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In the last decade, important advances in the field of cognitive science, psychology, and
neuroscience have largely contributed to improve our knowledge on brain functioning.
More recently, a line of research has been developed that aims at using musical training
and practice as alternative tools for boosting specific perceptual, motor, cognitive, and
emotional skills both in healthy population and in neurologic patients. These findings
are of great hope for a better treatment of language-based learning disorders or motor
impairment in chronic non-communicative diseases. In the first part of this review, we
highlight several studies showing that learning to play a musical instrument can induce
substantial neuroplastic changes in cortical and subcortical regions of motor, auditory
and speech processing networks in healthy population. In a second part, we provide an
overview of the evidence showing that musical training can be an alternative, low-cost
and effective method for the treatment of language-based learning impaired populations.
We then report results of the few studies showing that training with musical instruments
can have positive effects on motor, emotional, and cognitive deficits observed in patients
with non-communicable diseases such as stroke or Parkinson Disease. Despite inherent
differences between musical training in educational and rehabilitation contexts, these
results favor the idea that the structural, multimodal, and emotional properties of musical
training can play an important role in developing new, creative and cost-effective
intervention programs for education and rehabilitation in the next future.

Keywords: neuro-rehabilitation, neuro-education, music training, music therapy, stroke rehabilitation, language
development disorders

Introduction

Recently, the Organisation for Economic Co-operation and Development published the “2012 PISA
report” providing strong evidence of the dramatic drop in the scholar level of 15-year-old French
pupils over the past 10 years (OECD, 2014). Compared to data collected in 2003, 15 years old
French children exhibited a drop of 15 points (from 511 to 495) in mathematics and the number
of pupils in difficulty increased dramatically. In addition, learning disorders are very frequently
diagnosed during childhood with the prevalence of developmental dyslexia being of 7–10% of the
general population (Démonet et al., 2004; Collective expertise INSERM, 2007). These data point
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toward the urge of building and testing efficient learning tools to
optimize the learning trajectories of typically developing young
pupils and evenmore importantly to remediate specific disabilities
found in children with language-based learning impairments. In
addition to the burden in the young population, the demographic
changes in life expectancy will lead to a significant increase of
the population aged over 65 years old in Europe. This population
is at high risk of suffering from neurologic age-related diseases
(Salomon et al., 2012). For instance, the incidence of stroke is
expected to grow by 36% from 2000 to 2025 (Truelsen et al.,
2006). The last study of the World Health Organization Global
Burden of Disease project is eloquent in showing that stroke
remains the second cause of worldwide mortality (Lozano et al.,
2012). Although advances in the acute medical management of
stroke patients have reduced mortality in high-income countries
(Feigin et al., 2014), stroke is still a major cause of disability-
adjusted life-years (Murray et al., 2012). Beyond cardiovascular
diseases, the rapid aging in Europe will also increase other non-
communicable disorders such as neurodegenerative diseases. For
instance, Parkinson’s disease affects 2.4 per 100 inhabitants of
more than 65 years and its prevalence is expected to double by
year 2030 (Dorsey et al., 2007). In this context, the need to develop
innovative and effective rehabilitation evidence-based techniques
is a challenge for the next years in the field of neuro-rehabilitation.

During the last decade, the neuroscientific community has
developed a line of research on music perception and on the
musician’s brain. Results obtained have largely contributed to
increase our knowledge on the brain functioning in general
and have allowed delineating the positive impact of playing a
musical instrument on brain plasticity. In the first part of the
review, we report evidence from cross-sectional and longitudinal
studies showing that learning to play a musical instrument can
induce substantial neuro-plastic changes in cortical and subcor-
tical regions of motor, auditory and speech processing networks.
The second part focuses on music to language transfer effect and
on the necessary conditions for enhancing language processing
in healthy participants. We follow by reporting an overview of
the evidence showing that musical training can be an alternative,
low-cost, and effective method for the remediation of language-
based learning impaired populations. We then focus on neuro-
rehabilitation by presenting the results of studies showing that
music interventions can enhance motor recovery and neuroplas-
ticity after stroke and can ameliorate motor deficits observed
in Parkinson disease. Finally we discuss some of the important
similarities and differences between musical training for neuro-
education and for rehabilitation purposes.

Musical Practice Fosters Neuroplasticity

In the last decade, the neuroscientific community has concen-
trated a great amount of effort to explore the positive impact of
playing amusical instrument on the brain. Those efforts have pro-
vided converging evidence that themusician’s brain is an excellent
model of neuroplasticity, specifically in the sensory-motor system
(Münte et al., 2002; Zatorre, 2013). Indeed, playing in a sym-
phony orchestra requires a large amount of practice: 20-year-old
orchestramusicians typically spendmore than 10,000 h ofmusical

practice (Krampe and Ericsson, 1996). During all those hours,
the musician will develop and ultimately master many different
competences involving sensory-motor, mnesic, cognitive control,
and attentional processes. As a consequence of the repetition of
this complex activity, the underlying neural substrates will be
eventually modified due to functional and structural neuroplas-
tic mechanisms (see for a recent review, Kolb and Muhammad,
2014).

Neuroplastic Changes in the Sensory-Motor
Network
The neuroplastic changes induced by specific training can be
studied using both cross-sectional and longitudinal approaches.
While longitudinal studies generally use a test-training-retest
procedure with naïve participants before training, cross-sectional
studies compare a group of experts to a group of laymen partic-
ipants. In the case of cross-sectional studies in which eventual
pre-existing inter-individual differences might account for the
differences observed between the groups (Zatorre, 2013) so that
causality between music training and the observed effects cannot
be demonstrated. By contrast, longitudinal studies with pseudo-
random assignment of the participants to a training group and
a non-training group allow determining that musical training is
the cause of the differences (Schellenberg, 2004). Using a cross-
sectional approach, Bangert and Schlaug (2006) conducted a study
comparing the anatomical structure of the primarymotor cortices
in professional musicians and non-musicians. Using magnetic
resonance imaging (MRI) these authors compared a group of non-
musicians to pianists and violinists.While pianists showed similar
structuralmodifications over both hemispheres, violinists showed
a modification only over the right hemisphere. Indeed, playing
the piano or the violin involves different type of bimanual control:
pianists require fast and accurate finger movements of both hands
whereas violinists use both hands asymmetrically favoring fine
motor control of left hand fingers and gross motor control of
the right hand thus leading to such a structural asymmetry. It is
interesting to note that these studies provided evidence on how
practicing particular cognitive andmotor induce structural plastic
brain alterations and improved level of performance for instance
in motor areas (Schlaug et al., 1995a; Schlaug, 2001; Schmithorst
andWilke, 2002; Gaser and Schlaug, 2003; Hutchinson et al., 2003;
see also Elbert et al., 1995; Draganski et al., 2004; Bengtsson et al.,
2005).

Interestingly, the level of musical practice seems to be positively
correlated with the increase in gray matter (GM) over motor
regions (Gaser and Schlaug, 2003). Nonetheless, a recent study
using particularly well controlled and highly selected pianists
challenged the results mentioned above by showing a more com-
plex pattern with decreasing GM density in peri-rolandic and
striatal areas together with increasing GM density over areas
involved in higher order processing such as the right fusiform
gyrus, the right mid orbital gyrus, and the left inferior frontal
gyrus (James et al., 2014). Increases in GMvolume in the putamen
have also been associated with timing variability and irregularity
of scale playing in professional pianists (Granert et al., 2011). In
this study, it was also observed that patients with musical dystonia
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presented more volume of GM in the right middle putamen.
These surprising results may relate to the age of onset of musical
practice and to excessive training, a potentially important factor
for influencing plasticmechanisms and neural efficiency (Amunts
et al., 1997). For instance, the age of onset of musical training
is correlated with the level of motor performance in a rhythm
synchronization task (Bailey et al., 2014) and may be decisive for
the non-linear dynamic of structural brain changes induced by
musical practice (Steele et al., 2013; Groussard et al., 2014).

Musical practice can also modify the strength of the con-
nections between distant areas via white matter modifications.
Compared to non-musicians, professional pianists exhibit a larger
anterior portion of the Corpus Callosum, the main white matter
fiber bundle connecting the two hemispheres (Schlaug et al.,
1995b). Using diffusion tractography imaging method (DTI), it
has been recently reported that musicians exhibit stronger white
matter connectivity in the left and right supplementary motor
areas (Li et al., 2014), in the corticospinal tract (Imfeld et al.,
2009) and importantly, between auditory and motor areas (Oech-
slin et al., 2010; Halwani et al., 2011). The strong coupling of
motor and auditory networks has been confirmed by further
functional imaging studies showing activation of motor areas
during the listening to musical rhythms in musicians (Haueisen
and Knösche, 2001; Grahn and Brett, 2007; Bengtsson et al., 2009;
Grahn and Rowe, 2009). Nevertheless, non-musicians also show
such audio–motor co-activation (Baumann et al., 2007).

Moreover, short-term training programs also induce functional
plastic changes. When beginners learn to play simple melodies
(Bangert and Altnemüller, 2003). For instance, Lahav et al. (2007)
trained non-musicians to play melodies by ear during five con-
secutive days and found activations in premotor regions when
participants passively listened to the trained melodies (see also
Meister et al., 2005). By contrast, Chen et al. (2012) observed
a reduction of activation in both dorsal and ventral premotor
cortices duringmusical training of naïve participants. This pattern
of reduced activation over motor areas in musicians may reflect
functional efficiency changes induced by musical training (Jäncke
et al., 2000). In this context, Pascual-Leone et al. (1995) were the
first in observing functional reorganization during piano learning
using transcranial magnetic stimulation (TSM). After 4 weeks of
training, participants showed a reduction of the motor map while
showed an increase during the first week. This reorganization pro-
cess over cortical motor maps highlight three important aspects.
Firstly, rapid functional changes can occur after a rather short
period of training. Secondly, the plastic changes induced by short-
term training disappear when the training ends (see for example
also Draganski et al., 2004). Thirdly, long-term training can lead
tomore efficient reduced patterns of activation. Aside frommotor
regions, plastic changes have also been reported at the level of
the somatosensory cortices: musicians are more sensitive to tac-
tile stimulations of the fingers than non-musicians, suggesting
that musical practice can modify the size of the somatosensory
receptive fields (Elbert et al., 1995).

Playing amusical instrument requires a clearmotor component
for a good performance. Nonetheless, the auditory dimension is
also crucial in order to generate error feedback that might correct
or adjust movements in case of errors (Maidhof, 2013; Maidhof

et al., 2013; Pfordresher and Beasley, 2014) and to accurately
perceive the pertinent acoustical parameters of the auditory input.
Therefore, music induced plastic modifications over auditory
areas might also be expected to occur.

Neuroplastic Changes in the Auditory Pathway
The positive effects of musical practice on auditory processing
have been evidenced by several studies showing lower discrimina-
tion thresholds for frequency, duration, silences, or time intervals
in experts than in laymen (Jones et al., 1995; Kishon-Rabin et al.,
2001; Micheyl et al., 2006; Rammsayer and Altenmüller, 2006;
Mishra et al., 2014). In terms of structural plasticity, as in the
case of the motor system, musical practice induces structural
changes in the cortical auditory network: GM changes have been
observed in both longitudinal and cross-sectional studies with
musicians exhibiting enlarged AC compared to non-musicians
(Schlaug et al., 1995a; Keenan et al., 2001; Schneider et al., 2002,
2005; Bermudez and Zatorre, 2005; Hyde et al., 2009). Moreover,
compared to non-musicians,musicians also showmore developed
superior longitudinal fasciculus and arcuate fasciculus, the fiber
bundles connecting the AC to Broca’s area (Oechslin et al., 2010;
Wan and Schlaug, 2010; Halwani et al., 2011).

In line with these findings, functional changes have been
reported in musicians at almost every single step of the auditory
pathways: from the cochlea to the inferior colliculus (IC) and
finally to the auditory cortices (AC). Musicians show functional
changes already at the very peripheral level with enhanced activity
of the Medial olivocochlear complex, responsible for controlling
the cochlear micromechanics (Perrot et al., 1999; see for a review
Perrot and Collet, 2014). Since almost 10 years, the systematic
work of Nina Kraus and her group have provided exciting evi-
dence that musical practice also induces substantial neuroplastic
changes over subcortical structures. The IC, a subcortical struc-
ture in the brainstem receiving both bottom-up inputs from the
cochlea and top-down inputs via the corticofugal pathway (Kraus
andChandrasekaran, 2010), encodes specific characteristics of the
auditory input (Russo et al., 2004). For instance, very brief acoustic
events such as stop consonants (“b,” “p,” “g,” “d,” “t”) are reflected
by the transient response of the auditory brainstem responses
(ABRs) whereas sustained acoustic events such as vowels are
reflected by the frequency following response (FFR). Compared
to non-musicians, adult musicians show more robust transient
response and FFR to both musical and speech sounds (Musacchia
et al., 2007; Parbery-Clark et al., 2012) suggesting that at the level
of the brainstem, the representations of the sounds aremore elabo-
rated and more accurate in musicians than in non-musicians. The
enhancement ofABRs is already visible at age three suggesting that
very few years of musical trainingmight be sufficient to elicit such
consistent plastic changes in the IC (Strait et al., 2013). Moreover,
the benefit of musical training received during childhood appears
to remain during adulthood as revealed by a correlation between
ABR amplitude and how recently participants quitted the training
(Skoe and Kraus, 2012; see also Strait and Kraus, 2011).

Finally, musical practice fosters functional brain plasticity
in cortical areas: compared to non-musicians, adult and child
musicians show enhanced response of the AC as reflected by
larger N1/P2 amplitude to complex sounds (Shahin et al., 2003,
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2004; Trainor et al., 2003). Moreover, this enhanced N1/P2 is
particularly visible when the stimulus presented is the instrument
played by the participants (Pantev et al., 1998, 2001). Again, these
results suggest that musicians have a more elaborated representa-
tion of the auditory input and better encode fine-grained features
of sounds than non-musically trained individuals.

Interestingly, musical practice also increases the neural sen-
sitivity to the statistical regularities found in the auditory input
(François and Schön, 2014). For instance, a deviant sound rarely
occurring within a sequence of repeated standard sounds elicit a
specific event-related potential (ERP) component, the mismatch
negativity (MMN), reflecting the pre-attentive detection of an
auditory change (Näätänen et al., 2005; Grimm and Escera, 2011).
Adult and childmusicians often show larger and/or earlierMMNs
to changes in several features of the sounds such as frequency,
duration, intensity, or spatial localization than non-musicians
(Tervaniemi et al., 2001, 2005; Van Zuijen et al., 2005; Vuust
et al., 2005, 2011; Brattico et al., 2009; Marie et al., 2011; Putkinen
et al., 2014). Additional evidence shows that musicians exhibit
enhanced MMN to change in longer sequences of structured
sounds (Tervaniemi et al., 2001; Trainor et al., 2002; Fujioka et al.,
2004; Habermeyer et al., 2009).

Neuro-Education: Music Training as an
Alternative Tool to Promote Literacy Skills

After having delineated the positive effects of playing music on
brain plasticity in the auditory and motor networks, we now turn
to the topic of neuro-education We aim to give an overview of
evidence showing that language-based learning impaired children
often show deficits in the specific processes that are boosted by
musical practice. We then present the hypothesis of music to
language transfer effect, which allow grounding the subsequent
evidence fromboth cross-sectional and longitudinal studies show-
ing the beneficial effects of musical practice on speech process-
ing in typically developing children. We finally summarize the
few studies testing music-training programs in language-based
learning impaired populations.

Speech Processing in Children with Language
Impairment
Childrenwith language based learning impairments such as devel-
opmental dyslexia present a specific deficit in reading despite
conventional instruction, socio-cultural level, normal intelligence
and the absence of sensory deficits (Lyon et al., 2003; Vellutino
et al., 2004; Collective expertise INSERM, 2007). Phonological
awareness is crucial for normal language development (Ramus,
2003; Serniclaes et al., 2004) and relies on the ability to categorize
speech sounds on the basis of extremely short timing differences.
The voice onset time (VOT) is an acoustic parameter largely used
to study phonological awareness as it allows differentiating the
sound “ba” from the sound “pa,” a task in which dyslexic children
have difficulties (Serniclaes et al., 2004). In line with these find-
ings, Chobert et al. (2012) were able to demonstrate that children
with dyslexia are impaired in the pre-attentive processing of VOT
and duration in syllables based on MMN data. Children with

language learning difficulties have also difficulties in extracting
speech sounds when presented in a background noise (Ziegler
et al., 2005, 2009) and show degraded neural responses to speech
in noise stimuli (Warrier et al., 2004; Wible et al., 2004; Anderson
et al., 2010).

These children might present a general deficit in the process-
ing of timing information (Goswami et al., 2011). This timing
hypothesis would explain why they exhibit impaired phonological
processing (Ziegler and Goswami, 2005) and impaired general
rhythmic processing (Thomson and Goswami, 2008; Corriveau
and Goswami, 2009). Huss et al. (2011) showed that children
with dyslexia present a deficit in the perception of rise time, an
acoustic parameter important to extract the periodic and even-
tually metrical structures of speech (Cummins and Port, 1998;
Quené and Port, 2005; Goswami, 2010;Huss et al., 2011). Growing
evidence converge on the idea that rhythmic skills are crucial for
the development of literacy skills in typically developing children
(Tierney and Kraus, 2013; Woodruff Carr et al., 2014) and that
children with dyslexia are impaired at tapping to a rhythm, and
in perceiving tempo (Thomson and Goswami, 2008; Corriveau
and Goswami, 2009). These results also confirm findings showing
a link between literacy skills, phonological abilities, and musical
aptitudes in typically developing child and in adult participants
(Anvari et al., 2002; Slevc and Miyake, 2006; Tierney and Kraus,
2013). Following this line, a recent study with 48 children with
dyslexia shows that temporal auditory processing strongly pre-
dicts phonological processing and reading abilities (Flaugnacco
et al., 2014).

Music to Language Transfer of Competences:
Why and How Music Can Transfer to Language
Transfer of skills generally occurs when a specific skill acquired in
one specific domain influences processes in another supposedly
unrelated domain. Several observations have lead to the hypoth-
esis that musical practice could transfer to language and more
specifically to speech processing (Kraus and Chandrasekaran,
2010; Besson et al., 2011; Patel, 2011, 2014). Firstly, as presented
above, there is a whole body of literature showing enhanced audi-
tory processing in musicians. Secondly, music and speech share
similarities: both involve the processing of similar acoustic cues
(such as pitch, intensity, timbre, and duration) and both involve
maintaining sequences of sounds that are unfolding in time in a
structured manner. Thirdly, music and speech processing show
a clear overlap in their cortical and subcortical neural substrates
(Koelsch et al., 2005; Vigneau et al., 2006; Schön et al., 2010),
suggesting shared neural resources (Patel, 2011, 2014).

Music to Language Transfer Effects, Evidence
in Healthy Children
In the specific context of education, it is now clearly demonstrated
that noisy environments in classroom settings with higher than
normal ranges level of noise negatively impacts pupils’ perfor-
mance (Knecht et al., 2002; Shield andDockrell, 2008). Indeed, the
level of performance in a syllable discrimination task dramatically
drops as the level of noise increases (Neuman et al., 2010). The
amplitude and latency of ABRs are also clearly reduced in the
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FIGURE 1 | Illustration of the experimental design used in Chobert
et al. (2014) and François et al. (2013). Using a similar design over 2
school years with test-training-retest-training-retest procedure over
2 years, 8-year-old children who followed a musical training program
exhibited behavioral and electrophysiological evidence of increasing VOT
processing and speech segmentation skills than children who followed a

painting training program. Note that, (i) the pseudo-random assignment
of the participants is crucial to control for possible confounds including,
socio-economic, educational, cognitive, and linguistic measures; (ii) that
the two training programs must be equally motivating, engaging, diverse;
and that (iii) the training programs were provided in collective groups and
not in individual.

presence of acoustic noise (Burkard and Sims, 2002; Russo et al.,
2004). Children with language based learning impairment show
impaired speech in noise perception and altered neural responses
to speech sounds presented in a background noise. Musical prac-
tice seems to be a good tool to prevent this deleterious effect of
noise as adult musicians exhibit more preserved ABRs in noise
than non-musicians (Parbery-Clark et al., 2009a,b; Bidelman and
Krishnan, 2010; Strait et al., 2012). Furthermore, a recent longi-
tudinal study has revealed that musical training in high school
music classes can induce these changes (Tierney et al., 2013),
which appear tomaintain during lifespan (Zendel andAlain, 2012,
2013).

If musicians are better in perceiving speech in noise they also
have refined representations of syllables (Degé and Schwarzer,
2011; Zuk et al., 2013; see also Moreno et al., 2009) at both
subcortical and cortical levels (Chobert et al., 2011, 2014; Strait
et al., 2012; see Figure 1 for an illustration of the experimental
design). All together, these results show thatmusicians have better
neural encoding of speech sounds, which might help to develop a
greater sensitivity to the metrical structure of speech (Port, 2003).
Compared to non-musicians, adult and child musicians showed
increased sensitivity to subtle pitch modifications inserted in the
prosodic contour of sentences being uttered in their native or
in a foreign language (Schön et al., 2004; Magne et al., 2006;
Marques et al., 2007). Adult musicians are also more sensitive to
the metrical structures of speech and to anomalous durational
modifications in sentences (Marie et al., 2011).

Further evidence of better speech processing skills in musi-
cians than in non-musicians was also provided by cross-sectional
and longitudinal studies exploring speech segmentation ability in
adults and children (François and Schön, 2011; François et al.,
2013, 2014). Speech segmentation is one of the mandatory steps
for acquiring a new language, which requires the ability to extract
words from continuous speech. When presented with 2 min of

an artificial stream of statistically structured syllables, infants and
adults are able to segment and discriminate syllables sequences
that are part of the stream (i.e., familiar sequences) from new
sequences (i.e., unfamiliar sequences; Saffran et al., 1996; Aslin
et al., 1998). While adult musicians barely outperformed non-
musicians (François and Schön, 2011), musically trained children
largely outperformed their non-musician counterparts after 1 year
and even more after 2 years of musical training (François et al.,
2013). Moreover, neural responses in both adult and child musi-
cians differentiated familiar fromunfamiliar sequences during the
behavioral test. In a further study, François et al. (2014) provided
evidence that the ability to differentiate familiar from unfamiliar
items was correlated with how fast a fronto-central negative ERP
component emerged during the exposition to the artificial speech
stream.

The mounting evidence of the beneficial effects of musical
training on speech auditory processing in typically developing
children as well as the timing deficits found in children with
language based learning impairments led researchers to test the
idea that musical training could be used as a remediation tool.

Music Training Programs in Language Impaired
Populations
Overy (2000, 2003) were the first evaluating the efficiency of play-
ing music in children with dyslexia. Despite a small group and no
clear matched-control, the results showed improved phonological
awareness and spelling performance after a rhythmic training pro-
gram. Along these lines, short rhythmic priming sequences have
be used to enhance phonological processing in typically develop-
ing children and in prelingually deaf children (Cason and Schön,
2012; Cason et al., 2015) and to improve syntactic processing
in children with language impairments (Przybylski et al., 2013).
Despite a clear lack of controlled trials in children and adolescents
with dyslexia (Cogo-Moreira et al., 2012), a recently published
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study confirms that musical training can improve reading skills
and educational achievement in those children (Cogo-Moreira
et al., 2013). Moreover, a recent study from Bishop-Liebler et al.
(2014) provides clear evidence of the positive influence of musical
practice on the timing deficits found in dyslexics.

Finally, recent data suggest that an adapted musical training
program can enhance auditory, phonological, and cognitive pro-
cesses in 8-year-old deaf children (Rochette et al., 2014) and
that musical rhythmic priming can enhance phonological pro-
duction in prelingually deaf children (Cason et al., 2015). These
results are important for future studies in cochlear-implanted
users who show profound deficits in speech in noise perception,
in the perception of complex rhythms, timbres, and melodies
with somewhat preserved tempo and simple rhythms perception
(McDermott, 2004; Drennan and Rubinstein, 2008).

Neuro-Rehabilitation: Music-Based
Therapies in Neurologic Population

Music playing requires the processing of multimodal information
and entails high neural demands. Multimodality is an excellent
opportunity to adapt differentmusical activities such as playing an
instrument, moving in synchrony along a rhythm or listening to
music with a therapeutic purpose (Pantev and Herholz, 2011). In
this section, we present rehabilitative techniques using music as a
key feature to remediatemotor deficits in neurological conditions.

Playing Music to Overcome Motor Deficits
in Stroke
Motor impairment after stroke refers to a weakness of the mus-
cles mainly affecting the control and performance of voluntary
movements (Mohr et al., 2011). This deficit is the most common
outcome after stroke with paresis of the upper and lower extrem-
ities being found in almost 70% of cases (Rathore et al., 2002).
While paresis of the legs impedes functional mobility such as
walking, the limitations of arm and hand paresis extend to several
daily-living activities (Langhorne et al., 2011).

Music-supported therapy (MST) aims to restore paresis of the
upper limb through musical instrument playing (Schneider et al.,
2007; see Table 1). In order to enhance fine and gross move-
ments, patients are trained on playing melodies on a midi piano
and/or electronic drum pads. MST relies on four basic principles:
massive repetition, audio–motor coupling, shaping, and emotion-
motivation effects (Rodríguez-Fornells et al., 2012). Firstly, MST
requires massive repetition of simple sequences of movements
through the intervention. Importantly, high-intensity practice
is a basic and well-accepted principle in neuro-rehabilitation
(Langhorne et al., 2009, 2011). Secondly, multimodal integration
may enhance audio–motor coupling where the musical sound
serves as a feedback to reinforce the movement, to correct the
errors, to adjust the timing and to refine motor representa-
tions. Thirdly, the therapy is adapted to the level of impairment
and to the progression of the patient. Fourthly, the emotional-
motivational aspects of music may regulate emotional responses
through the playfulness of learning a new skill.

Music-supported therapy is successful in reducing the motor
deficits in subacute stroke patients. Altenmüller et al. (2009) and

Schneider et al. (2007) compared the effectiveness of MST to
conventional treatment.Only patients in theMSTgroup improved
in frequency, velocity and smoothness of fingers and hand tapping
movements.Moreover, those patients obtained greater scores over
time on standardized clinical tests assessing motor functions.
However, to what extent is the presence of music responsible
for the observed gains and associated plasticity? In a single-case
study (Rojo et al., 2011), a patient performed a passive listening
task with unfamiliar and trained melodies. Interestingly, while
before the application of MST the patient exhibited only acti-
vation of the AC, the motor regions were also activated after
the training. This phenomenon of audio–motor coupling pro-
vided evidence that the auditory feedback is an essential part of
the therapy by contributing to enhance activations over motor
regions (Rodríguez-Fornells et al., 2012). In a further study,
Amengual et al. (2013) used TMS to demonstrate changes in the
excitability of the sensorimotor cortex due to MST. Participants
recovered from their motor deficits and exhibited an increased
excitability of the sensorimotor cortex in the affected hemisphere
after 4 weeks of MST. Moreover, a lateral shift in the motor
map of chronic patients was evidenced after the training and
was associated with motor gains. Interestingly, similar results
have been recently reported in subacute patients (Grau-Sánchez
et al., 2013). Taken together these studies suggest that MST
can induce functional changes associated to brain reorganization
processes.

Recent studies aimed at modifying different aspects of theMST
protocol. Van Vugt et al. (2014) implemented MST in two groups
of subacute stroke patients in which participants received the
therapy in pairs instead of individual sessions. One group had
to play together while the other group played in turns. Although
both groups improved their performance in a motor task, results
indicated a positive trend favoring the in-turn group. Besides, the
in-turn group improved more their mood as well as their feelings
about their partner. The idea that music playing is a shared expe-
rience (Overy, 2012) is interesting to consider because patients
can feel emphatic and understood by others individuals presenting
similar difficulties. This could in turn enhance the mood and
reduce depressive symptoms (Gillen, 2010). MST has also been
evaluated in a home-training protocol (Villeneuve et al., 2014)
showing improvements in the paresis of chronic patients that were
maintained over time. During nine 1-h sessions, patients played
musical sequences using Synthesia (Synthesia LLC) a software that
provides visual cues to guide them. The sessions were comple-
mented with at home exercises on a roll-up piano. Home sessions
in chronic stages may be an appropriate cost-effective approach
once patients have gained a certain degree of improvements and
stabilization. In this vein, the use of new technologies and adapted
software with rehabilitative purposes opens new directions in the
field of neuro-rehabilitation. The recently developed MusicGlove
(Friedman et al., 2014) may be an alternative tool to treat paresis
in chronic stages. The MusicGlove is an instrumented glove that
produces notes during gripping movements while being guided
with visual stimuli displayed on a screen. An exploratory study
with 12 chronic patients has revealed improvements in motor
functions compared to conventional therapy or isometric training
(Friedman et al., 2014).
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TABLE 1 | Summary of the studies evaluating MST to restore upper limb paresis in stroke patients.

Study Participants MST program Results

Schneider et al.
(2007)

Subacute patients
MST group (n = 20)
CT group (n = 20)

15 sessions of 30 min
during 3 weeks
Piano and drum playing

MST group: increased frequency, velocity, and smoothness in a
finger and a hand-tapping task. Improvements in ARAT, BBT,
9HPT, APS motor test CT group: no improvements

Altenmüller et al.
(2009)

Subacute patients
MST group (n = 32)
CT group (n = 30)

15 sessions of 30 min
during 3 weeks
Piano and drum playing

MST group: increased frequency, velocity, and smoothness in a
finger and a hand-tapping task. Increased smoothness in
prono-supination movements and velocity in reaching a target.
Better scores in ARAT, BBT, 9HPT, and APS motor test CT group:
no improvements

Rojo et al. (2011) Chronic patient
Case study

20 sessions of 30 min
during 4 weeks
Piano and drum playing

Increased smoothness in a finger and a hand-tapping task and in
prono-supination movements. Increased frequency in a
hand-tapping task. Increased amplitude of motor-evoked
potentials in both hemispheres. Reduced neural activation in the
unaffected hemisphere during a motor task with the paretic hand.
Functional activation of motor regions during the passive listening
of trained sequences

Amengual et al.
(2013)

Chronic patients
MST group (n = 20)
Healthy group
(n = 20)

20 sessions of 30 min
during 4 weeks
Piano and drum playing

Increased frequency in a finger-tapping task, increased
smoothness in a hand-tapping task. Better scores in ARAT motor
test. A lateral shift in the representational motor cortical map.
Increased amplitude of motor-evoked potentials in the affected
hemisphere Healthy group: no improvements

Grau-Sánchez
et al. (2013)

Subacute patients
MST group (n = 9)
Healthy group (n = 9)

20 sessions of 30 min
during 4 weeks
Piano and drum playing

Improvements in ARAT, BBT, and APS. Increased quality of life.
Increased excitability in the affected hemisphere and a posterior
shift in the representational motor cortical map Healthy group:
reduction in the area of the representational motor cortical map

Van Vugt et al.
(2014)

Subacute patients
MST in turn group
(n = 14)
MST together group
(n = 14)

Three individual sessions and seven
sessions in pairs, where one group
played in turns with their couple and
the other group played in synchrony
with their couple. In total, 10
sessions of 30 min over the course
of 3 or 4 weeks Piano playing

Both groups improved in 9HPT test, but the in turn group
improved more. More synchrony in a index-to-thumb tapping in
both groups. Reduction in depression and fatigue in both groups.
Both improved mood but the in-turn group became more positive
over the therapy. The in-turn group rated higher how they
experienced sessions and how they felt with partner

Villeneuve et al.
(2014)

Chronic patients
MST group (n = 13)
No control group but
intrasubject design

Nine individual sessions of 1 h
guided by a therapist and six
sessions of 30 min at home without
therapist. In total, 15 sessions
3 weeks Piano playing

Better scores in BBT, 9HPT, FTN, FTT, and Jebsen motor test.
Improvements mantained after 3 weeks of finishing the treatment

The abbreviations in the participants column correspond to: MST, music-supported therapy; CT, conventional treatment. The abbreviations in the results’ column refers to the following
motor tests: ARAT, Action Research Arm Test (Carroll, 1965; Lyle, 1981); BBT, Box and Blocks Test (Mathiowetz et al., 1985); 9HPT, 9 Hole Pegboard Test (Parker et al., 1986); APS,
arm paresis score (Wade et al., 1983); FTN, Finger To Nose Test; FTT, Finger Tapping Test; Jebsen, Jebsen Hand Function Test (Jebsen et al., 1969).

Importantly, all subacute patients involved in theses studies
receive a rehabilitation program in a hospital or outpatient set-
ting that includes physiotherapy and occupational therapy to
train the affected extremity (Gillen, 2010). This may limit the
interpretation of the positive effects of MST over conventional
treatments because participants cannot be excluded from the
standard rehabilitation program (Oremus et al., 2012). More-
over, natural brain processes of recovery take place in acute and
subacute stages which may be a confounding factor (Cramer
et al., 2011; Johansson, 2011; Zeiler and Krakauer, 2013). In
order to control for spontaneous recovery, it is important to
have comparable groups in terms of age, severity of the deficits
and time since stroke. Chronic stages are characterized by a
stabilization of the deficits via compensatory mechanisms at
both the behavioral and neural levels (Cramer et al., 2011;
Langhorne et al., 2011) and thus, it might be more appropri-
ate to perform proper randomized controlled trials (RCT) using

within-participant designs combined together with disease pro-
gression models.

Using Music Listening to Improve Gait in
Parkinson’s Disease and Other Neurological
Diseases
The main symptom in Parkinson’s disease is motor impairment
in gait, which is characterized by a decreased speed, shorter stride
length, and asymmetries in stride times for both lower limbs, all
in turn increasing cadence of steps. This pronounced reduction in
speed and amplitude is accompanied by a difficulty in initiating
voluntary movements in later stages of the disease, with patients
experiencing a freezing of the movements (Okuma and Yanagi-
sawa, 2008). This limitation in walking will in turn impair balance
and postural control and lead patients to a reduced activity and
high risk of falls (Kim et al., 2013). A dysfunction of the basal
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ganglia is responsible for the mentioned symptoms (Stoessl et al.,
2014) and the efficacy of pharmacological treatment reduces with
time. Thus, the development of behavioral therapies may help
in coping with the impairment and may be an alternative to be
combined with pharmacological therapy.

One approach to enhance intrinsically rhythmical movements
consists in using external sensory cues to entrain the movements
(Thaut and Abiru, 2010; Thaut et al., 2014). Rhythm auditory
stimulation (RAS, Thaut et al., 1996) aims to facilitate gait using
metronome beats. The patient is first trained to move to the beat
and then the tempo is increased from 5 to 10% over the baseline to
accomplish faster movements. A first study observed that 3 weeks
of RAS could improve gait velocity, stride length, and step cadence
more than no treatment or self-paced training program (Thaut
et al., 1996). Further studies have confirmed the positive effects
of RAS on gait parameters such as overcoming freezing of gate
(McIntosh et al., 1997, 1998; Thaut et al., 1997; Freedland et al.,
2002; Fernandez del Olmo and Cudeiro, 2003, 2005; Arias and
Cudeiro, 2010; for a review, see Nombela et al., 2013). It also
improves stride length, gait velocity, cadence, and asymmetry in
patients with stroke (Thaut et al., 1997, 2007; for a review in other
neurological conditions, seeWittner et al., 2013). The neuroplastic
mechanisms beyond the effectiveness of RAS may be due to an
increased activity in the cerebellum, trying to compensate the
dysfunctional pathway of the basal ganglia to regions of the pre-
motor cortex (Fernandez del Olmo and Cudeiro, 2003). However,
two studies have showed more benefits in the advanced than in
the early stages of the disease suggesting that the effectiveness of
RAS depends on the stage of the disease (Willems et al., 2006;
Arias and Cudeiro, 2008). Moreover, some studies have explored
variations in RAS, manipulating the tempo (Fernandez del Olmo
and Cudeiro, 2003, 2005) as well as the rhythm with respect to
the individual’s baseline (Willems et al., 2006; Ledger et al., 2008).
These studies have evidenced that beats presented at 20% slower
than the baseline cadence does not benefit gait (Willems et al.,
2006). Although other types of therapy have examined the use
of other sensorial modalities (visual and proprioceptive cues),
the auditory modality seems to be the best to improve gait in
Parkinson’s disease (Nombela et al., 2013).

Music Therapy and Emotion
in Neuro-Rehabilitation
Beyond motor impairment, neurological patients are at high risk
for suffering psychological consequences. Around one third of
stroke patients suffer from depression in the following months
and years (Hackett et al., 2005; Ayerbe et al., 2013) and apathy
and anxiety can also be found as a frequent neuropsychiatric
consequence (Campbell Burton et al., 2011; Caeiro et al., 2013).
These neuropsychiatric symptoms are thought to impact health-
related quality of life, increase morbidity and worsen the cog-
nitive impairments (Whyte and Mulsant, 2002; Aarsland et al.,
2012; Ayerbe et al., 2013). Psychological factors can also have
a negative effect on recovery and can affect the engagement in
the rehabilitation program. Pharmacological interventions have
small effects on treating depression and reducing its symptoms
in stroke and Parkinson’s disease and can also lead to negative
side effects (Hackett et al., 2008, 2010; Aarsland et al., 2012).

Some studies have reported that MST can reduce depression and
fatigue and can improve the quality of life in stroke patients (Grau-
Sánchez et al., 2013; Van Vugt et al., 2014). Music playing could
be an alternative approach to target depression and neuropsy-
chiatric symptoms through emotion regulation. However, there
is little research studying the effectiveness of music therapy in
the emotional domain. Compared to listening to audio books or
auditory intervention, the daily listening to self-selected music
during 2 months improves mood in the following months. Lis-
tening to music can also improve verbal memory and focused
attention (Särkämö et al., 2008). Importantly, listening to music
also induced structural changes with an increase of GM in frontal
and limbic structures (Särkämö et al., 2014). Participants reported
that music was helpful for relaxing and sleeping, influenced their
mood and evoked memories and reflexive thoughts (Forsblom
et al., 2009). Musical activities may be a tool to modulate the
emotional reactions and cope with them through playfulness
activity.

Future Research in the Field of Music Therapy
in Neuro-Rehabilitation
We focused our review on MST, RAS, and listening to music as
standardized therapies to treat motor deficits and improve mood.
Further research should aim to standardize interventions to build
a strong dataset in this field. Moreover, the majority of stud-
ies refer to conventional treatment as the current rehabilitation
program provided by the hospital. However, the content of the
rehabilitation program may vary depending upon the facilities
or the countries. Thus, an accurate description of the exercises
performed by the control group is needed. Randomization of
participants and blind evaluations of the treatment constitute
RCTs and are necessary to implement interventional programs in
clinical practice.

Musical Training for Neuro-Education
and Neuro-Rehabilitation: Differences
and Similarities in Conceptual
and Practical Aspects

Fundamental differences may exist between musical training
for education or rehabilitation. Firstly, conceptual differences
on the aim of musical training remain in the two cases. In
neuro-education, musical training generally aims to boost a
“typical” developmental trajectory (Kraus and Chandrasekaran,
2010), whereas in neuro-rehabilitation, musical training is rather
used to normalize or compensate sensory, motor or cognitive
deficits induced by a pathological condition (Cramer et al., 2011).
Nonetheless, in the case of childrenwith dyslexia,musical training
will also aim to normalize the learning trajectories in order to
facilitate speech and language processing which in turn may have
a positive impact on educational achievement (Tierney and Kraus,
2013).

Secondly, the neuro-plastic mechanisms induced by musical
training during childhood or in neurological population may
be different. This might be due to the intrinsic physiological
differences at play in these two cases. Animal and human studies
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showed that auditory stimulation received early in life enhances
both sub-cortical and cortical electrophysiological responses to
sounds (Sanes and Constantine-Paton, 1985; Kraus and Chan-
drasekaran, 2010) and persist in adult development (Zhang et al.,
2001; Skoe and Kraus, 2012; White-Schwoch et al., 2013). Early
in life, the neural system is immature and capitalizes on plastic
changes such as myelination, neurogenesis, or dendritic growth
(Kolb and Telskey, 2012; Kolb et al., 2012). On the contrary, stroke
generally occurs in a mature neural system in which the insult
has induced the death of neurons from a specific region and the
disruption of neural networks. The plastic mechanisms under-
pinning recovery after stroke rely on different processes than in
typical development such as restitution and substitution (Albert
and Kesselring, 2012). Studies exploring the benefits of MST have
shown that musical training induced functional reorganization of
corticalmotormaps (Amengual et al., 2013). In Parkinson disease,
the aim of the therapy is to compensate the deficits in internally
generated movements using music as an external cue that engages
a different motor pathway to achieve the same goal, which is the
initiation and normalization of gait (Nombela et al., 2013).

Thirdly, qualitative and quantitative practical differences in the
type of training administered also remain. In neuro-rehabilitation
settings, the training is generally provided during a relatively short
period of time together with a high intensity (Albert and Kessel-
ring, 2012). Interestingly, the use of the affected upper extremity
during sessions of conventional stroke rehabilitation is minimal
(Birkenmeier et al., 2010; Krakauer et al., 2012), suggesting that
rehabilitation protocols should increase the doses of practice. In
this context, musical training protocols for motor rehabilitation
may be a good choice as they involve the massive repetition of
movements with a high-intensity. Moreover, MST and RAS are
most of the time individually administered and the complexity of
the tasks is adapted to the progression of each patient. In the case
of MST and particularly in middle to low-income countries, the
training may become rather expensive due to the individualized
administration of the therapy. However and importantly, when
patients are discharged from the rehabilitation unit, they are most
of the time physically inactive, exhibiting sedentary behaviors and
have poor social interactions (Särkämö et al., 2008; Dontje et al.,
2013; Tieges et al., 2015). The use home-basedMST and RAS ther-
apiesmay be important to encourage these patients to continue the
rehabilitation and tomaintain active.Moreover, listening tomusic
could be good alternative not only to be applied at home but also
in the rehabilitation unit, where most of the time patients remain
in their rooms with no social interaction (Särkämö et al., 2008).
Musicmaking in neuro-education settings is generally provided in
group settings with a lower intensity than in neuro-rehabilitation
but importantly, the training is administered during longer peri-
ods of time thus allowing reaching a higher degree of musical
complexity than in the context of rehabilitation. The group set-
tings used with children may be more cognitively demanding
than the ones used with neurologic patients. Most of the time,
children have to play in synchrony with each other and ultimately
create new musical pieces whereas patients will generally listen
and reproduce simple familiar musical pieces.

Despite obvious differences, fundamental similarities might
relate to the emotional, sensory, motor, cognitive, and social

demands of music making per se (Herholz and Zatorre, 2012). In
both fields, musical training is selected for its unique character-
istics involving complex interactions between different domains
and systems. Due to itsmultimodal aspect, musical training repre-
sents a good activity to develop audio–motor interactions, for cog-
nitive stimulation and mood regulation. Moreover, music making
as well as music listening are generally pleasant activities that are
most likely to induce motivated behaviors. This is particularly the
case for patients whomay bemore committed toward an enjoyable
activity with a specific purpose rather than to a repetitive training
with different rehabilitative tools. Musical training is also able
to reinforce social cohesion or bonding through repetitive inter-
individual interactions (Huron, 2001). Another similarity may
also reside on the fact that musical practice will induce positive
side effects: by enhancing language processing for the educational
side and by boosting spared functions for the rehabilitation side.
Finally, the permanence in time of the benefits of music making
is clearly observed and is probably the most meaningful aspect for
both purposes.

Conclusion

The neural mechanisms of music-induced plasticity are still not
perfectly understood (Fukui and Toyoshima, 2008), but the evi-
dence for a positive effect of musical practice are growing and
could justify the use of music both in the context of neuro-
education (Caine and Caine, 1990) and of neuro-rehabilitation
(Särkämö et al., 2014). The findings showing that the age of onset
of musical training influences the dynamic of training induced
plastic changes (Steele et al., 2013; Groussard et al., 2014) leads
to the idea that multiple sensitive periods for specific functions
and specific brain networks may co-exist in typical development
(Penhune, 2011). This opens interesting perspectives to study
the benefit of musical training in the developing brain as well
as to study its consequences on speech perception and scholar
achievement. The recent findings showing that listening to music
is a rewarding experience for most of the people (Mas-Herrero
et al., 2014) and that simplemusic listening activates the rewarding
dopaminergic system (Salimpoor et al., 2013) give even more
support to the idea that musical practice may be the perfect
tool for neuro-education and Rehabilitation by fostering plas-
tic changes in the healthy or pathological brains. Despite these
growing evidence, the educational and health systems generally
seem to be refractory to the idea of developing musical training
programs. We hope that both teachers and therapists will keep
on believing and applying alternative methods based on musical
practice.
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