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Abstract
Coherent quantumphase slip consists in the coherent transfer of vortices in superfluids.We
investigate this phenomenon in twomiscible coherently coupled components of a spinor Bose gas
confined in a toroidal trap. After imprinting different vortex states, i.e. states with quantized
circulation, on each component, we demonstrate that during thewhole dynamics the system remains
in a linear superposition of two current states in spite of the nonlinearity, and can bemapped onto a
linear Josephson problem.We propose this system as a good candidate for the realization of aMooij–
Harmans qubit and remark its feasibility for implementation in current experiments with 87Rb, since
we have used values for the physical parameters currently available in laboratories.

1. Introduction

The possibility to set up experiments devoted to the testing of quantumphenomena has been the subject of
increasing interest since the discovery of superconductivity. At an early stage, this research led to the realization
of superconducting quantum interference devices (SQUIDs) [1, 2]. Three decades later, the achievement of
ultracold degenerate quantum gases, like Bose–Einstein condensates (BECs) [3, 4], opened up new opportunities
to test quantum interference phenomena and their implementation in atomtronic quantum interference devices
(AQUIDs) [5–10], the atomic analogue of SQUIDs. This duality between superfluid atomic gases and
superconductors hasmade both systems stand out as good supports for quantum simulation.However, the
tunability of the interaction and the versatility of atoms in simulating both bosonic and fermionic systems,
provide amore promising perspective for the implementation of AQUIDs in future technological applications.

Josephson junctions play a key role in the physics of quantum interference devices. They constitute two
quantum systems connected by aweak link, and can be classified in two categories (short and long), owing to the
different nature of the coupling. In a short Josephson junction, the coherent transfer of physical quantities
occurs through a single point, the Josephson link [11, 12].When the junction is long, the coupling occurs locally
at each point of the connection. In particular, two spin components of a condensate coupled by a Raman laser
operate as a long Josephson junction, which is referred to in the literature as the internal Josephson effect [13],
and obeys the Josephson equations with a coupling proportional to the overlap between condensates [14]. These
techniques, by selecting an appropriate spatial dependence of the coupling, led to the first observation of vortices
in BECs [15, 16].

Anderson [17] discussed the role of the phase of the order parameter in superfluids, whichmotivated the
study of phase slips in superconductivity [18], liquid helium [19], and BECs [8, 10]. A phase slip event is a sudden
change of the phase in 2π due to themotion of quantized vortices through a superfluid. This phenomenon is
associated to dissipation, as pointed out by Langer andAmbegaokar [20]. Ultracold atoms, as superfluids, can
also exhibit phase slips, bywinding the phase through solitonic states [21–25], and they are able to generate
quantum superpositions ofmacroscopic flows [26]. The literature includes several proposals to engineer
superpositions of flow states in 1Dquantum gases in continuous rings [27, 28] and discrete rings [31–35]
(toroidal condensates in the presence of a lattice potential in the tight-binding regime [29, 30]).
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Coherent quantumphase slip (CQPS) is an effect recently discovered in superconducting systems
containing loops [36]. It is the dual phenomenon of the Josephson effect, which is a coherent transport of
particles between two superfluids, but, in contrast, CQPS is defined as the coherent transfer of vortices through
the Josephson link. InCQPS, the stationary states corresponding toflux quanta states become coupled, such that
one can continuously change theflux quanta of the system. TheMooij–Harmans qubit [37, 38], which consists
of a superconducting loopwith aweak nanowire, was predicted to be able tomanifest CQPS between two
current states. The proposal wasmade a reality in the experiment of [36], which led to thefirst experimental
observation of CQPS.

In this work, in order to generate CQPS, we propose the realization of an atomic analogue of theMooij–
Harmans qubit bymeans of a spinor condensate with two relevant internal degrees of freedomor spin states.
The two components are coupled by phase (spin exchange) and density (contact interaction), and both occupy
the same space region, since the interspecies density repulsion is small enough to keep the system in themiscible
phase. Therefore, this overlap allows the coupling to occur locally, point to point, in thewhole bulk of the
condensate (long Josephson junction).With the aimof engineering a qubit wewill select vortex states as the basis
of an effective two-level system that is able to performqubit operations [39]. The coherent coupling transfers
vortices between both components in the absence of population imbalance, and the nonlinear system exhibits
Rabi oscillations.We consider condensates confined in ring geometries, where persistent currents are
metastable states and phase slips provide themechanism for the system to exchangewinding numbers between
components. All these propertiesmake the system stand out as a promising tool for atomtronic circuits, and in
particular, for the simulation of CQPS.

The paper is organized as follows. In section 2, we present themean fieldmodel we have used to study the
systemof twomiscible coherently coupled condensates. Section 3 characterizes the different dynamical regimes
that the system exhibits as a function of the coherent coupling and interaction. In section 4we discuss the regime
where the system showsCQPS and propose an analyticalmodel that accurately reproduces our numerical
results. Section 5 is devoted to the other dynamical regimes of the phase diagram, and finally, section 6
summarizes our work and provides future perspectives.

2. Theoretical framework

Todescribe the systemof two coherently coupled Bose–Einstein condensates in themean field regime, wewill
use theGross–Pitaevskii equation (GPE) for thewavefunctions Y and Y:
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where all the quantities are written in terms of the harmonic oscillator units, by using  wr and  wrm as
energy and length units, respectively. In our simulationwe also consider = =  g g g g to ensure

miscibility. The total number of particlesN is fixed, in such away that *å òf f =
  ( ) ( )r r r Nd ,

i i i though
particles of both components can exchange their spin by virtue of the coherent Raman coupling.

Analytical expressions can be obtainedwithin the Thomas–Fermi approach in order to study the ground
state properties of the condensate in the regime of large interactions. In the case without Raman coupling
[40–42], the Thomas–Fermiwavefunction is the same for both components: y m= - + ( ) ( )V g g .TF

trap

Such expressionwill be also useful in the presence of Raman coupling, where the ground state satisfies
y y= -  forΩ>0 [43], since a phase difference ofπ between both componentsminimizes themeanfield
energy. Therefore, the Raman couplingΩ becomes a simple shift of the chemical potential and the Thomas–
Fermiwavefunctions can bewritten as
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whereμeff=μ+Ω/2will play the role of an effective chemical potential for the coupled system.
Wewill also explore the effect of vortices on stationary states. Their associated angularmomentumper

particle is q for each component, where q is thewinding number or charge of the vortex, when it is centered.
This is no longer true for off-centered vortices. Nevertheless, one can give an expression for the dependence of
the angularmomentum as a function of the position ri of the off-centered vortex, by following the procedure
developed in [44, 45] for the case of a condensate in a harmonic trap in the Thomas–Fermi limit, since in this
regime, the effect of the vortex on the density profile can be neglected.We have derived the expression for the
contribution on the angularmomentumper particle of a vortex in the density region of a 2D ring:
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where h d= -( )r Ri and dR are the external and internal Thomas–Fermi radius, respectively, and
d m= = + [ ( ) ]a a N R2 3 2 1 3 is the half-width of the torus in harmonic oscillator units.

3.Dynamical regimes of two coupled condensates in a ring

We investigate the transfer of vortices between two coherently coupled BECs by solving numerically the time
dependent GPE (1). To this aim,we have selected typical experimental values of the physical parameters.Wefirst
compute the ground state of a two-component 87Rb spinor condensate with intraspecies scattering length
a=101.41 aB and =a a100.94 ,B where aB is the Bohr radius, corresponding to the hyperfine states

= = ñ∣F m1, 0F and = = - ñ∣F m1, 1 .F The system is confined in a toroidal trap, with frequency
w p= ´r 2 200 Hz, aspect ratio l = 4, and radiusR=7.5 μm.Afterwards, persistent currents are induced in
each component, with different winding numbers q and q , by imprinting proper phases, i.e.

qY  Y ´ ( )qexp i ,i i i and the system,whose state will be described by the pair ∣q , ñq , is allowed to evolve.

Infigure 1we show the dynamical regimes of the system, for the initial state =∣q 1,1 = ñq 0 ,2 obtained by
numerical simulations of equation (1). Depending on the values of the effective chemical potential and the
Raman coupling, the system explores three different regimes thatwill be explained in detail in the following
sections [46]. For values of the Raman coupling smaller than a critical oneΩc (solid lines)we have found a vortex
trapping regime, wherewinding number states can not be exchanged between components.We have also
explored the influence of the ratio g g by performing 1Dnumerical calculations of the spinorGPE, which are
shownby solid lines and open symbols in the inset offigure 1.Open circles correspond to our results for

=g g 0.9954,whereas triangles correspond to =g g 0.9.

Figure 1.Phase diagram containing the different dynamical regimes as a function of the effective chemical potential
m m= + W 2eff and the Raman couplingΩ, for =g g 0.9954, radiusR=7.5μm, evolving from the initial state =∣q 1,1

= ñq 02 in 2D-GPE (1). Solid red line draws the boundaryΩc between the trapping regime and the regimeswhere phase slip exists.
AboveΩc there is a continuous transition from a non-coherent quantumphase slip regime to a coherent quantumphase slip regime.
The inset compares our numerical results forΩc in 1D systems (solid curves with open symbols)with the analytical expression
equation (5) (dotted and dashed lines) for the energy gap associated to the excitation of spinmodes at different values of g g.The
labeled points A, B correspond to particular cases addressed in later sections.
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It has been demonstrated that in order to produce spin excitations [47, 48], which are the relevant ones for
phase slips in a spinor condensate, it is necessary to overcome an energy gapΔ given by:

⎛
⎝⎜

⎞
⎠⎟D = W +

W
-  ( )ng g

g
1 1 , 5

where n is the total density. For the sake of comparison, we have complemented the inset offigure 1with the
curves given by equation (5) for the same numerical values ofΩc: dotted ( =g g 1.0), dashed ( =g g 0.9954)
and dotted–dashed ( =g g 0.9) lines. Theminimal coupling energy Wc necessary to produce phase slip is of
the order ofΔ.When =g g , phase slips can be produced for arbitrarily small values of the coherent coupling.
As the ratio g g decreases the energy cost for producing phase slips increases.

Once this gap is overcome, phase slip is possible. The system continuously transits from the non-coherent
quantumphase slip (NCQPS) regime atΩΩc, where vortex exchange between components can be observed at
rates different fromΩ, to theCQPS regime at W W .c We identify a process as coherent if phase slip events
occurwith a complete transfer of angularmomentumbetween the components andwith a frequency of
oscillation equal to theRaman coupling, together with the fact that only two vortex states are involved in the
dynamics. If phase slip events occurwithout following the previous description, we classify the regime as non-
coherent.

The dynamical phase diagram also depends on the radius of the torus. As the ring geometry constitutes a
finite system, a zero-point kinetic energy  mR2 2 is introduced. This energy quantum separates winding
number states and, as a result, the degenerate states ñ∣q q,1 2 and ñ∣q q,2 1 are separated by a gap fromother winding
number states.When the radius of the torus increases, the zero-point kinetic energy goes to zero and the energy
spectrumbecomes a continuum. The same occurs when the interaction energy is very large, because the energy
to produce a vortex is negligible in front of the chemical potential. Aswewill show later, CQPS decays or is even
absent in these cases. The dynamical phase diagram can also exhibit dramatic changes in the immiscible case,
where vortex states can split due to phase separation [49].

4. Coherent quantumphase slip

In order to have an analytical insight into the dynamics of the system, one can follow the spirit of the two-mode
approximation. In theCQPS regime, the condensate wavefunction can bewritten as [16, 50, 51]:
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j with =j 1, 2, are eigenvectors of both the angularmomentumoperator L̂ ,z

with eigenvalue q ,j and theHamiltonianwithout Raman coupling, with eigenvalueμj. This ansatz neglects any
contribution fromothermodeswith charges different from q1 and q2. Aswewill see later, our numerical results
agreewith this assumption, since the only eigenvectors that significantly contribute to the dynamics are those
associated to thewinding numbers imprinted initially onto thewavefunction.

After substituting equation (6) in theGPE (1) one gets two decoupled linear Josephson equations for each
winding number:
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The straightforward solution of these linear systems has the eigenvalues m  W 2.j The energy gap between
the two levels isΩ, which is the driving frequency, then the solution for the condensate wavefunction is:
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whereΔ q=q2−q1 is the initial winding number imbalance, m m mD = -q 2 1 is the associated chemical
potential imbalance, andj is an arbitrary phase.

From equation (9) one can get themean angularmomentum imbalance per particle
D = áY Y ñ - áY Yñ   ( ∣ ∣ ∣ ∣ )L L L N ,z z z as a function of time:
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This expression predicts that the exchange of vortices oscillates with the coherent coupling frequencyΩ. As a
consequence, aπ-pulse exchanges thewinding numbers between components, and aπ/2-pulse will drive each
component to a quantum superposition offlowswithwinding numbers q1 and q2.

4.1. Phase slip between adjacentwinding numbers
Figure 2 shows our numerical results, within theCQPS regime, for themean angularmomentum imbalance per
particle, obtained by solving theGPE (1) in condensates with different number of particles andΩ=0.16 ωρ

(which corresponds to 200 Hz). The comparisonwith the analytical prediction given by equation (11) is also
shown. As can be seen, the agreement is very good. The frequency of the oscillation ofΔ Lz is precisely the
Raman couplingΩ that coherently connects both spin components. The population imbalance is initially zero,
and remains unaltered during thewhole simulation, thus one can deduce that the spin exchange occurs ‘at pairs’
even though the population of both spin components is notfixed. By ‘at pairs’wemean that for each particle of
one condensate componentflipping its spin there exists another particle of the other component doing
the same.

In order to elucidate how the topological structure of thewavefunction changes as a function of time, we
show infigure 3 the dynamical evolution of the density and the local phase for a condensate withN=5×104

atoms.White lines represent density isocontours at 5%ofmaximumdensity and colors depict the phase.
Initially, at t=0, we have imprinted a persistent current (q1=1) in the  component while the other is at rest
(panel (a)). A quarter of period later,Ω t=π/2, an azimuthal density node3 is formed spontaneously in each
component, at opposite positions (panel (b)). The vortex that was inducing the rotation in the initial state

Figure 2.Comparison between themean angularmomentum imbalance per particle calculated by solving theGPE forN=5×103

(green triangles),N=1.5×104 (red squares) andN=5×104 (blue circles) together with the result predicted by equation (11)
(thick brown line). The Raman coupling isΩ=200 Hz and the initial state is = = ñ∣q q1, 0 .1 2

3
This objects should not be confusedwith dark solitons, since they can also appear in the linear case and the associated healing length is, in

general,much larger than the one of solitarywaves.
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escapes from the  component through the density depletion, while another vortex crosses the corresponding
node in the  component, transferring vorticity from the  component to the  component (panel (c)). This is
themechanism followed by the coupled system to produce 2π-phase slips. After that, in panel (d) the evolution is
reversed, returning the vorticity to the  component (panel (e)), and so on.

CQPS in atomtronic circuits allows the system to effectively operate as a qubit. A quantummechanical
system is a good candidate for qubitmanipulation if two conditions are fulfilled. First, the systemmust be
considered as an effective two-state system, and second, at every time, the qubitmust be expressed in a quantum
superposition of both states. In our system these two states are ñ∣q q,1 2 and ñ∣q q, ,2 1 and as a result the state of the

system can bewritten as a bY = ñ + ñg∣ ∣q q e q q, ,1 2
i

2 1 at every time, where a = W( )tcos 2 , b = W( )tsin 2 ,
and g p= - 2/ . Themapping is characterized by a periodic evolutionwith a period of 2π/Ω. At half a period,
the phases of both components are exchanged, and in between, topological defects appear in thewavefunction in
order to drive the phase slip. The Raman couplingΩ is a parameter that can be externallymanipulated, and its
control allows to simulate a tunable single-qubit quantumgate for quantum information processes. In this
regime, the systemdisplays two characteristic properties.

• The systembehaves as linear despite the nonlinearity, since the Rabi frequency is the Raman coupling,
independently of the interaction.

• The evolution occurs following quasi-stationary states.

The two previous remarkable properties can be demonstrated by following this protocol: (a) evolve the
systemwith a certain value ofΩ in theCQPS regime, thus the angularmomentum imbalancewill oscillate with
frequencyΩ. (b)At an arbitrary time t1, switch the Raman coupling to zero, suppressing the exchange of phase
between components. (c)At another arbitrary time t2, switch on again theRaman coupling to its initial value in
the process. Figure 4 represents thewhole sequence of this protocol. At t1 the state gets frozen in a quasi-
stationary state rotating at a given velocity according to thewinding number chemical potential imbalance.
Then, at t2 the evolution resumes, with exactly the same properties of the system at t1. The curves predicted by
the analyticalmodel accurately fit in with the solution of theGPE.

4.2. Phase slip between non-adjacentwinding numbers
All the results presented in section 4.1 are devoted to the case of CQPS between adjacent winding number states.
However, the analyticalmodel ismore generic and also applies between non-adjacent winding numbers. In this

Figure 3.Evolution of a condensate withN=5×104 atoms as a function of time, after imprinting a vortex on the  component (first
row). The second row corresponds to the  component. The value of the Raman coupling isΩ=200 Hz and the length of the square
graphs is 30 μm.Thewhite line corresponds to density isocontours at 5%ofmaximumdensity, whereas colors represent the phase.
Panels (a)–(e) display snapshots of the state during a Rabi cycle. This number of particles is in the limit of theCQPS regimes, sinceΔ Lz
deviates in 6% from the analyticalmodel.
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sectionwe present the performance of CQPS in the case where thewinding numbers imprinted onto both
wavefunctions differ inmore than one unit.

We have shown that in order to change thewinding number in one unit, a 2π-phase slip event involving the
formation of an azimuthal density node has to occur. Therefore, to drive each component fromwinding number
q1 to q2 (and viceversa), multiple number of such nodes ( -∣ ∣q q1 2 )must appear simultaneously.Multiple 2π-
phase slip can not occur through a sequence of single 2π-phase slip events, since other states withwinding
number different from q1 and q2 would contribute, as described by the ansatz (6). This fact can be seen in
figure 5, wherewe compare the numerical results of theGPE (white isocontours at 4%ofmaximumdensity and
colors for the phase), with the analytical prediction for the same density isocontour given by equation (10) (black
line), assuming that the system is in the Thomas–Fermi limit and equation (3) applies, for the initial state

= = ñ∣q q1, 01 2 (panel (a)) and = = ñ∣q q2, 01 2 (panel (b)). The agreement is again excellent.
Figure 6 representsΩc, which fixes the critical value of the Raman coupling that allows phase slip events, as a

function of the effective chemical potential, for different initial winding number imbalancesΔ q=1, 2, 3 (red
circles, blue squares and green triangles, respectively), after solving the 1D-GPEwith =g g 0.9954.Ωc

increases withμeff, but this increasing is faster for larger initialΔ q. The azimuthal nodes that the systemhas to
generate in order to produce phase slips possessmore energy, and the strength of the coherent coupling has to be
larger to overcome higher energy barriers associated to smaller characteristic lengths.

We have studied the dynamics of the system for different initial winding number imbalance. Figure 7 shows
the density (white isocontours) and the phase (color) of the  component at a quarter of a Rabi cycle, for different
values of the initial winding number q1 (with q2=0) imprinted onto condensates withN=5×104 atoms.

Figure 4.Comparison between the analyticalmodel given by equation (11) (thick brown lines) and the numerical solution of theGPE
(open symbols) for the time evolution following the protocol described in the text. Blue squares correspond to themean angular
momentumper particle of the  component, and red circles to the  component. The initial state is =∣q 1,1 = ñq 0 ,2 the number of
atoms isN=5×103 and the Raman coupling isΩ=200 Hz, except between time t1Ω=14.37/2π and t2Ω=32.32/2π, whereΩ
is switched off.

Figure 5.Comparison of the numerical results of theGPEwith the analytical prediction of equation (10), for the wavefunction of the 
component at a quarter of a Rabi cycle. The initial state is = = ñ∣q q1, 01 2 (panel (a)) and = = ñ∣q q2, 01 2 (panel (b)), the Raman
coupling isΩ=200 Hz and the condensate holdsN=5×104 atoms.White lines correspond to density isocontours at 4%of
maximumdensity and colors to the phase, both of themobtained numerically. Black lines correspond to density isocontours at 4%of
maximumdensity predicted by themodel, assuming the initial density in the Thomas–Fermi limit, given by equation (3).
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One can observe that density nodes appear equispaced forming an ordered pattern. As the initial angular
momentum imbalance increases, the characteristic length scale associated to the azimuthal density nodes
decreases as predicted by equation (10), and becomes closer to that of solitarywaves as dark solitons or solitonic
vortices. To generate such objects additional winding numbermodes have to be excited, and therefore, the
CQPS process decays after few cycles. Then, the ansatz (6) is no longer valid. That is why the cases (c)–(i) of
figure 7will not exhibit CQPS (they belong to theNCQPS regime), and only the cases (a) and (b)will display this
phenomenon. Each solitonic vortex thatmediates the phase slip in the cases falling in theNCQPS regime
contributes to the totalmean angularmomentumof each component according to equation (4).

Figure 6.Critical couplingΩc as a function of the effective chemical potentialμeff for different values of the winding number
imbalanceΔ q=1 (red circles),Δ q=2 (blue squares) andΔ q=3 (green triangles), with q2=0. The results have been obtained by
solving numerically the 1D-GPEwith =g g 0.9954.

Figure 7.Density isocontours at 5%ofmaximumdensity and phase (color) of the  component at a quarter of a Rabi cycle for a
condensate ofN=5×104 atoms,Ω=200 Hz and different values of the initial angularmomentum imbalance, with the 
component first at rest. (a) q1=1, (b) q1=2, (c) q1=3, (d) q1=4, (e) q1=5, (f) q1=6, (g) q1=8, (h) q1=10 and (i) q1=16.
Only the cases of the first row do exhibit CQPS.
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5.Other dynamical regimes

Aswas shown infigure 1, CQPS can not be found in thewhole parameter space of the system, given that ¹ g g .
Our numerical results point to the fact that CQPS exists as far as the ansatz (6) is valid, and this occurs for high
values of the coherent coupling in comparisonwithΩc. Below this critical value, we have found a dynamical
regimewhere there is no vortex exchange between spin components. This fact is due to the presence of an energy
barrier betweenwinding number states ∣q ,1 ñq2 and ∣q ,2 ñq ,1 that prevents phase slips. Although such a barrier is
of nonlinear nature, contrary to scalar condensates, it is not due to the existence of solitonic states on the total
density of the system [25]. Asmentioned before, the excitation of spinmodes has been demonstrated to play a
key role in spinor condensates coupled by density, and seems to be also relevant in this case. Such excitations are
separated from thewinding number states by the energy gap given in equation (5), whichmust be overcome in
order to produce phase slips. If this critical energy can not be transferred between components by the coherent
coupling, vortices will be trapped, and themean angularmomentumper component will not oscillate around
the value +( )q q 2.1 2

Figure 8 shows a typical case representative of the trapping regime. It corresponds to the point A indicated in
figure 1, for the coupling wW = ´ r

-2 10 .3 As can be seen, themean angularmomentumof each component
oscillates near the initial value, and the corresponding densities (shown in the inset after integration along the
transverse section of the torus) present variations without nodal points. Although the interaction between
components translate into currents inside each component (see the phasemaps on the right of thefigure), they
are not enough to drive phase slips. Finally it is worth to note, that during all the time evolution the total density
remains approximately constant along the torus.

When the Raman coupling takes intermediate values,ΩΩc, stable CQPSwill notmanifest in the dynamics,
and the system enters theNCQPS regime. In this case, the coherent coupling is large enough to produce phase
slip events that exchange thewinding number between spin components. However, the time frequency of these
events is lower thanΩ. This features are reflected in the case displayed infigure 9, corresponding to the point B of
figure 1.Now the spin densities can shownodal points leading to phase slips, whereas the total density remains
again approximately constant, although a small oscillation is present. As a consequence, and in contrast to the
CQPS regime, the position of such nodal points for both components are not located at diametrically opposed
positions. As the coherent coupling strength increases the frequency for phase slips approaches toΩ.

In addition, as the chemical potential increases, the excitation of solitary waves (see panels (d)–(i) infigure 7)
are responsible for the damping of the exchange of angularmomentumbetween components. As a
consequence, the system can deviate from the quasi-stationary path and explore other regions of the phase space.
Different topological objects are generated, and then, the long-time dynamics will bring the condensate to an
out-of-equilibriumquantum gas. Notice that in this regimemany angularmomentummodes are excited and
the two-mode approach (6) is no longer valid. Infigure 10we show a characteristic snapshot of the density and
the phase of the  component of a condensate withN=5×104 atoms andRaman couplingΩ=60 Hz after
2 s of evolution from the initial state =∣q 1,1 = ñq 0 .2 Thewhite line traces the density isocontour at 5%of

Figure 8.Mean angularmomentumper particle of the  (solid red linewith circles) and  (dashed blue linewith squares) component,
after solving the 2D-GPE. In the inset, the azimuthal density ò f r q r r= ( ) ∣ ( )∣a n a R , d1

2 of the  (solid red line),  (dashed blue
line) component, and the sumof both (dotted–dashed green line), atΩ t=3 (indicated by the dotted vertical line). At the right side of
the plot, phase pattern of the  (top) and  (bottom) component is represented by colors, and the isocontours at 5%ofmaximum
density by thewhite lines. The effective chemical potential is m w= reff and the Raman coupling is wW = ´ r

-2 10 .3
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maximumdensity and the colors display the phase. In the figure one can also see that although the initial angular
momentum imbalance isΔ q=1, several kinds of solitary waves (a dark soliton and two solitonic vortices) are
excited in the condensate in order to try to drive a single 2π-phase slip. One can see that the appearance of
solitonic vortices do not accomplishwith the azimuthal dependence of the density predicted by equation (10),
and as a consequence, it is not compatible withCQPS.

6. Summary and conclusions

In the present workwe have proposed an atomic analogue of theMooij–Harmans qubit that displays CQPS.
Two-component condensates loaded on toroidal atomtronic circuits can display phase slips by virtue of the
coherent coupling.When a vortex pattern phase is imprinted onto each component with different winding
number, the system evolves through quasi-stationary states that are a superposition of bothwinding number
states. The two components exchange vortices by phase slip eventsmodulated by the coupling, in such away that
themean angularmomentum imbalance oscillates with the Raman frequency.

We have identified the different dynamical regimes of the system as a function of the coherent coupling and
the effective chemical potential. In particular, we have focused on the dynamical phase corresponding toCQPS,
where the systembehaves effectively as linear despite the nonlinearity. For this regime, we havemapped the
dynamics of the coupled systemonto linear Josephson equations by using an ansatz composed of twowinding
numbermodes per component. Thewhole dynamics, and specifically the results obtained for themean angular
momentum imbalance and the density, are very accurately reproduced by our analyticalmodel. Thismodel

Figure 9. Same asfigure 8 forΩ=5×10−3ωρ atΩ t=5.4.

Figure 10.Density isocontour at 5%ofmaximumdensity and phase (color) of the  component of a condensate ofN=5×104

atoms andΩ=60 Hz after 2 s of evolution, with the state =∣q 1,1 = ñq 02 as the initial state. Two solitonic vortices and a dark
soliton appear in thewavefunction.

10

New J. Phys. 18 (2016) 015003 AGallemí et al



predicts that CQPS needs phase slip events to occur through azimuthal density nodes, otherwise coherence
would be destroyed. Our numerical results obtained by solving the time-dependent GPE confirm these
predictions.

Wewould like to point out the experimental feasibility of this system, sincewe have used values for the
physical parameters currently available in laboratories. 87Rb is a good candidate to perform this qubit,mainly,
for the closeness of the scattering lengths. Toroidal condensates that have been recently obtained have a diameter
of the order of 10–20 μm,while ours is 15 μm.TheRaman coupling does not present any strong limitation for
its value although commonly, it ranges from a fewHz, to kHz hundreds. Besides, phase imprinting techniques
have improved in the last decade and the individualmanipulation of a single component of a spinor BEC is
possible nowadays.

The qubit we have proposed points tomultiple possibilities in the field of cold atoms. The control of the
coherent coupling permits to freeze the system in quasi-stationary persistent current states with non-quantized
angularmomentum characteristic of linear superposition of quantum states. Since both current states are
entangled, one canmanipulate the quantum superposition of bothflow states, performing as a good quantum
computer gate, and offering paths for improvements in quantum information processing. The theoretical
analysis discussing the role of nonlinear objects, as relative phase domainwalls and dark solitons, are out of the
scope of the present article andwill be addressed in the future.
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