-

View metadata, citation and similar papers at core.ac.uk brought to you byfz CORE

provided by Diposit Digital de la Universitat de Barcelona

10P Publishing New J. Phys. 18 (2016) 015003 doi:10.1088/1367-2630/18,/1/015003
New jou rnal of Ph sics Deutsche Physikalische Gesellschaft @ DPG Published in partnership

y with: Deutsche Physikalische

IOP Institute of Physics | Gesellschaft and the Institute

The open access journal at the forefront of physics

PAPER
@ CrossMark

Coherent quantum phase slip in two-component bosonic atomtronic

of Physics

OPENACCESS

RECEIVED

15 September 2015 A Gallemi"’, A Mufioz Mateo', R Mayol” and M Guilleumas'

;EIZIIZ\E/:mber 2015 ! Departament d’Estructura i Constituents de la Materia, Facultat de Fisica, Universitat de Barcelona, E-08028 Barcelona, Spain
* Institut de Nanociéncia i Nanotecnologia de la Universitat de Barcelona, IN?UB, E-08028 Barcelona, Spain

ACCEPTED FOR PUBLICATION

24 November 2015 E-mail: gallemi@ecm.ub.edu

PUBLISHED . . : . . .

53 Decomber 2015 Keywords: phase slip, coherent coupling, flux qubit, toroidal geometry, spinor condensate

Content from this work

may be used under the Abstract
fthe Creativ . o . .
erms ofithe L reative Coherent quantum phase slip consists in the coherent transfer of vortices in superfluids. We
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licence. investigate this phenomenon in two miscible coherently coupled components of a spinor Bose gas
Anyfurther distribution of - ¢y fined in a toroidal trap. After imprinting different vortex states, i.e. states with quantized

;E;ﬁ;%%?g:j: circulation, on each component, we demonstrate that during the whole dynamics the system remains

thework,journal citation 11 @ linear superposition of two current states in spite of the nonlinearity, and can be mapped onto a

and DOL linear Josephson problem. We propose this system as a good candidate for the realization of a Mooij—

Harmans qubit and remark its feasibility for implementation in current experiments with *'Rb, since
m

we have used values for the physical parameters currently available in laboratories.

1. Introduction

The possibility to set up experiments devoted to the testing of quantum phenomena has been the subject of
increasing interest since the discovery of superconductivity. At an early stage, this research led to the realization
of superconducting quantum interference devices (SQUIDs) [1, 2]. Three decades later, the achievement of
ultracold degenerate quantum gases, like Bose—Einstein condensates (BECs) [3, 4], opened up new opportunities
to test quantum interference phenomena and their implementation in atomtronic quantum interference devices
(AQUIDs) [5-10], the atomic analogue of SQUIDs. This duality between superfluid atomic gases and
superconductors has made both systems stand out as good supports for quantum simulation. However, the
tunability of the interaction and the versatility of atoms in simulating both bosonic and fermionic systems,
provide a more promising perspective for the implementation of AQUIDs in future technological applications.

Josephson junctions play a key role in the physics of quantum interference devices. They constitute two
quantum systems connected by a weak link, and can be classified in two categories (short and long), owing to the
different nature of the coupling. In a short Josephson junction, the coherent transfer of physical quantities
occurs through a single point, the Josephson link [11, 12]. When the junction is long, the coupling occurs locally
at each point of the connection. In particular, two spin components of a condensate coupled by a Raman laser
operate as along Josephson junction, which is referred to in the literature as the internal Josephson effect [13],
and obeys the Josephson equations with a coupling proportional to the overlap between condensates [14]. These
techniques, by selecting an appropriate spatial dependence of the coupling, led to the first observation of vortices
inBECs[15, 16].

Anderson [17] discussed the role of the phase of the order parameter in superfluids, which motivated the
study of phase slips in superconductivity [18], liquid helium [19], and BECs [8, 10]. A phase slip event is a sudden
change of the phase in 27 due to the motion of quantized vortices through a superfluid. This phenomenon is
associated to dissipation, as pointed out by Langer and Ambegaokar [20]. Ultracold atoms, as superfluids, can
also exhibit phase slips, by winding the phase through solitonic states [21-25], and they are able to generate
quantum superpositions of macroscopic flows [26]. The literature includes several proposals to engineer
superpositions of flow states in 1D quantum gases in continuous rings [27, 28] and discrete rings [31-35]
(toroidal condensates in the presence of a lattice potential in the tight-binding regime [29, 30]).
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Coherent quantum phase slip (CQPS) is an effect recently discovered in superconducting systems
containing loops [36]. It is the dual phenomenon of the Josephson effect, which is a coherent transport of
particles between two superfluids, but, in contrast, CQPS is defined as the coherent transfer of vortices through
the Josephson link. In CQPS, the stationary states corresponding to flux quanta states become coupled, such that
one can continuously change the flux quanta of the system. The Mooij—Harmans qubit [37, 38], which consists
of a superconducting loop with a weak nanowire, was predicted to be able to manifest CQPS between two
current states. The proposal was made a reality in the experiment of [36], which led to the first experimental
observation of CQPS.

In this work, in order to generate CQPS, we propose the realization of an atomic analogue of the Mooij—
Harmans qubit by means of a spinor condensate with two relevant internal degrees of freedom or spin states.
The two components are coupled by phase (spin exchange) and density (contact interaction), and both occupy
the same space region, since the interspecies density repulsion is small enough to keep the system in the miscible
phase. Therefore, this overlap allows the coupling to occur locally, point to point, in the whole bulk of the
condensate (long Josephson junction). With the aim of engineering a qubit we will select vortex states as the basis
of an effective two-level system that is able to perform qubit operations [39]. The coherent coupling transfers
vortices between both components in the absence of population imbalance, and the nonlinear system exhibits
Rabi oscillations. We consider condensates confined in ring geometries, where persistent currents are
metastable states and phase slips provide the mechanism for the system to exchange winding numbers between
components. All these properties make the system stand out as a promising tool for atomtronic circuits, and in
particular, for the simulation of CQPS.

The paper is organized as follows. In section 2, we present the mean field model we have used to study the
system of two miscible coherently coupled condensates. Section 3 characterizes the different dynamical regimes
that the system exhibits as a function of the coherent coupling and interaction. In section 4 we discuss the regime
where the system shows CQPS and propose an analytical model that accurately reproduces our numerical
results. Section 5 is devoted to the other dynamical regimes of the phase diagram, and finally, section 6
summarizes our work and provides future perspectives.

2. Theoretical framework

To describe the system of two coherently coupled Bose—Einstein condensates in the mean field regime, we will
use the Gross—Pitaevskii equation (GPE) for the wavefunctions ¥; and W

.. 0 hQ

iUy = HoWy + g 19 PO + gy 19 PO+ =0

., 0 5 " O

17’15\111 =Ho¥ + gullpl 1“0 + guN/T "0 + T‘I/T, (1)

where Hy = —Hh?/2m v+ Virap» & = 4mh?a;/m,withi = 17, ||, T/, is the interaction strength, a;is the
scattering length, and the angular frequency €2 is the coherent Raman coupling that forces the two components
to share the chemical potential p. We will consider multiply connected geometries by using a toroidal trap of
radius R, Virap = 1 / 2m wf] ((p — R)* + N2z?), with angular frequency w), and aspect ratio A >> 1. For quasi-
2D systems the interaction strength takes the value \/i/m w, giZD /g =1/ NP

The time-independent solutions (7, 1) = ¢ (7)exp(—iut/h) of equation (1) can be found by solving:

0
Q
no, =Mooy + g, 9]0, + .16y Poy + % &

where all the quantities are written in terms of the harmonic oscillator units, by using i w, and ,/h/m w, as
energy and length units, respectively. In our simulation we also consider &1 =8, =8 > &, toensure
miscibility. The total number of particles N is fixed, in such a way that Zi f gb;k (7)¢;(7)d7 = N, though
particles of both components can exchange their spin by virtue of the coherent Raman coupling.

Analytical expressions can be obtained within the Thomas—Fermi approach in order to study the ground
state properties of the condensate in the regime of large interactions. In the case without Raman coupling
[40—42], the Thomas—Fermi wavefunction is the same for both components: TF = \/ (1~ Vieap) /(€ + &) -
Such expression will be also useful in the presence of Raman coupling, where the ground state satisfies
Py = —1p for Q > 0[43], since a phase difference of 7 between both components minimizes the mean field
energy. Therefore, the Raman coupling {2 becomes a simple shift of the chemical potential and the Thomas—
Fermi wavefunctions can be written as
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Figure 1. Phase diagram containing the different dynamical regimes as a function of the effective chemical potential

Mg = i + 7€2/2 and the Raman coupling €2, for g, /g = 0.9954, radius R = 7.5um, evolving from the initial state |¢, = 1,

g, = 0)in 2D-GPE (1). Solid red line draws the boundary {2, between the trapping regime and the regimes where phase slip exists.
Above Q) there is a continuous transition from a non-coherent quantum phase slip regime to a coherent quantum phase slip regime.
The inset compares our numerical results for €2, in 1D systems (solid curves with open symbols) with the analytical expression
equation (5) (dotted and dashed lines) for the energy gap associated to the excitation of spin modes at different values of g;| /g.The
labeled points A, B correspond to particular cases addressed in later sections.

H - Vra
Yt = -yt = [, 3)
§+ &

where e = p + €2/2 will play the role of an effective chemical potential for the coupled system.

We will also explore the effect of vortices on stationary states. Their associated angular momentum per
particle is /g for each component, where g is the winding number or charge of the vortex, when it is centered.
This is no longer true for off-centered vortices. Nevertheless, one can give an expression for the dependence of
the angular momentum as a function of the position r; of the off-centered vortex, by following the procedure
developed in [44, 45] for the case of a condensate in a harmonic trap in the Thomas—Fermi limit, since in this
regime, the effect of the vortex on the density profile can be neglected. We have derived the expression for the
contribution on the angular momentum per particle of a vortex in the density region of a 2D ring:

R

where n = (r; — R)/6 and R + § are the external and internal Thomas—Fermi radius, respectively, and
0= 2u =13+ a)N / 2R1'/3 is the half-width of the torus in harmonic oscillator units.

3. Dynamical regimes of two coupled condensates in a ring

We investigate the transfer of vortices between two coherently coupled BECs by solving numerically the time
dependent GPE (1). To this aim, we have selected typical experimental values of the physical parameters. We first
compute the ground state of a two-component *’Rb spinor condensate with intraspecies scattering length

a = 101.41 agand a;| = 100.94 ag, where ag is the Bohr radius, corresponding to the hyperfine states

|F =1, mp = 0)and |F = 1, mp = —1). The system is confined in a toroidal trap, with frequency

w, = 27 X 200 Hz, aspectratio A = 4,andradiusR = 7.5 um. Afterwards, persistent currents are induced in
each component, with different winding numbers g, and g, by imprinting proper phases, i.e.

W — I; x exp(ig;0), and the system, whose state will be described by the pair |g;, ), is allowed to evolve.

In figure 1 we show the dynamical regimes of the system, for the initial state |q, = 1, g, = 0), obtained by
numerical simulations of equation (1). Depending on the values of the effective chemical potential and the
Raman coupling, the system explores three different regimes that will be explained in detail in the following
sections [46]. For values of the Raman coupling smaller than a critical one €2, (solid lines) we have found a vortex
trapping regime, where winding number states can not be exchanged between components. We have also
explored the influence of the ratio g, /g by performing 1D numerical calculations of the spinor GPE, which are
shown by solid lines and open symbols in the inset of figure 1. Open circles correspond to our results for
8,/8 = 0.9954, whereas triangles correspond to g, /g = 0.9.
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It has been demonstrated that in order to produce spin excitations [47, 48], which are the relevant ones for
phase slips in a spinor condensate, it is necessary to overcome an energy gap A given by:

AQ\/1+”—g(1ﬁ], 5)
Q g

where  is the total density. For the sake of comparison, we have complemented the inset of figure 1 with the
curves given by equation (5) for the same numerical values of €2.: dotted (gT /8= 1.0), dashed (gT /&= 0.9954)
and dotted—dashed (g;, /g = 0.9) lines. The minimal coupling energy 12 necessary to produce phase slip is of
the order of A. When g;| = g, phase slips can be produced for arbitrarily small values of the coherent coupling.

Astheratio g /g decreases the energy cost for producing phase slips increases.

Once this gap is overcome, phase slip is possible. The system continuously transits from the non-coherent
quantum phase slip (NCQPS) regime at €2 2 3, where vortex exchange between components can be observed at
rates different from €2, to the CQPS regime at 2 > ). We identify a process as coherent if phase slip events
occur with a complete transfer of angular momentum between the components and with a frequency of
oscillation equal to the Raman coupling, together with the fact that only two vortex states are involved in the
dynamics. If phase slip events occur without following the previous description, we classify the regime as non-
coherent.

The dynamical phase diagram also depends on the radius of the torus. As the ring geometry constitutes a
finite system, a zero-point kinetic energy 112/mR? is introduced. This energy quantum separates winding
number states and, as a result, the degenerate states |, q,) and |q,, ¢) are separated by a gap from other winding
number states. When the radius of the torus increases, the zero-point kinetic energy goes to zero and the energy
spectrum becomes a continuum. The same occurs when the interaction energy is very large, because the energy
to produce a vortex is negligible in front of the chemical potential. As we will show later, CQPS decays or is even
absent in these cases. The dynamical phase diagram can also exhibit dramatic changes in the immiscible case,
where vortex states can split due to phase separation [49].

4. Coherent quantum phase slip

In order to have an analytical insight into the dynamics of the system, one can follow the spirit of the two-mode
approximation. In the CQPS regime, the condensate wavefunction can be writtenas [16, 50, 51]:

\PT(?) t) = ¢‘11 (?)[ wT’ql(t)] + (qu(?)[ wT’qZ(t) ]’ (6)

djl,ql(t) 1/’1,&12 (t)

where ¢, () = (bqj (p) x el with j = 1, 2, are eigenvectors of both the angular momentum operator L,
with eigenvalue hq;, and the Hamiltonian without Raman coupling, with eigenvalue ;. This ansatz neglects any
contribution from other modes with charges different from g, and q,. As we will see later, our numerical results
agree with this assumption, since the only eigenvectors that significantly contribute to the dynamics are those
associated to the winding numbers imprinted initially onto the wavefunction.

After substituting equation (6) in the GPE (1) one gets two decoupled linear Josephson equations for each
winding number:

M1 q h)
ih—21 — + =
1 ot M1, > Viq,
0 hQ
ih——L = + — , 7
1 or lel,ql > wT,ql 7
and
87/}T q Q2
L n
1 ot Ba¥t,q, By Y,
014 hQ
ih—= = + — . 8
1 or Nzl/’mz > 1/}T,q2 (8)

The straightforward solution of these linear systems has the eigenvalues 4i; &= €2/2. The energy gap between
the two levels is €2, which is the driving frequency, then the solution for the condensate wavefunction is:

4
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Figure 2. Comparison between the mean angular momentum imbalance per particle calculated by solving the GPE for N = 5 x 10°
(green triangles), N = 1.5 x 10" (red squares)and N = 5 x 10" (blue circles) together with the result predicted by equation (11)
(thick brown line). The Raman couplingis 2 = 200 Hzand the initial state is |q, = 1, ¢, = 0).

Qt Y

\I’T(?’ t) . cos — ' / —isin —
— ¢q1 (p)efl(p,lt/ﬁfql()) ZQt + (qu (P) efl(/l.zt/hfqz()ﬁ’{p) Qtz , (9)
‘I/l(r’ t) —isin — cos —
2 2
and the corresponding densities read:
1 973 YR
|Y; |* = E{I(bq1 | cos? (7) + 19y, | sin? (7)

+ |¢ql||¢q2|sin(Qt)sin(Auqt/ﬁ ~ A0+ )}, (10)
where A g = g, — g;istheinitial winding number imbalance, Ay, = 1, — pu, is the associated chemical
potential imbalance, and ¢ is an arbitrary phase.

From equation (9) one can get the mean angular momentum imbalance per particle
AL, = ((B|L, %) — (Y|L,|¥))/hAN, as a function of time:
A
AL, = 7‘1 cos(Q). (11)

This expression predicts that the exchange of vortices oscillates with the coherent coupling frequency 2. As a
consequence, a T-pulse exchanges the winding numbers between components, and a 7w/2-pulse will drive each
component to a quantum superposition of flows with winding numbers g, and g,.

4.1. Phase slip between adjacent winding numbers

Figure 2 shows our numerical results, within the CQPS regime, for the mean angular momentum imbalance per
particle, obtained by solving the GPE (1) in condensates with different number of particlesand Q = 0.16 w,,
(which corresponds to 200 Hz). The comparison with the analytical prediction given by equation (11)is also
shown. As can be seen, the agreement is very good. The frequency of the oscillation of A L, is precisely the
Raman coupling €2 that coherently connects both spin components. The population imbalance is initially zero,
and remains unaltered during the whole simulation, thus one can deduce that the spin exchange occurs ‘at pairs’
even though the population of both spin components is not fixed. By ‘at pairs’ we mean that for each particle of
one condensate component flipping its spin there exists another particle of the other component doing

the same.

In order to elucidate how the topological structure of the wavefunction changes as a function of time, we
show in figure 3 the dynamical evolution of the density and the local phase for a condensate with N = 5 x 10*
atoms. White lines represent density isocontours at 5% of maximum density and colors depict the phase.
Initially, at t = 0, we have imprinted a persistent current (q; = 1) in the T component while the other is at rest
(panel (a)). A quarter of period later,  t = 7/2, an azimuthal density node” is formed spontaneously in each
component, at opposite positions (panel (b)). The vortex that was inducing the rotation in the initial state

? This objects should not be confused with dark solitons, since they can also appear in the linear case and the associated healing length is, in
general, much larger than the one of solitary waves.
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Figure 3. Evolution of a condensate with N = 5 x 10 atoms as a function of time, after imprinting a vortex on the T component (first
row). The second row corresponds to the | component. The value of the Raman coupling is 2 = 200 Hz and the length of the square
graphs is 30 um. The white line corresponds to density isocontours at 5% of maximum density, whereas colors represent the phase.
Panels (a)—(e) display snapshots of the state during a Rabi cycle. This number of particles is in the limit of the CQPS regimes, since A L,
deviates in 6% from the analytical model.

escapes from the T component through the density depletion, while another vortex crosses the corresponding
node in the | component, transferring vorticity from the T component to the | component (panel (c)). This is
the mechanism followed by the coupled system to produce 27-phase slips. After that, in panel (d) the evolution is
reversed, returning the vorticity to the T component (panel (e)), and so on.

CQPS in atomtronic circuits allows the system to effectively operate as a qubit. A quantum mechanical
system is a good candidate for qubit manipulation if two conditions are fulfilled. First, the system must be
considered as an effective two-state system, and second, at every time, the qubit must be expressed in a quantum
superposition of both states. In our system these two states are |q;, q,) and |g,, ), and as a result the state of the
system can be writtenas V = «/|q,, q,) + e |q,> q,) atevery time, where o = cos(2t/2), 3 = sin(Q2t/2),
and v = — 7/2. The mapping is characterized by a periodic evolution with a period of 27r/€2. At halfa period,
the phases of both components are exchanged, and in between, topological defects appear in the wavefunction in
order to drive the phase slip. The Raman coupling {2 is a parameter that can be externally manipulated, and its
control allows to simulate a tunable single-qubit quantum gate for quantum information processes. In this
regime, the system displays two characteristic properties.

+ The system behaves as linear despite the nonlinearity, since the Rabi frequency is the Raman coupling,
independently of the interaction.

+ The evolution occurs following quasi-stationary states.

The two previous remarkable properties can be demonstrated by following this protocol: (a) evolve the
system with a certain value of €2 in the CQPS regime, thus the angular momentum imbalance will oscillate with
frequency €. (b) Atan arbitrary time #;, switch the Raman coupling to zero, suppressing the exchange of phase
between components. (c) At another arbitrary time t,, switch on again the Raman coupling to its initial value in
the process. Figure 4 represents the whole sequence of this protocol. At t; the state gets frozen in a quasi-
stationary state rotating at a given velocity according to the winding number chemical potential imbalance.
Then, at t, the evolution resumes, with exactly the same properties of the system at #;. The curves predicted by
the analytical model accurately fit in with the solution of the GPE.

4.2. Phase slip between non-adjacent winding numbers
All the results presented in section 4.1 are devoted to the case of CQPS between adjacent winding number states.
However, the analytical model is more generic and also applies between non-adjacent winding numbers. In this

6
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Ul Q=0 ,

Time

Figure 4. Comparison between the analytical model given by equation (11) (thick brown lines) and the numerical solution of the GPE
(open symbols) for the time evolution following the protocol described in the text. Blue squares correspond to the mean angular
momentum per particle of the T component, and red circles to the | component. The initial stateis |q, = 1, g, = 0), the number of
atomsis N = 5 x 10’ and the Raman couplingis Q2 = 200 Hz, exceptbetween timet, Q = 14.37/2mand t, Q2 = 32.32/27, where
is switched off.

Figure 5. Comparison of the numerical results of the GPE with the analytical prediction of equation (10), for the wavefunction of the T
component at a quarter of a Rabi cycle. The initial stateis ¢, = 1, g, = 0) (panel (a)) and |q, = 2, g, = 0) (panel (b)), the Raman
couplingis = 200 Hzand the condensate holds N = 5 x 10" atoms. White lines correspond to density isocontours at 4% of
maximum density and colors to the phase, both of them obtained numerically. Black lines correspond to density isocontours at 4% of
maximum density predicted by the model, assuming the initial density in the Thomas—Fermi limit, given by equation (3).

section we present the performance of CQPS in the case where the winding numbers imprinted onto both
wavefunctions differ in more than one unit.

We have shown that in order to change the winding number in one unit, a 27r-phase slip event involving the
formation of an azimuthal density node has to occur. Therefore, to drive each component from winding number
g1 to g, (and viceversa), multiple number of such nodes (|q, — g, |) mustappear simultaneously. Multiple 27-
phase slip can not occur through a sequence of single 27-phase slip events, since other states with winding
number different from g, and g, would contribute, as described by the ansatz (6). This fact can be seen in
figure 5, where we compare the numerical results of the GPE (white isocontours at 4% of maximum density and
colors for the phase), with the analytical prediction for the same density isocontour given by equation (10) (black
line), assuming that the system is in the Thomas—Fermi limit and equation (3) applies, for the initial state
|q, = 1, g, = 0) (panel (a)) and |q, = 2, g, = 0) (panel (b)). The agreement is again excellent.

Figure 6 represents €2, which fixes the critical value of the Raman coupling that allows phase slip events, as a
function of the effective chemical potential, for different initial winding number imbalances A g = 1,2, 3 (red
circles, blue squares and green triangles, respectively), after solving the 1D-GPE with g;| /g = 0.9954. €2
increases with p.g, but this increasing is faster for larger initial A q. The azimuthal nodes that the system has to
generate in order to produce phase slips possess more energy, and the strength of the coherent coupling has to be
larger to overcome higher energy barriers associated to smaller characteristic lengths.

We have studied the dynamics of the system for different initial winding number imbalance. Figure 7 shows
the density (white isocontours) and the phase (color) of the T component at a quarter of a Rabi cycle, for different
values of the initial winding number q; (with g, = 0) imprinted onto condensates with N = 5 x 10* atoms.

7
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Figure 6. Critical coupling (2. as a function of the effective chemical potential y.¢ for different values of the winding number
imbalance A g = 1 (red circles), A g = 2 (blue squares) and A g = 3 (green triangles), with g, = 0. The results have been obtained by
solving numerically the 1D-GPE with g /g = 0.9954.

—qr -

Figure 7. Density isocontours at 5% of maximum density and phase (color) of the T component at a quarter of a Rabi cycle fora
condensate of N = 5 x 10*atoms, Q = 200 Hzand different values of the initial angular momentum imbalance, with the |

component firstatrest. (@) q; = 1,(b)g; = 2,(©)qy = 3,(d)q1 = 4,(e)q1 =5, q1 = 6,()q1 = 8,(h)q, = 10and (i) q; = 16.
Only the cases of the first row do exhibit CQPS.

One can observe that density nodes appear equispaced forming an ordered pattern. As the initial angular
momentum imbalance increases, the characteristic length scale associated to the azimuthal density nodes
decreases as predicted by equation (10), and becomes closer to that of solitary waves as dark solitons or solitonic
vortices. To generate such objects additional winding number modes have to be excited, and therefore, the
CQPS process decays after few cycles. Then, the ansatz (6) is no longer valid. That is why the cases (c)—(i) of
figure 7 will not exhibit CQPS (they belong to the NCQPS regime), and only the cases (a) and (b) will display this
phenomenon. Each solitonic vortex that mediates the phase slip in the cases falling in the NCQPS regime
contributes to the total mean angular momentum of each component according to equation (4).
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]
05- —1

Qt

Figure 8. Mean angular momentum per particle of the T (solid red line with circles) and | (dashed blue line with squares) component,
after solving the 2D-GPE. In the inset, the azimuthal density a n; = (a/R) f |6 (p, O)>pdp of the T (solid red line), | (dashed blue
line) component, and the sum of both (dotted—dashed green line), at 2 t = 3 (indicated by the dotted vertical line). At the right side of
the plot, phase pattern of the T (top) and | (bottom) component is represented by colors, and the isocontours at 5% of maximum
density by the white lines. The effective chemical potential is . = /2, and the Raman couplingis Q = 2 x 107w,

5. Other dynamical regimes

As was shown in figure 1, CQPS can not be found in the whole parameter space of the system, given that g = g, .
Our numerical results point to the fact that CQPS exists as far as the ansatz (6) is valid, and this occurs for high
values of the coherent coupling in comparison with 2. Below this critical value, we have found a dynamical
regime where there is no vortex exchange between spin components. This fact is due to the presence of an energy
barrier between winding number states |q;, ¢,)and|q,, g,),that prevents phase slips. Although such abarrier is
of nonlinear nature, contrary to scalar condensates, it is not due to the existence of solitonic states on the total
density of the system [25]. As mentioned before, the excitation of spin modes has been demonstrated to play a
key role in spinor condensates coupled by density, and seems to be also relevant in this case. Such excitations are
separated from the winding number states by the energy gap given in equation (5), which must be overcome in
order to produce phase slips. If this critical energy can not be transferred between components by the coherent
coupling, vortices will be trapped, and the mean angular momentum per component will not oscillate around
the value (g, + ¢,)/2.

Figure 8 shows a typical case representative of the trapping regime. It corresponds to the point A indicated in
figure 1, for the coupling 2 = 2 x 10~%w,. As can be seen, the mean angular momentum of each component
oscillates near the initial value, and the corresponding densities (shown in the inset after integration along the
transverse section of the torus) present variations without nodal points. Although the interaction between
components translate into currents inside each component (see the phase maps on the right of the figure), they
are not enough to drive phase slips. Finally it is worth to note, that during all the time evolution the total density
remains approximately constant along the torus.

When the Raman coupling takes intermediate values, 2> €2, stable CQPS will not manifest in the dynamics,
and the system enters the NCQPS regime. In this case, the coherent coupling is large enough to produce phase
slip events that exchange the winding number between spin components. However, the time frequency of these
events is lower than 2. This features are reflected in the case displayed in figure 9, corresponding to the point B of
figure 1. Now the spin densities can show nodal points leading to phase slips, whereas the total density remains
again approximately constant, although a small oscillation is present. As a consequence, and in contrast to the
CQPS regime, the position of such nodal points for both components are not located at diametrically opposed
positions. As the coherent coupling strength increases the frequency for phase slips approaches to €2.

In addition, as the chemical potential increases, the excitation of solitary waves (see panels (d)—(i) in figure 7)
are responsible for the damping of the exchange of angular momentum between components. Asa
consequence, the system can deviate from the quasi-stationary path and explore other regions of the phase space.
Different topological objects are generated, and then, the long-time dynamics will bring the condensate to an
out-of-equilibrium quantum gas. Notice that in this regime many angular momentum modes are excited and
the two-mode approach (6) is no longer valid. In figure 10 we show a characteristic snapshot of the density and
the phase of the T component of a condensate with N = 5 x 10*atoms and Raman coupling 2 = 60 Hzafter
2 sof evolution from the initial state |g, = 1, g, = 0). The whiteline traces the density isocontour at 5% of
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0.5

Qt

Figure 9. Same as figure 8 for 2 = 5 x 10w, atQt = 5.4.

Dark soliton

Entering solitonic vortex

Solitonic vortex

Figure 10. Density isocontour at 5% of maximum density and phase (color) of the T component of a condensate of N = 5 x 10*
atoms and 2 = 60 Hzafter 2 s of evolution, with the state [q, = 1, g, = 0) as the initial state. Two solitonic vortices and a dark
soliton appear in the wavefunction.

maximum density and the colors display the phase. In the figure one can also see that although the initial angular
momentum imbalance is A g = 1, several kinds of solitary waves (a dark soliton and two solitonic vortices) are
excited in the condensate in order to try to drive a single 27r-phase slip. One can see that the appearance of
solitonic vortices do not accomplish with the azimuthal dependence of the density predicted by equation (10),
and as a consequence, it is not compatible with CQPS.

6. Summary and conclusions

In the present work we have proposed an atomic analogue of the Mooij—Harmans qubit that displays CQPS.
Two-component condensates loaded on toroidal atomtronic circuits can display phase slips by virtue of the
coherent coupling. When a vortex pattern phase is imprinted onto each component with different winding
number, the system evolves through quasi-stationary states that are a superposition of both winding number
states. The two components exchange vortices by phase slip events modulated by the coupling, in such a way that
the mean angular momentum imbalance oscillates with the Raman frequency.

We have identified the different dynamical regimes of the system as a function of the coherent coupling and
the effective chemical potential. In particular, we have focused on the dynamical phase corresponding to CQPS,
where the system behaves effectively as linear despite the nonlinearity. For this regime, we have mapped the
dynamics of the coupled system onto linear Josephson equations by using an ansatz composed of two winding
number modes per component. The whole dynamics, and specifically the results obtained for the mean angular
momentum imbalance and the density, are very accurately reproduced by our analytical model. This model
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predicts that CQPS needs phase slip events to occur through azimuthal density nodes, otherwise coherence
would be destroyed. Our numerical results obtained by solving the time-dependent GPE confirm these
predictions.

We would like to point out the experimental feasibility of this system, since we have used values for the
physical parameters currently available in laboratories. *’Rb is a good candidate to perform this qubit, mainly,
for the closeness of the scattering lengths. Toroidal condensates that have been recently obtained have a diameter
of the order of 10-20 psm, while oursis 15 gm. The Raman coupling does not present any strong limitation for
its value although commonly, it ranges from a few Hz, to kHz hundreds. Besides, phase imprinting techniques
have improved in the last decade and the individual manipulation of a single component of a spinor BEC is
possible nowadays.

The qubit we have proposed points to multiple possibilities in the field of cold atoms. The control of the
coherent coupling permits to freeze the system in quasi-stationary persistent current states with non-quantized
angular momentum characteristic of linear superposition of quantum states. Since both current states are
entangled, one can manipulate the quantum superposition of both flow states, performing as a good quantum
computer gate, and offering paths for improvements in quantum information processing. The theoretical
analysis discussing the role of nonlinear objects, as relative phase domain walls and dark solitons, are out of the
scope of the present article and will be addressed in the future.
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