportional to the slope of η at ED50 — see Gabrielsson and
Weiner (2006) [11]. In order to distinguish the two models, the former is sometimes referred to
as the hyperbolic Emax model [10].

Perhaps at the expense of biological interpretation, the sigmoid Emax model can be more
succinctly expressed (by simplifying the quotient) as

η(x,E0, Emax,ED50, h) = E0 + Emax

1 + (ED50/x)h .

This equivalent form of the sigmoid Emax model is referred to as the four-parameter logistic model
[12]. Another equivalent form — useful for numerical purposes, or when applying a logarithmic
transformation to the dose — is the logistic model

η(x,E0, Emax,ED50, h) = E0 + Emax

1 + exp[(log ED50 − log x)h] .

Additional dose–response models. Without giving biological interpretations, we shall also employ
three dose–response models included in the R [7] package DoseFinding [8] (see the next Section
3 for more information about this package). These comprise an exponential model

η(x,E0, E1, δ) = E0 + E1(exp(x/δ)− 1),
a linear-in-log model

η(x,E0, δ, offset) = E0 + δ log(x+ offset),
and a beta model

η(x,E0, Emax, δ1, δ2, scale) = E0 + EmaxB(δ1, δ2)
( x

scale

)δ1(
1− x

scale

)δ2
,
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where B(· , ·) is the beta function and “scale” is a fixed dose-scaling parameter. Figure 7 displays
standardised schematic plots conveying the typical shape of the above mentioned models. In
particular, this figure reveals the ability of the beta model to capture a non-monotone dose–
response profile.
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Figure 7. Standardised schematic plots of common dose–response models. All
models are monotonic except for the beta model, which can accommodate a
non-monotone dose–response profile. The graphic was created using the R [7]
package DoseFinding [8].

3. Literature review

As mentioned above, the aim of this thesis is to combine an analysis of efficacy and a model-
based approach. In the former analysis, when investigating the effect of various dose-levels (and
vehicle) we traditionally utilise multiple comparison procedures to control the family-wise error
rate. Conversely, the strength of the model-based approach is its potential to give more nuanced
information about the underlying dose–response relationship. We have followed the work of Frank
Bretz, José Pinheiro, Björn Bornkamp and Holger Dette (with specific references to follow).

Bretz et al. (2005) [1] devised a strategy for combining multiple comparison techniques with
dose–response modelling, introduced in their so-called MCP-Mod methodology. The term is an
abbreviation of “multiple comparison procedures with modelling techniques”. Whilst this may
sound very similar to the objective of this thesis, the multiple comparisons of which they speak
pertain to model selection — not dose-levels. Their method can be used to select from a collection
of candidate models (with specified parameters) the one which most aptly describes a given set
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of dose–response data. The fundamental idea is to develop, for each model, a hypothesis test
based on contrasts of the means of the responses at the various dose-levels (including the vehicle
treatment). The contrasts for each model are chosen in such a way that if that particular model is
correct, the chance of rejecting the null hypothesis (of no effect) is maximised. After establishing
a critical value for adjusting the family-wise error rate of the multiple hypothesis tests, the
models with significant test statistics can be identified from the candidate set. Subsequently,
the winning model is chosen to be the one whose test statistic yielded the smallest p-value
(adjusted for multiplicity). This leads to the main advantage of their approach, namely that the
winning model can be used to make inferences beyond the original dose-levels. For instance, it
can be used in dose-finding — that is, to estimate which dose ought to yield a given response.
Constructing a confidence band around the curve corresponding to the winning model allows us
to judge whether a given dose has a statistically significant effect compared to vehicle. They
have implemented this work in the R [7] package MCPMod [13]. Their framework was expounded
upon by Pinheiro et al. (2006) [2] who developed methods for power and sample size calculations
under this methodology.

It is important to note, however, that their method is concerned with model selection a
posteriori whereas we are interested in optimal design of experiments a priori. In other words,
MCP-Mod can determine which model best describes a given data set, but our task is to design
an experiment before having seen the resulting data. (Indeed, Pinheiro et al. (2006) [2] identified
this as an avenue of further research.) Nevertheless, their work will prove beneficial also for
our purposes, and the functionality of MCPMod was subsequently subsumed into the R package
DoseFinding [8] written by the same authors. This latter package expands upon the MCP-Mod
framework by including routines for optimal design, the theory of which was developed by Dette
et al. (2008) [5]. In the cited article they show (via simulation) that locally optimal designs
developed for common dose–response models — the exponential, linear-in-log, and Emax models
— are moderately robust with respect to misspecification of the model parameters, but that
they are far more sensitive to misspecification of the regression model itself. Their attempt to
circumvent this problem is reminiscent ofMCP-Mod, but rather than focusing on model selection,
their analysis is geared toward optimal design of experiments. More concretely, their strategy is
based on considering a collection of relevant candidate models, and choosing the design which
maximises the minimum efficiency of the designs tailored to the members of that family. Thus,
rather than designing for a single model (which may have been misspecified) they search for a
design which is adequate for all candidate models. This makes the design more robust against
model misspecifications.

The methodologies discussed thus far allow for the inclusion of a vehicle treatment, but Dette
et al. (2014) [14] describe a method which in addition incorporates an active control. This may
be a reference treatment — for instance a compound by a competitor — against which the
compound under investigation is to be compared. It may also be a medical condition which
the drug is meant to alleviate. Time has not permitted us to investigate this scenario, but it
nevertheless provides a compelling avenue for further research.
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4. Theory

4.1. Optimal design of experiments. In this section we shall briefly outline the theory of
optimal experimental design needed for the purposes of this thesis. We will follow Fedorov and
Leonov (2013) [12] in the formulation of the theory, but much inspiration has also been drawn
from Atkinson et al. (2007) [15]. The following will necessarily be technically involved, but loosely
speaking, optimal design theory is concerned with determining where to make measurements —
and how many to make at each point — in order to gain as much information as possible from
the experiment. This latter condition will depend on the criterion of optimality, but one common
choice is the D-criterion, in which points of measurement are selected in such a way that, given
some postulated model, the variance of its estimated parameters is minimised. For our purposes,
when fitting for instance an Emax model, a D-optimal design ensures that the estimates of E0,
Emax and ED50 will be as precise as possible — provided that the underlying dose–response
relationship can be accurately represented by an Emax model.

Consider an experiment whose response function η(x, θ) depends on the parameter vector
θ ∈ Rm containing m parameters. The predictor x belongs to the design region X ⊆ Rk. (For
the purposes of this thesis, k = 1 since x is a univariate measure of dose.) For i = 1, . . . , n
let there be ri replications made at design point (dose-level) xi ∈ X and thus N =

∑n
i=1 ri

observations in total. An exact design

ξN =
{
x1 · · · xn
p1 · · · pn

}
where pi = ri/N

is a probability measure on X . Thus a design ξN = {xi, pi}ni=1 is simply a collection of support
points xi ∈ X and their corresponding weights pi (which sum to unity).

A design is referred to as exact if the weight of the ith support point is pi = ri/N . A continuous
design ξ = {xi, pi}n1 is one in which each pi can be any real number in [0, 1] under the constraint
that

∑
i pi = 1. In practice, all designs are of course exact (since the number ri of measurements

must necessarily be an integer). However, the ensuing optimisation problem in the discrete case
is much more complex than its continuous counterpart. Therefore, in order to harness the power
of convex optimisation theory, we shall focus on continuous designs. When having found the
optimal continuous design ξ for some problem, this can be trivially approximated to yield the
optimal exact design ξN .

The linear response model. The purpose of optimal design of experiments is to strategically
determine the design points xi ∈ X and their corresponding weights pi. The optimal allocation
of design points xi will of course depend on the underlying model, so we must make an assumption
about the response function η(x, θ). We shall begin by investigating the linear model η(x, θ) =
θ>f(x) where θ = (θ1, . . . , θm)> contains the m parameters and f(x) = [f1(x), . . . , fm(x)]>
contains the m base functions. (Thus the model is linear with respect to the parameters, whereas
the base functions need not be linear.) The motivation for this apparent limitation is that when
we eventually consider nonlinear models, these will be linearised using their first-order Taylor
approximations. (See Section 4.1 for an elaboration on this simplification.)

We consider the probabilistic model Yij = θ>f(xi)+εij whose errors εij are uncorrelated with
zero mean and homoscedastic variance σ2. The least-squares estimator

θ̂N := arg minθ
n∑
i=1

ri∑
j=1

[Yij − η(xi, θ)]2

can be explicitly found via the normal equations

M(ξN )θ = Y
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where M(ξN ) = σ−2∑n
i=1 rif(xi)f>(xi) and Y = σ−2∑n

i=1 riȲif(xi) with Ȳi = 1
ri

∑ri

j=1 Yij .
Provided that M(ξN ) is invertible, it follows that

θ̂N = M−1(ξN )Y.

Furthermore, it can be shown [12] that Var θ̂N = M−1(ξN ). Thus, if our goal is to reduce the
variability of the parameter estimator θ̂, it is natural to seek to minimise (in some sense) its
variance-covariance matrix M−1(ξN ).

Under normal theory, a confidence region for θ with coverage probability 1−α, where α ∈ (0, 1),
is given by

{θ ∈ Rm : (θ − θ̂N )>M(ξN )(θ − θ̂N ) 6 χ2
m,α},

where χ2
m,α is the (1−α)-quantile of the χ2-distribution with m degrees of freedom. The volume

of this ellipsoid is proportional to
√

det M−1(ξN ). This illustrates the sensibility in focusing on
minimising the determinant det M−1(ξN ) of M−1(ξN ) (since

√
· is monotonic). In fact, this is

precisely the criterion of the celebrated [16] D-optimality, upon which our analysis shall rest.

The main optimisation problem. To recapitulate, an exact design is said to be D-optimal if
it minimises det M−1(ξN ) across all exact designs ξN with N support points. For a general
optimality criterion Ψ, the optimisation problem is to find arg minξN

Ψ[M(ξN )] where Ψ is a
(scalar-valued) functional. Under the D-criterion, Ψ[M(ξN )] = det M−1(ξN ).

As previously mentioned, the discrete optimisation problem
ξ∗N = arg minξN

Ψ[M(ξN )]
is computationally expensive. However, its continuous counterpart may readily be solved using
the theory of convex optimisation [12]. We shall therefore consider as our main optimisation
problem

ξ∗ = arg minξ Ψ[M(ξ)]
where optimisation is performed over the set of all probability measures on the design region X .

The nonlinear response model. Suppose that Yij = η(xi, θ) + εij where η is nonlinear (in the
parameters) and the errors εij are uncorrelated with zero mean and homoscedastic variance σ2.
The least-squares estimator is defined by θ̂N := arg minθ∈Θ

∑n
i=1 ri[Ȳi − η(xi, θ)]2 where Θ is a

compact subset of Rm and Ȳi = 1
ri

∑ri

j=1 Yij . Generally there is no closed-form expression for
θ̂N , so a numerical approach must be employed. Furthermore, θ̂N is a biased estimator of the
true parameter value θt, but under mild assumptions [12] it is strongly consistent — that is, θ̂N
converges almost surely to θt as N →∞.

As alluded to above, we shall transfer the nonlinear problem to the linear framework by
considering its Taylor expansion about the true parameter value θt. Thus we linearise η by

η(x, θ) ≈ η(x, θt) + (θ − θt)>g(x, θt),
where

g = ∂η

∂θ
=
[
∂η

∂θ1
, . . . ,

∂η

∂θm

]>
is the gradient of η with respect to θ (and the arguments (x, θ) have been omitted for brevity).

It could well be argued that linearisation is too crude an approximation, and that higher order
terms ought to be included in the analysis. However, Fedorov and Leonov question whether it is
worthwhile to use significantly more complicated methods, considering that the postulated model
is merely a simplification of the real phenomena [12]. They point out that there are more pressing
concerns afoot, such as the assumption of homoscedastic noise, or indeed the assumption of the
underlying model itself, which, if inappropriate, can have dire consequences [5]. Thus, whereas
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it is admittedly convenient to settle for a linear approximation, we believe that it is a matter of
subordinate concern.

The linear approximation leads to normal equations containing the information matrix

M(ξN , θt) = σ−2
n∑
i=1

rig(xi, θt)g>(xi, θt),

which now (unlike in the purely linear case) depends on the true parameter value θt. Hence,
the corresponding (continuous) optimal design ξ∗(θt) := arg minξ Ψ[M(ξ, θt)] also depends on
the unknown parameter value θt. This important contrast between optimal designs in the linear
case (in which they do not depend on the parameter) and the nonlinear case (in which they do
depend on the parameter) led Chernoff (1953) [17] to term the latter locally optimal designs.
In other words, an optimal design for a nonlinear response model will be optimal for a specific
parameter value, but not necessarily for others. In this sense it is local with the respect to the
parameter.

Now, provided that the above linearisation is valid, we find that Var θ̂N ≈ M−1(ξ, θt). This
depends on the true parameter value θt, but since θ̂N is strongly consistent (under mild assump-
tions), we feel justified in making the final approximation Var θ̂N ≈ M−1(ξ, θ̂N ). Recall that
under the D-criterion, the goal is to minimise the determinant of this variance-covariance matrix.

Ill-conditioned problems. It is quite possible for the information matrix of a given model to be
singular (or nearly so) at some point in the design space. Consider for instance the sigmoid Emax
model

η(x,E0, Emax,ED50, h) = E0 + Emax

1 + (ED50/x)h .

It is straightforward to analytically calculate that
∂η

∂h
= Emax(ED50/x)h(

1 + (ED50/x)h
)2 (ln x− ln ED50).

The factor (ln x− ln ED50) ensures that the partial derivative ∂η
∂h approaches and attains zero as

the dose x tends to ED50. Consequently, the information matrix will be singular at this point
(and near-singular in its neighbourhood). Pázman [18] and Silvey [19] have developed remedies
for singular information matrices, though we shall not expound upon their detail. Instead we shall
make use of the expertly written software in the R package DoseFinding [8] which circumvents
this issue by utilising generalised inverses and singular value decomposition.

D- and EDp-optimal designs for select models. In the above we have mentioned D-optimal de-
signs, which minimise the variance of the parameter estimator θ̂. In some cases, however, only
a subset of the parameter vector is of primary interest. For instance, if designing for a model in
the Emax family, we may be chiefly concerned with getting a precise estimate of ED50, whereas
the variability of the estimates of E0 and Emax is of subordinate concern. In such a case we may
employ an ED50-optimal design, which minimises the variance of the estimator of the dose which
attains half the maximal effect. To make this notion slightly more general, for each p ∈ (0, 1) let
EDp be the dose which attains 100p% of the maximal effect Emax. A design which minimises the
variance of the estimator of EDp is said to be EDp-optimal. This is a special case of a c-optimal
design, which minimises the variance of the best (uniform minimum variance) linear unbiased
estimator of a given linear combination of the model parameters in θ.

Dette et al. (2010) [20] showed that both D- and EDp optimal designs for the Emax, exponential
and linear-in-log models (see Section 2.2) are supported by precisely three design points — two
of which lie at the boundary of the design space. The weights assigned to the points will vary
depending on the optimality criterion (D or EDp) but the locations of the points are the same.
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It may be surprising that optimal designs for these models include so few dose-levels. Intuitively,
we would probably prefer to have more dose-levels, spread out across the design space. This
would likely aid assessment of the dose–response profile. However, when designing for a specific
model, the only consideration is to find the allocation of measurements which is optimal for that
particular model. Intuition is perhaps more cautious and wary about committing so fully to the
model assumption, which is the topic of the upcoming section.

Efficient designs robust against model misspecifications. As discussed above, optimal designs
depend on the assumption of the underlying model. (This is true for both linear and nonlinear
models, but in the latter case the design also depends on the model parameters.) Thus a design
which is optimal for a certain model is generally not optimal for another. As we mentioned in the
literature review (Section 3) Dette et al. (2008) [5] showed that c-optimal designs for common
dose–response models are sensitive to misspecifications of the underlying model. In the same
article, they develop a method for constructing designs which are robust against such model
misspecifications. Rather than constructing a design which is optimal for any single model, their
method yields a design which is appropriate for a collection of candidate models. This collection,
which must be specified beforehand by the experimenter, should contain all models likely to
capture the underlying phenomena, but preferably no others.

We shall describe the gist of this method, but all details can be found in the article by Dette
et al. (2008) [5]. The benchmark used for judging the aptitude of a given design is its efficiency.
Under a general Ψ-criterion of optimality, the Ψ-efficiency of a design ξ is defined by

effΨ(ξ, θ) = Ψ(ξ∗(θ), θ)
Ψ(ξ, θ)

where ξ∗(θ) is a locally optimal design (which, being local, depends on the parameter θ). Recall
that the optimal design minimises the functional Ψ, meaning that the efficiency of a given design
ξ lies between 0 and 1. Say that we under the D-criterion have a design ξ whose efficiency
effΨ(ξ, θ) = 50%. Then the optimal design ξ∗(θ) would estimate the parameters with the same
precision as ξ using only half the number of measurements [5]. Alternatively, ξ∗(θ) would yield
a more precise confidence region for the parameter estimator θ̂.

Now, since a locally optimal design depends on the underlying model assumption, so does its
efficiency. Thus, for a given design we must consider its efficiency with respect to each candidate
model. Dette et al. define a local maximin optimal design to be a design which maximises
the minimum efficiency across all candidate models. In practice, this design must be found
numerically, and they have incorporated software for this in the package DoseFinding [8] via
the function optDesign. This software also includes a Bayesian counterpart for constructing
adaptive designs under multistage trials. We shall, however, focus on the minimax procedure.
Incidentally, the minimax procedure also provides the opportunity to include prior information,
namely by weighting the candidate models according to their postulated relevance.

4.2. Nonlinear regression. The function fitMod in the R package DoseFinding [8] is very con-
venient for performing nonlinear least-squares regression for common dose–response models. For
instance, if we have empirical dose–response data stored in the vectors x and Y, respectively, we
can fit an Emax model to the data by calling fitMod(dose = x, resp = Y, model = "emax").
This command will return an object whose information can be retrieved using generic R func-
tions such as coef (for extracting the estimated model parameters) or vcov (for computing the
variance-covariance matrix of the estimated parameters).

Analogously, we can fit a sigmoid Emax model to the data by calling fitMod(dose = x, resp
= Y, model = "sigEmax"). As discussed in Section 2.2 the sigmoid Emax model augments the
ordinary Emax model by the inclusion of a slope parameter h, which gives the sigmoid model more
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flexibility. However, this additional parameter (which enters the model in a nonlinear fashion)
also makes it more difficult to estimate the parameters of the sigmoid model. An attempt to
address this issue is to simply fix some of the model parameters; most commonly E0 and Emax.
The parameter E0 can be gauged from the vehicle response, since this is indeed a realisation of
the baseline response. The parameter Emax is not quite as straightforward to estimate, but if we
interpret Emax as the maximum effect seen within the dose-range — as opposed to the maximum
effect as the dose tends to infinity — then this parameter may be sensibly estimated from the
range of the observed responses.

The function fitMod does not support fixation of parameters in the regression model. It would
be natural to instead use the R function nls to perform nonlinear least squares, but its built-in
algorithms (e.g. Gauss–Newton) often encounter issues of convergence with the sigmoid Emax
model. To remedy this, we wish to utilise the Levenberg–Marquardt algorithm, which is more
robust since it mixes the Gauss–Newton algorithm with the method of steepest descent. The R
package minpack.lm (where “lm” stands for “Levenberg–Marquardt”) provides this functionality.
It is most conveniently utilised via the wrapper function nlsLM whose syntax is very similar to
that of the ordinary nls function, and which supports generic R functions such as coef and
vcov. Since nlsLM requires the user to specify the regression model, we are free to fix any of its
parameters. For instance, when fitting a sigmoid Emax model, we may fix E0 and Emax based on
prior knowledge (such as a pilot study). This lets the nonlinear regression focus on estimating
ED50 and the slope parameter h, which in turn yields more precise parameter estimates — of
course at the cost of having fixed some of them.

4.3. Construction of confidence bands. When fitting a regression curve to data, it is im-
portant to assess the level of confidence in the fit. The role played by a confidence interval for
a single quantity can be extended to a confidence band serving the same purpose for a curve.
This concept can most clearly be illustrated in the case of simple linear regression. Suppose that
we make N observations {(xi, Yi)}Ni=1 under the probabilistic model Yi = β0 + β1xi + εi whose
errors εi ∼ N (0, σ2) independently. Notice that each xi is considered fixed and that each Yi is
random by virtue of the random error εi. The parameter estimators β̂0 and β̂1 of β0 and β1,
respectively, are based on ordinary least squares. In Figure 8 we have fitted a regression line to
perturbed data generated from the true model y = 2 + 3x. The curved dashed lines constitute
a pointwise 95% confidence band around the regression line. It is constructed by computing at
each xi a 95% confidence interval for the fitted value Ŷi = β̂0 + β̂1xi. Then the upper confidence
limits for each fitted value are joined by straight lines in order to outline the upper curve of the
confidence band — and analogously for the lower confidence limits. The curvature is caused by
the fact that an observation Yi at a predictor value xi far from the mean x̄ = 1

N

∑N
i=1 xi will

exert greater leverage on the fitted value Ŷi, and therefore increase its variance, which in turn
will widen the confidence interval around Ŷi. More concretely [21] the variance of the ith fitted
value is

Var Ŷi =
[

1
N

+ (xi − x̄)2∑N
k=1(xk − x̄)2

]
σ2,

where N is the total number of observations. Thus the variance of the ith fitted value Ŷi increases
with the distance of xi from the mean x̄.

It is important to note that confidence bands are intended to capture the fitted values Ŷi, i.e.
the mean profile of the regression curve. It does not give information about the region in which
new observations are likely to appear. This task is instead fulfilled by prediction bands which are
wider than the corresponding confidence bands, due to the increased uncertainty introduced by
the variance of the new observation. For instance, suppose that we wish to predict the response
Y ? at some point x?. Since the errors are centred around zero, our best estimate of Y ? is its
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Figure 8. Simple linear regression with 95% pointwise confidence and predic-
tion bands. The confidence band is designed to capture the true model, which
in this case has been accomplished. In contrast, the prediction band is designed
to capture the variability of individual observations.

mean Ŷ ? = β̂0 + β̂1x
?. It can be shown [21] that

Var Ŷ ? =
[
1 + 1

N
+ (x? − x̄)2∑N

i=1(xi − x̄)2

]
σ2.

In Figure 8 we have constructed a 95% prediction band alongside the 95% confidence band to
illustrate this difference. On average, 95% of new observations ought to fall within the wider
region delimited by the prediction band. The confidence band, however, is designed to capture,
with some level of confidence, the true model. We say “some level of confidence” because point-
wise confidence bands do not in general attain the nominal confidence level of the individual
confidence intervals from which they are constructed, due to the problem of multiple testing [22].

The problem of multiple comparisons. Suppose that we generate a pointwise confidence band by
joining the upper and lower limits of all 100(1 − α)% confidence intervals constructed around
the fitted values of N points. Then at each given point, the probability that the corresponding
confidence interval fails to cover the true response is α. However — presuming that the confidence
intervals are independent of each other — the probability that a confidence interval at some point
will fail to cover the true response (called the family-wise error rate) is FWER = 1− (1− α)N .
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Writing α = 1 − (1 − α) and noting that (1 − α) < 1 tells us that FWER > α for N > 1. For
typical values of α and N , the family-wise error rate is dramatically larger than α. For instance,
if α = 0.05 and N = 10, then FWER ≈ 40% which is eight times as large as the nominal type I
error rate of 5%. Admittedly, these computations rely on the assumption of independence,
which is violated when fitting a smooth curve since its continuity introduces a dependency
structure between the confidence intervals surrounding the fitted values of neighbouring points.
Nevertheless, the coverage level of the pointwise confidence band will generally be lower than
the nominal confidence level 1 − α of the constituent confidence intervals [22]. To remedy this
problem, we can attempt to construct simultaneous confidence bands, which are adjusted for
multiplicity in order to attain the nominal confidence level. In the upcoming sections we shall
investigate both approaches.

According to Hall and Horowitz (2013) [23] pointwise confidence bands are, despite their
undercoverage, ubiquitous amongst practitioners and in the literature. In the cited article they
present a bootstrap method for controlling the asymptotic coverage level of a pointwise confidence
band for a specified proportion of the predictor values. A pointwise confidence band constructed
using their methodology will, in other words, have a 1−α coverage level for a 1−ζ proportion of
the predictor values, where α and ζ are specified in advance. Their method is a highly compelling
alternative to pointwise and simultaneous bands, and it works very well for data whose predictor
space is densely populated. However, since it is based on nonparametric regression via a local
linear estimator, it appears to have difficulties with discrete dose-levels which are separated
by more than the estimated bandwidth. We have tried using both an Epanechnikov kernel
and a Gaussian kernel, but to no avail. We also tried appropriating the method for parametric
regression (at the risk of violating the assumptions upon which its theoretical foundation depends)
but without success. Hence we shall not pursue this method further. Instead, we will focus on
constructing both pointwise and simultaneous confidence bands under normal theory, and also,
in the former case, using a bootstrap approach.

First-order Taylor approximation for estimation of variance. In order to construct a confidence
band for a nonlinear function η(x, θ) we must at each point x gauge the variance of η(x, θ). Thus
we consider the predictor point x to be fixed, with all uncertainty about η coming from the
parameter estimator. In the present section it is important to distinguish between the parameter
θ and its true unknown value, which, as before, is denoted θt.

Following Casella and Berger [24] we let θ = (θ1, . . . , θm)> be a random vector with mean
Eθ = θt = (θt,1, . . . , θt,m)>. Suppose that η(x, θ) is a real-valued differentiable function. Treating
x as fixed, the first-order Taylor approximation of η about θt is

η(x, θ) ≈ η(x, θt) +
m∑
i=1

∂η

∂θi
(x, θt)(θi − θt,i).

Using vector notation, this can be written as

η(x, θ) ≈ η(x, θt) + (θ − θt)>
∂η

∂θ
(x, θt), (1)

where ∂η
∂θ = ( ∂η∂θ1

, . . . , ∂η
∂θm

)> is the gradient of η with respect to θ. Moreover, since E[θi−θt,i] = 0
it follows that Eη(x, θ) ≈ η(x, θt). Both of these approximations will be used in the first two
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steps of the following derivation of the variance of η at x with respect to θ.

Var η(x, θ) ≈ E[η(x, θ)− η(x, θt)]2 ≈ E
[ m∑
i=1

∂η

∂θi
(x, θt)(θi − θt,i)

]2
=

m∑
i=1

m∑
j=1

∂η

∂θi
(x, θt)

∂η

∂θj
(x, θt) Cov(θi, θj)

Using matrix notation — and denoting by V the variance-covariance matrix of the random vector
θ — this can be written

Var η(x, θ) ≈ ∂η

∂θ
(x, θt)>V∂η

∂θ
(x, θt).

This approximation will be utilised in the upcoming section.

Simultaneous confidence bands under normal theory. Gsteiger et al. (2011) [22] describe a method
for constructing simultaneous confidence bands for nonlinear mixed-effects models under normal
theory. This can easily be applied to our nonlinear fixed-effects model Yij = η(xij , θ) + εij where
we now add an assumption of normality by supposing that εij ∼ N (0, σ2) independently.

Provided that the maximum likelihood estimate θ̂ is close to the true parameter value θt, the
Taylor linearisation in Equation (1) above can be used to yield that

η(x, θ̂)− η(x, θt) ≈ (θ̂ − θt)>
∂η

∂θ
(x, θ̂),

where we have substituted θ̂ for θt in the argument of the gradient ∂η
∂θ based on the assumption

of its closeness to the true value θt. The assumption of normality implies that η(x, θ̂)−η(x, θt) is
approximately N

(
0, ∂η∂θ (x, θ̂)>V∂η

∂θ (x, θ̂)
)
, where V is the variance-covariance matrix of θ̂. Thus,

in order to construct a simultaneous confidence band for the curve over the predictor (covariate)
region X := [xmin, xmax] we need only calibrate the critical value d so that

P
(
η(x, θt) ∈ η(x, θ̂)± d

√
∂η

∂θ
(x, θ̂)>V∂η

∂θ
(x, θ̂) : x ∈ X

)
= 1− α,

where 1−α is the nominal confidence level and α ∈ (0, 1). Note that setting d to be the (1−α)-
quantile of the standard normal distribution yields a pointwise confidence band with confidence
level (1−α). At first glance it may not be obvious that the variability of the data influences the
width of the confidence band, but it does so implicitly through the parameter estimate θ̂ and its
variance-covariance matrix V.

In their paper, Gsteiger et al. describe two methods for determining the critical value d. The
first method is based on an asymptotic χ2 distribution, and leads to setting d to the square root
of the (1−α)-quantile of the χ2

m distribution with m degrees of freedom, where m is the number
of parameters in θ. The second method relies on iterated simulation from a multivariate normal
distribution, and it generally yields smaller critical values d than does its approximation-based
counterpart.

In the same paper, Gsteiger et al. carried out an extensive simulation study in order to assess
the empirical coverage of the confidence bands constructed using critical values determined by
either of the two methods. With α = 0.05 and five distinct dose-levels, they found that the
approximation-based method tends to be conservative for sample sizes larger than 25. In other
words, the approximation-based confidence bands tend to have an empirical coverage greater
than the nominal 95% confidence level (of course at the cost of increased width and thereby less
precision). In contrast, the simulation-based confidence bands generally undercover with respect
to the nominal level. Specifically, their empirical coverage ranges (in this study) from 89% to
93% for sample sizes between 10 and 50. In summary, the simulation-based method will tend to
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yield narrower bands which are likely to undercover, whereas the approximation-based method
will generally yield excessively wide and conservative bands.

Since we will run extensive simulations of dose–response trials, it would be too computationally
demanding to use the simulation-based method for calibrating the critical value d. We have
therefore chosen to use the approximation-based method, which tends to be conservative for
large sample sizes.

A simple bootstrap method for pointwise confidence bands. The following method is suggested by
Hastie et al. (2009) [25]. Suppose that we make N observations {(xi, Yi)}Ni=1 and that a model
η(x, θ) is fitted to the data, yielding the parameter estimate θ̂. Next we compute the residuals
ε̃i = Yi − η(xi, θ̂) and the centred residuals ε̂i = ε̃i − 1

N

∑N
i=1 ε̃i. The latter will be used during

the following bootstrap procedure, which will be iterated for each j ∈ [1, B]∩Z where B > 1000.
(1) For i = 1, . . . , N resample Y ∗i = η(xi, θ̂) + ε∗i where ε∗i is sampled with replacement from

the centred residuals {ε̂1, . . . , ε̂N}.
(2) Fit η(x, θ) to the resampled data, yielding the parameter estimate θ̂∗j .
(3) Save θ̂∗j .
This procedure will yield B curves, each of which has been fitted to some resampling of the

original data. Next we construct a pointwise confidence band by determining empirical (1− α)
coverage intervals for each predictor point. In other words, for each x in the predictor region
X := [xmin, xmax] we consider the set {η(x, θ̂∗j ) : 1 6 j 6 B} of the B fitted values at that
particular point. The empirical (α/2)- and (1 − α/2)-quantiles of this set are chosen as the
lower and upper limits of the confidence band at this point. Notice that this procedure is a
simulation-based realisation of the definition of a pointwise confidence band.

Examples. Figure 9 displays a sigmoid Emax model (selected on the basis of Akaike’s information
criterion) which has been fitted to the dose–response data of compound A with respect to response
1. Also included are 95% confidence bands constructed using the methods described above. The
bands based on normal theory are constructed in the same manner, only using different critical
values to determine the width of the band. As expected, the simultaneous confidence band is
wider than its pointwise counterpart, in order to adjust for multiplicity. It is however encouraging
to see that the pointwise confidence band generated using bootstrap agrees rather well with the
pointwise confidence band based on normal theory. They deviate most in the regions where the
regression curve changes most rapidly, which is where curve fitting is most challenging.

In this case we had no difficulty fitting the regression curve and its confidence band to the
data. However, the sigmoid Emax model can sometimes be difficult to fit for numerical reasons,
yielding unwieldy confidence bands which are much too wide to be useful. In such a situation
we can fix some of the model parameters (as described in Section 4.2) in order to get more
precise estimates of the remaining parameters. Alternatively, we can in such a situation rely
more heavily on the confidence bands based on bootstrap, since they suffer no such numerical
problems.
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Figure 9. Regression curve of a sigmoid Emax model fitted to the dose–response
data of compound A with respect to response 1. Three 95% confidence bands
have been constructed using the methods described above.

5. Implemented method

We are now ready to address the key question of this thesis, namely the synthesis of an efficacy
study and pharmacodynamic modelling of dose–response data. Concretely, this is attained by
using a simultaneous confidence band around a regression curve (adjusted by subtracting the
mean vehicle response) to declare whether a given dose in the administered dose-range is active.
A dose is said to be active if it shows a statistically significant effect compared to the vehicle
treatment (at the given significance level, which in this thesis is set to 5%). It is crucial that we
construct a confidence band around the difference between the regression curve and the mean
vehicle response. Doing so assures that we account for the variability in the former as well as
the latter.
Algorithm 1 (Model-based approach to assess efficacy of a given dose). This is the key
result of this thesis.

(1) Use least-squares regression to fit a model η(x, θ̂) to dose–response data.
(2) Subtract (uniformly) the mean vehicle response V̄ from this curve to yield the difference

η(x, θ̂)− V̄ .
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(3) Assuming that the fitted value η(x, θ̂) and the mean vehicle response V̄ are uncorrelated,
the variance of their difference is Var η(x, θ̂)+Var V̄ . The Taylor approximation in Section
4.3 can be used to estimate Var η(x, θ̂), and an unbiased estimate of Var V̄ is given by

1
n(n−1)

∑n
i=1(Vi − V̄ )2, where V1, . . . , Vn are the n vehicle responses [24].

(4) Specify a significance level α ∈ (0, 1) and use the method in Section 4.3 to construct a
simultaneous 100(1−α)% confidence band around the difference η(x, θ̂)− V̄ . A common
choice, used throughout this thesis, is α = 5%.

(5) Declare a given dose x0 to have a significant effect compared to vehicle (at the specified
significance level) if the confidence band around η(x0, θ̂) − V̄ at this point x0 does not
contain zero.

Figure 10 shows an illustration of the above method, using the empirical dose–response data
pertaining to response 1 of compound A. Since the confidence band is adjusted for multiplicity, it
is legitimate to use it for simultaneous inference about all doses in the administered dose-range.
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Figure 10. An illustration of the fundamental idea behind judging the activity
of doses under the modelling approach. The accuracy of the vehicle-adjusted
regression curve is assessed by the dashed confidence band. A dose is deemed
active precisely when the confidence band around its fitted value does not cover
the zero response. In the case shown in this figure, where the lower limit of the
confidence band does not return below zero after first exceeding it, any dose
higher than the estimated minimum active dose is deemed active.
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As a comparison, we perform one-way anova on the same data set, and apply Dunnett’s test
[6] in order to compare each dose-level against the vehicle treatment. According to this test, only
the two highest dose-levels, 10 and 100, are deemed active at the 5% significance level. This is
in agreement with the conclusion drawn from the modelling approach, since the minimum active
dose is estimated to lie between dose-levels 8 and 10. Hence this example is ideal in the sense that
both methods agree on which of the (discrete) administered dose-levels are active. In addition,
the modelling approach provides information about where between the highest inert dose-level
and the lowest active dose-level we begin to see a signal. The reliability of this information
of course depends on the validity of the model assumptions (as we have previously stressed).
Nevertheless, this example concretely illustrates the benefit of the quantitative model, which
allows inference to be extended from the administered dose-levels to the entire dose-range. It
is however highly relevant to ask whether the above example is representative of the typical
situation, and we will address this question via simulations presented in Section 6.1.
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6. Results and discussion

For each of the empirical data sets described in Section 2, our implemented method from
Section 5 agrees perfectly with Dunnett’s test regarding which dose-levels are active at the 5%
significance level. This is encouraging, since we want our method to concur with the authoritative
Dunnett’s test on (discrete) administered dose-levels. We will use simulation to investigate
whether this amount of agreement between the two methods is representative.

6.1. Simulations. We shall assess the typical behaviour of the model-based approach (mod)
described in Section 5 by simulating dose–response studies. As a frame of reference, we will com-
pare the inferences drawn from mod to those made by the multiple comparison procedure (mcp)
Dunnett’s test [6]. In order to avoid tailoring the results to a specific scenario, all parameters
will be drawn from probability distributions. We make extensive use of the (scale-parametrised)
gamma distribution Γ(k, θ) whose mean is kθ (see e.g. Casella and Berger [24]). In each simulated
trial, the minimum dose is drawn from Γ(1, 1) with mean 1, and the maximum dose is drawn
from Γ(11, 13) with mean 143. The desired number of dose-levels are then spaced evenly on a
logarithmic scale in this dose-range, and a zero-dose vehicle treatment is included. A total of 40
subjects are allotted evenly amongst the groups, and in the case of a remainder, we randomly
select the dose-levels which receive an additional subject. Recall that the main goal of this thesis
is to investigate how the experimental design affects the inferences drawn from mod compared
to those of mcp. Therefore we are interested in the consequences of varying the number of
dose-levels in the simulated trials. However, the total number of subjects is always fixed at 40,
in order to prevent this quantity from influencing the results. Consequently, as the number of
dose-levels increases, the number of individuals at each level must decrease.

In the following we will investigate the inferences drawn from the two methods mod and
mcp. Concretely, this means that we consider their respective judgements of whether a certain
dose-level in a given trial is active (i.e. that it shows a significant effect compared to the vehicle
treatment). Since the methods are different in nature, we expect them to disagree some of the
time. For instance, the dose-level under consideration may be declared active by mod but inert
(not active) by mcp. A natural way of comparing the methods against each other is to investigate
which method is more liberal or conservative than the other. By saying, for a certain dose-level
in a given trial, that one method is more liberal than the other, we simply mean that the former
declares the given dose-level to be active whereas the latter does not. By conservative we mean
the opposite. It is important to note that this does not mean that the former method is making
an error. Rather, it is merely a way to describe more clearly the disagreement between the two
methods.

Simulations based on the Emax model. In this section we will use the Emax model both to generate
dose–response data and to fit a regression curve to the simulated data. The model parameters
used for simulation are E0 ∼ Γ(3, 5) and Emax ∼ Γ(5, 7), whilst ED50 is drawn uniformly
between the minimum and maximum dose. An Emax model with these parameters is employed
to generate data, with noise added according to N (0, σ2) where σ = 1

4Emax. (This choice of
standard deviation is based upon the article by Dette et al. (2008) [5].) A typical simulated trial
will have a minimum dose of 1, a maximum dose of 143, an E0 of 15, an Emax of 35, and an ED50
of 72. To each simulated trial, an Emax model is fitted to the perturbed dose–response data, and
the procedure described in Section 5 is performed. In other words, a 95% simultaneous confidence
band is used to determine active doses according to the modelling approach. This judgement is
compared against that made by Dunnett’s test regarding the discrete “administered” dose-levels.

The above procedure is iterated 1000 times, which has been shown to yield high precision in
the results at a reasonable computational expense. In each trial we record which dose-levels are
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declared active by mod and mcp, respectively, and average over the 1000 trials to get an estimate
of the proportion of dose-levels deemed active by either method. Since we are interested in how
the design affects the results, we run simulations with the total number of dose-levels (including
the vehicle group) ranging from 3 through 10. The results are displayed in Figure 11.
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Figure 11. Proportion of dose-levels declared active at the 95% significance
level by the modelling approach (mod) and the multiple comparison procedure
(mcp). Each estimate is based on 1000 simulated dose–response trials with the
indicated number of dose-levels. Since the total number of subjects is fixed (at
40), the number of individuals per dose-level must decrease as the number of
dose-levels increases.

We find that mod tends to be more conservative than mcp in designs with fewer than six
dose-levels, but that this relationship is reversed in designs with more than six dose-levels.

Simulations with model misspecification. In order to assess the consequences of misspecifying
the underlying model we now simulate trials from a sigmoid Emax model, but fit an ordinary
(hyperbolic) Emax model to the data. The parameters for data generation follow the same
distributions as before, with the addition of the slope parameter h ∼ N (0, 32). This distribution
of h has been chosen in order to yield slope parameters which are spread quite far from ±1,
since the models coincide in those cases. Figure 12 shows the results of 1000 such simulated
trials. Note that mcp does not include any assumption of the underlying dose–response model,
wherefore it is unaffected by its misspecification. Thus the dashed line pertaining to mcp can
be used as a reference for comparison with simulations under a valid model assumption, shown
in Figure 11 above.
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Figure 12. Proportion of dose-levels declared active at the 95% significance
level by mcp and mod under model misspecification. Each estimate is based on
1000 simulated dose–response trials with the indicated number of dose-levels.
Since the total number of subjects is fixed (at 40), the number of individuals
per dose-level must decrease as the number of dose-levels increases.

Simulating optimal designs. Consider that mod is most liberal when its confidence band is as
narrow as possible (since such a band is most prone not to cover the zero response). This occurs
when the parameter estimates are as precise as possible, which they are in a D-optimal design. In
order to connect optimal design to comparisons between mod and mcp, we will now investigate
the consequences of optimally designing the simulated trials. Thus we modify the procedure
above by allocating dose-levels and their sample sizes in a D-optimal fashion. We shall let our
model assumption be valid in these simulations, and use an Emax model both for data generation
and regression. More concretely, we use the function optDesign of the R package DoseFinding
[8] to choose a D-optimal design for the Emax model. However, this function requires that we
supply a collection of candidate dose-levels, amongst which optDesign determines the most
efficient allocation. Hence optDesign will never suggest a dose-level not included amongst the
candidates. Rather, it will return the optimal allocation of observations across the candidate
dose-levels, some of which may well be assigned a zero weight, thereby excluding them from the
design. As we shall see momentarily, this will generally lead to a discrepancy between the nominal
and the actual number of dose-levels of an optimal design. The nominal number is simply the
number of candidate dose-levels, whereas the actual number is the number of dose-levels selected
by optDesign.

For each (nominal) number of dose-levels (3, 4, . . . , 10) we simulate 1000 dose–response data
sets from an Emax model as in the previous section. In each such trial, we let the candidate
dose-levels be spread out evenly on a logarithmic scale. The actual dose-levels, chosen amongst
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these candidates, are then used when simulating a dose–response trial. The verdicts of mod and
mcp, respectively, are displayed in Figure 13.

●

● ●

●
●

●
●

●

3 4 5 6 7 8 9 10

0
20

40
60

80
10

0

Proportion of dose−levels deemed active

NOMINAL number of dose−levels

P
ro

po
rt

io
n 

of
 d

os
e−

le
ve

ls
 d

ee
m

ed
 a

ct
iv

e 
(%

)

●

●
●

●

●

●
●

●

Active dose−levels according to MOD
Active dose−levels according to MCP

Figure 13. Proportion of dose-levels declared active at the 95% significance
level by mod and mcp. Each estimate is based on 1000 simulated dose–response
trials which have been D-optimally designed with a valid Emax model assump-
tion. It is important to note that the number of dose-levels are nominal — not
actual. In fact, the true number of dose-levels is almost always 3.

See Section 7 for our conclusions about all the above results.
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6.2. White book. In this section we shall describe how to use the methods in the R [7] package
DoseFinding [8] for design and analysis of dose–response experiments. This software supports the
D-criterion of optimality, which maximises the precision of the estimated model parameters. It
also offers support to make the design optimal for estimating the minimum effective dose (MED)
defined as the smallest dose which yields a clinically relevant and statistically significant effect [4].
A design which is optimal in the latter sense is said to be MED-optimal. It is important to note
that the clinically relevant effect ∆ must be specified by an expert before the statistical analysis
is performed. For instance, an experimenter might only be interested in whether a compound can
increase the response by at least ∆ = 0.4 units over the vehicle response — regardless of whether
a smaller effect is found to be statistically significant. It is of course possible that no clinically
relevant effect exists — and also that it does but without being detectable due to high variability
in the measurements or insufficient sample size [1]. However, it is only the MED-optimal design
which actually requires ∆ to be specified. The D-optimal design operates without it, since its
only objective is to minimise the variance of the estimator of the model parameters.
Algorithm 2 (Robust optimal design of a dose–response experiment). The following functions
are contained in the R package DoseFinding [8] whose help pages offer more detailed information.

(1) Nominate the candidate models which are conjectured to capture the true dose–response
relationship. Only include models which are likely to be relevant, and rank each model
with a probability corresponding to your belief that it most aptly describes the underlying
relationship. These probabilities must sum to unity, and in the absence of prior knowledge
they may be set to 1/m, where m is the number of candidate models. Notice that the
parameters of the nonlinear part of each model must be (numerically) specified.

(2) Suggest a collection of feasible dose-levels. The recommended dose-levels will be chosen
amongst this set, though allocated in an optimal way.

(3) Use optDesign to compute the optimal dose-levels and their corresponding weights.
Use rndDesign to efficiently round the optimal design to attain an integer number of
measurements (possibly zero) to be made at each dose-level.

Algorithm 3 (Analysis of a dose–response experiment). The following functions are contained
in the R package DoseFinding [8] whose help pages offer more detailed information.

(1) Fit each candidate model (from Algorithm 2) to the empirical data using fitMod.
(2) Use MCPMod to determine which model (fitted in the previous step) most aptly describes

the empirical data. If there are few active dose-levels, or if the models are highly corre-
lated (and thus difficult to distinguish), MCPMod may fail to identify the most appropriate
model. If so, model selection can for instance be based on Akaike’s information criterion.
Use the winning model for all further analysis and inference.

(3) Use the method in Section 5 to construct a simultaneous confidence band around the
vehicle-adjusted regression curve of the winning model. A dose is declared to yield a
significant effect compared to vehicle if and only if the confidence band around its fitted
response does not cover zero.
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7. Conclusions

In this thesis we implement a method for assessing efficacy in a model-based setting (see
Section 5). This method is based on constructing a confidence band around a vehicle-adjusted
regression curve fitted to dose–response data. We declare a dose to be active if and only if
the confidence band at its fitted value does not cover zero. A dose-level is said to be active if it
shows a statistically significant effect compared to the vehicle treatment (at the given significance
level, which in this thesis is set to 5%). In order to evaluate the inferential properties of this
method, we simulate dose–response trials in which its conclusions are compared to those of
anova coupled with Dunnett’s multiple comparison procedure. We consider the latter to be an
authoritative benchmark regarding which of the (discrete) administered dose-levels are active in
a given trial. The main advantage of the model-based procedure is its capacity to declare activity
(on a continuous scale) in between administered dose-levels. We find that to a large extent, the
two methods draw similar inferences concerning administered dose-levels. There are however
systematic discrepancies, which may be elucidated by considering the nature of either method.

When comparing our model-based implementation (mod) to anova coupled with Dunnett’s
multiple comparison procedure, we find that the former tends to be more conservative relative
to the latter in designs with fewer than six logarithmically spaced dose-levels, but that the
converse is true in designs with more than six logarithmically spaced dose-levels. These results
are displayed in Figure 11. This makes sense intuitively, because a design with few dose-levels
and many individuals per level benefits Dunnett’s test, since there are few comparisons for which
to adjust and many subjects per group to gain high precision. However, it is not ideal for the
regression and confidence band in mod, which rather benefit from a larger number of dose-
levels spread out across the dose-range. This is more advantageous for curve fitting, giving more
precision in the estimated parameters. In turn, this yields narrower confidence bands, which
are more likely not to contain zero. It should be noted that both methods are punished as the
number of dose-levels increases. In the case of Dunnett’s test, this is because the procedure has
to adjust for more comparisons with fewer individuals per dose-level, which yields less statistical
confidence at each level, thereby raising the bar for detecting a signal. In the case of mod it is
because the estimate of the mean vehicle response becomes more variable as the vehicle group is
reduced, which yields wider, more conservative, confidence bands.

In order to investigate the effect of misspecifying the underlying dose–response model, we
simulate trials in which we fit an ordinary Emax model to data generated by a sigmoid Emax
model. The results are displayed in Figure 12. We see no systematic effect of this model
misspecification on the proportion of dose-levels deemed active by the model-based procedure.

Now consider that mod is most liberal when its confidence band is as narrow as possible
(since such a band is most prone not to cover the zero response). This occurs when the parameter
estimates are as precise as possible, which they are in a D-optimal design. Increasing the number
of dose-levels cannot yield narrower confidence bands than those of a D-optimal design. When
optimally designing the simulated trials with a valid Emax model assumption, both methods are
dramatically more prone to declare dose-levels active. These results are displayed in Figure 13.
In the case of mod, the leap in declarations of activity between three and four nominal dose-levels
may at its root be caused by the fact that a larger nominal number of dose-levels will yield a
finer, more densely spaced set of candidate dose-levels. As a result, the design algorithm will be
able to choose dose-levels closer to those of the true D-optimal design, which will yield higher
precision in the parameter estimates. This in turn will lead to narrower confidence bands, which,
finally, yield more liberal judgements of activity. However, we witness a virtually identical leap
in declarations of activity by Dunnett’s test, which may well benefit from a more carefully chosen
design, but on which the remaining chain of events has no bearing.
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At first glance, it may also appear that optimally designing the simulated trials eliminates
the previously observed trend that declarations of activity decrease as the nominal number of
dose-levels increases. This is however an illusion, caused by the fact that the design algorithm
generally selects only three dose-levels, irrespective of the nominal number of candidate dose-
levels with which it is provided. As mentioned in Section 4.1, this can be shown [20] to be
the correct number of dose-levels for any D-optimal design under the Emax model. A natural
continuation of these investigations would be to combine model misspecification with optimal
design. Moreover, this offers an opportunity to assess model-robustness, namely by including
several candidate models and utilising the model-robust optimal designs described in Section 6.2
of this thesis.

Future work. Our model-based method (Section 5) is designed to detect doses which show a
significant effect compared to the vehicle treatment. However, as mentioned in Section 3, it may
also be of interest to compare the compound under investigation against a reference treatment
(e.g. a competing compound). Dette et al. (2014) [14] have developed optimal designs for such
studies, and their work may serve as a source of inspiration for ideas of how to appropriate our
method to accommodate this scenario.

When implementing our method in Section 5 we made the assumption that the fitted values of
the regression curve and the mean vehicle response are uncorrelated. This may not be valid, since
the vehicle responses are used during regression. Investigating this correlation would perhaps
yield more faithful results. However, the pointwise confidence bands generated by the bootstrap
agree quite well with those constructed under this assumption, which indicates that it may be
of subordinate concern. On a related note, when estimating the variance of the mean vehicle
response, we do not use the pooled sample variance across all dose-levels. This may be advisable
in a heteroscedastic case, but in a homoscedastic case, doing so would likely yield a better
estimate.

In this thesis we have only mentioned Dunnett’s test as a benchmark against which to compare
our modelling approach. This is because Dunnett’s test is designed to compare the response
of each dose-level to that of the vehicle treatment, which is the qualitative analogue of what
we do when checking whether the confidence band contains the zero response. There are of
course other multiple comparison procedures which may be appropriate, and we have for instance
experimented with Williams’ trend test. This is designed to test for a monotonic dose–response
profile, and it involves borrowing strength from neighbouring dose-levels in order to do so. It
could be argued that this is a more appropriate analogue to our modelling approach, since our
candidate regression models are (all but one) monotonic. However, we do not use our modelling
procedure to test for the existence of a trend. For instance, even though the regression curve is
constricted to be monotonic, its confidence band is not. If the parameter estimates are highly
variable, a dose may be inert even though it is higher than the minimum active dose. In the
case of an increasing dose–response profile, this occurs when the lower limit of the confidence
band returns below the zero response after first having exceeded it. As mentioned above, this is
because we are investigating individual dose-levels rather than the existence of a trend, which is
the reason for our preference of Dunnett’s test. Nevertheless, it would be a natural continuation
of our work to extend the model-based procedure to test for the existence of a monotonic dose–
response trend. If for instance the confidence band around the smallest (non-vehicle) dose does
not overlap with that around the largest dose, then we would be confident that a dose–response
trend exists. However, this is almost certainly an excessively cautious criterion, but it is not
obvious how to moderate it whilst still retaining confidence in the result. Doing so may well
present a stimulating challenge.
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