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—¡Buenos días! —dijo. 
Era un jardín cuajado de rosas. 
—¡Buenos días! —dijeron las rosas. 
El principito las miró. ¡Todas se parecían tanto a su flor! 
—¿Quiénes son ustedes? —les preguntó estupefacto. 
—Somos las rosas —respondieron éstas. 
—¡Ah! —exclamó el principito. 
Y se sintió muy desgraciado. Su flor le había dicho que era la única de su especie en todo el 
universo. ¡Y ahora tenía ante sus ojos más de cinco mil todas semejantes, en un solo jardín […]! 
Y luego continuó diciéndose: "Me creía rico con una flor única y resulta que no tengo más que 
una rosa ordinaria. Eso y mis tres volcanes que apenas me llegan a la rodilla y uno de los cuales 
acaso esté extinguido para siempre. Realmente no soy un gran príncipe..." Y echándose sobre la 
hierba, el principito lloró. 
Entonces apareció el zorro. 
[…] 
El principito se fue a ver las rosas a las que dijo: 
—No son nada, ni en nada se parecen a mi rosa. Nadie las ha domesticado ni ustedes han 
domesticado a nadie […]. Son muy bellas, pero están vacías y nadie daría la vida por ustedes. 
Cualquiera que las vea podrá creer indudablemente que mi rosa es igual que cualquiera de 
ustedes. Pero ella se sabe más importante que todas, porque yo la he regado, porque ha sido a 
ella a la que abrigué con el fanal, porque yo le maté los gusanos (salvo dos o tres que se 
hicieron mariposas ) y es a ella a la que yo he oído quejarse, alabarse y algunas veces hasta 
callarse. Porque es mi rosa, en fin. 
Y volvió con el zorro. 
—Adiós —le dijo. 
—Adiós —dijo el zorro—. He aquí mi secreto, que no puede ser más simple: sólo con el corazón 
se puede ver bien; lo esencial es invisible para los ojos. 
—Lo esencial es invisible para los ojos —repitió el principito para acordarse. 
—Lo que hace más importante a tu rosa, es el tiempo que tú has perdido con ella. 
—Es el tiempo que yo he perdido con ella... —repitió el principito para recordarlo. 
—Los hombres han olvidado esta verdad—dijo el zorro—, pero tú no debes olvidarla. Eres 
responsable para siempre de lo que has domesticado. Tú eres responsable de tu rosa... 
 
 

Le Petit Prince 
Antoine de Saint-Exupéry 
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Summary 
 

 

Wildfires are expected to increase in frequency and intensity because of 
climate change and changes in land use and management. In last decades, 
the research on fire effects on aquatic systems has grown, but it has been 
mainly conducted in the short- and mid-term (<5 years). Therefore, longer 
time frames are needed to assess fire effects on freshwater ecosystems. For 
instance, fire impacts on riparian and upland forests can be long-lived and 
wildfires often extirpate fish populations from streams, which                                                                                                                                                         
h may not recover due to barriers within the river network. Regarding fish 
extirpations, it is worth noting that freshwater fish are one of the most 
threatened fauna worldwide, especially the small-bodied species. In this 
context, the overarching goal of this PhD thesis was to investigate the long-
term effects of a wildfire in Mediterranean streams. Specifically, this PhD 
thesis covered the indirect effects of two fire legacies: (1) the riparian canopy 
reduction and (2) the local extinction of the top predator in these streams, 
the endangered small-bodied fish Barbus meridionalis. 

The findings of this PhD thesis showed how the fire legacy in the riparian 
forest accelerated leaf-litter breakdown in an intermittent Mediterranean 
stream eight years after fire. The opening of the riparian forest canopy by 
fire increased light levels and water temperatures and reduced terrestrial-to-
aquatic litter inputs. The increased water temperatures engendered by 
removal of canopy cover enhanced microbial mediated leaf breakdown. The 
reduction in leaf-litter inputs probably led to lower benthic organic matter 
levels, bringing to the observed increased shredder aggregation in leaf 
packs, thereby accelerating leaf breakdown rates. 

Our results demonstrated that the apex consumer was functionally 
irreplaceable, its local extinction led to the loss of an important functional 
role that resulted in major changes to the ecosystem’s structure and function. 
Our mesocom experiment showed that Barbus meridionalis absence led to 



2                                                                                                                        Summary 

‘mesopredator release’, and also to ‘prey release’ despite intraguild predation, 
which contrasted with traditional food web theory. Top predator extirpation 
also changed whole macroinvertebrate community composition and 
increased total macroinvertebrate density. Regarding ecosystem function, 
periphyton primary production decreased in apex consumer absence. 
Moreover, we studied the feeding ecology of B. meridionalis from a 
functional perspective. Our results indicated that prey morphological and 
behavioral traits may explain prey vulnerability to predation. Specifically, 
the trait-based analysis showed that 10 of the 13 traits tested significantly 
influenced food choice (e.g. body size, concealment, locomotion, aggregation 
tendency, feeding habits). In addition, the leaf bags experiment confirmed 
that top predator absence enhanced leaf-litter breakdown, which was caused 
by the increase in shredder and scraper biomass in the absence of the 
predatory fish top-down control. Fish absence reduced leaf fungal biomass, 
but did not decrease microbially mediated leaf breakdown. These results 
suggested that leaf fungal biomass was stimulated from the bottom-up 
through nutrient recycling by the top predator. 

This PhD thesis demonstrated that past fires may have current influence on 
the structure and function of Mediterranean streams. Moreover, our findings 
evidenced that intermittent streams can be affected by the consequences of 
apex consumers’ extinctions, and that the loss of small-bodied top predators 
can lead to complex ecosystem changes. This PhD thesis interconnected 
several current topics in ecology research (i.e. fire effects on aquatic systems, 
top predator declines, and intermittent streams). Its relevance lies in the 
projected increase in fires in the Mediterranean region and in the current 
high extinction risk of small-bodied fish in freshwater ecosystems. 
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Resumen 
 

 

Debido al cambio climático y a los cambios en el uso y la gestión de la tierra, 
se espera que la frecuencia e intensidad de los incendios forestales aumente. 
En las últimas décadas, la investigación sobre los efectos de los incendios 
sobre los ecosistemas acuáticos continentales ha ido incrementando, pero la 
mayoría solo cubre las consecuencias del fuego a corto y medio plazo (<5 
años), por lo que se necesitan estudios con series temporales más largas. Por 
ejemplo, la vegetación de la cuenca fluvial y de la zona de ribera pueden 
tardar décadas en recuperarse tras un incendio y los incendios suelen 
extirpar las poblaciones de peces en los ríos que afectan, los cuales pueden 
tener dificultades para la recolonización por la existencia de barreras. En este 
sentido, cabe la pena destacar que los peces de agua dulce son uno de los 
grupos faunísticos más amenazados en todo el mundo, especialmente las 
especies de pequeño tamaño. En este contexto, el objetivo general de esta 
tesis doctoral fue investigar los efectos a largo plazo de un incendio forestal 
en ríos mediterráneos. En concreto, esta tesis doctoral se centra en los efectos 
de dos legados del fuego: (1) la reducción de la cobertura del bosque de 
ribera y (2) la extinción local del superdepredador en estos ríos, Barbus 
meridionalis, un pez amenazado de pequeño tamaño. 

Los resultados de esta tesis doctoral probaron cómo el legado del fuego en el 
bosque de ribera aceleró la descomposición de la hojarasca en un 
arroyo mediterráneo intermitente ocho años después del incendio. La 
disminución de la cobertura riparia por el fuego aumentó la disponibilidad 
de luz y la temperatura del agua y redujo la entrada de hojas desde el 
ecosistema terrestre. Este incremento en la temperatura del agua aceleró la 
descomposición de hojas mediada por microorganismos. La reducción de 
los subsidios terrestres probablemente condujo a una menor disponibilidad 
de materia orgánica en el bentos fluvial, produciendo el efecto observado 
de agregación de los macroinvertebrados trituradores en la hojarasca, lo cual 
aceleró la tasa de descomposición de las hojas. 



4                                                                                                                         Resumen 

Nuestros resultados demostraron que el superdepredador era funcionalmente 
insustituible, su extinción local conllevó la pérdida de su papel funcional 
dando lugar a cambios complejos en la estructura y función del ecosistema. 
Nuestro experimento de mesocosmos mostró que la ausencia de Barbus 
meridionalis provocó el incremento de los depredadores, y también de los 
consumidores primarios, lo que contrastó con la teoría tradicional sobre 
ecología de redes tróficas. La extinción local del depredador también cambió 
la composición de la comunidad de macroinvertebrados y condujo a una 
mayor densidad total de macroinvertebrados. En cuanto al funcionamiento 
del ecosistema, la producción primaria del perifiton disminuyó en ausencia 
del superdepredador. El estudio de la  ecología trófica de B. meridionalis desde 
una perspectiva funcional reveló que los rasgos morfológicos y de 
comportamiento de los macroinvertebrados pueden explicar su 
vulnerabilidad a la depredación. En concreto, el análisis basado en el rasgos 
funcionales de los macroinvertebrados indicó que la depredación por B. 
meridionalis dependió de al menos 10 de los 13 rasgos testados (p.ej. tamaño 
corporal, locomoción, tendencia a la agregación, hábitos de alimentación). 
Esta tesis también confirmó que la ausencia del superdepredador modificó 
otra función clave del ecosistema, aceleró la descomposición de las hojas 
debido al aumento de macroinvertebrados trituradores y raspadores en 
ausencia del control de depredación de B. meridionalis. La ausencia del 
superdepredador resultó en una mayor biomasa fúngica en las hojas, lo que 
sugirió que la biomasa fúngica fue estimulada a través del reciclaje de 
nutrientes por el superdepredador. 

Esta tesis doctoral ha demostrado que los incendios del pasado pueden 
influir en la estructura y función actual de los ríos mediterráneos. Además, 
también ha evidenciado que los ríos intermitentes pueden verse afectados 
por las consecuencias de la extinción de sus superdepredadores, ya que la 
extinción local de un superdepredador de pequeño tamaño puede provocar 
cambios complejos en los ecosistemas. Esta tesis doctoral interconectó varios 
temas contemporáneos del campo de la ecología (los efectos de los incendios 
en los ecosistemas acuáticos, la extinción de superdepredadores, y los ríos 
intermitentes). Su relevancia radica en el incremento esperado de los 
incendios forestales en la región mediterránea y en el alto riesgo de extinción 
de los peces de pequeño tamaño en los ecosistemas acuáticos continentales. 



General introduction                                                                                                                                        5 

General introduction 
 

 

 

 

 

 

 

The river and its valley 

Holism, which comes from the Greek holos meaning whole, all, total, is a 
philosophical concept that can be sum up by the Aristotle’s phrase: “the 
totality is not, as it were, a mere heap, but the whole is something besides 
the parts…” (Metaphysics, Book Η, 1045: 8–10). Contrarily to reductionism, 
holism postulates that the constitutive characteristics of a system are not 
explainable by the characteristics of its isolated parts. Therefore, the 
characteristics of the system, compared to those of its parts, appear as new or 
emergent. This conception also highlights the interconnectivity and 
interdependency among parts. The field of ecology needs for a holistic 
approach. Hence, a system is only understandable if we contextualize it 
within its phenomenological integrity (Bergandi & Blandin 1998). 

The holistic approach was not applied to river science since the 70s. Hynes 
(1975) recognized that ecologists started to study streams not as separate 
aquatic phenomena, but as parts of the valleys they drain, concluding that 
“in every respect, the valley rules the stream”. For instance, he explained 
that many headwaters streams are heterotrophic and derive most of their 
energy from upland via terrestrial subsidies, which was an important 
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scientific advance in the study of stream ecology and will be one of the main 
aspects analyzed along this PhD thesis. Since then, scientists have adopted a 
catchment integrative view of stream ecology, based on the idea that a 
catchment is a topographically and hydrologically defined unit (Allan, 
Erickson & Fay 1997). The establishment of landscape ecology discipline in 
early 80s also influenced in the consideration of streams and rivers as part of 
wider landscapes. Special importance has been given to the ecological 
consequences of rivers location and how river attributes depend on the 
characteristics of the surrounding landscape mosaic and their interactions 
(Fausch et al. 2002; Wiens 2002).  

Nowadays, we know that the geology and topography of the valley, the soil 
porosity, and the riparian coverage are important factors for determining the 
hydrological regime of a river, its physicochemical characteristics, and light 
levels. Hence, changes in land use due to human activities can influence 
aquatic ecosystems and affect stream ecology in several aspects: hydrology, 
geomorphology, temperature and light regimes, water chemistry (i.e. 
nutrients, pollutants, salinity), organic matter availability, ecosystem 
processes, and biological communities (Allan 2004; Burcher, Valett & 
Benfield 2007; Cooper et al. 2013). Similarly, fires deeply modify the valleys 
within streams and rivers flow, thus we may expect that the changes caused 
by fire in catchments should be translated to the running waters therein.  

Fire is recognized as one of the main factors that shape ecosystems (Cowling 
et al. 2005; Bond & Keeley 2005), and as key factor to understand many of the 
world’s biomes distribution (Bond & Keeley 2005). Wildfires are natural 
disturbances that are expected to increase in frequency and intensity because 
of climate change and changes in land use and management (Bowman et al. 
2011; Dury et al. 2011; IPCC 2014). In the Mediterranean region, recent 
modelling work (Dury et al. 2011) projected that the area burned by wildfires 
will increase 3-5 times at the end of this century compared to present. 
Although fire effects on terrestrial ecosystems are well-studied, our 
knowledge about fire effects on aquatic systems is still limited. Research on 
this topic has been primarily conducted in Western US, while impacts on 
freshwater ecosystems from Mediterranean region are scarce (Verkaik et al. 
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2013a). Therefore, a better understanding of fire impacts on aquatic 
ecosystems is urgently needed. 

 

Fire impacts on streams 

Fire may act as prime driver of change in the physical, chemical, and 
biological characteristics of streams, its cascading effects on these ecosystems 
being highly complex (see Fig. I.1). Consequently, the effects of fire on 
aquatic ecosystems are usually separated into direct and indirect effects 
(Minshall 2003). Direct impacts are often reduced to ash deposition, 
temperature increase (direct natural effects), and the introduction of 
contaminants such as fire retardants (direct human-induced effects). The 
impacts of ash and pollutants depend on water flow, being diluted if they 
are transported downstream, but deposited in pools if surface flow is low or 
nonexistent. Fire may burn riparian areas, opening canopy and, indirectly, 
increasing light levels and water temperature (Gresswell 1999; Koetsier, 
Krause & Tuckett 2010). These changes may mediate fire effects on streams, 
due to the strong connectivity between streams and their riparian areas. 

Rainstorms after fire usually have major impacts on freshwater ecosystems 
because sediments, nutrients, and organic matter are washed from the 
catchment and quickly transported to the stream channel (Wondzell & King 
2003; Pausas et al. 2008; Coombs & Melack 2013). Consequently, fire may 
change completely water chemistry by decreasing oxygen levels and by 
increasing the concentration of suspended solids, phosphate, ammonium, 
nitrate, total and dissolved organic carbon, and other parameters (Earl & 
Blinn 2003; Vila-Escalé 2009; Rhoades, Entwistle & Butler 2011; Coombs & 
Melack 2013). This decrease in water quality not only alters aquatic 
communities and ecosystem processes, but also can affect the water supply, 
being of particular concern to water resource managers. Fire also alters 
hydrology by reducing infiltration, evapotranspiration, and interception 
through its impact in soil porosity and vegetation cover (Inbar, Tamir & 
Wittenberg 1998; DeBano 2000; Coombs & Melack 2013). Mid- and long-term 
studies, despite being scarce, have showed high variability in the recovery 
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patterns of the water physicochemical parameters. It has been shown that 
discharge, sediment levels, and water chemistry in streams draining burned 
catchments may recover during the first postfire year, or remain altered 
during >5 years (Earl & Blinn 2003; Cerdà & Doerr 2005; Meixner et al. 2006; 
Mayor et al. 2007; Rhoades et al. 2011).  

 

Figure I.1 Path diagram showing probable cause–effect relationships leading from fire 
to stream communities. Temp = temperature, DOC = dissolved organic carbon, POC = 
particulate organic carbon. Adapted from Bixby et al. (2015). 

Aquatic biological communities may be dramatically affected by scouring 
floods after fire. Fire may reduce (Sestrich, McMahon & Young 2011) or 
completely extirpate (Rinne 1996; Gresswell 1999; de Sostoa et al. 2006) fish 
populations, but recolonization may occur if streams do not have barriers to 
fish access (Gresswell 1999). Macroinvertebrate density, richness, and 
diversity usually decrease after fire, but other studies have shown no 
changes or even an increase in these parameters (Roby & Azuma 1995; 
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Minshall, Robinson & Lawrence 1997; Mellon, Wipfli & Li 2008; Hall & 
Lombardozzi 2008; Vila-Escalé 2009; Verkaik et al. 2013b). This variability in 
the macroinvertebrate community responses can be attributed to fire 
severity as well as to the magnitude, frequency, and timing of following 
storms (Verkaik et al. 2013a). Macroinvertebrate communities after fire often 
shift to species with high aerial dispersal rates, small size, fast development, 
and generalist food habits (i.e. r-strategists species) (Minshall et al. 1997; 
Minshall, Royer & Robinson 2001; Vieira et al. 2004; Verkaik et al. 2013b). 
Wildfire effects on algal and amphibians communities are less explored (but 
see Pilliod et al. 2003; Farrés-Corell 2005). These biological communities (i.e. 
algae, macroinvertebrates, and amphibians) can have a fast recovery after 
fire in Mediterranean streams compared to other climatic regions (1–4 years 
in Mediterranean streams vs 5–10 years in non-Mediterranean streams) 
because most species in Mediterranean streams are disturbance-adapted due 
to seasonal and interannual hydrological variability (Verkaik et al. 2013a). 

Regarding the organic matter subsidies, terrestrial inputs of leaf-litter to 
streams appear to increase immediately after fire and to decrease over the 
following years (Britton 1990; Jackson, Sullivan & Malison 2012). Burned 
leaves may decompose at similar (Gama et al. 2007) or faster (Vieira, Barnes 
& Mitchell 2011) rates than unburned leaves. Fire also may alter leaf 
breakdown rates in the long-term (Koetsier et al. 2010). Although leaf-litter 
inputs fuel many stream food webs, the fire effects on organic matter inputs 
and processing still remains a challenge for stream ecologists. In general, 
most of the studies analyzing the effects of fire on freshwater ecosystems 
have focused on state variables, overlooking rate variables such as leaf 
breakdown or stream metabolism (but see Robinson, Uehlinger & Minshall 
2005; Betts & Jones Jr. 2009). Consequently, a recent review (Verkaik et al. 
2013a) recommended conducting additional studies on fire effects on leaf 
breakdown in aquatic ecosystems. 

Most research on fire effects on streams have mainly been conducted in the 
short- and mid-term (<5 years). However, it has been demonstrated that fire 
can have legacy effects on streams (but see Robinson et al. 2005; Koetsier et 
al. 2010). Legacy effects can be defined as the consequences of disturbances 
that continue to influence environmental conditions long after the 
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appearance of the disturbance. Therefore, longer time frames are needed to 
evaluate the effects of fire in freshwater ecosystems. 

 

Fire impacts on streams: Sant Llorenç del Munt 
study case 

On August 2003, a forest fire affected the Sant Llorenç del Munt i l’Obac 
Natural Park, burning 4543 ha. The fire had medium intensity and was the 
consequence of the dry conditions over the previous months (temperatures 
of 39ºC, 7% of relative humidity, and the accumulated precipitation in 
spring was 8 mm) combined with specific wind regimes. The burned area 
had high conservation and recreational interest; riverside, Holm oak and 
pine woods were affected (Guinart 2007). The Freshwater Ecology and 
Management (F.E.M.) research group has studied the impacts of this wildfire 
in streams, being pioneer in this topic in Europe. 

Sant Llorenç del Munt i l’Obac Natural Park is a protected area declared in 
1987 and it is situated in Barcelona province (50 km inland from Barcelona, 
NE Spain), currently occupying 13694 ha. Vegetation is dominated by Holm 
oak (Quercus ilex L.) and Aleppo pine (Pinus halepensis Miller) forests and 
Mediterranean shrubs. The Natural Park also has some minor areas of cereal 
cultivation. The region has a Mediterranean climate with mild winter and 
warm spring and summer. Rainfall is irregular and intense, and it mostly 
occurs in winter, while summer is normally very dry. This hilly area is 
characterized by a calcareous geology, with alternating highly permeable 
and less permeable substrates where springs are located. As a consequence 
of this two characteristics (i.e. climate and geology) most streams in the area 
are reduced to isolated pools or even dry completely during the dry season 
(usually summer), that is, most stream network is intermittent (Bonada, 
Rieradevall & Prat 2007b).  

The study of fire effects on the streams of Sant Llorenç del Munt i l’Obac 
Natural Park began in 1993, when the late Prof. Maria Rieradevall took a 
series of water and biological samples within the area short after a wildfire 
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event. This study was preceded by other describing the communities present 
in the Natural Park in 1987 (Real, Rieradevall & Prat 1989). Some of the 
sampled sites were previously part of the biomonitoring works that began in 
1979 leaded by Prof. Narcís Prat (Prat et al. 1982; Prat, Puig & González 
1983). Although the 1993 study of the fire effects on intermittent streams is 
not published, many ideas were gathered and have been used by the F.E.M. 
research group after the 2003 fire. Just few days after the 2003 fire, the first 
water and macroinvertebrate samples were taken, and since then, Gallifa 
and Vall d’Horta streams have been studied as fire-affected streams. 

The 2003 fire and the following rains decreased water quality, homogenized 
aquatic habitats, and extirpated stream macroinvertebrate communities 
(Vila-Escalé 2009). The first rains transported large quantities of ash and 
mud from burned watersheds into and along the streams, filling pools with 
mud and ash, and killing high densities of both native and introduced fish 
species (de Sostoa et al. 2006). Afterwards, heavy rains caused floods, 
removing most mud and ash from stream channels. The concentration of 
most physicochemical variables (total and dissolved organic carbon, 
phosphate, cations) increased after fire, but sharply decreased in 2 months. 
Nitrate, suspended solids, and polycyclic aromatic hydrocarbon 
concentrations remained high during the first year and presented sporadic 
peaks related to runoff and soil erosion following precipitation events (Vila-
Escalé et al. 2007b; Vila-Escalé, Vegas-Vilarrúbia & Prat 2007a). Fire reduced 
diatom richness, increased disturbance tolerant species abundance, and 
modified community composition. Diatom richness recovered during the 
first year, but species composition remained different (Farrés-Corell 2005; 
Vila-Escalé 2009). Some amphibian species were affected, but all recolonized 
streams by 3 years after fire (Campeny 2007). 

Macroinvertebrate communities disappeared due to the wildfire. Dipterans 
and coleopterans were the first colonizers. The monitoring of a headwater 
stream located within a burned catchment showed that family richness and 
macroinvertebrate abundance increased, and the macroinvertebrate 
communities were becoming similar during the first postfire year to those 
found in a control stream in terms of both composition and functional traits 
(Vila-Escalé et al. 2007c; Vila-Escalé 2009). Later on, Verkaik (2010) 
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investigated if the responses of the macroinvertebrate communities in that 
single stream could be transposed to other Mediterranean streams and if 
were present on a more extended time frame. To achieve this aim, eight sites 
were sampled annually for 5 years. Neither taxa richness nor total 
abundance differed among fire-affected and control streams 2 months after 
fire. However, the wildfire changed the composition and the biological traits 
of macroinvertebrate communities. An increase in r-strategy taxa was 
observed during the year following fire. However, drought was a prevailing 
disturbance factor, i.e.  macroinvertebrate assemblages responded more 
strongly to interannual hydrological variability than to fire (Rodríguez-
Lozano 2010; Verkaik et al. 2013b). After 5 years, macroinvertebrate 
communities had recovered from fire, but a few individual taxa (Mollusca 
and some Odonata) were still less abundant in fire-affected than in control 
streams. 

As previously mentioned, stream fish communities were extirpated by the 
wildfire in those streams draining burned catchments, potentially due to the 
chemical changes that occurred during the firsts rainfall events. Two years 
after fire, native fish species, Barbus meridionalis (A. Risso, 1827) and Squalius 
cephalus (L., 1758), were observed in some of the affected streams, but their 
densities and biomasses remained low compared to prefire values and to 
those in control streams (de Sostoa et al. 2006). Currently, several fire-
affected streams that were inhabited by B. meridionalis before the fire still 
remain fishless most likely due to natural and human barriers. Barbus 
meridionalis (see Fig. I.2) is an endemic species to NE Spain and SE France, 
and is currently listed as ‘vulnerable’ in the Spanish Red Book (Doadrio 
2001), ‘near threatened’ in the IUCN and is also included in Annexes II and 
V of the European Union Habitats Directive and in Appendix III (‘protected 
fauna species’) of the Bern Convention. Similar to other freshwater fish 
species, the list of threats include water pollution, water abstraction, dam 
constructions, introduced species, and alterations in the habitat (Doadrio et 
al. 2011; Maceda-Veiga 2013). Additionally to this species inherent value, the 
local extinction of B. meridionalis due to the wildfire may be important at 
ecosystem level as a fire legacy effect: the extirpation of this fish species may 
have had complex indirect effects on the biological communities and 
ecosystem processes in these streams. 
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Figure I.2 Photographs of: Barbus meridionalis (a) and detail of the barbels (b). 

 

Trophic downgrading of ecosystems 

Our planet is experiencing a large biodiversity loss, i.e. the Sixth Mass 
Extinction, which is characterized by the loss of apex consumers (Purvis et al. 
2000; Duffy 2002; Estes et al. 2011; Schneider & Brose 2013). Several studies 
have indicated that top-predator loss may trigger ecosystem changes that are 
complex, unpredictable, and largely unknown (Marshall & Essington 2011; 
Estes et al. 2011). Consequently, a current major challenge is to better 
understand the responses of ecosystems to current top predator declines 
(Sutherland et al. 2013). 

Predation is an important trophic interaction that has implications for 
biological populations, communities, and ecosystems. The top-down force 
that predators exert on their prey can be propagated through the trophic 
web, leading to strong indirect effects (i.e. trophic cascades) (Hairston, Smith 
& Slobodkin 1960; Polis et al. 2000; Terborgh & Estes 2010). Trophic cascades 
have been documented in terrestrial, freshwater, and marine ecosystems, 
from the poles to the tropics, and most have focused on grazing systems 
(Terborgh & Estes 2010). Ecosystems loss of apex consumers may alter the 
intensity of herbivory and, consequently, the abundance and/or the 
composition of primary producers. Although less studied, trophic cascades 
have also been observed in detritus-based systems, such as soil forests and 
forested headwater streams (Miyashita & Niwa 2006; Greig & McIntosh 
2006). Trophic cascades can be density-mediated through the reduction of 
prey density, but also trait-mediated when the presence of the predator 
modifies the prey foraging behavior (Schmitz, Krivan & Ovadia 2004; 

(a) (b) 
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Preisser, Bolnick & Benard 2005). Besides, the extinction of top predators is 
often associated with an increase in mesopredators (i.e. any mid-ranking 
predator in a food web), which may lead to complex indirect effects in 
ecosystems (Ritchie & Johnson 2009; Prugh et al. 2009; Brashares et al. 2010). 

Moreover, apex consumers are involved in many non-trophic interactions 
(Kéfi et al. 2012). Top predators may play a key role in nutrient recycling 
through the excretion and egestion of nutrients (Vanni 2002; Schmitz, 
Hawlena & Trussell 2010). Apex consumers can change the flow of both 
organisms and organic matter in and out of their systems, having important 
effects across ecosystem boundaries (Knight et al. 2005; Kéfi et al. 2012). 
Through indirect pathways, the loss of the top predator can alter diverse 
ecosystem aspects, such as disease incidence (Lafferty 2004) and the 
chemical composition of the atmosphere and water (Schindler et al. 1997; 
Moore et al. 2007). Hence, the extirpation of top predators may conduct to 
ecological network simplifications caused by the loss of trophic and non-
trophic links, leading to complex ecosystem consequences. 

Most of the research regarding the consequences of the extinction of top 
predators have been focused on large-bodied terrestrial mammals (Prugh et 
al. 2009; Beschta & Ripple 2009; Ordiz, Bischof & Swenson 2013; Ripple et al. 
2014) and on large marine predators (Heithaus et al. 2008; Ritchie & Johnson 
2009), overlooking freshwater ecosystems. Moreover, most studies usually 
associate large-bodied species to the top of the food webs and small-bodied 
species to lower trophic levels (Marshall & Essington 2011; Säterberg, 
Sellman & Ebenman 2013), even positing that large-bodied species are at 
much greater extinction risk than smaller species (Cardillo 2003). 

However, aquatic species (marine and freshwater) seem more vulnerable to 
extinction than terrestrial species, being freshwater fish considered one of 
the most threatened fauna worldwide (Jenkins 2003). In Europe, a recent 
study has predicted that fish will be heavily impacted by climate change, 
with more than 40% of the species under threat (Markovic et al. 2014). In 
marine ecosystems, large fish are the most endangered, but in freshwater 
ecosystems, small-bodied fish exhibit greater risk of extinction than their 
larger-bodied counterparts (Olden, Hogan & Zanden 2007). These small-
bodied fish species often act as top predators in several freshwater 
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ecosystems (i.e. intermittent rivers, headwater permanent streams, and 
ponds) (Meyer et al. 2007; Reich et al. 2010; Brucet et al. 2012). For instance, 
Barbus meridionalis act as apex consumer in several Mediterranean 
intermittent streams of Sant Llorenç del Munt Natural Park. Despite their 
high extinction risk, small-bodied freshwater fish species are often 
overlooked in research and conservation management even when 
considered threatened, probably because they usually do not have a 
commercial value (Williams 2006; Braga, Bornatowski & Vitule 2012; 
Saddlier, Koehn & Hammer 2013) and inhabit ecosystems that also are 
neglected by conservation and management (Boix et al. 2012; Nikolaidis et al. 
2013). Consequently, it remains unknown if the loss of small-bodied 
freshwater fish can be equivalent to local extinctions of larger apex 
consumers in other ecosystems (e.g. the arctic fox, wolf, jaguar, sea otter or 
large reef fish (Beschta & Ripple 2009; Estes et al. 2011; Ripple et al. 2013). 

 

Intermittent rivers 

Intermittent rivers and streams are those that cease surface flow at some 
point in space and time along their course. This nomenclature (i.e. 
intermittent) includes also other terms such as seasonal, ephemeral, 
temporary, episodic, or semi-permanent. Intermittent rivers are a 
heterogeneous category that covers a wide range of hydrological regimes. 
For instance, some intermittent streams can be dry most of the time, 
presenting running water only after heavy rains; while other streams can 
flow during part of the year, being reduced to disconnected pools some 
months and never become dry (see Fig. I.3).  The variability in hydrological 
conditions in these systems leads to a transition through different 
assemblages of aquatic habitats along time (i.e. aquatic states) (Gallart et al. 
2012). Moreover, high interannual variability not just intraannual, may affect 
intermittent rivers.  
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Figure I.3 Photographs of intermittent rivers from Spain: Vall d’Horta (a,c), Monlleó (b), 
Córcoles (d), Daró (e), Gigüela (f), and Matarranya (g). 

Intermittent rivers are present in all climate areas. These systems comprise 
approximately one half of the global river network and are projected to 
increase due to climate change and water abstraction for human use 
(Carlisle, Wolock & Meador 2011). However, most of the river research has 
been mainly focused on permanent rivers, and thus, the current paradigms 
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in river science and management have emerged and developed in these 
ecosystems. The principles of biodiversity conservation, integrated water 
resource management, and water quality control neglect intermittent rivers 
(Prat et al. 2014). Consequently, water legislation and regulations such as the 
European Water Framework Directive (EU-WFD; European Communities, 
2000) or the US Federal Water Pollution Control Act (i.e. the Clean Water 
Act) generally ignore these systems (Nikolaidis et al. 2013; Mazor et al. 2014). 

The ecology of intermittent streams was early investigated by H. B. Noel 
Hynes through the PhD thesis of D. Dudley Williams (Williams & Hynes 
1976, 1977), who more recently wrote a key book on this topic (Williams 
2006). The number of studies focusing on intermittent rivers has grown 
exponentially during 1990-2014 (Datry, Arscott & Sabater 2011; Leigh et al. in 
press). Most research in these systems has focused on how hydrological 
variability (i.e. the change to one aquatic state to another) shapes biological 
communities (Bonada et al. 2006; Davey & Kelly 2007; García-Roger et al. 
2011; Rocha, Medeiros & Andrade 2012; Datry et al. 2014) and 
biogeochemical processes (Hladyz et al. 2011; von Schiller et al. 2011; Corti et 
al. 2011; Dieter et al. 2011; Timoner et al. 2012). However, despite this 
increasing concern for intermittent rivers, little is known about 
whether these systems are threatened by some problems that 
affect most ecosystems worldwide, such as invasive species or top predator 
loss. In fact, a review published this year (Leigh et al. in press) highlights 
that one of the future research lines in intermittent rivers research must 
focus on how anthropogenic stressors and future changes may affect these 
systems.  

The role of top-down structuring forces has been largely overlooked in 
intermittent rivers research. Intermittent rivers often lack large aquatic 
consumers that are often considered to be top predators, and instead, are 
typically inhabited by predatory invertebrates and small-bodied fish (Meyer 
et al. 2007; Reich et al. 2010). These systems were initially viewed as severe 
environments for fish species (Williams & Coad 1979) and have been 
considered a refuge from vertebrate predation (Williams 1996; Meyer et al. 
2007). Some studies have even suggested that predatory invertebrates have 
lower abundances in intermittent than in permanent streams (Bogan, 
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Boersma & Lytle 2013); while others indicated that predation pressure 
increases in these systems with stream fragmentation in isolated pools, when 
predatory lentic invertebrates (odonates, hemipterans, and coleopterans) 
replace reophilous taxa (Boulton & Lake 1992a; Stanley et al. 1994; 
Rieradevall, Bonada & Prat 1999; Bonada et al. 2007b). 

Regarding predatory fish, several studies have shown that 
macroinvertebrates in intermittent rivers can be affected in terms of whole 
community assemblage and total density (Williams, Taylor & Warren 2003), 
densities of specific groups (e.g. air breathing macroinvertebrates (Closs 
1996)), total biomass (Wesner 2013), and prey body condition (Love, Taylor 
& Warren 2005). Conversely, other studies suggest that predatory fish may 
not affect macroinvertebrate communities (Ludlam & Magoulick 2010). All 
these studies were performed in isolated pools or in pools that became 
isolated during the experiment, when predation pressure may reach its peak 
in these systems. Hence, the importance of predation in intermittent rivers 
during periods of flow remains unknown. 

Therefore, we still ignore if intermittent rivers are affected by the current 
loss of top predators, and the potential ecosystem consequences derived 
from this worldwide problem. Given the high extinction risk of small-bodied 
freshwater fish that often act as top predators in intermittent streams, we 
hypothesized that these systems are threatened by their extinction. 

 

Objectives 

The overarching goal of this PhD thesis was to investigate the long-term 
effects of a wildfire in Mediterranean streams, i.e. caused by the fire legacy. 
In brief, this PhD thesis covered the indirect effects of two fire legacies: (1) 
the riparian canopy reduction and (2) the local extinction of the top predator 
in these streams, the endangered small-bodied fish Barbus meridionalis. 
Therefore, most part of this PhD thesis actually focused on determining if 
intermittent streams are threatened by the loss of top predators and on the 
ecosystem consequences of their extinction in terms of both structure and 
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function. The PhD thesis has a food web approach and is mainly formed by 
in-stream experiments. 

The PhD thesis is structured in four independent chapters, each one 
addressing a specific objective. However, the chapters are interconnected 
and contain cross references to other chapters. Specific objectives of each 
chapter are as follows. 

In Chapter 1, we assessed the long-term (8 years) effects of a wildfire on leaf-
litter breakdown in an intermittent stream. In particular, we differentiated 
between fire effects on microbial and overall leaf decomposition to better 
understand the mechanisms accounting for wildfire effects on this 
ecosystem process. 

In Chapter 2, we examined the top-down effects of B. meridionalis by using 
in-stream mesocosms. Specifically, we aimed to determine whether the loss 
of a top predator in an intermittent stream (1) leads to a ‘mesopredator 
release’, affecting primary consumers and changing whole community 
structure and (2) triggers a cascade effect modifying ecosystem function (i.e. 
periphyton primary production). 

In Chapter 3, we proposed a simple method with a functional perspective to 
study the feeding selectivity of predators, through the study case of B. 
meridionalis. We hypothesized that predators select their prey depending on 
prey morphological and behavioral traits. 

In Chapter 4, we investigated the top-down effects of an endangered small-
bodied fish in a detritus-based intermittent stream. In particular, we aimed 
to determine whether the loss of a top predator alters (1) leaf fungal biomass 
and leaf quality (i.e. leaf carbon:nitrogen ratio and leaf toughness), (2) 
macroinvertebrate assemblages colonizing leaf packs and, consequently, (3) 
leaf breakdown rates. 
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Chapter 1 
Long-term consequences of a wildfire for leaf-litter 

breakdown in a Mediterranean stream 
 
 
 
 
 
 
 
 
 
 
 
 
Wildfire frequency and intensity are expected to increase as a result of 
climate change, but few studies have assessed the effects of wildfires on 
stream ecosystem processes. The aim of our study was to examine the long-
term responses of leaf-litter breakdown to wildfire in a Mediterranean 
stream. Riparian canopy cover was reduced by a fire, resulting in higher 
water temperatures and light levels and reduced leaf-litter inputs in the 
stream 8 years after the fire. Benthic invertebrate communities recovered 
quickly after the fire, and the abundances of different functional feeding 
groups, including shredders, were not different between streams affected 
and not affected by the fire after >2 postfire years. We compared microbially 
mediated (fine-mesh bags) and total breakdown rates (coarse-mesh bags) of 
Populus alba leaf-litter incubated in the stream affected by the wildfire and a 
neighboring control stream. Microbial and total leaf-litter breakdown were 
faster in the stream affected by the fire. Faster microbially mediated litter 
decomposition in the fire-affected stream could be attributed almost entirely 
to increased water temperatures, but total litter breakdown rates were 
enhanced by higher shredder abundance in coarse-mesh leaf bags in the fire-
affected than in the control stream. Lower leaf-litter inputs in the fire-
affected than in the control stream probably led to lower benthic organic 
matter levels, bringing to increased shredder aggregation in leaf packs, 
thereby accelerating leaf breakdown rates. Our study indicates that past 
wildfires can modify key ecosystem processes, such as leaf decomposition, 
in the long-term in Mediterranean streams. 
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Introduction 

Wildfires are expected to increase in frequency and intensity because of 
climate change and changes in land use and management (Bowman et al. 2011; 
Dury et al. 2011; IPCC 2014). Fire is recognized as one of the main factors that 
shape ecosystems (Cowling et al. 2005; Bond & Keeley 2005), but few 
investigators have studied its effects on stream ecosystem processes (but see 
Robinson et al. 2005, Betts and Jones 2009, Koetsier et al. 2010). Leaf-litter 
inputs and decomposition fuel many stream food webs, and the authors of a 
recent review recommended conducting additional studies on fire effects on 
the key ecosystem process of leaf-litter breakdown (Verkaik et al. 2013a). 
Experimental studies suggest that decomposition rates of burned leaves do 
not differ from (Gama et al. 2007), or are faster than (Vieira et al. 2011), those 
of unburned leaves. Koetsier et al. (2010), authors of the only study we know 
of fire effects on stream leaf-litter breakdown in the long-term, found that 
litter decomposition rates were faster in fire-affected than unaffected 
reference streams in a temperate forest. These results evidence the need for 
additional studies on fire effects on stream leaf-litter breakdown in other 
biomes, such as Mediterranean regions, where fire is common. 

Wildfires could stimulate leaf decomposition mediated by microbes by 
reducing riparian canopy cover, thereby increasing water temperatures 
(Koetsier et al. 2010; Boyero et al. 2011; Martínez et al. 2014; Cooper et al. 
2015). Reductions in canopy cover also increase light levels, potentially 
enhancing microbial decomposition via increases in algal production on leaf-
litter (Danger et al. 2013). Moreover, algal development on leaves could 
increase litter palatability, accelerating litter breakdown mediated by 
macroinvertebrate activity (Lagrue et al. 2011). In contrast, fire-induced 
reductions in canopy cover could increase ultraviolet radiation levels, 
thereby reducing leaf-litter mass loss (Pancotto et al. 2003; Dieter et al. 2011). 
Wildfires also could modify microbially mediated litter decomposition rates 
by increasing dissolved nutrient concentrations, which would accelerate 
decomposition (Woodward et al. 2012), and by increasing the scour and 
deposition of fine sediment, which could reduce (Benfield et al. 2001; Lecerf 
& Richardson 2010) or increase (Piggott et al. 2012) decomposition. However, 
these effects of fire on nutrients and sediment are often short-lived, so litter 
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decomposition may not be affected over the long-term by these agents 
(Benfield et al. 2001; Earl & Blinn 2003; Vila-Escalé 2009; Lecerf & Richardson 
2010; Verkaik et al. 2013a). 

Macroinvertebrate mediated leaf breakdown could decrease after fire if 
shredding invertebrate density decreases (Molles 1982; Vieira et al. 2004; 
Oliver et al. 2012; Verkaik et al. 2013a; Cooper et al. 2015). Fire-mediated 
decreases in shredder density can be attributed to decreased leaf-litter inputs 
and retention after fire and to the vulnerability of shredders to scouring 
floods induced by fire (Verkaik et al. 2013a; Cooper et al. 2015). 
Observational (Boulton & Lake 1992b; Friberg 1997; González & Graça 2005) 
and experimental (Richardson 1991; Dobson & Hildrew 1992; Wallace et al. 
1997) studies indicate that shredder densities in streams are related to 
organic matter availability. Knowledge about the effects of wildfires on 
organic matter inputs to streams is limited, but terrestrial subsidies of leaf-
litter to streams appear to increase immediately after fire and decrease over 
the following years (Britton 1990; Jackson et al. 2012). On the other hand, 
increased stream temperatures after fire could increase shredder activity. 
Wildfires may have little effect on leaf breakdown mediated by 
macroinvertebrate activity in the long-term because the abundance and 
taxonomic and functional composition of macroinvertebrate communities in 
Mediterranean streams often recover quickly after wildfires (Vila-Escalé 
2009; Verkaik et al. 2013a; b). 

The aim of our study was to assess the long-term (8 years) effects of a wildfire 
on leaf-litter breakdown in a Mediterranean stream. We differentiated 
between fire effects on microbial and overall leaf decomposition to better 
understand the mechanisms accounting for wildfire effects on this 
ecosystem process. We conducted a decomposition experiment using 
Populus alba leaves enclosed in coarse- or fine-mesh bags incubated in a 
stream affected by fire and in a neighboring control stream. To assess some 
of the key factors potentially mediating the effects of the wildfire on stream 
litter breakdown, we monitored the riparian canopy cover after fire, 
temperature and light levels during the decomposition experiment, litterfall 
input over 1 year encompassing the decomposition experiment, and the 
abundances of macroinvertebrate functional feeding groups (FFGs) in 
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streams draining burned and unburned catchments over the first 5 years 
after fire as well as in leaf bags during the experiment (8 years postfire). We 
hypothesized that 8 years after a wildfire: (1) microbial leaf decomposition 
would be faster in the fire-affected than in the control stream because of 
increases in water temperature and (2) macroinvertebrate mediated leaf-
litter breakdown would be similar between the fire-affected and the control 
streams because of the rapid recovery of macroinvertebrate communities, 
including shredder densities, after fire. 

 

Materials and methods 

Study area 

We worked in 2 adjacent first order streams, separated by <5 km. The fire-
affected stream was Vall d’Horta stream (lat 41°39ʹ15ʹʹN, long 2°4ʹ13ʹʹE), and 
the control stream was Castelló stream (lat 41°40ʹ42ʹʹN, long 2°1ʹ49ʹʹE). The 
streams are in the protected area of Sant Llorenç del Munt i l’Obac Natural 
Park (50 km inland from Barcelona, NE Spain). This area is characterized by 
a calcareous geology and a Mediterranean climate, with mild winter and 
warm spring and summer. Rainfall is irregular and intense, occurring 
primarily in winter but also in spring and autumn, and summer is normally 
very dry. The protected area is dominated by Holm oak (Quercus ilex L.) and 
Aleppo pine (Pinus halepensis Miller) forests and Mediterranean shrubs (for a 
detailed description see Bonada et al. 2007b, Verkaik et al. 2013b). In August 
2003, a wildfire burned 4543 ha of forest in the Natural Park and 
surrounding areas. 

Both streams are tributaries of the Ripoll River in the Besòs basin, and their 
catchments are mainly forested, dominated by Aleppo pine with small areas 
of cereal cultivation (<15%). The selected 100-m reach in each stream was 
<2 m wide and <50 cm deep, with a bedrock stream bed. In the 2003 fire, 
62.1% of the catchment of the fire-affected stream, including its riparian 
zone, was burned. Riparian and upland forests have not recovered 
completely at this site. The control stream was unaffected by the wildfire 
and continues to be shaded by a well-developed canopy (Table 1.1). In 
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summer 2012, the riparian vegetation at the fire-affected site was constituted 
by 25 to 50% trees, 25% shrubs, and 25 to 50% annual herbs, whereas the 
control reach was lined by a well-developed riparian forest (>75% trees) 
with understory shrubs. These 2 reaches, 1 additional control reach, and 5 
additional fire-affected reaches were monitored by Verkaik et al. (2013b) for 
5 years after the fire, and we reanalyzed data from that study to estimate the 
responses of invertebrate functional feeding groups to fire. 

Canopy cover and physicochemical measurements 

Riparian canopy cover was estimated annually as part of a riparian forest 
quality index (QBR index; Munné et al. 2003) at both the control and the fire-
affected sites from 2 months after the fire until summer 2012. We reanalyzed 
the canopy cover data collected by Verkaik et al. (2013b) for 2 control and 6 
fire-affected reaches over the first 5 years after fire. We also made 
physicochemical measurements throughout the litter decomposition 
experiment (n = 6 times). We measured dissolved O2, pH, and conductivity 
in situ with a Multiline P4 WTW meter (YSI, Yellow Springs, Ohio, U.S.A.), 
and we estimated discharge from mean depth, transect width, and water 
velocity with a flow meter (miniAir, Schiltknecht, Gossau, Switzerland). We 
collected water samples by hand, filtered them through GF/F Whatman 
filters, and analyzed them for soluble nutrients. We measured ammonium 
(NH4+-N) and soluble reactive phosphorous (PO43–-P) with 
spectrophotometric methods (Murphy & Riley 1962) and nitrate (NO3–-N) 
with ionic chromatography methods (EPA method 9056, USEPA 1993; 
UV/V KONTRON model 332, Kontron AG, Zürich, Switzerland). We 
deployed submersible temperature/light data loggers (HOBO Pendant, 
Onset Computer Corporation, Bourne, Massachusetts) under stream water 
to record water temperature and light intensity every 10 minutes at each site 
throughout the leaf bags experiment. 

Benthic macroinvertebrate communities 

We compared the abundances of benthic macroinvertebrate functional 
feeding groups at 2 control and 6 fire-affected sites over the first 5 years after 
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the fire by reanalyzing the data collected by Verkaik et al. (2013b). At each 
site and time, macroinvertebrate kick samples were collected with a 250-µm 
net from all extant habitats over a standard 4-minutes period. 
Macroinvertebrate samples were processed as outlined below for 
macroinvertebrates collected from leaf bags. 

Litterfall input 

We measured vertical litterfall inputs with 0.28-m2 traps (3 at the fire-affected 
site and 3 at the control site) placed in the riparian zone (Pozo, González & 
Díez 1997). Traps were made of rigid baskets 60-cm in depth and lined with 
a 1-mm mesh, that retained all coarse particulate organic matter (CPOM) but 
allowed water to escape during rain events. Litter in traps was removed 12 
times during a year (4 October 2011 – 4 October 2012), with increased 
sampling frequency in autumn. We oven-dried litter (60°C, 72 h), and sorted 
it as leaves, bark and twigs, or fruits and flowers. We weighed and 
combusted (500°C, 12 h) this material to measure ash-free dry mass (AFDM). 

Leaf-litter decomposition experiment 

We conducted the leaf bag experiment in autumn–winter (23 November 
2011 – 15 March 2012). We collected leaves of white poplar (Populus alba L.) 
in October 2011 just after abscission, and air-dried them at room 
temperature to constant mass. Leaf bags (15 × 20 cm) containing 3 g of leaves 
(SE = 0.06 g) were made of 2 mesh sizes: coarse (10 mm) and fine (250 µm). 
Coarse-mesh bags allowed macroinvertebrate colonization, thus more 
closely simulated natural leaf-litter breakdown processes, whereas fine-
mesh bags excluded virtually all macroinvertebrates, thereby allowing us to 
assess the relative contribution of microbial (fungi and bacteria) activity to 
litter decomposition (Young et al. 2008). 

We deployed 30 bags of each mesh type at both the fire-affected and the 
control sites in pools because leaves accumulated in the pools of these 
streams. We placed 12 additional bags in the control site for 24 h to correct 
for initial leaf mass losses resulting from leaching and accidental transport 
losses (Gessner, Chauvet & Dobson 1999). We removed 6 litter bags of each 
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type (coarse- and fine-mesh) from each site 5, 12, 26, 58 and 113 days after 
deployment. At retrieval, we placed litter bags individually in Zip-lock® 
bags and transported them in refrigerated containers to the laboratory, 
where we processed them immediately. We washed the material in each litter 
bag, collected invertebrates on a 250-µm sieve, and preserved them in 70% 
ethanol. We oven-dried (60°C, 72 h) and combusted litter material (500°C, 12 
h) to measure AFDM remaining.  

We counted macroinvertebrates, identified them to the lowest possible 
taxonomic level (usually genus), and measured them using ImageJ software 
(version 1.47, National Institutes of Health, Bethesda, Maryland, U.S.A.). We 
classified taxa to functional feeding groups following Tachet et al. (2010). We 
calculated individual biomass using published body length–dry mass 
equations (Dumont, Van de Velde & Dumont 1975; Smock 1980; Meyer 1989; 
Benke et al. 1999; Baumgärtner & Rothhaupt 2003; Ohta, Miyake & Hiura 
2011), except Hydracarina, Ostracoda, Cladocera, Oligochaeta, and 
Nematoda for which we used biovolume data (Ramsay et al. 1997). 

Data analysis 

All statistical analyses were performed using the programs R (version 2.15.2, 
R Project for Statistical Computing, Vienna, Austria) and SPSS (version 21.0, 
IBM Corp., Armonk, New York, U.S.A.). We compared riparian canopy 
cover at the 2 control and the 6 fire-affected streams over the first 5 years 
after fire, and between the fire-affected and the control experimental sites 
from 2003 to 2012 with repeated measures analysis of variance (rmANOVA). 
We compared mean daily light levels, mean daily water temperature, and 
other physicochemical variables between the fire-affected and the control 
sites over the experimental period with 1-way ANOVAs. We log(x)-
transformed litter input data (as g AFDM m–2 d–1) and analyzed inputs to 
fire-affected and control sites with an rmANOVA. We compared the 
abundances of different macroinvertebrate functional feeding groups in 2 
control and 6 fire-affected streams over the first 5 postfire years with 
rmANOVA. For each sampling date, we used the nonparametric Kruskal–
Wallis test to identify the times when macroinvertebrate abundance of 
different FFGs differed significantly between control and fire-affected sites. 
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We used an exponential decay model (Bärlocher 2005) to quantify leaf 
breakdown rates: 

𝑀𝑡 = 𝑀0𝑒−𝑘𝑡  (Eq. 1.1) 

where Mt is the leaf-litter AFDM at time t, M0 is the initial AFDM corrected 
for leaching and transportation mass losses, –k is the decomposition rate, 
and t is the time in days. To test for significant differences in leaf 
decomposition rates among sites and mesh sizes, we conducted an analysis 
of covariance (ANCOVA) on ln(x)-transformed AFDM remaining 
(dependent variable), with site and mesh size as fixed factors and time (in d) 
as a covariate (Zar 2010). We adjusted α levels for pairwise comparisons of 
decomposition rates between all sites and mesh sizes with Bonferroni 
corrections. We corrected for temperature effects on leaf breakdown rates, 
by repeating the analyses using degree days (in dd) instead of days as the 
covariate. We calculated degree days as mean daily temperature 
accumulated by each sampling day (Minshall et al. 1983; Irons III et al. 1994; 
Menéndez, Hernández & Comín 2003).  

We standardized macroinvertebrate abundance and biomass in coarse-mesh 
leaf bags per gram of leaf-litter AFDM remaining in leaf bags. We log(x + 1)-
transformed macroinvertebrate abundance and analyzed differences between 
sites with ANCOVA, with site as a fixed factor and time as a covariate. We 
applied Bonferroni corrections to control for comparison-wise error. 

 

Results 

Canopy cover and physicochemical measurements 

Canopy cover was lower at fire-affected than at control sites over the first 5 
years after fire (F = 8.2, p < 0.04; Fig. 1.1a) and were consistently lower from 
2003–2012 at the fire-affected than at the control experimental sites (F = 7.1, 
p < 0.02; Fig. 1.1b). Both sites had alkaline pH, high dissolved oxygen (O2) 
levels, low discharge, and low nutrient concentrations during the study 
period (Table 1.1). Mean daily light levels, mean daily water temperature, 
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and NO3–-N concentration were substantially higher in the fire-affected than 
in the control sites (Table 1.1, Fig. 1.2a-b). 

 

Figure 1.1 Mean (±1 SE) riparian canopy cover at 2 control and 6 fire-affected sites 
(Verkaik et al. 2013b data) over the first 5 years after fire (a) and at the control and the  
fire-affected sites (this study) from 2003–2012 (b). 

 

Figure 1.2 Mean (±1 SE, n = 144 measurements d-1) daily light intensity as 
photosynthetically active radiation (PAR) (a) and water temperature (b) at the control 
and fire-affected sites during the litter decomposition experiment (23 November 2011–
15 March 2012).  
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Benthic macroinvertebrate communities 

The abundances of shredders, scrapers, and gathering collectors peaked in 
the first year after the fire at fire-affected sites while remaining relatively 
constant at control sites. After >2 years postfire, the abundances of all 
functional feeding groups were very similar between control and fire-affected 
sites (Fig. 1.3a-e). No significant effects of fire on a time × site interaction 
were detected over the study period (rmANOVA, all p > 0.05). In summer 
2007, shredders abundances were 523 ± 234 individuals (ind) sample-1 at the 
control sites and 417 ± 101 ind sample-1 at the fire-affected sites. These data 
indicate that the abundances of functional feeding groups were similar 
between fire-affected and control sites 3 years before the litter 
decomposition experiment and probably at the time of the experiment. 

Table 1.1 Mean (±1 SE) values of characteristics of the control and the fire-affected 
sites during the litter decomposition experiment (23 November 2011–15 March 2012), 
and results of analyses of variance comparing characteristics between control and fire-
affected sites. PAR = photosynthetically active radiation. 

 Control Fire-affected F p 
Elevation (m a.s.l.) 451 485 – – 
Catchment area (ha) 290 510 – – 
Burned area (%) 0 62.1 – – 
Discharge (L s-1) 5.5 ± 1.5 18.6 ± 7.7 2.8 0.12 
Water temperature (ºC) 5.6 ± 0.2 8.2 ± 0.2 77 <0.001 
PAR (µmol m–2 s–1) 10.1 ± 0.5 21.5 ± 1.0 264 <0.001 
pH 8.16 ± 0.02 8.09 ± 0.02 4.0 0.07 
Conductivity (µS cm-1) 492 ± 2 485 ± 2 4.7 0.06 
DO (% saturation) 86.8 ± 0.3 89.3 ± 0.2 4.8 0.09 
NH4

+-N (µg L-1) 23 ± 1 24 ± 1 1.7 0.22 
NO3

–-N (µg L-1) 124 ± 14 640 ± 13 744 <0.001 
PO4

3–-P (µg L-1) <10 <10 – – 
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Figure 1.3 Mean (±1 SE) abundances of shredders (a), scrapers (b), predators (c), 
gathering collectors (d), and filtering collectors (e) at 2 control and 6 fire-affected sites 
over the first 5 years after fire (data collected by Verkaik et al. 2013b). ■ indicates 
marginally significant difference between control and fire-affected sites on a sampling 
date (p < 0.10). 

Litter input 

Total litter input from October 2011 to October 2012 was 2.5 times higher at 
the control (134.6 ± 19.8 g AFDM m–2 y–1) than at the fire-affected site (52.6 ± 
12.0 g AFDM m–2 y–1) (F = 13.2, p < 0.025; Fig. 1.4a). Leaf inputs were higher 
at the control than at the fire-affected site (F = 9.7, p < 0.04; Fig. 1.4b), but 
inputs of bark, twigs, fruits, or flowers did not differ between sites. Both total 
litter and leaf inputs were affected by a site × sampling date interaction 
(total litter: F = 2.2, p < 0.03; leaf input: F = 4.5, p < 0.001), with leaf inputs 
peaking from late spring to early autumn in the control site but remaining at 
low, constant levels in the fire-affected site (Fig. 1.4b). Leaf-litter made up 62% 
of the total annual litter input and consisted primarily of leaves of Q. ilex, Q. 
robur, P. alba, Viburnum sp., Salix sp., P. halepensis, and Fraxinus sp.  
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Figure 1.4 Mean (±1 SE; n = 3 replicate litter traps) total litter (a) and leaf (b) inputs at 
control and fire-affected sites from 4 October 2011 to 4 October 2012. Grey area 
indicates the time period when the leaf decomposition experiment was done. 

Leaf-litter decomposition experiment 

The loss of poplar leaf mass was well fit by an exponential model, with a 
slightly better fit to degree days than days (R2 higher in all 4 cases; Table 
1.2). Litter mass loss over time without temperature correction differed 
between sites (F = 63, p < 0.001) and mesh sizes (F = 26, p < 0.001), and was 
faster at the fire-affected than at the control site, and in coarse- than in fine-
mesh bags (Table 1.2, Fig. 1.5a). Using degree days instead of days as the 
independent variable, leaf breakdown rates also differed between sites (F = 
10.5, p = 0.002) and mesh sizes (F = 48, p < 0.001). However, pairwise 
comparisons showed mass loss differences between sites for coarse-mesh 
bags (F = 19, p < 0.001) but not for fine-mesh bags (F = 1.9, p = 0.18; Fig. 1.5b). 
Litter-loss rates were greater in coarse- than fine-mesh bags at both sites 
(control: F = 23, p < 0.001; fire-affected: F = 30, p < 0.001; Fig. 1.5b). 
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Table 1.2 Mean (SE) leaf-litter breakdown rates (–k) and R2 values for regressions of 
ln(x)-transformed leaf mass remaining vs time in days (d) and cumulative degree days 
(dd). 

Site Mesh 
d  dd 

–k SE R2 –k SE R2 
Control Coarse 0.00445 0.00025 0.92  0.00084 0.000032 0.96 
Control Fine 0.00370 0.00019 0.93  0.00069 0.000026 0.96 
Fire Coarse 0.00774 0.00036 0.94  0.00098 0.000034 0.97 
Fire Fine 0.00484 0.00038 0.85  0.00062 0.000040 0.90 
 
 

 

Figure 1.5 Mean (±1 SE; n = 6 replicate leaf bags) % initial Populus alba leaf-litter mass 
remaining in coarse- and fine-mesh bags at the control and the fire-affected sites over 
113 days expressed over time (d) (a) and over cumulative degree days (dd) (b). Curves 
with the same letter do not have significantly different decomposition rates (p < 0.05). 
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Across all coarse-mesh leaf bags, total macroinvertebrate density varied from 
1 to 127 and shredder density from 0 to 76 ind g-1 leaf-litter AFDM. Total 
macroinvertebrate, shredder, scraper, and predator abundances in coarse-
mesh bags were higher at the fire-affected than at the control site (F = 9 – 16, 
p < 0.005 to < 0.001), but the abundances of gathering and filtering collectors 
did not differ between sites. The biomass of total macroinvertebrates (F = 4.8, 
p < 0.04; Fig. 1.6a) and shredders (F = 4.4, p < 0.04; Fig. 1.6b) in coarse-mesh 
bags were higher at the fire-affected than at the control site, but no intersite 
differences were detected for the biomass of other functional feeding groups 
(Fig. 1.6c-f). 

 

Figure 1.6 Mean (±1 SE; n = 6 replicate bags) biomass (mg g-1 remaining leaf ash-free 
dry mass [AFDM]) of total invertebrates (a), shredders (b), scrapers (d), predators (d), 
gathering collectors (e), and filtering collectors (f) in coarse-mesh bags at the control 
and the fire-affected streams over the experimental period.  
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Discussion 

In a recent review of wildfire effects on Mediterranean streams, Verkaik et al. 
(2013a) concluded that algal, invertebrate, and amphibian communities 
recover faster after fire in Mediterranean streams than in streams located in 
other climatic regions: 1 to 4 years in Mediterranean streams vs 5 to 10 years 
in nonMediterranean streams. However, our study indicates that the legacy 
effects of wildfire accelerated leaf-litter breakdown in a Mediterranean 
stream for up to 8 years after fire. We also found that wildfire reduced and 
altered the timing of allochthonous organic matter inputs into a stream after 
8 years postfire. Despite the high resilience to fire of biological communities 
in Mediterranean streams, our study suggests that past wildfires in 
Mediterranean streams can have long-term consequences for stream 
ecosystem processes. The leaf-litter decomposition component of our study 
was based on only 2 streams (fire-affected vs control), but additional data 
and observations from these and other sites and times indicate that these 2 
streams were similar before fire affected one of them and that the proposed 
mechanisms responsible for our results (see below) are consistent with this 
information. Thus, we treat our study as an example of how wildfire can 
trigger long-term changes in ecosystem processes in Mediterranean streams. 
Our study also illustrates how landscape history, a factor often overlooked 
in stream ecology, can influence the functioning of lotic ecosystems. 

Our results show, as we expected, that opening of the riparian forest canopy 
by fire increased site light levels and, consequently, water temperature 
(Gresswell 1999; Koetsier et al. 2010). Wildfire also reduced annual litter 
inputs, primarily leaf inputs, by 2.5 times after 8 years postfire. Leaf inputs 
peaked from late spring to early autumn in the control site, consistent with 
the results of Fioretto et al. (2003) for a low Mediterranean shrubland stream 
and with the contention of Gasith and Resh (1999) and González (2012) that 
litterfall should be more protracted in Mediterranean than in temperate 
streams, which have a marked autumnal peak. In contrast, litter inputs to 
the fire-affected site were lower and more constant, indicating that wildfire 
affected both the quantity and timing of litter inputs (Jackson et al. 2012).  
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Leaf breakdown rates were low but similar to published data for P. alba 
leaves during autumn–winter in Mediterranean rivers (Menéndez et al. 
2003). Litter breakdown rates without temperature correction were faster at 
the fire-affected than at the control site in both fine- and coarse-mesh bags. 
However, fine-mesh decomposition rates did not differ between sites after 
temperature correction, indicating that microbially mediated decomposition 
differences between sites were driven almost entirely by differences in 
temperature. Consistent with our hypothesis, the removal of riparian cover 
by fire apparently led to higher water temperatures, which increased 
microbial activity and litter decomposition in the fire-affected site, consistent 
with literature data indicating the primacy of temperature in determining 
litter decomposition rates (Webster & Benfield 1986; Short & Smith 1989; 
Gessner, Robinson & Ward 1998; Ferreira & Chauvet 2011a). Despite the low 
nutrient concentrations recorded in our study sites, NO3–-N concentrations 
were >5 times higher in the fire-affected than in the control site, which may 
have contributed to accelerate microbial leaf decomposition at the fire-
affected site (Benstead et al. 2009; Ferreira & Chauvet 2011b; Woodward et al. 
2012). Nevertheless, the lack of difference in decomposition rates in fine-
mesh bags between sites when expressed as a function of degree days 
suggests that temperature was the primary factor driving microbial 
decomposition rates. 

Leaf breakdown was faster in coarse- than fine-mesh bags in both sites, and 
overall decomposition was faster in the fire-affected than in the control site. 
These differences persisted even after temperature corrections. Thus, 
differences in total decomposition rates between sites should be caused by 
factors additional to temperature (McArthur et al. 1988). Physical 
fragmentation and abrasion of leaves were unlikely to be important for leaf 
breakdown in our study because leaves were deployed in pools at water 
velocities <0.15 m s-1, far below threshold velocities reported to affect leaf 
breakdown rates (Ferreira et al. 2006a). Moreover, there was no evidence of 
the mechanical fragmentation of leaves. Sediment deposition was unlikely to 
be important to leaf breakdown because no differences in substrata 
characteristics were discernible between sites, and burial of leaf bags by 
sediment was not observed. After dismissing the effects of possible 
differences in current velocity, mechanical fragmentation, and sediment 
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deposition on leaf decomposition between bags with different mesh sizes, 
we isolated the effects of shredders on leaf breakdown rates by subtracting k-
values in fine-mesh bags from those in coarse-mesh bags. These calculations 
showed that shredder-mediated leaf breakdown rates were 3.9 times higher 
at the fire-affected than at the control site (0.0029 vs 0.00075) when expressed 
as days-1, and 2.4 times higher when expressed as degree days-1 (0.00036 vs 
0.00015). This difference in shredder-mediated leaf breakdown rates 
between study sites could be attributed to intersite differences in shredder 
densities in coarse-mesh bags, which were significantly higher in the fire-
affected than in the control site by the end of the experiment. Therefore, 
faster overall leaf decomposition in the fire-affected than in the control site 
probably was caused by both higher microbial activity, driven by higher 
temperatures and higher shredder activity in coarse-mesh bags at the fire-
affected site.  

Higher shredder abundance and biomass in coarse-mesh bags at the fire-
affected site were not driven by differences in shredder abundance in the 
benthos of fire-affected vs control sites because benthic invertebrate 
abundances recovered quickly after fire, and shredder densities were similar 
between sites affected and unaffected by fire within 3 years postfire. 
Moreover,  it is unlikely that shredder aggregation in the leaf bags was 
driven by refuge responses to predators (Lagrue et al. 2011) because 
vertebrate predators were absent at both sites and invertebrate predators 
could move freely into and out of coarse-mesh bags. On the other hand, a 
variety of studies indicate that shredders aggregate in resource patches 
when litter availability is low, thereby accelerating litter breakdown (Baldy 
& Gessner 1997; Rowe & Richardson 2001; Tiegs et al. 2008). We did not 
measure in-stream CPOM levels, but lower litter inputs to the fire-affected 
than to the control sites from May to September probably led to lower in-
stream CPOM levels from November to March, when the leaf bag 
experiment was done. Our results show that Populus alba leaf decomposition 
rates were slow, with leaves lasting several months before being totally 
skeletonized (e.g. ~54% of the leaf mass remained in control leaf bags after 
nearly 4 months in autumn–winter; Fig. 1.5a-b).  
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Moreover, wildfires may reduce retention of benthic CPOM in streams by 
altering the characteristics and inputs of woody debris and removing debris 
dams via postfire flooding (Vieira et al. 2011, Vaz et al. 2013). A year after a 
fire in southern California, CPOM levels were lower in fire-affected than in 
reference sites, but in subsequent years, CPOM levels became similar in 
streams draining burned vs unburned catchments where riparian vegetation 
remained intact, but remained lower at sites where riparian vegetation 
burned (Cooper et al. 2015). These results suggest that wildfire effects on 
CPOM availability depend on the condition of the riparian forest. In 
addition, higher light levels and NO3–-N concentration in the fire-affected 
site could have increased algal growth on leaves, and increased NO3–-N 
concentration could have increased leaf N content, with both enhancing 
litter quality and attractiveness to shredding invertebrates (Robinson & 
Gessner 2000; Lagrue et al. 2011; Tant, Rosemond & First 2013). Therefore, 
shredder aggregation in leaf bags at the fire-affected site could be attributed 
to resource tracking by shredders where leaf-litter inputs and probably 
benthic levels were low and, perhaps, where leaf palatability was high.  

The observed fast recovery of shredder abundances after fire despite 
reductions in litter inputs suggests a weak relationship between litter inputs 
and shredder density (Linklater 1995), in contrast to studies showing 
positive relationships between leaf-litter inputs or availability and shredder 
density (Richardson 1991; Dobson & Hildrew 1992; Boulton & Lake 1992b; 
Friberg 1997; González & Graça 2005). Recovery of shredder abundances 
after wildfire might be explained by shredder dietary shifts to available 
secondary resources when leaf-litter becomes scarce (Mihuc & Minshall 1995; 
Costantini & Rossi 1998; Graça 2001; Dangles 2002), such as after a wildfire. 
Authors of several stable-isotope studies have reported a postfire shift from a 
detritus-based to a periphyton-based food web in streams (Spencer, Gabel & 
Hauer 2003; Mihuc & Minshall 2005; Cooper et al. 2015). Compared to 
temperate streams, Mediterranean streams have more macroinvertebrates 
with traits favoring dispersion and rapid recolonization of disturbed 
streams, such as aerial active dispersal, more frequent reproduction, and 
small size, which can explain the fast recovery of macroinvertebrate 
abundances after fire (Bonada, Dolédec & Statzner 2007a; Verkaik et al. 
2013b). In fact, 5 years after fire, only a few individual taxa with low 
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mobility and limited dispersal capacity were still less abundant in fire-
affected than in control sites (Verkaik et al. 2013b). The observed peak in the 
abundances of shredders, scrapers, and gathering collectors in the fire-
affected sites in the first year after fire may be caused by a short-term 
increase in resource availability. Britton (1990) reported an increase in leaf-
litter input to streams immediately after fire but a decrease over the 
following years, and Cooper et al. (2015) showed that in-stream algal 
production where riparian vegetation was burned increased after the first 
postfire wet period apparently because of increased light levels and high 
nutrient concentrations, but declined afterward despite the high light levels.  

In conclusion, our study shows that a wildfire that occurred 8 years ago 
accelerated leaf-litter decomposition in a Mediterranean stream because of 
increased microbial activity associated with higher water temperatures 
engendered by removal of canopy cover and by shredder aggregation in leaf 
packs, probably because of scarcity or high palatability of leaf-litter in the 
fire-affected stream. These results indicate that wildfire effects on the 
riparian forest are key factors mediating wildfire effects on streams, as 
suggested in previous studies (Arkle & Pilliod 2010; Verkaik et al. 2013a; 
Cooper et al. 2015). More research on the effects of wildfires on riparian–
stream linkages and ecosystem processes is needed to develop effective 
management practices, given the general lack of scientific studies on these 
topics and projected increases in wildfire risk. 
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Chapter 2 
Small but powerful: top predator local 

extinction affects ecosystem structure and 
function in an intermittent stream 

 
 
 
 
 
 
 
 
 
Top predator loss is a major global problem, with a current trend in 
biodiversity loss towards high trophic levels that modifies most ecosystems 
worldwide. Most research in this area is focused in large-bodied predators, 
despite of the high extinction risk of small-bodied freshwater fish that often 
act as apex consumers. The aim of our research was to determine how this 
global problem affects intermittent streams and, in particular, if the loss of a 
small-bodied top predator (1) leads to a ‘mesopredator release’, affects 
primary consumers, and changes whole community structure and (2) 
triggers a cascade effect modifying the ecosystem function. To address these 
questions, we studied the top-down effects of a small endangered fish 
species, Barbus meridionalis (the Mediterranean barbel), conducting a 
mesocosm experiment in an intermittent stream where B. meridionalis 
became locally extinct following a wildfire. We found that top predator 
absence led to ‘mesopredator release’, and also to ‘prey release’ despite 
intraguild predation, which contrasts with traditional food web theory. In 
addition, B. meridionalis extirpation changed whole macroinvertebrate 
community composition and increased total macroinvertebrate density. 
Regarding ecosystem function, periphyton primary production decreased in 
apex consumer absence. In this study, the apex consumer was functionally 
irreplaceable, its local extinction led to the loss of an important functional 
role that resulted in major changes to the ecosystem’s structure and function. 
This study evidences that intermittent streams can be affected by the 
consequences of apex consumers’ extinctions, and that the loss of small-
bodied top predators can lead to large ecosystem changes. 
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Introduction 

Predation is an important species interaction that has implications for 
biological populations, communities, and ecosystems. In addition to 
affecting prey abundance and distribution, predation affects other non-prey 
taxa and ecosystem processes through indirect pathways (Gurevitch, 
Morrison & Hedges 2000; Holomuzki, Feminella & Power 2010). In recent 
decades, human activity has caused the extinction of many apex consumers 
(i.e. top predators) (Duffy 2002; Estes et al. 2011) and several studies have 
indicated subsequent ecosystem changes that are complex, unpredictable, 
and largely unknown (Marshall & Essington 2011; Estes et al. 2011). Given 
that current biodiversity loss is biased towards species in the higher trophic 
levels (Duffy 2002; Schneider & Brose 2013), the ecosystem impacts of top-
predator decline remain a research priority (Sutherland et al. 2013). 

The extinction of top predators is often associated with an increase in 
mesopredators (Ritchie & Johnson 2009; Prugh et al. 2009; Brashares et al. 
2010), i.e. any mid-ranking predator in a food web. An ecosystem may have 
several mesopredators, and a mesopredator in one system may be a top 
predator in another system (Prugh et al. 2009). ‘Mesopredator release’ often 
leads to a decrease in the prey (Ritchie & Johnson 2009; Brashares et al. 2010), 
a straightforward conclusion, termed a trophic cascade, when each trophic 
level is connected in a direct and negative way (Carpenter, Kitchell & 
Hodgson 1985; Henke & Bryant 1999; Ritchie & Johnson 2009). But, as 
showed in a recent review about apex-mesopredator-prey interactions 
(Brashares et al. 2010), not all trophic webs have a linear shape. From the 32 
studies, Brashares et al. (2010) found that 40% of the interactions were 
triangular: those in which top predators feed on mesopredators and also on 
prey, resulting in intraguild predation (IGP; characterized by predators that 
feed on other predators with which they share prey taxa). If IGP occurs, the 
apex consumer exerts top-down control on both mesopredator and prey, 
and then, apex consumer extinction would liberate mesopredator and prey 
from its top-down structuring forces. However, in that case, ‘mesopredator 
release’ could also lead to an increase on prey top-down control, 
neutralizing apex consumer loss. This would result in a negative or a null net 
effect on prey taxa and, consequently, dampen the trophic cascade on primary 
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production (Polis, Myers & Holt 1989; Rosenheim et al. 1995; Finke & Denno 
2005). In addition, according  to the predator-mediated coexistence theory 
(Caswell 1978) and to recent modelling work (Petchey et al. 2004), apex 
consumer loss can cause secondary extinctions in adjacent and non-adjacent 
trophic levels (Henke & Bryant 1999; Borrvall & Ebenman 2006; Säterberg et 
al. 2013), mainly because predators can facilitate coexistence among prey 
species. Thus, top predator extinctions have been related not only to an 
increase in mesopredator abundance, but also to a decline in biodiversity 
(Henke & Bryant 1999; Ritchie & Johnson 2009). 

Intermittent streams are present in all climate areas and are ecologically 
unique (Larned et al. 2010; Nikolaidis et al. 2013), but most research in these 
systems focused on how hydrological variability shapes community attributes 
and biogeochemical processes (Larned et al. 2010; García-Roger et al. 2011), 
while the role of top-down structuring forces has been largely neglected. 
Furthermore, intermittent streams often lack large aquatic consumers that 
are often considered to be top predators, and instead, are typically inhabited 
by predaceous invertebrates and small-bodied fish (Meyer et al. 2007; Reich 
et al. 2010). These systems have been considered a refuge from vertebrate 
predation (Williams 1996; Meyer et al. 2007), and even from invertebrate 
predation, as some studies suggest predatory invertebrates have lower 
abundances in intermittent than in permanent streams (Bogan et al. 2013). 
Other research evidence indicates that predation pressure increases with 
stream fragmentation in isolated pools, typically in summer, when 
predatory lentic invertebrates (odonates, hemipterans, and coleopterans) 
replace reophilous taxa (Boulton & Lake 1992a; Stanley et al. 1994; 
Rieradevall et al. 1999; Bonada et al. 2007b). Regarding predatory vertebrates, 
previous studies of intermittent streams show that predatory fish can affect 
stream macroinvertebrates in terms of: whole community assemblage and 
total density (Williams et al. 2003), the densities of specific groups (e.g. air 
breathing macroinvertebrates (Closs 1996)), total biomass (Wesner 2013), 
and prey body condition (Love et al. 2005). Conversely, other studies suggest 
that predatory fish have no effect on macroinvertebrate communities 
(Ludlam & Magoulick 2010). All these studies were performed in dry season 
conditions, in isolated pools or in pools that became isolated during the 
experiment, when predation pressure reaches its peak in these systems. The 
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importance of predation in intermittent streams during periods of flow 
remains unknown. 

The objective of our research was to determine if the loss of an endangered 
apex consumer from an intermittent stream would result in major changes to 
ecosystem structure and function. Barbus meridionalis (A. Risso, 1827), also 
known as the Mediterranean barbel, is an endemic small-bodied fish of 
Spain and France that often act as apex consumer in intermittent streams. This 
species is considered ‘vulnerable’ in the Spanish Red Book and ‘near 
threatened’ internationally. We studied the top-down impacts of B. 
meridionalis to determine if the loss of the top predator (1) leads to a 
‘mesopredator release’, affecting primary consumers and changing whole 
community structure, and (2) triggers a cascade effect modifying ecosystem 
function (i.e. periphyton primary production). Barbus meridionalis has been 
classified as an insectivore benthic species (Benejam et al. 2010) that feeds 
primarily on chironomid larvae, detritus (which could be explained by its 
benthic feeding behavior), mayflies, and isopods (mainly primary 
consumers (Mas-Martí et al. 2010)). Thus, apex consumer extirpation might 
not lead to ‘mesopredator release’, and instead could promote a trophic 
cascade resulting in ‘prey release’ and lower primary production (i.e. ‘prey 
release’ hypothesis, see Fig. 2.1a). Alternatively, B. meridionalis could feed on 
two trophic levels (i.e. macroinvertebrate secondary and primary 
consumers), in which case top predator removal would trigger a 
‘mesopredator release’ due to IGP. According to IGP theory, ‘mesopredator 
release’ could compensate apex consumer extirpation in terms of prey top-
down control, and the trophic cascade would be dampened with no impact 
on prey or primary production (i.e. ‘mesopredator release’ hypothesis, see 
Fig. 2.1b). To address these questions, we performed a field experiment 
using enclosure/exclosure mesocosms in a Mediterranean stream where B. 
meridionalis became locally extinct following a wildfire. 
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Figure 2.1 Diagram of the trophic interactions in intermittent stream food webs in the 
presence and absence of the apex consumer. This diagram describes our two 
hypotheses related to apex consumer extirpation: ‘prey release’ hypothesis (a) and 
‘mesopredator release’ hypothesis (b). Circumference size in top predator absence 
diagrams represents the density decrease, increase or persistence compared to the top 
predator presence diagram. Arrows represent trophic interactions. Thicker arrows = 
magnified trophic interactions due to apex consumer extirpation; grey arrows = lost 
trophic interactions after apex consumer extirpation.  

 

Materials and methods 

Study area 

The Vall d’Horta stream (41º40’24’‘N, 2º02’4’‘E; Altitude: 480 m a.s.l.) is a 
first order stream located in the protected area of Sant Llorenç del Munt i 
l’Obac Natural Park (50 km inland from Barcelona, NE Spain). The main 
stream course is formed from the confluence of the Pregona and Font del 
Llor creeks draining to the Ripoll‘s Basin (a tributary of the Besòs River). 
This hilly area is characterized by a Mediterranean climate and a calcareous 
geology, with alternating highly permeable and less permeable substrates 
where springs are located (see Rieradevall et al. 1999 and Verkaik et al. 2013b 
for a detailed site description). Barbus meridionalis is a common fish within 
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these intermittent streams that find refuge in the remaining permanent pools 
during periods of hydrological disconnection (usually in summer). In 
August 2003, a wildfire burned a forested area of 4543 ha, affecting 62% of 
the Vall d’Horta basin. As a consequence of this wildfire, B. meridionalis 
became locally extinct in some of the affected streams, even in the pools, 
potentially due to chemical changes that occurred during the first rainfall 
events (Vila-Escalé et al. 2007a). The fish population has not recovered since 
the fire, most likely due to natural and human barriers in the lower part of 
the study site. 

We conducted the experiment in a 100-m reach formed by a large pool 
where riparian vegetation was not burned by the wildfire. This reach was 
selected because, as observed in the years before the fire, barbels took refuge 
in these pools to survive periodic drought conditions present in the area 
when intermittent Mediterranean streams were reduced to isolated pools 
(Vila-Gispert & Moreno-Amich 2001). Physicochemical water analyses (n = 9) 
were performed before, during, and at the end of the experiment. The results 
(presented as the mean ± SE) confirmed that water of this reference stream 
was hard (conductivity: 520 ± 5 μS cm-1; pH: 7.9 ± 0.1) and oligotrophic (N-
NO3-1: 290 ± 20 µg L-1; N-NH4+: 19 ± 3 µg L-1; P-PO4-3 <10 µg L-1). The stream 
discharge averaged 15.7 ± 0.9 L s-1, which, with the very low water velocity 
in the pool (<1 cm s-1), naturally kept the pool water renewed and 
oxygenated (DO2: 9.6 mg L-1, 84.7%) during our study. 

Mesocosm design 

We performed an enclosure/exclosure mesocosm experiment to manipulate 
B. meridionalis densities. Removal experiments that simulate the loss of one 
or more species from a natural community can reveal the consequences of 
apex consumer extinctions and assess biodiversity-ecosystem function (B-EF) 
relationships (Diaz et al. 2003). 

We used nine large cages (100 x 100 cm surface, 70 cm height; see Fig. 2.2) 
covered with a 10-mm mesh that retained fish but allowed 
macroinvertebrate emigration/immigration, thereby minimizing the impact 
of our experimental design on the rate of prey exchange with the benthos 
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(Cooper, Walde & Peckarsky 1990; Allan & Castillo 2007). In each cage, four 
plastic trays (40 x 40 cm surface, bottom of 1-mm mesh size) were used as 
replicates (36 trays in total); each tray contained four medium-sized stones 
for macroinvertebrate colonization and three glass tiles (2 x 4 cm) for 
periphyton colonization (see Fig. 2.2). Tray substrates within the mesocosms 
were complex due to the material deposited during the colonization period; 
substrate was formed by a mixture of sediment, detritus, and leaves, which 
provided some refuge to invertebrates (Reice 1991; Rosenfeld 2000) along 
with the initial added stones. To study the consequences of B. meridionalis 
extirpation, we tested three treatments with varying barbel density levels in 
the enclosures: i) no fish; ii) barbels at low density (i.e. 2 individuals m-2, the 
known prefire density; A. de Sostoa pers. comm.); and iii) barbels at high 
density (i.e. 4 individuals m-2, two fold the prefire density). Barbels were 
caught using an electrofishing source downstream from our study site, and 
individuals selected for the experiment were approximately the same size 
(total length 101.8 ± 2.6 mm; mean ± SE) and weight (2.3 ± 0.2 g). To ensure 
similar initial conditions, barbels were kept in observation for 24 h before 
starting the experiment after electrofishing and transportation. 

 

Figure 2.2 Diagram of the experimental enclosure and one of the four identical trays 
that contained stones for macroinvertebrate colonization and glass tiles for periphyton 
colonization. Dimensions are indicated. 

Sampling and laboratory protocols 

The field experiment was conducted in late spring of 2010 before pool 
disconnection (flow averaged 15.7 ± 0.9 L s-1), over the course of five weeks. 
Three weeks were allowed for periphyton and macroinvertebrate 
colonization, a time previously described as adequate for equilibrating the 
mesocosm and background macroinvertebrate densities (Lancaster, Hildrew 
& Townsend 1991). Two weeks were allowed for barbel interaction. During 
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the colonization period, the cage tops were opened to facilitate aerial 
colonization and the entrance of organic material. Before the addition of 
barbels to the experimental enclosures, one tray per cage (n = 9) was 
removed and sampled to test if there were differences in colonization among 
cages. Barbel density levels were randomly assigned to enclosures, and the 
cage tops were closed following barbel introductions to avoid bird or 
mammal predation. After two weeks of interaction, mesocosms were 
destructively sampled with the same effort for each tray (n = 27; 9 trays per 
treatment). Tray contents (with stones) were carefully washed in a 250-µm 
mesh sieve and preserved in 4% formalin until being processed in the 
laboratory. All samples were sorted, counted, and identified. Taxonomic 
resolution was primarily to the genus level, including Chironomidae. Some 
Diptera were identified to the family level, and Oligochaeta, Ostracoda, 
Cladocera, Copepoda, Hydracarina, and terrestrial invertebrates identified 
to higher levels. Each taxon was categorized as either secondary or primary 
consumer according to Merritt & Cummins (1996) and Tachet et al. (2010). 
Periphyton net primary production was measured as the net accumulation 
of chlorophyll-a on artificial substrata (Godwin & Carrick 2008). 
Chlorophyll-a was measured after extraction in acetone (90%) for 24 h in the 
dark at 4ºC, sonication for 5 minutes at 40 kHz, and filtration (GF/F 
Whatman 0.7-µm pore size). Following Jeffrey & Humphrey (1975), 
chlorophyll-a concentration was determined spectrophotometrically (Perkin-
Elmer, Lambda UV/VIS). 

In order to test if B. meridionalis also feeds on predatory invertebrates (not 
only on primary consumers), and therefore, if intraguild predation occurs, 
we analyzed barbels’ gut contents. Barbels were euthanized using an 
overdose of anaesthetic (MS-222). Gut contents were preserved in 4% 
formalin, sorted, counted, and identified at the same taxonomic level as the 
benthic samples.  

Data analysis 

To test differences among the three barbel density treatments, we used the 
non-parametric Kruskal-Wallis test (K-W test). Then, pairwise Mann-Whitney 
U-tests were used to detect significant differences between treatments. We 
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compared total macroinvertebrate abundance (total number of individuals 
m-2), taxa richness (number of different taxa), rarefied taxa richness (taxa 
richness corrected by macroinvetebrate abundance in the sample), 
Simpson’s diversity index (D, calculated as ( ( 1) / ( 1))i i

i
D n n N N= − −∑ , 

where ni is the number of individuals of taxon i and N is the total number of 
macroinvertebrates (Hurlbert 1971)), abundance of common taxa (number of 
individuals of each abundant taxon, i.e. >50 ind m-2 in the treatment lacking 
barbels), and periphyton net primary production (net accumulation of 
chlorophyll-a) among the three treatments. 

We used permutational multivariate analysis of variance (PERMANOVA, 
‘Adonis’ function in R) on the Bray-Curtis distance matrix, after the log-
transformation of the macroinvertebrate abundance data, to test differences 
in macroinvertebrate community composition among treatments. Afterwards, 
we used indicator species analysis, using ‘IndVal’ test in R, to identify which 
taxa of the macroinvertebrate communities could serve as indicator for each 
barbel density treatment. The ‘IndVal’ test calculated the indicator value for 
each taxon, combining measurements of taxon specificity to each established 
barbel density treatment with taxon fidelity within each treatment (Dufrêne 
& Legendre 1997). The significance of ‘IndVal’ measures was tested using 
the Monte Carlo test with 9999 permutations. 

We also calculated predator:prey ratios for abundance and richness, 
dividing the abundance (or richness) of secondary consumers by that of 
primary consumers for each sample. To test for intraguild predation, we also 
categorized each taxon found in the gut contents as either primary or 
secondary consumer, and calculated the proportion (%) of each category in 
the contents. All statistical analyses were performed in R 2.15.2., we used 
‘vegan’ and ‘labdsv’ packages (R Core Team 2012). 

Ethical note 

This study was authorized by the Autonomous Government of Catalonia 
(Generalitat de Catalunya) and the Natural Parks Department of the 
Government of Barcelona (Diputació de Barcelona). The University of 
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Barcelona reviewed and approved the project without requirement for ethics 
approval. Fish were euthanized following the standard protocol 
recommended by the animal welfare service at the University of Barcelona 
(anaesthetized using Tricaine methanesulfonate (MS-222)), and all efforts 
were made to minimize animal stress and suffering during this study. 

 

Results 

We found 81 taxa (76 aquatic invertebrates, 1 amphibian, and 4 terrestrial 
invertebrates) throughout the mesocosm experiment. Macroinvertebrate 
communities in the mesocosm were similar to those found during previous 
research in the stream (Verkaik et al. 2013b). Primary consumers were 
typically chironomids, mayflies (such as Habroplebia sp., Baetis sp., or Caenis 
sp.), gastropods (such as Gyraulus sp. or Radix sp.), and crustaceans 
(Cladocera and Ostracoda); while secondary consumers were dominated by 
predatory chironomids (Zavrelimyia sp. and Procladius sp.), water beetles 
(mainly from Dytiscidae family), hemipterans (Parasigara sp.), Odonates 
(such as Chalcolestes viridis, Sympetrum sp., or Aeshna sp.), and leeches 
(Helobdella stagnalis) (Table S.1). Community-level analyses of the 
macroinvertebrate samples before the addition of barbels to the enclosures 
showed a homogeneous colonization of the experimental cages. Total 
macroinvertebrate density, taxa richness, Simpson’s diversity index, and 
community composition did not differ among cages (K-W tests, p > 0.1; 
Adonis, F = 0.69, p = 0.87). Similarly, significant differences in periphyton 
net primary production were not observed (K-W test, χ2 = 0.39, p = 0.83). 

Barbel presence reduced macroinvertebrate total density (χ2 = 9.09, p = 
0.011); macroinvertebrate density declined almost by half (46.2%) in the 
treatment with high barbel density compared to the treatment that did not 
contain barbels (U = 12, p = 0.01). We did not detect significant differences 
among treatments in taxa richness (χ2 = 4.29, p = 0.12) or in the Simpson’s 
diversity index (χ2 = 0.77, p = 0.68). The density of the most abundant 
macroinvertebrate taxa declined when barbels were present, but 
vulnerability varied among prey (Fig. 2.3, Table S.1). We distinguished four 
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patterns of abundance related to barbel density: i) a decrease in abundance 
proportional to barbel density for some taxa such as Habrophlebia sp. and 
Chalcolestes viridis (see Fig. 2.3c,f); ii) a sharp decrease in abundance at barbel 
presence (i.e. at both low and high barbel densities, but not proportional to 
barbel presence) for other taxa (e.g. mobile predators Stictonectes sp. and 
Chaoborus sp.; see Fig. 2.3g-h); iii) a significant reduction in taxa abundance 
only at high barbel density treatment compared to the other treatments (e.g. 
Zavrelimyia sp.; see Fig. 2.3b); and iv) no change in abundance for other taxa 
irrespective of barbel densities (e.g. Gyraulus sp.; see Fig. 2.3d). 

There were significant differences among the three treatments in the 
composition of macroinvertebrate communities (Adonis, F = 2.39, p < 0.001). 
Twelve taxa were identified as indicators in the treatment that did not 
contain barbels (Table 2.1) and two taxa in the low barbel density treatment. 
No indicator taxa were found in the high barbel density treatment. 

 

Figure 2.3 Macroinvertebrate abundance for eight of the most abundant taxa (>50 ind 
m-2 in the treatment lacking barbels) in the three treatments with varying B. meridionalis 
densities. Bars represent mean ± SE (individuals m-2). Graphs are sorted by taxa 
abundance:  Tanytarsus sp. (a), Zavrelimyia sp. (b), Habrophlebia sp. (c), Gyraulus sp. 
(d), Radix sp. (e), Chalcolestes viridis (f), Stictonectes sp. (g), and Chaoborus sp. (h). 
Different letters correspond to significant differences resulting from the pairwise 
comparisons among treatments (U-test, p < 0.05). 
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Table 2.1 Macroinvertebrate taxa detected as significant indicators for the three barbel 
density treatments. T – Treatments: 1 = treatment whithout barbels, 2 = treatment 
with a low density of barbels. IndVal – indicator value. p  –  its respective p-value. 

Taxa T IndVal p 
Chaoborus sp. 1 72.05 <0.001 
Cloeon sp. 1 70.88 <0.001 
Parasigara sp. 1 69.02 <0.001 
Procladius sp. 1 65.10 0.008 
Chalcolestes viridis 1 64.04 <0.001 
Agabus sp. 1 63.40 0.010 
Stictonectes sp. 1 62.69 <0.001 
Ostracoda 1 56.53 0.002 
Cladocera 1 55.97 0.010 
Radix sp. 1 53.33 0.019 
Habrophlebia sp. 1 48.90 <0.001 
Zavrelimyia sp. 1 44.30 0.012 
Oulimnius sp. 2 56.56 0.007 
Copepoda 2 49.97 0.021 

 

When we analyzed macroinvertebrate communities separately for primary 
and secondary consumers, we detected that B. meridionalis density affected 
primary consumer abundance (χ2 = 7.38, p = 0.025; Fig. 2.4a) but not primary 
consumer richness (χ2 = 1.19, p = 0.55) or rarefied richness (χ2 = 1.42, p = 0.49; 
Fig. 2.4b). Top predator absence increased secondary consumer abundance 
(χ2 = 12.49, p = 0.002; Fig. 2.4c) and richness before (χ2 = 12.89, p = 0.002) and 
after rarefaction (χ2 = 8.17, p = 0.017; Fig. 2.4d). The ratio for predator:prey 
abundance marginally increased (abundance: χ2 = 5.40, p = 0.07, Fig. 2.4e) in 
the absence of barbels, whereas the ratio for predator:prey richness 
increased significantly (richness: χ2 = 12.00, p = 0.002; rarefied richness: χ2 = 
9.92, p = 0.007; Fig. 2.4f). 

Gut content analysis revealed that predatory invertebrates (secondary 
consumers) amounted to, on average, 22.8 ± 3.5% (mean ± SE) of the 
individuals in the barbels’ gut contents. The most abundant predators found 
in the gut contents were Zavrelimyia sp. (a chironomid), Parasigara sp. (a 
hemipteran), and Stictonectes sp. (a water beetle). Other predatory 
invertebrates including Odonates (such as Lestidae, Libellulidae, and 
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Aeshnidae families) and other water beetles (such as Agabus sp. or 
Nebrioporus sp.) were also found in B. meridionalis gut contents (Table S.2). 

Periphyton primary production declined in the absence of the top predator 
(χ2 = 17.82, p < 0.001; Fig. 2.5, Table S.1). 

 

Figure 2.4 Barbus meridionalis density effects on macroinvertebrate abundance (mean 
± SE individuals m-2) and rarefied taxa richness (mean ± SE rarefied taxa sample-1) for: 
1º consumers (a-b), 2º consumers (c-d), and the ratio of 2º to 1º consumers (mean ± SE 
ratio sample-1) (e-f). Different letters correspond to significant differences resulting 
from the pairwise comparisons among treatments (U-test, p < 0.05). 
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Figure 2.5 Periphyton net primary production measured as the chlorophyll-a on tiles for 
the three experimental treatments. Bars represent mean ± SE (mg m-2 d-1). Different 
letters correspond to significant differences resulting from the pairwise comparisons 
among treatments (U-test, p < 0.05). 

 

Discussion 

This study demonstrated that apex consumer extinctions in intermittent 
streams may result in major changes to the system’s structure and function. 
Like others (Ritchie & Johnson 2009; Prugh et al. 2009; Beschta & Ripple 2009; 
Brashares et al. 2010), our study showed how a top predator extirpation led 
to ‘mesopredator release’ in terms of abundance and richness. More 
importantly, top predator loss led to ‘prey release’, which contrasts with 
traditional food web theory and IGP literature. In addition, it triggered a 
trophic cascade that reduced periphyton primary production. 
Macroinvertebrate community composition also changed due to B. 
meridionalis absence. These results, along with other studies done in 
temporary salt marshes (Compte et al. 2012) and streams (Woodward et al. 
2008; Gido et al. 2010), support that the effects of the loss of small-bodied fish 
are equivalent to local extinctions of larger apex consumers in other 
ecosystems (e.g. the arctic fox, wolf, jaguar, sea otter, or large reef fish 
(Beschta & Ripple 2009; Estes et al. 2011; Ripple et al. 2013)). Most studies 
about the consequences of the extinctions of top predators have been 
focused on large-bodied predators in terrestrial an marine systems (Ritchie 
& Johnson 2009; Prugh et al. 2009), usually associating large-bodied species 
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to the top of the food webs and small-bodied species to lower trophic levels 
(Marshall & Essington 2011; Säterberg et al. 2013), positing also that large-
bodied species are at much greater extinction risk than smaller species (see 
Cardillo 2003). However, as showed in this study, small-bodied fish in 
aquatic ecosystems may also exert strong top-down effects, supporting the 
idea that ‘keystone species’ is not a body-size dependent concept, but 
‘keystone species’ are those species whose effects in the ecosystem are 
disproportionate to their abundance (Paine 1969; Kotliar et al. 1999). 
Moreover, Jenkins (2003) suggests that aquatic species, in particular 
freshwater fish, are more vulnerable to extinction than terrestrial species, 
and Olden et al. (2007) highlight that the most globally threatened freshwater 
fish are small-bodied species. Putting together the results of this study with 
the fact that numerous small-bodied freshwater fish are at extinction risk, it 
seems critical to persist in the consideration of the ecological consequences 
of their possible losses. 

Ecosystem structure: ‘mesopredator release’ and ‘prey release’ 

Mesopredators were more abundant in mesocosms lacking barbels, 
supporting the ‘mesopredator release’ hypothesis (see Fig. 2.1b), which 
confirms that the loss of small-bodied top predators may have this main 
common effect with large-bodied predator extirpations (Ritchie & Johnson 
2009; Prugh et al. 2009; Beschta & Ripple 2009; Brashares et al. 2010). Several 
predatory invertebrates that characterized the enclosures lacking barbels 
(e.g. Zavrelimyia sp., Parasigara sp., and Stictonectes sp.; see Table 2.1) 
dominated barbel gut contents, indicating that fish predation contributed to 
density reduction for these taxa in the presence of barbels. Other taxa, such 
as Chaoborus sp., were not found in barbel gut contents, suggesting that the 
density decline for some taxa was most likely the result of induced 
emigration. Mesopredator abundance thus appears to be controlled by the 
top predator through the combination of predation and possible non-
consumption impacts such as competition or induced emigration. Moreover, 
mesopredator richness also increased in top predator absence. 
Consequently, a basic element of trophic webs was altered (Elton 1927): 
predator:prey ratios differed among the barbel density treatments (see Fig. 
2.4e-f). Even though predator:prey richness ratio has been previously 
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considered invariant due to underlying community assembly rules (Cohen 
1977; Warren & Gaston 1992; Jeffries 2002), our results support other studies 
that did not find conservative predator:prey ratios (Wilson 1996; Shulman & 
Chase 2007) and suggest that secondary and primary consumers respond 
unequally to the presence of a top predator. 

‘Mesopredator release’ did not lead to a negative or a null effect on primary 
consumers (see Fig. 2.4a), which conflicts with the original IGP theory (Polis 
et al. 1989; Rosenheim et al. 1995; Snyder & Ives 2001; Finke & Denno 2005). 
In contrast, top predator absence led to increased primary consumer 
abundance (i.e. ‘prey release’), which indicates that the top predator was 
more effective than mesopredators at suppressing prey. A growing body of 
literature has posited that top predator presence does not necessarily lead to 
higher prey abundance if the mesopredator exclusively uses alternate prey 
(Holt & Huxel 2007) or is cannibalistic (Rudolf 2007). However, these new 
perspectives on IGP are difficult to apply in empirical studies because 
models continue to oversimplify real food webs (e.g. by modelling food 
webs with just one intermediate predator). The IGP meta-analysis of Vance-
Chalcraft et al. (2007) concluded that top predator presence usually leads to 
‘prey release’, as predicted by trophic cascade theory. However, they also 
suggested that it is unclear in lotic ecosystems. In this sense, our results 
showed that the role of the apex consumer was not functionally replaced by 
the remaining species (Ernest & Brown 2001; Chalcraft & Resetarits 2003), 
suggesting that the predator assemblage is more important than diversity 
per se (Cardinale et al. 2006; Schneider & Brose 2013), with species identity 
being the critical factor. 

Our study confirmed top predator extirpation modified the whole community 
composition. This finding was previously reported for intermittent streams 
exclusively by Williams et al. (2003), who found fish have a top-down effect 
on macroinvertebrate assemblages in isolated pools. But to our knowledge, 
our study is the first in demonstrating top predator extirpation can change 
community composition in a running intermittent stream. The treatment 
lacking barbels was the only that contained a large number of associated 
indicator taxa (see Table 2.1). Therefore, the presence of B. meridionalis 
prompted a macroinvertebrate community that was a subset of the 
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macroinvertebrate community without the top predator. The responses of 
invertebrate populations to barbel presence were highly taxon-dependent, 
which supports evidence elsewhere that taxa within a trophic level are not 
functionally equivalent (Chalcraft & Resetarits 2003; Schmitz et al. 2004). No 
taxon was, however, positively affected by barbel presence. We found a 
statistically significant response even from highly mobile taxa that could 
rapidly recolonize the enclosures by drift (Gilliam, Fraser & Sabat 1989; 
Woodward et al. 2008), indicating a strong top-predator impact. These 
results indicate that some invertebrates have difficulty co-occurring with 
this apex consumer. Thus, the local extinction of B. meridionalis offered a 
competitive advantage for these vulnerable species to predation, and did not 
lead to an extinction cascade, which conflicts with the predator-mediated 
coexistence theory (Caswell 1978). Likewise, it contrasts with several studies 
that relate top predator extinctions to a decline in biodiversity (Henke & 
Bryant 1999; Ritchie & Johnson 2009); we did not find a relationship between 
top predator loss and total taxa richness or Simpson’s diversity, only for 
mesopredator richness that increased in top predator absence. 

Several studies have emphasized that top predators may be functionally 
extinct from an ecosystem before being extirpated (Soulé et al. 2003; Beschta 
& Ripple 2009; Säterberg et al. 2013). Management efforts to maintain 
threatened top predators at persistent levels can be ecologically irrelevant if 
the top predator population does not reach a functionally effective 
abundance. In our study, the top predator at low density (i.e. prefire density) 
led to an effective suppression of mesopredators, modified the whole 
macroinvertebrate community composition, and increased indirectly 
periphyton primary production compared to the treatment without barbels. 
However, part of the top predator functional role was only revealed at 
higher fish density, since the suppression of mesopredator richness and 
primary consumers’ abundance did not occur at low top predator density. 
These results place apex consumer density as a continuum factor that 
modulates top predator effects in the ecosystem, confirming that studies 
about functional extinction thresholds that research top-down effects of apex 
consumers’ extinctions at different densities are particularly relevant for 
ecosystem restoration and conservation purposes. 
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Ecosystem function: primary production response 

Periphyton net primary production was significantly lower in the absence of 
B. meridionalis (see Fig. 2.5), confirming a strong trophic cascade effect that 
modified ecosystem function. This effect could occur through several 
different mechanisms, which are not necessarily mutually exclusive. 
Changes in primary consumer density could not fully explain the decline in 
primary production in top predator absence (see Fig. 2.4a). However, 
primary production could be top-down controlled by one or more taxa due 
to differences in the strength of this interaction, with herbivore identity 
being the key in the herbivore-producer interface. In this case, B. meridionalis 
extirpation could have increased the abundance of taxa that placed strong 
pressures on periphyton, triggering a trophic cascade without increasing the 
total abundance of primary consumers. Another explanation could be that 
predatory invertebrates were actually omnivorous, and ‘mesopredator 
release’ (see Fig. 2.4c) led to the increased consumption of periphyton. In 
addition to density-dependent causes, top predator presence could have led 
to higher primary production through a trait-mediated effect, reducing 
foraging activity by herbivores (Schmitz et al. 2004). Although positive 
interactions have been poorly studied by benthologists (Holomuzki et al. 
2010), the presence of B. meridionalis could have had a direct positive effect 
on periphyton production via nutrient release and/or by increasing light 
levels as a result of reduced sediment deposition through feeding foraging 
movements (Ludlam & Magoulick 2010). These results demonstrate that 
trophic cascades can be strengthened at the herbivore-producer interface, 
and conflict with those of Shurin et al. (2002), which established that 
predators more strongly affected primary consumers compared to 
producers. 

Our results regarding primary production have implications for the 
management of natural and human-altered ecosystems. For instance, our 
results could modify the general view of how predatory fish abundance is 
linked to primary production in freshwater ecosystems, given that our 
results conflicted with traditional trophic cascade theory (which holds that 
each trophic level is related to the level above and below it in a direct and 
negative way (Carpenter et al. 1985)). In agroecosystems, biological-control 
practitioners often consider IGP, a very common interaction among 
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aphidophagous predators and parasitoids (Rosenheim et al. 1995; Gagnon, 
Heimpel & Brodeur 2011). In this context, Finke & Denno (2005) advised 
against promoting diverse predator assemblages in which IGP was common 
because it would weaken the suppression of herbivore pests and reduce 
productivity. These kinds of generalizations can lead to ineffective 
management practices, particularly given that our results showed that IGP 
did not dampen the trophic cascade and that neither IGP nor diversity were 
linked to cascade strength. Instead, and in agreement with Borer et al. (2005), 
cascade strength depended on the identity of predators and herbivores. 
Therefore, we recommend that managers place more importance on species 
identity in decision-making processes to better predict management 
outcomes. 

Conclusions and implications 

We conclude that intermittent streams may be affected by the consequences 
of top predator extinctions. In this study, the apex consumer was 
functionally irreplaceable despite its small-bodied size and even at low 
population densities. Indeed, the local extinction of B. meridionalis led to the 
loss of an important functional role that resulted in major changes to the 
ecosystem. Top predator absence triggered a ‘mesopredator release’, but also 
a ‘prey release’, and changed the whole macroinvertebrate community 
composition. Regarding ecosystem function, periphyton primary production 
declined indirectly due to top predator loss. We highlighted that the 
consequences of this species loss were unforeseen, particularly given that 
our results were not supported by traditional food web theory. Which 
ecological responses in mesocosms can be extrapolated to real ecosystems is 
an open ecological question (Lamberti & Steinman 1993). Brown et al. (2011) 
demonstrated that aquatic mesocosms can reproduce replicable and 
realistically not just physicochemistry and macroinvertebrate community 
composition, but complex food webs. Our in-stream mesocosms were 
carefully design to not be a methodological artefact: mesh size allowed 
macroinvertebrate emigration/inmigration and complex tray substrates 
within the mesocosms provided refuge to macroinvertebrates. However, 
spatial complexity and refuge diversity were probably lower in the 
mesocosms compared to natural stream conditions, which may have 
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increased predator-prey encounter rates. On the other hand, we used 
conservative top predator densities (i.e. the stream’s prefire average density 
and its double); however, B. meridionalis can reach higher densities in stream 
isolated pools during the dry period (up to 20 ind m-2, usually in summer) 
suggesting that the impact of this top predator could be even higher than 
observed here. Thus, despite of the limitations of our study, our main result 
is consistent: the extirpation of a small-bodied top predator can lead to deep 
system changes in intermittent streams, at least in the hydrological 
conditions during our experiment. However, research at larger spatial and 
temporal scales is needed to integrate the impact of hydrological variability 
in intermittent streams. 

Small-bodied freshwater fish species usually lack commercial value and are 
often overlooked in conservation management even when considered 
threatened (Williams 2006; Saddlier et al. 2013). Based on our results, we 
recommend that reintroduction programs be considered for small-bodied 
fish in intermittent streams, where species such B. meridionalis had become 
extirpated. Reintroduction programs would allow not just for recovery of 
endangered species populations (e.g. B. meridionalis), but for the restoration 
of the ecosystem. Likewise, reintroductions should be considered within a 
restoration ecology framework, not focusing on mere species presence, but 
on ecological effectiveness. Because habitat fragmentation often drives apex 
consumer extirpations (Brashares et al. 2010; Staddon et al. 2010) and can 
hinder following natural recolonization, we also recommend the 
improvement of ecosystem connectivity as a preventive tool as well as a first 
step in restoration programs. In the context of freshwater ecosystems’ 
conservation, given the high extinction risk of small-bodied freshwater fish, 
our study evidences that unpredictable ecosystem changes in these 
ecosystems may occur if conservation efforts are not undertaken. 
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Chapter 3 
A trait-based approach reveals the feeding 

selectivity of a small endangered 
Mediterranean fish 

 
 
 
 
 
 
 
 
Functional traits are growing in popularity in modern ecology, but feeding 
studies remain firmly rooted in a taxonomic-based perspective. Due to its 
assemblage specificity, the taxon-based approach limits our ability to 
develop and test a priori hypotheses across systems. Moreover, consumers 
do not have any reason to select their prey using a taxonomic criterion. We 
propose a simple method with a functional perspective to study the feeding 
selectivity of predators, based on the hypothesis that predators select their 
prey depending on their morphological and behavioral traits. We apply this 
trait-based approach to study prey selection by the endangered fish Barbus 
meridionalis in a Mediterranean stream. Feeding selectivity was inferred by 
comparing the traits and taxonomic composition of the ingested prey and 
free-living potential prey using the Jacob’s electivity index. We analyzed 13 
prey traits with 55 trait categories. The diet of B. meridionalis was dominated 
by chironomids and ephemeropterans. Fish refused most of the potential 
prey in the stream but positively selected Cricotopus spp., Habrophlebia sp., 
and Stictonectes sp. The trait-based analysis showed that 10 of the 13 traits 
tested significantly influenced food choice: body size, body shape, body 
flexibility, concealment, locomotion, tendency to drift, diel drift behavior, 
agility, aggregation tendency, and feeding habits. Our study shows that 
morphological and behavioral traits may explain prey vulnerability to 
predation. This trait-based approach is a promising perspective to improve 
our understanding of predator-prey interactions, to make cross-ecosystem 
comparisons through changing species-assemblages and, consequently, to 
predict the ecosystem impacts of predator invasions and extinctions. 
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Introduction 

Studies on fish feeding ecology are central to understanding trophic, 
material, and energy dynamics, to model precise outcomes for each system, 
and to develop conservation strategies for species and ecosystems (Braga et 
al. 2012). Current biodiversity loss is biased towards species in the higher 
trophic levels (Duffy 2002; Schneider & Brose 2013), freshwater fish being 
among the most threatened fauna worldwide, particularly the small-bodied 
ones (Jenkins 2003; Olden et al. 2007). Besides having an inherent 
conservation value, the loss of these species can trigger major changes in 
ecosystems because they often act as top-predators such as occurred in 
intermittent streams (Rodríguez-Lozano et al. 2015b). However, our 
understanding of how these endangered species influence food-webs 
remains limited, mainly because most of the feeding ecology studies in 
freshwater fish have been focused on commercial species (Braga et al. 2012). 

Traditionally, studies on selective predation have used a taxon-based 
approach, even though consumers do not have any reason to select their 
prey using a taxonomic criterion. According to the optimal foraging theory 
(OFT), predators select their prey in order to maximize their net rate of 
energy gain in relation to the energetic costs (Pyke 1984). In this trade-off, 
prey size has been claimed to be the primary determinant of predator choice 
because it reflects well the costs (e.g. handling time) and benefits of foraging 
(e.g. prey energy content) (Werner & Hall 1974; Woodward & Warren 2007). 
In fact, recent food-web modelling includes the predator-prey allometric 
relationship to better predict the structure of food webs (Petchey et al. 2008; 
Klecka 2014). However, other traits, either morphological (e.g. concealment 
and body shape) or behavioral (e.g. drift tendency and prey movements), 
may also determine the predator optimal foraging strategy (Rader 1997; de 
Crespin de Billy & Usseglio-Polatera 2002; Allan & Castillo 2007; Klecka & 
Boukal 2013). Therefore, the exploration of the role of prey morphological or 
behavioral traits other than body size in predator choice may help increase 
the accuracy and ecological realism of food-web studies (Ings et al. 2009; 
Rohr et al. 2010; Boukal 2014; Klecka 2014). 
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A trait-based approach has been further applied in a descriptive way to 
study fish diet (e.g. de Crespin de Billy and Usseglio-Polatera 2002, Sánchez-
Hernández et al. 2012). However, only one recent study by Green and Côté 
(2014) has examined the selectivity of a fish predator on prey traits. This 
functional perspective presents a framework to better understand predator-
prey interactions. Furthermore, since macroinvertebrate assemblages are 
variable in space and time, the use of prey traits is likely to facilitate cross-
study comparisons (Green & Côté 2014). In this regard, if the preferred prey 
traits of a fish species are known, it may help predict their effects on 
ecosystems. Therefore, studies on predator selectivity on prey traits could 
better predict the ecological consequences of native species extirpation and 
invasive species introduction, thus improving our understanding of how 
anthropogenic impacts may influence food web structure and dynamics.  

The present study explored the benefits of using a common selectivity index 
in a trait-based perspective, through the study of feeding ecology of the 
endangered freshwater fish Barbus meridionalis (A. Risso, 1827). This species 
is endemic to NE Spain and SE France, and is currently listed as ‘vulnerable’ 
in the Spanish Red Book (Doadrio 2001), ‘near threatened’ in the IUCN and 
is also included in Annexes II and V of the European Union Habitats 
Directive and in Appendix III (‘protected fauna species’) of the Bern 
Convention. Similar to other freshwater fish species, the list of threats 
include water pollution, water abstraction, dam construction, introduced 
species, and alterations in habitat (Doadrio et al. 2011; Maceda-Veiga 2013). 
Despite the scarce information on B. meridionalis feeding ecology, this species 
has been considered a benthic invertivore species (Doadrio et al. 2011) that 
feeds primarily on chironomid larvae, detritus, mayflies, amphipods, 
isopods, and terrestrial invertebrates (García-Berthou 1994; Mas-Martí et al. 
2010). Thus, B. meridionalis fits well as a case-study to explore the utility of 
multi-trait approaches in examining the selective predation of a top 
consumer. 
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Materials and methods 

Study area 

The study was carried out in the Vall d’Horta stream within the protected 
area of Sant Llorenç del Munt i l’Obac Natural Park (50 km inland from 
Barcelona city, NE Spain). This area has calcareous geology and is under the 
Mediterranean-climate domain, with mild winter and warm spring and 
summer. This area is dominated by Holm oak (Quercus ilex L.) and Aleppo 
pine (Pinus halepensis Miller) forests and Mediterranean shrubs (see Bonada 
et al. 2007 for a detailed site description). In intermittent streams, such as the 
Vall d’Horta, B. meridionalis can be the major top-down control of the aquatic 
community (Rodríguez-Lozano et al. 2015b). This species uses permanent 
pools as refuges during periods of hydrological disconnection (usually in 
summer), as do other fish species in this region (Aparicio & de Sostoa 1999). 
In August 2003, a wildfire burned a forested area of 4543 ha and, 
consequently, B. meridionalis was locally extinct in some streams, most likely 
due to water quality deterioration (Vila-Escalé et al. 2007a). The fish 
population has not recovered since then, possibly due to the presence of 
natural and human barriers downstream. 

Field and laboratory work 

In this study, we used the benthic macroinvertebrates and gut content data 
from a previous study, which also provides full details on the experimental 
design (Rodríguez-Lozano et al. 2015b). We carried out an enclosure 
experiment in the Vall d’Horta stream (41º40’24’‘N, 2º02’4’‘E; Altitude: 480 
m a.s.l.), a first order stream in the Besòs river basin. The experiment was 
run for five weeks in late spring in 2010 before pool disconnection (flow 
averaged 15.7 ± 0.9 L s-1). The mesocosm experiment consisted of nine large 
cages (100 x 100 cm surface, 70 cm height) of 10-mm mesh size, enabling 
macroinvertebrates to pass through. We randomly assigned three barbel 
densities to cages (3 cages per treatment) in order to simulate: fish 
extirpation, known prefire fish density (2 individuals m-2, A. de Sostoa pers. 
comm.), and a two fold increase in prefire density (4 individuals m-2). Each 
cage contained four trays (with stones and glass tiles) that were left for three 
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weeks in order to allow for establishment of the macroinvertebrate 
community (for further description see Rodríguez-Lozano et al. 2015). 

Fish were caught using electrofishing downstream from our study site. 
Eighteen individuals were size-matched (total length: 101.8 ± 2.6 mm; 
weight: 2.3 ± 0.2 g mean ± SE) and kept for observation, caged in the stream, 
for 24 h prior to the experiment. After two weeks in the mesocosms, fish 
individuals were euthanized using an overdose of the anesthetic MS-222® 
(Tricaine methane-sulfonate, Sigma-Aldrich), measured (total length, ± 1 
mm), weighed (± 0.01 g), dissected, and the entire guts were preserved in 4% 
formalin. To quantify the potential prey, the content of each tray was 
carefully sieved through a 250-µm mesh and individually preserved in 4% 
formalin. 

In the laboratory, we sorted and counted all macroinvertebrates in gut and 
benthos samples under the stereomicroscope. All taxa were identified to the 
genus level, with the exception of some dipterans (family level) and 
Oligochaeta, Ostracoda, Cladocera, Copepoda, Hydracarina, and terrestrial 
invertebrates. The same taxonomic resolution was used for free-living and 
ingested prey. 

Data analysis 

For the taxonomic approach, we estimated the relative importance of each 
taxon by determining the relative abundance of each prey item (i.e. the 
number of individuals of a prey in a gut divided by the total number of 
individuals, in percentage) and their frequency of occurrence (i.e. the 
percentage of guts in which a prey was present). To visualize the prey 
importance and feeding strategy we used the graphical Costello method. 
The plot shows the relative abundance of prey vs their frequency of 
occurrence, meaning that points in the top left corner indicate a diet 
specialization of some individuals (Costello, Edwards & Potts 1990). Diet 
diversity was calculated using the Shannon-Wiener index (H’=-∑Pilog10Pi, 
where Pi is the proportion of the diet that is represented by prey item i). 
Moreover, the specialization in the diet evaluated using Pielou’s evenness 
index (J=H’/H’max). We considered that  J values close to zero indicate a 



68                                                                                                                                                           Chapter 3 

stenophagous diet, while J values close to one indicate a euryphagous diet 
(Oscoz et al. 2005). 

To analyze the taxonomical feeding selectivity of B. meridionalis, we 
compared macroinvertebrates found in the gut contents with the 
macroinvertebrate community. Feeding selectivity was measured using 
Jacob’s index of electivity D (Jacobs 1974), calculated as D = r−p/(r + p−2rp), 
where r is the proportion of the diet accounted for by a given prey taxon, 
and p is the proportion of the taxon per predator cage accounted for by that 
taxon. D varies from −1 to 0 for negative selection, and from 0 to +1 for 
positive selection. To test whether selectivity significantly deviated from 0, a 
one-sample nonparametric test (Wilcoxon Signed Rank test) was used, as 
data were not normally distributed. Since chironomids are rarely identified 
to the genus level, we explored the importance of taxonomic resolution on 
the measure of feeding selectivity by comparing outputs for chironomids at 
the family, subfamily, and genus level. This family was also selected because 
from our experience Chironomidae is the most diverse family in these 
streams. Moreover, we explored the importance of fish density in diet 
diversity and feeding selectivity by using an ANCOVA test with fish density 
as fixed factor and fish length as covariable. 

For the trait-based approach, we collected 13 macroinvertebrate traits with 
55 trait categories (see Table 3.1) from public depositories (de Crespin de 
Billy 2001; Tachet et al. 2010). We used five morphological traits related to 
handling efficiency (invertebrate ‘potential size’, ‘body shape’, ‘body 
flexibility’, ‘concealment’ ability, and potential ‘morphological defenses’ 
such as cerci or spines) and eight behavioral traits (‘locomotion and 
substrate relation’, ‘tendency to drift in the water column’, ‘diel drift 
behavior’, ‘agility’, ‘movement frequency’, ‘trajectory’ trait, ‘aggregation 
tendency’, and ‘feeding habits’). A score between 0 and 5 was assigned to 
each taxon for each trait using a fuzzy coding approach (Chevenet, Dolédec 
& Chessel 1994), with ‘0’ indicating ‘no affinity’, and ‘5’ indicating ‘high 
affinity’. Given that some genera (mostly Chironomidae) were not included in 
public trait databases, these were coded using: other published information 
(e.g. Puntí, Rieradevall & Prat 2009), the available information at subfamily 
or family level, the mean of other genera values within the same family, and 



A trait-based approach of fish food choice                                                                                                  69 

the personal experience of the senior authors of this paper. Ostracoda, 
Cladocera, Copepoda, Hidracarina, tadpoles, and terrestrial invertebrates 
were not included in the trait analysis due to the lack of trait information. 

Table 3.1 Traits, categories, and codes used in analyses and graphics. 

 

 

 

 

 

Traits Categories Codes 
   Potential size 
(mm) 

≤ 2.5 <2.5 
2.5 - 5 2.5-5 
5 - 10 5-10 
10 - 20 10-20 
20 - 40 20-40 
40 - 80 40-80 
> 80 >80 

   Body shape 
(including 
cases/tubes) 

Cylindrical cyl 
Spherical sph 
Conical con 
Flattened flat 

   Body flexibility 
(including 
cases/tubes) 

None f.no 
Weak f.weak 
High f.high 

   Concealment Fixed accessory  
  

net 
Movable accessory 

  
case 

Solidly colored c.sol 
Variable c.var 
Patterned c.patt 

   Morphological 
defenses 

Cerci, silk, spine def.sp 
None def.no 

   Locomotion 
and substrate 
relation 

Surface swimmer surf.s 
Full water swimmer wat.s 
Crawler craw 
Burrower burw 
Interstitial int 
Attached att 

   Tendency to 
drift in the 
water column 

None d.no 
Weak d.weak 
Medium d.med 
High d.high 

Traits Categories Codes 
   Diel drift 
behavior 

None none 
Nocturnal noct 
Dawn dawn 
Daylight d.light 
Twilight t.light 

   Agility None a.no 
Weak a.weak 
High a.high 

   Movement 
frequency 

Continuous cont 
Discontinuous disc 

   Trajectory on 
the bottom 
substratum 
or in the drift 

None t.no 
Linear t.lin 
By random t.rand 
Oscillatory t.oscil 

   Aggregation 
tendency 

Weak ag.weak 
High ag.high 

   Feeding 
habits 

Absorber abs 
Deposit 

 
dpfd 

Shredder shrd 
Scraper scrp 
Filter-feeder filt 
Piercer pier 
Predator pred 
Parasite par 
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We inferred the selection of B. meridionalis for prey traits as we did for the 
taxonomical feeding selectivity. We compared the traits of the 
macroinvertebrates found in the gut contents with the traits of the benthic 
macroinvertebrate community. For each trait category, Jacob’ selectivity 
index was calculated and Wilcoxon Signed Rank test was computed to test 
whether selectivity was statistically significant. All statistical analyses were 
performed in R 2.15.2. (R Core Team 2012). 

Ethical note 

This study was approved by the Autonomous Government of Catalonia 
(Generalitat de Catalunya) and the Natural Parks Department of the 
Government of Barcelona (Diputació de Barcelona). This authorization only 
enabled us to sacrifice 18 fish that were euthanized following the procedure 
used in the aquatic animal facility at the University of Barcelona. All efforts 
were made to minimize animal stress, and individuals captured represented 
10% of the fish in the donor population. 

 

Results 

Taxon-based diet analysis 

Overall, 38 different taxa were found in B. meridionalis guts. Mean prey 
abundance in gut contents was 161 ± 30 (mean ± SE) individuals. Barbus 
meridionalis' diet was dominated by chironomids (71.3 ± 5.0%) and 
ephemeropterans (15.5 ± 2.2%), with Cricotopus spp. and Habrophlebia sp. 
present in all guts (Fig. 3.1, Table S.2). Other taxonomical groups were also 
frequently found, such as coleopteran larvae (e.g. Stictonectes sp., Agabus sp.), 
heteropterans (e.g. Parasigara sp.), gastropods (e.g. Gyraulus sp., Physella sp.), 
and odonates (e.g. Chalcolestes viridis, Sympetrum sp.). In contrast, caddisflies 
(e.g. Tinodes sp.), small crustaceans, leeches, and terrestrial invertebrates 
were rare. Dietary descriptors showed that prey abundance predominated 
over occurrence in describing fish diet (Fig. 3.1), suggesting that all fish prey 
on similar items. Diet diversity (0.62 ± 0.04) and the evenness index (0.68 ± 
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0.05) further supported that these fish were euryphagous. We did not 
quantify the contribution of detritus to fish diet, but it was barely present in 
all gut contents. 

 

Figure 3.1 Relationship between relative abundance (%) and frequency of occurrence 
(%) of food categories in the Barbus meridionalis gut contents based on Costello’s 
method. The written food categories represent the most important prey items. Cri-
Cricotopus spp., Hab-Habrophlebia sp., Zav-Zavrelimyia sp., Stic-Stictonectes sp., Cor-
Corynoneura spp., Mic-Microtendipes sp., Par-Parasigara sp., Aga-Agabus sp. 

The prey electivity index revealed that B. meridionalis fed on particular prey, 
ignoring many potential prey (D = -0.70 ± 0.02; p < 0.001). Surprisingly, these 
discarded taxa included some of the most abundant chironomids, such as 
Tanytarsus sp. and Dicrotendipes sp. (Figs 3.2, 3.3). In contrast, other abundant 
taxa, such as Cricotopus spp. (D = 0.77 ± 0.05; p < 0.001), Habrophlebia sp. (D = 
0.44 ± 0.10; p < 0.001), and Stictonectes sp. (D = 0.57 ± 0.14; p < 0.03) were 
highly positively selected by B. meridionalis (Fig. 3.2). Proportionally, B. 
meridionalis ate less chironomids than were in the benthos, with the 
exception of Cricotopus spp. (Fig. 3.3). However, this selective predation of B. 
meridionalis on chironomids was only observed at the subfamily and the 
genus levels, but not at the family level (D = -0.03 ± 0.11; p = 0.77; Fig. 3.3). 

Fish density had no effect on diet diversity or on mean prey selectivity. 
However, diet diversity increased with fish length (F = 17.87, p < 0.001), and 
larger fish individuals discarded less taxa (F = 12.22, p < 0.003). 
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Figure 3.2 Relative abundance of the mesocosm taxa compared to its relative 
abundance in gut contents. Taxa are ordered by their abundance in the mesocosm 
benthos and only the most abundant ones (>1%) are presented. The statistically 
significant thresholds are: *p < 0.05, **p < 0.01. 

 

Figure 3.3 Selectivity of Barbus meridionalis for the Chironomidae family, subfamilies, 
and genera. Chi-Chironomidae family; Tany-Tanypodinae subfamily, Orth-
Orthocladinae subfamily, Chir-Chironominae subfamily; Tan-Tanytarsus sp., Zav-
Zavrelimyia sp., Dic-Dicrotendipes sp., Cri-Cricotopus spp., Pat-Paratanytarsus sp., Mic-
Microtendipes sp., Cor-Corynoneura spp., Nan-Nanocladius sp., Pro-Procladius sp., Rht-
Rheotanytarsus sp., Pha-Phaenopseptra sp. The different genera are ordered by their 
abundance found in the mesocosms. The statistically significant thresholds are: *p < 
0.05, **p < 0.01. 
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Trait-based diet analysis 

The selective predation of B. meridionalis for particular taxa was mirrored in 
the trait approach. Barbus meridionalis significantly selected 60% of the trait 
categories (i.e. 33 of the 55 trait categories). Refuse choices were more 
common than positive ones: 24 trait categories were negatively selected, 
while 9 trait categories were positively selected (Fig. 3.4). Specifically, fish 
fed mostly on macroinvertebrates with a potential size of 5-10 mm (72.5 ± 
1.3%), with a cylindrical body shape (87.8 ± 3.2%), and a high body flexibility 
(77.6 ± 4.3%). In contrast, fish seemed to avoid small and big potential prey, 
prey with conical shape (D = -0.83 ± 0.12, p < 0.001), and prey without body 
flexibility (D = -0.47 ± 0.14, p = 0.006). Macroinvertebrate concealment ability 
also had a significant effect on barbel selectivity. Fish fed mostly on solidly 
colored prey (58.2 ± 1.8%) and selected positively variable colored prey (D = 
0.53 ± 0.04, p < 0.001). However, prey with patterned color or with fixed or 
movable accessories (i.e. nets, retreats, cases, or tubes) were less vulnerable 
to fish predation (Fig. 3.4). Most prey did not have morphological defenses 
(88.8 ± 1.6%), but B. meridionalis did not significantly select this trait category. 

Regarding macroinvertebrate locomotion, crawlers were the most abundant 
in gut contents (38.0 ± 2.4%) followed by attached macroinvertebrates, 
burrowers, and full water swimmers. However, fish negatively selected 
surface swimmers (D = -0.78 ± 0.10, p < 0.001) and interstitial 
macroinvertebrates (D = -0.56 ± 0.06, p < 0.001). Interestingly, prey with high 
aggregation tendency dominated gut contents (70.7 ± 0.8%), but fish 
preferred prey with weak aggregation tendency (D = 0.13 ± 0.02, p < 0.001). 
Similarly, barbels positively selected prey with medium and high drift 
tendency (medium drift: D = 0.09 ± 0.02, p = 0.003; high drift: D = 0.40 ± 0.05, 
p < 0.001), even though those with weak drift tendency predominated in fish 
guts (52.1 ± 2.2%). In particular, macroinvertebrates that drift during 
daylight were positively selected (D = 0.16 ± 0.06, p = 0.030). Most prey eaten 
by B. meridionalis also had a discontinuous movement (58.1 ± 3.3%) with an 
oscillatory trajectory (59.0 ± 3.2%), but these traits (movement frequency and 
trajectory) were not retained as significant.  
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Figure 3.4 Relative importance of the 55 categories within the 13 studied traits in the 
Barbus meridionalis gut contents (for codes, see Table 3.1). Significant selectivity of 
trait categories is marked as: (+) positive, (-) negative, or no response. The statistically 
significant thresholds are: * p < 0.05, **p < 0.01, ***p < 0.001. 
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In contrast, prey was selected by B. meridionalis in relation to their swimming 
or crawling speed, being highly agile macroinvertebrates positively selected 
(D = 0.15 ± 0.03, p < 0.001) and more often captured (51.1 ± 1.5%) than slow-
moving prey (D = -0.80 ± 0.09, p < 0.001). According to trophic guilds, 
shredders were the most abundant feeding group in gut contents (33.2 ± 
1.3%), followed by deposit feeders (27.6 ± 1.7%), scrapers (20.91 ± 1.85%), 
and predators (12.7 ± 2.2%). However, B. meridionalis only selected positively 
macroinvertebrate shredders (D = 0.63 ± 0.02, p < 0.001). 

 

Discussion 

Our study shows that taxonomic differences in the diet of B. meridionalis can 
be explained by morphological and behavioral traits. Several studies have 
used trait approaches to describe fish diet (e.g. de Crespin de Billy & 
Usseglio-Polatera 2002; Sánchez-Hernández et al. 2012) and to measure food 
choice based on prey size (e.g. Rincón & Lobón-Cerviá 1999; Sánchez-
Hernández & Cobo 2015). However, only one recent study has examined 
predator selectivity on several prey traits (Green and Côté, 2014), for which 
the authors used linear mixed-effects models. Here, we propose the Jacob’s 
D electivity index, widely used in food-choice studies (e.g. Copp, Spathari & 
Turmel 2005; Winkelmann et al. 2007; Lee & Suen 2014), as a simple tool to 
examine predator selectivity on prey traits. The benefits of using a trait-
approach are evident in our study. For instance, the fact that more than 88% 
of ingested macroinvertebrates had no morphological defenses (i.e. cerci, 
silk, and spines) could be interpreted as fish avoidance of prey with 
morphological defenses. However, our analysis did not show a negative 
selection for this trait, suggesting that prey vulnerability to predation by B. 
meridionalis was not related to the presence of these morphological defenses. 

Taxon-based diet analysis 

Our results were consistent with previous studies showing that B. 
meridionalis mostly feed on the larvae of chironomids (Cricotopus spp. and 
Zavrelimyia sp.) and mayflies (Habrophlebia sp.), followed by coleoptera 
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larvae (Stictonectes sp. and Agabus sp.) and hemipterans (Parasigara sp.) 
(García-Berthou 1994; Mas-Martí et al. 2010). Similarly, other invertebrates 
besides insects were also found in the guts examined in our study (e.g. 
gastropods), supporting that B. meridionalis is invertivorous (Doadrio et al. 
2011). While detritus was not quantified, its presence in fish guts seemed 
less predominant than in previous studies (Mas-Martí et al. 2010). These 
results are most likely attributed to the fact that fish ingested detritus 
unintentionally, at the same time that prey on benthic invertebrates. 
Conversely, it seems unlikely that fish ate detritus as a competitive 
adaptation, especially considering the high abundance of potential prey as 
well as the absence of interspecific competitors (Magalhaes 1992). 

In the current study, the selectivity of B. meridionalis for macroinvertebrate 
taxa was both positive and negative. However, mean prey selectivity was 
predominantly negative as reported in previous studies (Mas-Martí et al. 
2010). Our results show that several morphological and behavioral traits 
may explain predator food choice. Further explanations may include low 
energetic value and/or low palatability of some taxa (Sánchez-Hernández et 
al. 2011). Last but not least, the taxonomic resolution can influence our 
ability to infer fish feeding preferences, such as shown here with the 
Chironomidae family example. Barbus meridionalis selectivity for 
chironomids at subfamily and genus levels was obscured when the family 
level was used. Since chironomid taxa differ in microhabitat use, fish 
predation is most likely to vary accordingly. For example, Cricotopus spp. 
usually live on top of stones and are, therefore, more exposed to B. 
meridionalis predation than other chironomids that inhabit underneath the 
stones, such as Tanytarsus sp. and Dicrotendipes sp. Thus, taxonomic 
resolution may be a key factor in food-choice studies, as reported for food-
web metrics (Thompson & Townsend 2000). 

Contrary to the expectation of the optimal foraging theory (OFT), changes in 
diet breadth did not occur in B. meridionalis individuals between the density 
treatments. With high intraspecific competition, it was predicted that fish 
ingested a wider range of prey than at low density because it has been 
previously shown that fish feed on suboptimal prey when the preferred prey 
become scarce (Werner & Hall 1974; Martinussen, Robertsen & Einum 2011). 
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Our results suggested low intraspecific competition even when using high 
fish densities, at least for our experimental conditions. Nevertheless, higher 
competition is most likely to occur if B. meridionalis density reaches up to 20 
ind m-2; a condition that may happen during drought periods in isolated 
pools. 

Trait prey selectivity 

We provide new insights into prey-consumer interactions suggesting that up 
to 33 trait categories of 55 tested influenced prey choice. Most of these traits 
(e.g. the absence of body flexibility and/or the presence of nets or cases) 
were negatively selected by B. meridionalis. These results are consistent with 
the OFT theory (Pyke 1984), as prey with weak and high body flexibility are 
easier to handle. Similarly, prey with nets, cases, or with colored patterns 
seemed to reduce B. meridionalis predation by increasing prey concealment. 
Our results also indicated that surface swimmers and interstitial taxa 
escaped from fish predation when compared to crawlers, burrowers, and 
attached organisms, which could strengthen the benthic feeding behavior of 
B. meridionalis (Doadrio et al. 2011). However, pelagic taxa (i.e. full water 
swimmers) also occurred in the guts examined in this study, and were not 
negatively selected by B. meridionalis, indicating that B. meridionalis is 
benthopelagic. 

Prey with a potential size of 5-10 mm were highly selected by B. meridionalis, 
whereas those larger and smaller than this size were avoided. Larger prey 
were negatively selected most likely because fish were gape-limited. These 
results highlight the importance of size refuge for prey (Chase 1999; 
Woodward et al. 2010), and suggest that body size could act as a bottleneck 
in diet choice. Although our study did not directly examined the effect of 
fish size on its diet, we found that large individuals of B. meridionalis fed on a 
wider variety of prey than the small ones and were less selective, thus 
contrasting with a previous study (Mas-Martí et al. 2010). The dependence of 
diet breadth and mean prey selectivity on fish length was most likely caused 
by the incorporation of larger prey into the diet of large fish (Woodward & 
Warren 2007). 
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Interestingly, contrasting patterns were found regarding B. meridionalis 
selectivity for macroinvertebrates according to their aggregation behavior. 
While taxa with high aggregation tendency predominated in the guts 
examined (>70%), the electivity index showed that B. meridionalis preferred 
those with weak aggregation tendency. Although aggregate assemblages 
make the group more conspicuous to predators, aggregation may be an anti-
predator adaptation to dilute the predation impact among neighbors (Wrona 
& Dixon 1991) and to respond faster to detecting danger (Johannesen, Dunn 
& Morrell 2014). In addition to explaining prey vulnerability to predation per 
se, our study provides useful insights into how the use of prey traits may 
help us to better understand the role of fish in food-webs. Since shredders 
have an outstanding role in the litter decomposition process, our results 
suggest that the loss of top-down control by B. meridionalis may favor 
shredder activity, and hence, accelerate litter decomposition (Konishi, 
Nakano & Iwata 2001; Boyero, Rincón & Pearson 2008). 

Conclusions 

Our study suggests that the adoption of a trait-based perspective in studies 
on fish diet can improve our mechanistic understanding of prey-consumer 
relationships. Although body size was already reported as an important 
determinant factor for food choice, our study suggests that up to 33 trait 
categories within 10 traits may be involved in the feeding preferences of B. 
meridionalis. Our results also depicted some discrepancies with the existing 
literature in the habitat use and diet of this fish species, highlighting the 
need for more basic research into the biology and ecology of species. This 
also applies to macroinvertebrates because we need more basic knowledge 
to build more comprehensive public trait depositories (e.g. Vieira et al. 2006, 
Bonada and Dolédec 2011, Sánchez-Hernández et al. 2011). Finally, our study 
suggests that the trait-based perspective overcomes the limitations of the 
taxon- and size-based approaches, improving our knowledge of predator-
prey interactions, facilitating cross-study comparisons and, consequently, 
helping to predict the outcomes of predator invasions and extinctions. 
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Chapter 4 
Top predator absence enhances leaf breakdown 

in a Mediterranean stream 
 
 
 
 
 
 
 
 
 
 
Current biodiversity loss is biased towards species in the higher trophic 
levels, small-bodied freshwater fish being among the most threatened fauna 
worldwide. In research studies and conservation management, small-bodied 
freshwater fish have often been overlooked because they usually lack 
commercial value. Therefore, the ecosystem impacts of their possible loss 
remain mostly unknown. In this study, we assessed the top-down impacts of 
an endangered small-bodied fish, Barbus meridionalis (A. Risso, 1827), in a 
detritus-based stream. We tried to determine whether the loss of a top 
predator affects leaf fungal biomass and leaf quality (i.e. leaf carbon:nitrogen 
ratio and leaf toughness), macroinvertebrate assemblages colonizing leaf 
packs and, consequently, leaf breakdown rates. In order to achieve these 
objectives, we conducted a leaf bag experiment in two adjacent reaches of an 
intermittent Mediterranean stream: a control downstream reach with a 
population of B. meridionalis (control site) and an upstream fishless reach. 
Top predator absence led to faster overall leaf decomposition, which was 
caused by the higher shredder and scraper biomass in coarse-mesh leaf bags 
in the fishless compared to the control reach. Fish absence reduced leaf 
fungal biomass in both fine- and coarse-mesh bags, but did not decrease 
microbially mediated leaf breakdown. These results suggest that leaf fungal 
biomass was stimulated from the bottom-up through nutrient recycling by 
the top predator. To our knowledge, the present study is the first to assess 
the impact of a predatory fish in leaf fungal biomass in a stream, as well as 
to explore the importance of fish on leaf decomposition in an intermittent 
stream.
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Introduction 

Our planet is experiencing the Sixth Mass Extinction, which is characterized 
by the loss of apex consumers (Duffy 2002; Estes et al. 2011; Schneider & 
Brose 2013). Top predators are acknowledged to exert a top-down force on 
their prey that can spread through the trophic web, leading to strong 
indirect effects (i.e. trophic cascades) (Hairston et al. 1960; Polis et al. 2000; 
Terborgh & Estes 2010). Trophic cascades have been documented in 
terrestrial, freshwater, and marine ecosystems, from the poles to the tropics, 
and most have focused on grazing systems (see Estes et al. 2011). In brief, 
ecosystem loss of apex consumers may alter the intensity of herbivory and, 
consequently, the abundance and/or composition of primary producers. 
However, our knowledge of the role of top predators in ecological networks 
is still limited, with an increasing body of literature highlighting that top-
predator loss may trigger ecosystem changes that are complex, 
unpredictable, and largely unknown (Marshall & Essington 2011; Estes et al. 
2011). Consequently, a current major challenge is to better understand the 
responses of ecosystems to the top-predator decline (Sutherland et al. 2013). 

Most research regarding the consequences of the extinctions of top predators 
have been focused on large-bodied terrestrial mammals (Prugh et al. 2009; 
Beschta & Ripple 2009; Ordiz et al. 2013; Ripple et al. 2014), and secondarily 
on large marine predators (Heithaus et al. 2008; Ritchie & Johnson 2009), 
thus overlooking freshwater ecosystems. Moreover, most studies usually 
associate large-bodied species to the top of the food webs and small-bodied 
species to lower trophic levels (Marshall & Essington 2011; Säterberg et al. 
2013). However, aquatic species seem more vulnerable to extinction than 
terrestrial species, freshwater fish being among the most threatened fauna 
worldwide (Jenkins 2003). In marine ecosystems larger fish are the most 
endangered, but in freshwater ecosystems small-bodied fish exhibit greater 
risk of extinction than their larger-bodied counterparts (Olden et al. 2007). 
Despite their body size, small-bodied fish often act as top predators in 
several freshwater ecosystems, such as intermittent rivers, headwater 
permanent streams, and ponds (Meyer et al. 2007; Reich et al. 2010; Brucet et 
al. 2012). However, these species are often overlooked in research and 
conservation management even when considered threatened, probably 
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because they usually lack commercial value (Williams 2006; Braga et al. 2012; 
Saddlier et al. 2013) and inhabit ecosystems often neglected by conservation 
and management (Boix et al. 2012; Nikolaidis et al. 2013). Therefore, 
understanding the ecological consequences of the possible loss of small-
bodied predatory fish should be a research priority. 

Many freshwater systems, such as most forested headwater streams, are not 
autotrophic-based, but detritus-based systems where leaf-litter processing 
fuels food webs (Vannote et al. 1980; Graça & Canhoto 2006; Tank et al. 2010). 
The hypothesis that detritus-based food webs are less likely to be top down-
controlled compared with grazing systems (Rosenfeld 2000; Johnson & 
Wallace 2005) was refuted decades ago by several studies that have 
demonstrated how predatory invertebrates can trigger trophic cascades in 
detritus-based streams (Obernborfer et al. 1984; Malmqvist 1993; Lecerf & 
Richardson 2011; Lagrue, Besson & Lecerf 2015). However, fish-induced 
trophic cascades in streams have been demonstrated more recently and are 
less common in the literature (Greig & McIntosh 2006; Woodward et al. 2008; 
Buria et al. 2010) with some studies finding inconsistent (Ruetz, Newman & 
Vondracek 2002) or no effects on leaf breakdown by predatory fish (Reice 
1991; Rosenfeld 2000). The indirect decrease of leaf breakdown by predators 
can be density-mediated, through the reduction of shredder density, but also 
trait-mediated (Schmitz et al. 2004; Lagrue et al. 2015), if the foraging activity 
of shredders decreases due to the predator presence. 

In addition, top predators can play a key role in nutrient recycling through 
the excretion and egestion of nutrients (Vanni 2002; Schmitz et al. 2010). 
Thus, top predators may contribute toward the bottom-up control of food 
webs. In freshwater systems, predatory fish can produce biogeochemical 
hotspots when they aggregate in local patches (McIntyre et al. 2008; 
Boulêtreau et al. 2011; Capps & Flecker 2013). Although the potential effects 
of predatory fish in leaf breakdown through nutrient recycling are 
practically unexplored, several studies posit that nutrient enrichment in 
streams can increase leaf fungal biomass and, consequently, enhance 
microbially mediated leaf breakdown (Gulis & Suberkropp 2003; Chung & 
Suberkropp 2008; Ferreira & Chauvet 2011b). Besides, higher nutrient 
availability in the stream water can increase leaf N content, thus modifying 
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leaf-litter quality (Gulis & Suberkropp 2003). Therefore, given that fish 
extinctions can alter nutrient recycling in streams (McIntyre et al. 2007), fish 
absence may impact on leaf-litter processing through bottom-up control. 

In the present study, we assessed the top-down impacts of an endangered 
small-bodied fish, Barbus meridionalis (A. Risso, 1827), to determine whether 
the loss of a top predator affects (1) leaf fungal biomass and leaf quality (i.e. 
leaf carbon:nitrogen (C:N) ratio and leaf toughness), (2) macroinvertebrate 
assemblages colonizing leaf packs, and (3) leaf breakdown rates. To achieve 
these objectives, we conducted a leaf bag experiment from late spring to 
early autumn in two adjacent reaches of an intermittent Mediterranean 
stream: a downstream reach with a population of B. meridionalis (control site) 
and an upstream fishless reach. We hypothesized that macroinvertebrate 
shredder populations are top-down controlled by B. meridionalis, thus the 
fishless reach would have higher shredder densities compared to the control 
reach and, consequently, faster macroinvertebrate mediated litter 
breakdown rates (Fig. 4.1). Moreover, we hypothesized that B. meridionalis 
can create a biogeochemical hotspot in intermittent streams during the dry 
season when this species aggregates in pools, as do other fish species 
(Aparicio & de Sostoa 1999). Hence, the absence of excretion and egestion by 
B. meridionalis may trigger a reduction in leaf fungal biomass, slowing down 
microbially mediated leaf breakdown. 

 

Materials and methods 

Study area 

The study was carried out in the Castelló stream (lat 41°40ʹ42ʹʹN, long 
2°1ʹ49ʹʹE; Altitude: 431 m a.s.l.) within the protected area of Sant Llorenç del 
Munt i l’Obac Natural Park (50 km inland from Barcelona city, NE Spain). 
This area is characterized by a calcareous geology and a Mediterranean 
climate, with mild winter and warm spring and summer. Rainfall is 
irregular and intense, occuring primarily in winter but also in spring and 
autumn, while summer is normally very dry. The protected area is 
dominated by Holm oak (Quercus ilex L.) and Aleppo pine (Pinus halepensis 
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Miller) forests and Mediterranean shrubs (for a detailed description see 
Bonada et al. 2007b, Verkaik et al. 2013b). The Castelló stream is a first order 
stream, tributary of the Ripoll river in the Besòs basin, and its catchment is 
mainly forested, with small areas of cereal cultivation (<15%). We selected 
two adjacent 100-m reaches in the stream, separated by <0.5 km: a 
downstream reach with a population of B. meridionalis and an upstream 
fishless reach. Both reaches were <2 m wide and <50 cm deep, with a 
bedrock stream bed and similar riparian vegetation and 
hydromorphological characteristics. 

 

Figure 4.1 Trophic (solid) and non-trophic (dashed) interactions among the predatory 
fish, shredders, fungal decomposers, and leaf-litter in the presence (a) and absence (b) 
of the top predator. Non-trophic interactions include: (1) fungal facilitation of 
shredders through leaf conditioning, (2) fungal stimulation through nutrient excretion 
by fish and invertebrates, and (3) trait-mediated reduction of foraging activity. Adapted 
from Jabiol, McKie & Bruder (2013). 

Species 

Barbus meridionalis is endemic to NE Spain and SE France, and is currently 
listed as ‘vulnerable’ in the Spanish Red Book (Doadrio 2001), ‘near 
threatened’ in the IUCN, and included in Annexes II and V of the European 
Union Habitats Directive and in Appendix III (‘protected fauna species’) of 
the Bern Convention. Similar to other freshwater fish species, the list of 
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threats include water pollution, water abstraction, dam construction, 
introduced species, and alterations in habitat (Doadrio et al. 2011; Maceda-
Veiga 2013). This freshwater fish often acts as top predator in intermittent 
Mediterranean streams, where its local extinction may trigger a 
‘mesopredator release’, a ‘prey release’, changes in the whole 
macroinvertebrate community composition, and a decrease in periphyton 
primary production (Rodríguez-Lozano et al. 2015b). 

In August 2003, a wildfire burned a forested area of 4543 ha and, 
consequently, B. meridionalis was locally extinct in some streams, most likely 
due to water quality deterioration (Vila-Escalé et al. 2007a). The fish 
population has not recovered in those streams since then, possibly due to the 
presence of natural and human barriers downstream. The Castelló stream 
and its watershed were not affected by the wildfire, and its Barbus 
meridionalis population remains well preserved; as a result, this stream has 
been used as a control system for several research studies (e.g. Verkaik et al. 
2013; Rodríguez-Lozano et al. 2015a). 

Physicochemical measurements 

We carried out physicochemical measurements throughout the litter 
decomposition experiment (n = 6). We measured dissolved O2, pH, and 
conductivity in situ with a Multiline P4 WTW meter (YSI, Yellow Springs, 
OH, U.S.A.), and we estimated discharge from mean depth, transect width, 
and water velocity with a flow meter (miniAir, Schiltknecht, Gossau, 
Switzerland). We collected water samples by hand, reserved 50 mL for total 
organic carbon analysis (TOC), and filtered the rest of the water through 
GF/F Whatman filters to analyze dissolved organic carbon (DOC) and 
nutrients. TOC and DOC were determined in an automated N, C analyzer 
(multi N/C 3100, Analytik Jena, Jena, Germany). We measured ammonium 
(NH4+-N) and soluble reactive phosphorous (PO43–-P) with 
spectrophotometric methods (Shimadzu UV-1201, Shimadzu, Tokyo, Japan) 
and nitrate (NO3–-N) with ionic chromatography methods (UV/V Kontron 
model 332, Kontron AG, Zürich, Switzerland). Water temperature was 
recorded every 10 minutes throughout the leaf bag experiment using 
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submersible temperature data loggers (HOBO Pendant, Onset Computer 
Corporation, Bourne, MA, U.S.A.). 

Field experiment 

We conducted the leaf bag experiment from late spring to early autumn 2012 
(14 June 2012 – 05 October 2012), coinciding with the peak of  in-stream leaf 
inputs (Rodríguez-Lozano et al. 2015a). Leaves of white poplar (Populus alba 
L.) were collected just after abscission, and air-dried at room temperature to 
constant mass. Leaf bags (15 x 20 cm) containing 3 g of leaves (SE = 0.06 g) 
were made of 2 mesh sizes: coarse (10 mm) and fine (250 µm). Coarse-mesh 
bags allowed macroinvertebrate colonization and also small fish individuals 
to enter the leaf bags, thus more closely simulating natural leaf-litter 
breakdown processes, whereas fine-mesh bags excluded virtually all fish 
and macroinvertebrates, thereby allowing us to assess the relative 
contribution of microbial (fungi and bacteria) activity to leaf breakdown 
(Young et al. 2008). 

We deployed 30 bags of each mesh type in the control and fishless reaches in 
pools because leaves naturally accumulated in the pools of this stream. We 
placed 12 additional bags in the fishless reach for 24 h to correct for initial 
leaf mass losses resulting from leaching and accidental transport losses 
(Gessner et al. 1999). We removed 6 litter bags of each type (fine- and coarse- 
mesh) from each reach 5, 12, 26, 58, and 113 days after deployment. At 
retrieval, we placed litter bags individually in zip-lock bags and transported 
them in refrigerated containers to the laboratory, where we processed them 
immediately. We washed the material in each litter bag, collected 
invertebrates on a 250-µm sieve, and preserved them in 70% ethanol. For 
each litter bag, 8 leaf discs of 10-mm diameter were cut. A set of 5 discs were 
stored at -18ºC until ergosterol determinations (n = 6). The other 3 leaf discs 
were used to quantify leaf toughness (n = 3) or leaf C:N ratio (n = 3) (i.e. half 
of the samples where used for a measure, and the other half for the other, 
resulting in 3 replicates per treatment for both measures). The remaining leaf 
material was oven-dried (60°C, 72 h) and combusted (500°C, 12 h) to 
measure remaining ash-free dry mass (AFDM). 
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Laboratory analysis 

Fungal biomass in leaf-litter was assessed through determination of ergosterol 
content, following Gessner (2005). The 5 frozen leaf discs of each leaf bag 
were freeze-dried, weighed to the nearest 0.1 mg and heated at 80ºC for 30 
minutes with alkaline methanol to extract the lipids. Subsequently, extracts 
were purified using solid-phase extraction cartridges (Sep-Pak tC18, 500 mg, 
3 cc, Waters Corporation, Milford, MA, U.S.A.). Ergosterol concentration 
was quantified by comparing absorbance at 282 nm after separation from 
other lipids by high-performance liquid chromatography (HPLC, JASCO, 
Easton, MD, U.S.A.; Column Gemini® 5 µm NX-C18 250 x 4.6 mm, 
Phenomenex, Torrance, CA, U.S.A.) with a standard of ergosterol (Sigma-
Aldrich, St. Louis, MO, U.S.A.). Ergosterol content was converted to 
mycelium biomass using the average conversion factor of 5.5 mg of 
ergosterol per gram of mycelium (Gessner & Chauvet 1993). We 
standardized fungal biomass per gram of leaf-litter AFDM remaining in leaf 
bags. Leaf toughness was estimated by measuring the force needed to 
penetrate leaves using a penetrometer (punch diameter = 1.95 mm), 
following methods described by Graça & Zimmer (2005). For each treatment 
replicate, leaf toughness corresponded to the mean of 3 measurements on 3 
distinct leaves. To determine the C:N ratio we grounded together 3 leaf discs of 
3 distinct leaves for each treatment replicate. Subsequently, leaf C and N 
contents were quantified using a gas chromatograph coupled to a TCD 
detector after combustion at 1000ºC. 

We counted macroinvertebrates, identified them to the lowest possible 
taxonomic level (usually genus), and measured them to the nearest mm. We 
classified taxa to functional feeding groups (FFG) following Tachet et al. 
(2010). We calculated individual biomass using published body length–dry 
mass equations (Dumont et al. 1975; Smock 1980; Meyer 1989; Benke et al. 
1999; Miserendino 2001; Baumgärtner & Rothhaupt 2003; Ohta et al. 2011), 
except Hydracarina, Ostracoda, Cladocera, Oligochaeta, Nematoda, and 
Tardigrada for which we used biovolume data (Ramsay et al. 1997). We 
standardized macroinvertebrate abundance and biomass in coarse-mesh leaf 
bags per gram of remaining AFDM of leaf-litter in leaf bags. We also 
calculated macroinvertebrate mean and maximum body size (as body 
length) of each coarse-mesh litter bag. 
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Data analysis 

All statistical analyses were performed using the programs R (version 2.15.2, 
R Project for Statistical Computing, Vienna, Austria) and SPSS (version 21.0, 
IBM Corp., Armonk, New York, U.S.A.). We compared mean daily water 
temperature and other physicochemical variables between control and 
fishless reaches, over the experimental period with one-way ANOVAs. 

We used an exponential decay model (Bärlocher 2005) to quantify leaf 
breakdown rates: 

𝑀𝑡 = 𝑀0𝑒−𝑘𝑡  (Eq. 4.1)  

where Mt is the leaf-litter AFDM at time t, M0 is the initial AFDM corrected 
for leaching and transportation mass losses, –k is the decomposition rate, 
and t is the time in days. To test for significant differences in leaf 
decomposition rates among sites and mesh sizes, we conducted an analysis 
of covariance (ANCOVA) on ln(x)-transformed AFDM remaining 
(dependent variable), with site and mesh size as fixed factors and time (d) as 
a covariate (Zar 2010). We adjusted α levels for pairwise comparisons of 
decomposition rates between all sites and mesh sizes with Bonferroni 
corrections. We corrected for temperature effects on leaf breakdown rates, 
by repeating the analyses using degree days (dd) instead of days as the 
covariate. We calculated degree days as mean daily temperatures 
accumulated by each sampling day (Minshall et al. 1983; Irons III et al. 1994; 
Menéndez et al. 2003). Similarly, to detect differences in leaf fungal biomass, 
toughness, and C:N ratio we conducted ANCOVA with site and mesh size 
as fixed factors and time as a covariate. 

Nonmetric multidimensional scaling (NMDS) ordination was employed to 
examine the similarity in the macroinvertebrate composition of the coarse-
mesh bags. To test for differences in the macroinvertebrate community 
composition between reaches, we used permutational multivariate analysis 
of variance (PERMANOVA, ‘Adonis’ function in R) on the Bray-Curtis 
distance matrix, after the log(x)-transformation of the macroinvertebrate 
biomass data. Subsequently, we used indicator species analysis, using 
‘IndVal’ test in R, to identify which macroinvertebrate taxa of the coarse-
mesh bags could serve as indicator for B. meridionalis presence or absence. 
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The ‘IndVal’ test calculated the indicator value for each taxon, combining 
measurements of taxon specificity to each reach with taxon fidelity within 
each reach (Dufrêne & Legendre 1997). The significance of ‘IndVal’ measures 
was tested using the Monte Carlo test with 9999 permutations. To test for 
significant differences in total macroinvertebrate abundance and biomass in 
coarse-mesh leaf bags between reaches, we performed ANCOVA with site 
as a fixed factor and time as a covariate. We repeated the analysis for each 
macroinvertebrate FFG, and applied Bonferroni corrections to control for 
comparison-wise error. We also tested for differences between reaches in 
mean and maximum body size of macroinvertebrates in coarse-mesh bags. 

 

Results 

Both reaches had alkaline pH, low discharge, and low nutrient 
concentrations during the study period (Table 4.1). Mean daily water 
temperature was similar between reaches (F = 3.57, p = 0.06). Reaches only 
differed in dissolved oxygen levels, which were slightly higher in the 
fishless than in the control reach (F = 21.65, p < 0.001). During the leaf bag 
experiment, the stream was in an oligorheic aquatic state (Gallart et al. 2012), 
i.e. pools were the dominant mesohabitat but still connected by thin water 
threads (flow <1 L s-1). 

Table 4.1 Mean (± 1 SE) values of characteristics of the control and the fishless reaches 
during the litter decomposition experiment (14 June 2012 – 05 October 2012). 

 Control Fishless 
Discharge (L s-1) 0.7 ± 0.1 0.6 ± 0.2 
Water temperature (ºC) 6.82 ± 0.05 6.60 ± 0.04 
pH 8.16 ± 0.06 8.22 ± 0.05 
Conductivity (µS cm-1) 478 ± 5 474 ± 20 
DO (% saturation) 85.7 ± 0.9 95.1 ± 0.1 
NH4

+-N (µg L-1) 50 ± 7 48 ± 1 
NO3

–-N (µg L-1) 102 ± 16 97 ± 27 
PO4

3–-P (µg L-1) 22 ± 4 28 ± 1 
TOC (mg L-1) 3.59 ± 0.21 3.60 ± 0.24 
DOC (mg L-1) 3.06 ± 0.11 3.16 ± 0.18 
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Poplar-leaf mass loss fit an exponential model with a similar adjust for days 
and degree days (Table 4.2). Litter mass loss over time (i.e. without 
temperature correction) was faster in the fishless compared to the control 
reach (F = 4.10, p = 0.04; Fig. 4.2a). Litter decomposition rate also differed 
between mesh sizes (F = 28.03, p < 0.001; Fig. 4.2a), and a significant 
interaction between both factors was detected (F = 15.14, p < 0.001). Using 
accumulated heat (degree days) instead of time (days) as independent 
variable, leaf decomposition rate also differed due to B. meridionalis presence 
(F = 9.41, p = 0.003; Fig. 4.2b) and mesh size (F = 27.90, p < 0.001), with a 
significant interaction between factors (F = 15.08, p < 0.001). Pairwise 
comparisons showed differences due to fish presence for coarse-mesh bags 
(F = 26.90, p < 0.001), but not for fine-mesh bags (F = 1.08, p = 0.30). Litter 
decomposition for coarse-mesh bags was faster compared to fine-mesh bags 
only in the fishless reach (control: F = 1.84, p = 0.18; fishless: F = 31.06, p < 
0.001). 

Poplar leaf toughness (Fig. 4.3a) decreased continuously over time (F = 296.67, 
p < 0.001), and was lower in fishless than control reach leaves (F = 4.212, p = 
0.04). Mesh size had no effect on leaf toughness (F = 1.94, p = 0.17). Leaf 
fungal biomass (Fig. 4.3b) was higher in the control than in the fishless reach 
(F = 5.45, p = 0.02) and in the coarse-mesh than in the fine-mesh bags (F = 4.30, 
p = 0.04). No significant interaction between factors was found (F = 0.79, p = 
0.28). Leaf C:N ratio (Fig. 4.3c) decreased over time (F = 48.21, p < 0.001), but 
no effect of B. meridionalis presence nor mesh size was detected (p > 0.6). 

Table 4.2 Mean (SE) leaf-litter breakdown rates (–k) and R2 values for regressions of 
ln(x)-transformed leaf mass remaining vs time in days (d) and cumulative degree days (dd). 

Site Mesh 
d  dd 

–k SE R2 –k SE R2 
Control Coarse 0.00786 0.00036 0.94  0.00115 0.000050 0.95 
Control Fine 0.00710 0.00033 0.94  0.00104 0.000047 0.95 
Fishless Coarse 0.01100 0.00031 0.98  0.00164 0.000047 0.98 
Fishless Fine 0.00627 0.00029 0.95  0.00093 0.000043 0.94 
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Figure 4.2 Mean (±1 SE; n = 6) % initial Populus alba leaf-litter mass remaining in 
coarse- and fine-mesh bags at the control and the fishless reaches over 113 days 
expressed over time (a) and over cumulative degree days (b). 

The NMDS plot based on biomass data of macroinvertebrate taxa provided 
an interpretable two-dimensional ordination of the macroinvertebrate 
assemblages of the coarse-mesh leaf bags (Fig. 4.4). The taxonomic 
composition of the macroinvertebrate assemblages differed significantly 
depending on B. meridionalis presence (Adonis, F = 30.86, p < 0.001). 
Macroinvertebrate composition also changed over time (F = 10.03, p < 0.001), 
with a significant interaction between factors (F = 5.76, p < 0.001): the 
differences in macroinvertebrate assemblages between reaches decreased 
during the leaf breakdown process (Fig. 4.4). Eight taxa were identified as 
indicators of fish presence and six taxa of fish absence (Table 4.3). The 
shredders Habrophlebia sp. and Stratiomyidae, as well as several scrapers (i.e. 
Gyraulus sp., Radix sp., and Ancylus sp.), were characteristic of the leaf bags 



Top predator absence enhances leaf breakdown                                                                                        93 

at the fishless reach. The shredder Thraullus bellus and the Orthocladiinae 
family (scrapers) were characteristic of B. meridionalis presence. Other 
shredders, such as Mystacides sp., Limnephilidae, and Tipulidae were not 
indicators of top predator presence or absence. 

 

Figure 4.3 Mean (±1 SE) leaf toughness (n = 6) (a), leaf fungal biomass (n = 3) (b), and 
C:N ratio (n = 3) (c) in coarse- and fine-mesh bags at the control and the fishless reaches 
over the experimental period. 
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Figure 4.4 Nonmetric multidimensional scaling (NMDS) ordination of 
macroinvertebrate assemblages in coarse-mesh bags. Colors distinguish Barbus 
meridionalis presence and absence and different symbol shapes denote different 
sampling dates. 

Table 4.3 Macroinvertebrate taxa detected as significant indicators for the coarse-mesh 
leaf bags in the control and the fishless reaches. T – Treatments: 1 = control, 2 = 
fishless. IndVal – indicator value. p  –  its respective p-value. 

Taxa T IndVal p 
Cladocera 1 80.17 <0.001 
Caenis sp. 1 73.44 <0.001 
Oligochaeta 1 62.00 0.003 
Corynoneura sp. 1 60.17 0.010 
Orthocladiinae 1 59.00 0.002 
Ceratopogoninae 1 51.82 0.003 
Thraulus bellus 1 23.33 0.011 
Planaria torva 1 20.00 0.024 
Radix sp. 2 79.85 <0.001 
Gyraulus sp. 2 72.89 <0.001 
Habrophlebia sp. 2 56.16 <0.001 
Copepoda 2 46.56 0.008 
Stratiomyidae 2 29.95 0.003 
Ancylus fluviatilis 2 26.67 0.005 
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Total macroinvertebrate abundance in the coarse-mesh bags did not differ 
between reaches (F = 1.04, p = 0.31), while total macroinvertebrate biomass 
(Fig. 4.5a) was higher in the fishless reach compared to the control reach (F = 
5.01, p = 0.03). Mean body size (F = 6.00, p = 0.01) and maximum body size 
(F = 2.00, p < 0.001) were higher in the coarse-mesh leaf bags at the fishless 
than at the control reach. In terms of functional feeding groups (FFG), the 
abundance and biomass of shredders and scrapers (Fig. 4.5b-c) was higher in 
the coarse-mesh bags of the fishless reach compared to the control reach, but 
the abundance and biomass of gathering and filtering collectors (Fig. 4.5e-f) 
was greater in the control than in the fishless reach (F = 6 - 36, p = 0.01 to < 
0.001). Abundance and biomass of predatory invertebrates in coarse-mesh 
bags did not differ between reaches (p > 0.9; Fig. 4.5d). 

 

Figure 4.5 Mean (±1 SE; n = 6) biomass (mg g-1 remaining leaf ash-free dry mass 
[AFDM]) of total invertebrates (a), shredders (b), scrapers (c), predators (d), gathering 
collectors (e), and filtering collectors (f) in coarse-mesh bags at the control and the 
fishless reaches over the experimental period. 
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Discussion 

Our results show that an endangered small-bodied fish triggered a trophic 
cascade in a detritus-based stream. Despite the growing recognition of the 
importance of intermittent streams, no published study has assessed trophic 
cascades of predatory fish over leaf decomposition in these systems. Overall 
leaf breakdown (i.e. coarse-mesh bags) was faster in the fishless than in the 
control reach, but microbially mediated decomposition (i.e. fine-mesh bags) 
did not differ due to top predator presence-absence. Therefore, the 
difference in leaf breakdown between reaches can be attributed entirely to 
differences in macroinvertebrate performance. We isolated the effects of 
macroinvertebrates on leaf breakdown rates by subtracting k-values in fine-
mesh bags from those in coarse-mesh bags. These calculations showed that 
the macroinvertebrate mediated leaf breakdown rate was 6.2 times higher in 
the fishless than in the control reach (i.e. 0.00473 vs 0.00076 when expressed 
per day). This difference could be caused by intersite differences in shredder 
density and biomass in coarse-mesh bags, which were significantly higher in 
the fishless than in the control site. Scraper density and biomass were also 
higher in coarse-mesh bags in the fishless stream, which could also have 
contributed toward increasing leaf breakdown since scrapers, such as 
gastropods, can also have a positive effect on leaf breakdown rates 
(Costantini & Rossi 2010; Treplin & Zimmer 2012). These differences in the 
density and biomass of shredders and scrapers in coarse-mesh bags between 
reaches can be attributed to the top-down control by B. meridionalis in the 
control reach. Previous research has shown that this fish species can trigger a 
trophic-cascade on periphyton primary production (Rodríguez-Lozano et al. 
2015b) and may feed preferentially on macroinvertebrate shredders (see 
Chapter 3). 

The macroinvertebrate contribution to leaf breakdown was negligible in the 
control reach (i.e. no significant differences in breakdown rates between 
fine- and coarse-mesh bags), although shredders and scrapers were present 
in coarse-mesh bags. This suggests that B. meridionalis presence not only had 
a density-mediated impact, but also a trait-mediated, reducing 
macroinvertebrate feeding activity on leaf-litter. Schmitz et al. (2004) 
suggested that trait-mediated responses of prey to predators ultimately 
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determine trophic cascades, but studies on behaviorally mediated effects of 
predatory fish on detritus-based systems are scarce and their results are 
equivocal (Greig & McIntosh 2006; Boyero et al. 2008; Jabiol et al. 2013). 
Several laboratory studies have found that shredders may reduce their 
activity in presence of fish chemical cues (Abjörnsson et al. 2000; Boyero et al. 
2008), but only in some cases it led to a reduction in leaf breakdown (Short & 
Holomuzki 1992; Rezende et al. 2015). The trait-mediated response of prey 
could depend on the predator-prey pair as a function of the prey vulnerability 
to the predator and the existence of other antipredator strategies (Schmitz et 
al. 2004; Jabiol et al. 2013). 

In our study, B meridionalis' top-down role over macroinvertebrates was not 
limited to the reduction of some taxa density, but it changed the whole 
macroinvertebrate assemblage associated to leaf bags. For instance, B. 
meridionalis favored filtering collectors, such as cladocerans, which may be 
caused by the fish foraging movements that can dislodge and resuspend 
deposited sediments (Gelwick, Stock & Matthews 1997). The observed 
decrease in macroinvertebrate mean and maximum body sizes in top predator 
presence was probably caused by these changes in community composition 
(i.e. several small invertebrate taxa were favored, such as cladocerans and 
Orthocladinae), and by the size-selectivity feeding of B. meridionalis (Chapter 
3). The changes in the assemblage composition can affect leaf breakdown 
rates if the favored taxa cannot functionally compensate the reduction or 
loss of other taxa (Ernest & Brown 2001; Rodríguez-Lozano et al. 2015b). 
Greig and McIntosh (2006) found no differences in total shredder biomass 
among streams with and without brown trout, but higher leaf 
decomposition rates in fishless streams; it was explained by changes in the 
composition of the shredder assemblages as an efficient obligate shredder 
was only present in fishless streams. This suggests that the top-down impact 
of a predatory fish on leaf decomposition can depend on the interaction 
strength between shredder prey and leaf-litter; shredder identity being a key 
factor. 

In addition, fish presence positively affected leaf fungal biomass in both 
fine- and coarse-mesh bags, but did not lead to an increase in microbially 
mediated leaf breakdown (i.e. no significant differences between reaches in 
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leaf decomposition in fine-mesh bags). Moreover, fungal biomass was 
higher in coarse-mesh compared to fine-mesh bags, thus macroinvertebrates 
positively affected fungal biomass too, improving micro-environmental 
conditions for fungal growth in leaf bags. These results suggest that, as we 
hypothesized, leaf fungal biomass was bottom-up stimulated through 
nutrient recycling by both the top predator and macroinvertebrates (see Fig. 
4.1). In general, the role of predators in the microbial communities involved 
in leaf-litter processing in freshwater systems is highly unknown (but see 
Majdi et al. 2015). 

In a lacustrine environment, fish presence increased leaf fungal biomass in 
summer but not in winter, when fish density was lower (Mancinelli, 
Costantini & Rossi 2007). In our experiment, although stream pools did not 
disconnect completely, fish aggregated in pools at high densities which may 
have created biogeochemical hotspots (McIntyre et al. 2008; Boulêtreau et al. 
2011; Capps & Flecker 2013). Because the experiment was carried out in 
summer, the water temperature was the highest during the year (mean daily 
temperature was 6.71ºC with maximums >10ºC) which could have a 
synergistic effect with nutrient recycling (Ferreira & Chauvet 2011b). To our 
knowledge, the present study is the first to have specifically explored the 
impact of a predatory fish in leaf fungal biomass in a stream. 

Although B. meridionalis presence increased leaf fungal biomass, it had no 
impact on streamwater TOC, DOC, and nutrient concentrations. This 
suggests that top predator impact on nutrient recycling was produced 
through excretion of metabolic waste, thus labile carbon and nutrients 
entered in the fast cycle in inorganic forms and were rapidly taken up by the 
microbial assemblages, moving directly to the stream food web (Schmitz et 
al. 2010; Atkinson, Kelly & Vaughn 2014). Microbial assemblages in leaf-litter 
can obtain nutrients from the leaves and from the streamwater. The 
proportion of streamwater N and C that is used by microbial assemblages in 
leaf-litter increases during the decomposition process (Pastor et al. 2014), and 
in the case of N can reach >80% (Cheever et al. 2013). Moreover, our study 
site was an oligotrophic stream and Populus alba leaves were initially not rich 
in N (1.3 ± 0.1%), thus microbial decomposers were probably limited by 
nutrients and labile C being more easily influenced by fish and 
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macroinvertebrate effects on nutrient recycling (Ferreira, Gulis & Graça 
2006b; Benstead et al. 2010; Vanni 2010). In fact, the LINX II project 
(Mulholland et al. 2008) demonstrated that the efficiency of N biotic uptake 
from streamwater increased as N concentration in water column decreased.  

Leaf C:N ratio decreased over time, most likely because of microbial 
immobilization of nitrogen (Ferreira et al. 2006b). Barbus meridionalis had no 
impact on leaf C:N ratio despite its positive effect on leaf fungal biomass. 
Previous research has shown that nutrient enrichment may increase leaf 
fungal biomass, while having no impact on N leaf content (Ferreira et al. 
2006b). Robinson and Gessner (2000) showed that nutrient addition 
increased N and P in leaves, but the effect disappeared after three weeks. 
Regarding leaf toughness, it followed a similar trend than leaf mass loss. 
Therefore, although initial leaf toughness can be a significant predictor of 
leaf breakdown rates and leaf consumption by invertebrates and 
microorganisms when comparing different leaf species (Graça & Zimmer 
2005), leaf toughness seems to be a suitable alternative measure for assessing 
leaf breakdown (Young et al. 2008). 

In conclusion, our study proves that the loss of an endangered small-bodied 
fish may lead to deep ecosystem changes in a detritus-based stream. The 
decrease in vertical diversity led to the simplification of the functional 
system complexity. Top predator absence triggered a density-mediated 
trophic cascade, accelerating leaf decomposition rates. Fish presence also 
changed the composition of macroinvertebrate assemblages, reduced 
invertebrate mean and maximum body sizes, and most likely reduced the 
foraging activity of some invertebrates, which may have contributed to the 
trophic cascade. Moreover, fish extirpation indirectly decreased leaf fungal 
biomass, probably caused by the loss of the bottom-up stimulation through 
nutrient recycling by fish. The key role of small-bodied fish in stream food-
webs may increase during the dry season due to their aggregation in pools, 
particularly in intermittent streams. This is highly relevant because, 
although intermittent streams have been neglected by research and 
conservation (Nikolaidis et al. 2013), these systems comprise approximately 
one half of the global river network and are projected to increase due to 
climate change and water abstraction for human use (Carlisle et al. 2011). 
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Our study also exemplifies that the ecosystem impacts of top predator loss 
are not limited to top-down trophic cascades. In this sense, the lack of 
studies to have directly traced and quantified the contribution of consumer 
nutrient remineralization to food webs (but see Atkinson et al. 2014) shows 
our lack of awareness of the potential importance of top predators in this 
ecosystem process. Finally, given the high extinction risk of small-bodied 
freshwater fish species, we think that conservation efforts must be 
undertaken because of both their inherent value and the major ecosystem 
changes that may cause their loss. 
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General discussion and 
conclusions 

 

 

 

 

 

 

The overarching goal of this PhD thesis was to assess the long-term effects of 
a wildfire in Mediterranean streams. We have focused on the effects of fire 
in stream food webs through two fire legacies: (1) the reduction of the 
riparian canopy and (2) the extirpation of the top predator. Consequently, 
one of the main conclusions of this PhD thesis was that past fires may have 
current influence on the structure and function of Mediterranean streams. 
Previously to this PhD thesis, research on fire effects on streams have mainly 
conducted in the short- and mid-term (<5 years), thus the long-term 
approach of this PhD thesis is one of its main strengths. 

During the development of this PhD thesis, the research on fire effects on 
aquatic systems has grown, as showed by the special issue published in the 
Freshwater Science Journal in December 2015 (Bixby et al. 2015). The rising 
interest in this topic relies on the projected increase in fire frequency and 
intensity (Bowman et al. 2011; Dury et al. 2011; IPCC 2014). The attention 
over the ecology of intermittent streams is also under expansion (Leigh et al. 
in press). Moreover, the top predator decline has been considered the main 
current threat for ecosystems worldwide (Estes et al. 2011). Therefore, this 
PhD thesis interconnected several contemporary topics in ecology. 
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This section aims at putting in a wider context some aspects that have arose 
along this PhD thesis. We will discuss about (1) the importance of past fires 
for streams, (2) the role of apex consumers in intermittent streams, (3) the 
research on the effects of nonrandom extinctions with a trophic web 
approach, and (4) the introduction of non-native species within the context 
of the current biodiversity loss at global scale. 

 

The stream and its valley, and the history of its 
valley 

Although fire is a pulse disturbance, we demonstrated that its effects on 
aquatic ecosystems can be long lived: ‘the ghost of past fires’. The results of 
Chapter 1 showed how the removal of the riparian canopy by fire reduced 
litterfall inputs and accelerated leaf breakdown rates eight years after fire. 
Therefore, Chapter 1 contributed substantially to a very limited literature on 
fire effects on detrital dynamics and leaf breakdown rates (Koetsier et al. 
2010; Jackson et al. 2012; Vaz et al. 2015). It should be noted that this limited 
literature has been published during the development of this PhD thesis, 
thus information on this topic was almost inexistent before. In general, a 
substantial amount of literature has focused on how fire affects state 
variables (i.e. physicochemical parameters and the abundance of aquatic 
organisms), while rate variables have received little attention (but see 
Robinson et al. 2005; Betts & Jones Jr. 2009; Koetsier et al. 2010; Diemer et al. 
2015; Klose, Cooper & Bennett 2015). Consequently, more research is needed 
to complement the limited available data on fire effects on ecosystem 
processes (e.g. leaf breakdown, stream metabolism, nutrient spiraling, 
nutrient uptake and limitation). More importantly, Chapter 1 demonstrated 
that fire effects on detrital dynamics can be long lived in the Mediterranean 
region. 

Sant Llorenç del Munt wildfire extirpated fish populations from the streams 
and rivers draining burned catchments. Nowadays, more than a decade after 
the fire, some streams that were inhabited by Barbus meridionalis populations 
remain fishless. The results of this PhD thesis demonstrated that the local 
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extinction of this top predator due to the wildfire may lead to complex 
ecosystem consequences at present. Top predator extirpation can modify 
both structure and function through changes in trophic and non-trophic 
interactions, simplifying the ecological networks in the affected streams. 

Our study case is not singular, wildfires usually extirpate or dramatically 
reduce fish populations (Rinne 1996; Gresswell 1999; Burton 2005; Sestrich et 
al. 2011; Whitney et al. 2015). Fish kills are thought to result from hypoxia, 
contaminants introduced with fire-fighting activities, and elevated 
concentrations of toxic compounds (i.e. NH4+, PAHs, trace metals…). 
However, the ecosystem consequences of fish extirpation by fire and, in 
general, the ramifying indirect effects of fire on biological interactions are 
almost unexplored. After the Jesusita fire in Santa Barbara (California, 
U.S.A.), southern California steelhead trout were extirpated in burned basins 
(Cooper et al. 2015).  Predatory invertebrate abundances were low in these 
streams before fire, but they increased after trout were locally extinct, 
reaching densities comparable to those in unburned fishless streams, while 
remaining at low densities in unburned trout streams. These results are 
consistent with our findings in Chapter 2 of ‘mesopredator release’ after B. 
meridionalis extirpation. Future research must address the knowledge gap on 
fire effects in trophic webs. 

The duration of the cascading effects of fish extirpations caused by fires may 
depend on the time necessary for the recovery of fish populations. Fish 
populations can recover quickly if no barriers to fish immigration are 
present (Gresswell 1999), which is common in temperate forests on public 
lands. However, in Mediterranean streams many human-made barriers 
block fish migrations as consequence of the high population density in the 
Mediterranean basin (Verkaik et al. 2013a) and because the presence of man 
since >1000 years ago (e.g. medieval water mills). In fact, human population 
density and economic production have been related with the loss of fish 
biodiversity (Clausen & York 2008). It illustrates how watershed 
disturbances (i.e. wildfire) may interact with human drivers that affect river 
health (e.g. dams), being this interaction the key determinant of the legacy 
duration. 
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The importance of catchment disturbance legacies for aquatic ecosystems 
has been previously demonstrated for past land use changes. For instance, 
composition and diversity of macroinvertebrates and fish in southern 
Appalachian streams were best predicted not by current catchment land use 
(mainly secondary forest landscapes), but by watershed land use over five 
decades earlier (agricultural landscapes) (Harding et al. 1998). Similarly, 
Surasinghe & Baldwin (2014) showed that stream salamander diversity and 
community structure in southeastern U.S.A. was negatively impacted by 
historical land uses (particularly row-crop agriculture). The interpretation of 
the landscape influence in aquatic ecosystems is further complicated when 
cycles of change occur (Allan 2004), such as when agricultural land reverts 
to forest or forest land is burned and a secondary succession starts. 
Therefore, despite fire is a pulse disturbance, a dynamic process along 
decades just starts when fire is extinguished. 

Ecological interpretation of mechanisms driving community assemblages 
and ecosystem functioning (e.g. to assess ecosystem health) should be 
undertaken with caution, because past fires and past land uses could be 
responsible for current patterns of species distributions and ecosystem 
processes in streams and rivers. Consequently, recognition of the importance 
of environmental history and its legacies in freshwater ecosystems is 
essential to better understand current conditions and to implement adequate 
conservation decisions. 

Finally, it is worth noting that, although fire is considered a natural 
disturbance when is not directly provoked by humans, current fire regimes 
are shaped by human activity (Bowman et al. 2011; Dury et al. 2011; IPCC 
2014). Therefore, the modification of natural disturbance regimes, especially 
fire, must be considered a human activity that exert a widespread impact on 
terrestrial and aquatic ecosystem worldwide (Foster et al. 2003). 
Consequently, the effects of fires in freshwater ecosystems are not a natural 
ecological dynamic, but an indirect consequence of human changes in land 
uses and human greenhouse gasses emission through animal production 
and fossil fuels use (Nordgren 2012; Machovina, Feeley & Ripple 2015). 
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Food webs in intermittent streams: from 
individuals to ‘riverscapes’ 

The results of this PhD thesis, together with other studies done in temporary 
salt marshes (Compte et al. 2012) and permanent headwater streams 
(Woodward et al. 2008; Gido et al. 2010), showed that the effects of the loss of 
small-bodied fish are equivalent to local extinctions of larger apex 
consumers in other ecosystems (e.g. the arctic fox, wolf, jaguar, sea otter or 
large reef fish (Beschta & Ripple 2009; Estes et al. 2011; Ripple et al. 2014)). 
During the development of this PhD thesis, Boersma et al. (2014) showed 
that the extirpation of an invertebrate top predator (the hemipteran Albedus 
herberti) in desert intermittent streams led to ‘mesopredator release’ and 
reduced detritivore abundances. Therefore, both intermittent streams 
fishless and with predatory fish can be affected by the consequences of the 
loss of apex consumers. 

Currently, our research in this topic has continued through the analysis of 
the stream food web using stable isotopes (δ13C and δ15N) in the reaches 
studied in Chapter 4. Our analyses confirmed that B. meridionalis acts as top 
predator in the stream (i.e. highest δ15N values). We observed changes in the 
isotopic signal for some macroinvertebrate populations depending on the 
presence/absence of the top predator. In general, the δ15N signal of 
predatory invertebrates was lower in the presence of B. meridionalis, which 
suggested that mesopredators decreased their predation rate on other 
invertebrates and increased their feeding on primary sources. These changes 
in mesopredators’ diets may be an adaptation to reduce their predation risk 
and/or the competition with the top predator. Changes on the trophic 
position of macroinvertebrates due to the presence of small-bodied fish have 
been previously observed (Compte et al. 2012). Besides, isotopic signals of 
mesopredators were more variable at top predator presence. Because we 
measured isotopic values of predators at individual level, these results 
indicated higher diet variability among individuals within 
macroinvertebrate populations when B. meridionalis was present. Thus, these 
results also illustrated that trophic interactions occur between individual 
organisms, not at species level. 
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In this sense, the use of functional traits can improve our understanding of 
predator-prey interactions at individual level. In Chapter 3, we explored the 
benefits of using a common selectivity index in a trait-based perspective, 
through the study of the feeding ecology of B. meridionalis. In brief, Chapter 
3 showed that morphological and behavioral traits of the potential prey may 
explain prey vulnerability to predation. One of the findings was that 
shredders were highly selected by the top predator, which suggested that B. 
meridionalis mainly forages in leaf-litter habitat patches. 

Through the incorporation of landscape ecology ideas into rivers, such as the 
development of the ‘patch dynamics concept’ of stream ecology (Pringle et 
al. 1988; Townsend 1989), ecologists started to view rivers as ‘riverscapes’, 
i.e. as complex mosaics of habitat types and environmental gradients with 
high spatial complexity (Fausch et al. 2002; Allan 2004). Patchy environments 
within ‘riverscapes’ can produce ‘environment-mediated interaction 
modifications’ (Wootton 2002), such as a reduction of predation risk on prey 
by macrophytes when used as refuge (Diehl 1992). In order to assess if the 
influence of B. meridionalis in macroinvertebrate assemblages depends on the 
benthos patches within streams, we analyzed the macroinvertebrate 
communities of the reaches studied in Chapter 4, sampling separately the 
main three habitats: fine sediment, leaf-litter, and macrophytes (Belmonte-
Viudez 2013). This study showed that top predator presence shaped 
macroinvertebrate assemblages, while habitat type had lower influence. 
Macroinvertebrate communities associated to leaf-litter were the most 
affected compared to the other two habitats (i.e. sediment and macrophytes), 
which agreed with Chapter 3 results. Significant differences were found 
between reaches for the macrophytes substrate, which supported that small-
bodied fish can move and prey within this habitat (Meerhoff et al. 2007). 

The results of this PhD thesis evidenced that the loss of small-bodied 
freshwater fish in intermittent streams may affect ecosystem structure and 
functioning during the oligorheic aquatic state (i.e. when pools are 
dominant, but still connected by thin water threads; Gallart et al. 2012). 
Future research is needed at larger spatial and temporal scales to integrate 
the effects of the hydrological variability of these systems. Top predators’ 
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role in intermittent rivers could vary quantitatively and qualitatively 
through changes in aquatic states. 

Based on this PhD thesis results and our ongoing research, we recommend 
that reintroduction programs be considered for small-bodied fish in 
intermittent streams, where species such B. meridionalis had become locally 
extinct. Reintroduction programs would allow not just for recovery of 
endangered species populations, but for the restoration of the ecosystem. 
Therefore, reintroductions should be considered within an ecosystem 
restoration framework. In this sense, it is worth noting that current 
environmental policies often overlook small aquatic systems (Boix et al. 2012; 
Nikolaidis et al. 2013) where small-bodied fish species may act as top 
predators. Streams with catchments <1000 ha and ponds are not covered by 
the Water Framework Directive (European Commission 2000) and, 
thus, European governments are not obligated to achieve the objective 
of good ecological status for these ecosystems. Consequently, a first step for 
the effective protection of endangered small-bodied fish should be to include 
the ecosystems they inhabit in conservation policies. 

 

Biodiversity-ecosystem function relationship and 
nonrandom extinctions 

Motivated by the global biodiversity loss, a new subfield of ecology pop up 
two decades ago: the study of the functional consequences of biodiversity 
loss in ecosystems (i.e. biodiversity-ecosystem function relationship, B-EF) 
(Loreau et al. 2001). Most studies in B-EF relationship have not reproduced 
any sequence of species loss, instead have performed experiments using 
synthetic communities in which combinations of species or functional types 
are artificially assembled to represent different diversity levels (i.e. 
synthetic-assemblage experiments). Therefore, these studies relay on the 
unrealistic assumption that all species are equally susceptible to extinction 
(Duffy 2002; Finke & Snyder 2010). Hence, these synthetic–assemblage 
experiments are useful to answer questions about species richness per se, but 
they are hardly applicable to predict functional consequences of actual 
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biodiversity loss, being non relevant for conservation objectives (Loreau et al. 
2001; Diaz et al. 2003). 

Initially, synthetic-assemblage experiments have focused in terrestrial 
ecosystems (primarily grasslands) and on aquatic microbial microcosms 
(Duffy 2002). Moreover, they have usually considered just a single trophic 
level (Petchey et al. 2004), overlooking trophic complexity (but see Jabiol et 
al. 2013). Vertical diversity (i.e. diversity across trophic levels) can alter B-EF 
relationships qualitatively, thus, the incorporation of interactions among 
multiple ecological groups is necessary in order to better understand actual 
B-EF relationships in nature (Duffy et al. 2007). Indeed, given that current 
biodiversity loss is biased to high trophic levels, resulting in trophic 
downgrading of most ecosystems (Duffy 2002; Estes et al. 2011), vertical 
instead horizontal diversity (i.e. diversity within a single trophic level) 
deserves special attention. 

Alternatively to synthetic-assemblage experiments, removal experiments 
have been proposed (Diaz et al. 2003). Removal experiments are those in 
which the diversity of naturally assembled communities is manipulated by 
removing one or various components, allowing researchers to reproduce an 
expected pattern of species extinctions. Removal experiments may 
complement synthetic-assemblage experiments in studying the relationship 
between biodiversity and ecosystem functioning. More importantly, they are 
more useful for predicting actual ecosystem consequences of species loss, 
and thus, for making management decisions when relevant. 

Part of this PhD thesis (Chapters 2 and 4) has focused on the ecosystem 
impacts of the loss of an endangered species, B. meridionalis. The 
experiments were carried out from a food web approach in streams 
naturally inhabited (currently or in the past) by this species, and 
incorporated almost all ecosystem complexity, making them relevant for 
conservation. These chapters have assessed the effects of top predator loss 
on ecosystem functioning, (i.e. periphyton primary production and leaf 
breakdown). Hence, this PhD thesis contributed to the knowledge regarding 
two current ecological questions (Sutherland et al. 2013): “How is ecosystem 
function altered under realistic scenarios of biodiversity change?” and 
“What are the ecosystem impacts of worldwide top predator declines?”. 
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Results of Chapter 2 showed that the role of the apex consumer was not 
functionally replaced by the remaining predatory species (Ernest & Brown 
2001; Chalcraft & Resetarits 2003), despite of the increase in invertebrate 
predator abundance and richness. It suggested that the predator assemblage 
is more important than diversity per se (Finke & Denno 2005; Cardinale et al. 
2006; Schneider & Brose 2013), and thus, the cascade strength depends on 
species identity (Borer et al. 2005). Several ecologists have highlighted that 
the observed effects of increasing biodiversity on ecosystem functioning in 
synthetic-assemblage experiments may be a probabilistic effect (called 
‘sampling effect’) that consists in the greater chance for a more diverse 
assemblage of including one species with strong influence on ecosystem 
functioning, which will shape the overall B-EF relationship (Duffy 2002; 
Ives, Cardinale & Snyder 2004; Finke & Denno 2005; Cardinale et al. 2006; 
Schneider & Brose 2013). Therefore, the actual question would not be if 
biodiversity is linked to ecosystem functioning, but if endangered species 
are keystone species (i.e. those whose effects in the ecosystem are 
disproportionate to their abundance), and thus, if their loss will affect 
ecosystem functioning. 

Research on how the loss of endangered species may affect ecosystem 
functioning is relevant for conservation as a justification to the public for 
protecting species at extinction risk. It highlights the ecological value of 
species, i.e. the value that a species has by virtue of the contribution it makes 
to the integrity (health, stability, or functioning) of the ecosystems of which 
it is part (Sandler 2010). This is particularly important because, currently, 
instrumental values of nature based on an anthropocentric view (e.g. the 
ecosystem services approach) have supplanted intrinsic and ecologic values, 
and most endangered small-bodied freshwater fish lack instrumental values 
(i.e. commercial, recreational). 

As this PhD thesis showed, food webs provide a natural framework for 
understanding the ecological role of species and the mechanisms through 
which biodiversity and specific taxa influence ecosystem processes 
(Thompson et al. 2012). The artificiality and unsuitability of the historical 
separation between community ecology and ecosystem ecology, and 
therefore among ecologists, is now more evident than ever. Ecosystem 
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ecologists can no longer ignore the composition of biological communities 
(usually considered black boxes) to study the fluxes of energy and materials, 
and community ecologists must take into account ecosystem processes to 
analyze the patterns of species richness and community assemblages in 
ecosystems. This PhD thesis, through a food web approach, was a little step 
to demolish this artificial division imposed by science history. 

 

Species extinctions and introductions 

Despite the loss of biodiversity at planetary scale, several researchers posit 
that biodiversity has increased at regional and local scales as a result of the 
introduction of non-native species (Sax & Gaines 2003). Consequently, 
several ecologists disagree with Estes et al. (2011) about that the global loss 
of biodiversity is causing the trophic downgrading of planet Earth and, 
alternatively, have defended that non-native species are functionally 
compensating the loss of apex consumers (Cucherousset, Blanchet & Olden 
2012). 

To uphold their opinion, Cucherousset et al. (2012) used freshwater fish as 
models. They analyzed the historical (i.e. current native species) and 
contemporary (i.e. current native and non-native species) trophic position of 
fish species in 13 watersheds. Their results showed that the maximum 
trophic position in these watersheds has increased (or no change), and the 
minimum trophic position has decreased (or no change), most likely because 
freshwater fish species have been introduced in both upper and lower 
trophic positions. 

Results from this PhD thesis disagree with Cucherousset et al. (2012) results 
and conclusions for three reasons. First, they used current native species as a 
proxy of historical fish distributions in watersheds, thus they assumed no 
extinctions within these watersheds. This supposition ignores the own 
motivation of the analysis, the current biodiversity loss, and that freshwater 
fish are one of the most endangered groups worldwide (Jenkins 2003; Olden 
et al. 2007; Markovic et al. 2014). Moreover, invasive species is a leading 
cause of species extinctions (Clavero & García-Berthou 2005), thus the 
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presence of non-native freshwater fish in these watersheds most probably 
conducted to the extinction of native fish species. Indeed, in some cases 
where non-native species have functionally replaced extinct species, the non-
native species have greatly contributed to the native species extinction 
(Vitule et al. 2012). 

Second, the spatial scale of the analysis may be unsuitable. Some non-native 
freshwater fish that are piscivorous (e.g. Silurus glanis, Micropterus salmoides, 
and Sander lucioperca in Spain) have been introduced in many watersheds to 
satisfy the demands of recreational fishing (Maceda-Veiga 2013) and their 
distribution within watersheds is often reduced to big reservoirs and main 
river channels. Therefore, although the maximum trophic position may have 
increased at watershed scale due to the introductions of non-native 
piscivorous fish, the extirpation of native top predators in several parts of 
the river network within the watersheds may have conducted to the trophic 
downgrading of these ecosystems at local scale, as occurred in the case study 
of this PhD thesis. Last, non-native species at high trophic positions may be 
not functional equivalent to lost top predators. For instance, some prey taxa 
may not have effective antipredator responses for novel predators due to the 
lack of predator-prey coevolution (Sih et al. 2010; Alvarez, Landeira-Dabarca 
& Peckarsky 2014). Apex consumers influence ecosystems through complex 
trophic and non-trophic interactions, thus the consequences of their 
extinctions and invasions are still unknown and may be unpredictable. 

Estes et al. (2011) posited that the “loss of apex consumers is arguably 
humankind’s most pervasive influence on the natural world”. Like the 
results of this PhD thesis show, the loss of the top predator may change 
ecosystem structure and functioning. Consequently, ecosystem restoration 
actions must be undertaken when top predators are extirpated if managers 
want to recover previous community structures and ecosystem processes. In 
our study case, the ecosystem restoration can be simple, it would consist in 
the reintroduction of Barbus meridionalis in the affected streams. But, what is 
the solution when the top predator is extinct not locally but globally? 
Extinction eliminates the possibility of reintroduction and leads to the loss of 
the apex consumer functional role. Therefore, an option is to restore the lost 
functional role through the introduction of an ecologically similar species in 
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order to fill the niche left vacant by the extinction (i.e. ecological 
replacement) (Seddon 2010). For instance, Aldabrachelys tortoises have been 
introduced on Mascarene islands to substitute the recently extinct 
Cylindraspis tortoises, restoring their functions of grazing and seed dispersal 
(Griffiths et al. 2010). Lagrue et al. (2014) compared the effects of the native 
noble crayfish (Astacus astacus) and the invasive signal crayfish (Pacifastacus 
leniusculus) on macroinvertebrates and leaf breakdown, concluding both 
crayfish species have similar effects on stream communities. If humans must 
or not introduce new top predators in ecosystems to replace extinct native 
species is a philosophical question, but science can help to understand if 
native and non-native species may perform similar functional roles in 
ecosystems. 

 

Conclusions 

General conclusions 

Past fires may have current influence on Mediterranean streams through 
their effects on the riparian forest and on the aquatic top predator. Although 
fire is a pulse disturbance, we demonstrated that fire may have long lived 
effects on the structure and function of Mediterranean streams.  

Intermittent streams may be affected by the consequences of top predator 
extinctions. The effects of the loss of small-bodied fish in intermittent 
streams are equivalent to local extinctions of larger apex consumers in other 
ecosystems. 

Chapter 1: Long-term consequences of a wildfire for leaf-
litter breakdown in a Mediterranean stream 

Riparian canopy was reduced by the wildfire, resulting in higher water 
temperatures and light levels, and reduced leaf-litter inputs in the stream 
eight years after fire. 
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Benthic invertebrate communities recovered quickly after the fire, and the 
abundances of different functional feeding groups, including shredders, 
were not different between streams affected and unaffected by the fire after 
>2 postfire years. 

Microbially mediated litter decomposition was faster in the stream affected 
by fire compared to the control, which could be attributed almost entirely to 
increased water temperatures 

Total litter breakdown rates were enhanced by higher shredder abundance 
in coarse-mesh leaf bags in the fire-affected than in the control stream. 
Lower leaf-litter inputs in the fire-affected than in the control stream 
probably led to lower benthic organic matter levels, leading to increased 
shredder aggregation in leaf packs, thereby accelerating leaf breakdown 
rates. 

Chapter 2: Small but powerful: top predator local extinction 
affects ecosystem structure and function in an intermittent 
stream 

Top predator extirpation led to ‘mesopredator release’ in terms of 
abundance and richness, and also to ‘prey release’ despite intraguild 
predation, which contrasts with traditional food web theory. 
Macroinvertebrate community composition also changed due to Barbus 
meridionalis absence. 

Periphyton net primary production was significantly lower in the absence of 
B. meridionalis, confirming a strong trophic cascade effect that modified 
ecosystem function. 

The apex consumer was functionally irreplaceable by the remaining species, 
despite its small-bodied size and even at low population densities. 
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Chapter 3: A trait-based approach reveals the feeding 
selectivity of a small endangered Mediterranean fish 

The diet of Barbus meridionalis was dominated by chironomids and 
ephemeropterans. Fish refused most of the potential prey in the stream but 
positively selected Cricotopus spp., Habrophlebia sp., and Stictonectes sp. 

The trait-based analysis showed that 10 of the 13 traits tested significantly 
influenced food choice: body size, body shape, body flexibility, concealment, 
locomotion, tendency to drift, diel drift behavior, agility, aggregation 
tendency, and feeding habits. 

Our study showed that prey morphological and behavioral traits may 
explain prey vulnerability to predation. Therefore, this functional approach 
can improve our understanding of predator-prey interactions. 

Chapter 4: Top predator absence enhances leaf breakdown 
in a Mediterranean stream 

Top predator absence accelerated total leaf breakdown, which was caused 
by the higher shredder and scraper biomass in coarse-mesh leaf bags in the 
fishless compared to the control reach. Barbus meridionalis changed the whole 
macroinvertebrate assemblage associated to leaf bags. 

Fish absence reduced leaf fungal biomass in both fine- and coarse-mesh 
bags, but did not decrease microbially mediated leaf breakdown. These 
results suggested that leaf fungal biomass was bottom-up stimulated 
through nutrient recycling by the top predator. 
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Appendix A 

This appendix provides the original data regarding Chapter 2 and Chapter 
3. It comprises 2 tables. 

Table S.1 Taxa abundance and periphyton primary production data for the three 
experimental treatments. Taxa are sorted by decreasing abundance in the treatment 
without barbels. Category: 1 = primary consumer; 2 = secondary consumer. 

 Category Without top 
predator 

Low top 
predator density 

High top 
predator density 

Taxa (ind m-2)  mean SE mean SE mean SE 

Tanytarsus sp. 1 4882.5 890.2 3334.3 817.0 1955.8 543.8 
Zavrelimyia sp. 2 2433.7 330.7 1928.2 153.3 1132.3 135.9 
Cricotopus sp. 1 2003.3 475.4 1468.0 243.2 831.2 132.2 
Procladius sp. 2 1203.6 352.1 283.9 108.5 361.3 172.1 
Habrophlebia sp. 1 1114.3 209.6 708.5 57.6 456.2 33.6 
Cladocera 1 1034.7 247.5 557.8 97.2 256.3 44.4 
Dicrotendipes sp. 1 888.1 214.6 1644.4 372.5 948.9 162.0 
Corynoneura sp. 1 673.6 148.6 932.4 123.9 634.2 100.1 
Gyraulus sp. 1 651.8 140.4 667.2 100.9 519.5 114.4 
Paratanytarsus sp. 1 560.7 255.9 878.1 198.2 506.5 186.4 
Microtendipes sp. 1 546.3 88.0 714.4 284.9 1329.5 988.3 
Radix sp. 1 449.6 92.6 257.1 74.0 136.3 31.4 
Ostracoda 1 396.7 67.9 146.1 34.7 159.0 40.5 
Hydra sp. 2 373.2 87.9 375.1 105.6 105.1 28.3 
Nanocladius sp. 1 321.9 63.5 437.0 119.1 232.6 38.5 
Helobdella stagnalis 2 279.5 47.9 175.8 48.1 201.9 43.5 
Oligochaeta 1 275.9 93.8 238.3 47.1 81.9 17.7 
Phaenopsectra sp. 1 221.4 106.8 216.9 87.3 98.8 39.5 
Chironomus sp. 1 188.9 95.5 131.2 65.2 36.3 27.6 
Chalcolestes viridis 2 175.5 24.2 59.0 5.1 39.6 4.4 
Baetis sp. 1 148.6 54.1 146.5 15.1 34.6 16.2 
Stictonectes sp. 2 132.9 26.2 46.5 11.4 32.6 4.4 
Cloeon sp. 1 116.5 29.0 17.4 5.7 30.5 7.6 
Acentrella sp. 1 109.5 38.2 126.5 26.0 64.5 21.8 
Caenis sp. 1 94.9 21.7 75.5 9.7 64.8 15.2 
Parasigara sp. 2 81.3 16.9 25.8 5.8 10.7 3.3 
Rheotanytarsus sp. 1 71.9 71.9 371.9 306.9 43.7 25.3 
Cladotanytarsus sp. 1 70.8 70.8 0.0 0.0 0.0 0.0 
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 Category Without top 
predator 

Low top 
predator density 

High top 
predator density 

Taxa (ind m-2)   mean SE mean SE mean SE 

Polypedilum sp. 1 62.4 26.4 48.3 42.7 126.5 77.4 
Chaoborus sp. 2 61.1 24.4 4.2 1.8 0.7 0.7 
Copepoda 1 40.1 16.4 77.3 15.5 20.1 12.2 
Sympetrum sp. 2 37.5 6.9 33.3 7.5 13.9 3.3 
Dasyheleinae 1 35.9 12.3 9.7 3.0 8.9 3.7 
Pelophylax perezi 1 23.6 11.3 4.2 1.5 10.4 4.9 
Hidracarina 2 20.8 11.7 27.0 24.8 13.9 9.4 
Haliplus sp. 1 17.4 16.6 0.0 0.0 4.2 2.1 
Cyrnus sp. 2 16.8 8.8 10.5 4.4 7.6 2.7 
Agabus sp. 2 15.3 6.7 2.1 1.0 1.4 0.9 
Terrestrial inv. - 13.2 12.4 2.8 1.5 2.1 1.5 
Dugesia sp. 2 12.4 11.0 2.1 1.5 6.9 5.6 
Physella sp. 1 9.7 6.4 7.6 2.3 2.8 1.5 
Aeshna sp. 2 9.0 3.9 4.9 2.3 1.4 0.9 
Dixa sp. 1 8.7 5.4 2.8 1.6 5.5 2.6 
Coenagrionidae 2 7.6 5.5 0.7 0.7 1.4 0.9 
Notonecta sp. 2 7.6 5.4 4.1 1.8 1.4 0.9 
Yola bicarinata 1 6.8 5.5 10.5 2.8 6.2 2.8 
Oulimnius sp. 2 4.9 2.9 14.5 3.6 3.4 1.8 
Ancylus fluviatilis 1 3.6 1.8 0.7 0.7 4.1 2.2 
Deronectes sp. 2 2.8 2.1 0.0 0.0 0.0 0.0 
Elmis sp. 1 2.8 2.8 0.0 0.0 0.0 0.0 
Brachytron pratense 2 2.1 1.0 0.0 0.0 0.0 0.0 
Gyrinus sp. 2 2.1 1.0 3.5 1.1 0.7 0.7 
Nebrioporus sp. 2 2.1 1.5 2.8 1.5 2.1 1.1 
Pisidium sp. 1 1.9 1.4 5.6 3.8 17.4 11.7 
Psectrocladius sp. 1 1.4 1.0 18.1 18.1 42.4 28.8 
Anax imperator 2 1.4 0.9 1.4 0.9 0.7 0.7 
Simuliidae 1 1.4 1.4 1.4 0.9 4.4 2.8 
Hemerodromiinae 2 0.7 0.7 3.5 2.1 0.0 0.0 
Hydrometra sp. 2 0.7 0.7 2.3 2.3 0.0 0.0 
Microvelia sp. 2 0.7 0.7 0.0 0.0 0.7 0.7 
Esolus sp. 1 0.7 0.7 0.0 0.0 1.4 1.4 
Ilybius sp. 2 0.7 0.7 0.0 0.0 0.0 0.0 
Limnephilus sp. 1 0.7 0.7 0.0 0.0 0.7 0.7 
Pyralydae 1 0.7 0.7 0.7 0.7 0.0 0.0 
Serratella sp. 1 0.7 0.7 0.0 0.0 0.7 0.7 
Sialis sp. 2 0.7 0.7 0.0 0.0 0.0 0.0 
Tinodes sp. 1 0.7 0.7 0.7 0.7 3.5 2.8 
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 Category Without top 
predator 

Low top 
predator density 

High top 
predator density 

Taxa (ind m-2)   mean SE mean SE mean SE 

Stratiomyidae 1 0.7 0.7 0.0 0.0 0.7 0.7 
Atherix sp. 2 0.0 0.0 0.7 0.7 0.0 0.0 
Brillia sp. 1 0.0 0.0 0.0 0.0 8.5 8.5 
Limnophyes sp. 1 0.0 0.0 40.0 27.3 24.1 24.1 
Mesovelia vittigera 2 0.0 0.0 0.6 0.6 0.0 0.0 
Micropsectra sp. 1 0.0 0.0 0.0 0.0 30.6 30.6 
Muscidae 2 0.0 0.0 0.0 0.0 0.7 0.7 
Normandia sp. 1 0.0 0.0 0.7 0.7 0.0 0.0 
Parametriocnemus sp. 1 0.0 0.0 0.0 0.0 17.1 17.1 
Rheocricotopus sp. 1 0.0 0.0 12.0 12.0 17.4 17.4 
Stictotarsus sp. 2 0.0 0.0 0.0 0.0 0.7 0.7 
                

Primary production    mean SE mean SE mean SE 

Chl-a mg m-2 d-1 - 332.9 37.5 601.5 53.9 528.9 35.8 
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Table S.2 Barbus meridionalis gut contents: abundance (%) and frequency of 
occurrence (%) of macroinvertebrate taxa. The different prey items are ordered by 
frequency of occurrence. 

Taxa Abundance (%) Frequency of 
occurrence (%) 

Cricotopus spp. 51.1 100.0 
Habrophlebia sp. 15.1 100.0 
Zavrelimyia sp. 10.9 94.4 
Stictonectes sp. 3.1 88.9 
Corynoneura sp. 3.6 83.3 
Microtendipes sp. 2.8 83.3 
Parasigara sp. 3.5 61.1 
Agabus sp. 1.0 61.1 
Procladius sp. 0.9 44.4 
Dicrotendipes sp. 1.2 38.9 
Tanytarsus sp. 0.3 33.3 
Chalcolestes viridis 0.3 33.3 
Gyraulus sp. 1.7 27.8 
Cladocera 0.4 27.8 
Nebrioporus sp. 0.4 22.2 
Baetis sp. 0.3 22.2 
Gyrinus sp. 0.2 22.2 
Tinodes sp. 0.3 16.7 
Cloeon sp. 0.2 16.7 
Sympetrum sp. 0.2 16.7 
Terrestrial inv. 0.2 11.1 
Aeshna sp. 0.2 11.1 
Nanocladius sp. 0.1 11.1 
Paratanytarsus sp. 0.1 11.1 
Coenagrionidae < 0.1 11.1 
Yola bicarinata < 0.1 11.1 
Physella sp. 0.7 5.6 
Radix sp. 0.2 5.6 
Ostracoda 0.2 5.6 
Stictochironomus sp. 0.1 5.6 
Haliplus sp. 0.1 5.6 
Polypedilum sp. < 0.1 5.6 
Phaenopsectra sp. < 0.1 5.6 
Brillia sp. < 0.1 5.6 
Helobdella stagnalis < 0.1 5.6 
Rheotanytarsus sp. < 0.1 5.6 
Parametriocnemus sp. < 0.1 5.6 
Oulimnius sp. < 0.1 5.6 
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FIRE ECOLOGY

Long-term consequences of a wildfire for leaf-litter
breakdown in a Mediterranean stream

Pablo Rodríguez-Lozano1,3, Maria Rieradevall1,4, Marius Andrei Rau2,5, and Narcís Prat1,6

1Freshwater Ecology and Management (F.E.M.) Research Group, Departament d‘Ecologia, Facultat de Biologia, Universitat de
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2‘Alexandru Ioan Cuza’ University of Iasi, Faculty of Biology, Laboratory of Hydrobiology, Iasi, Romania

Abstract: Wildfire frequency and intensity are expected to increase as a result of climate change, but few
studies have assessed the effects of wildfires on stream ecosystem processes. The aim of our study was to exam-
ine the long-term responses of leaf-litter breakdown to wildfire in a Mediterranean stream. Riparian canopy cover
was reduced by a fire, resulting in higher temperatures and light levels and reduced leaf-litter inputs in the
stream 8 y after the fire. Benthic invertebrate communities recovered quickly after the fire, and the abundances
of different functional feeding groups (FFGs), including shredders, were not different between streams affected
and unaffected by the fire after >2 postfire years. We compared microbially mediated (fine-mesh bags) and total
breakdown rates (coarse-mesh bags) of Populus alba leaf litter incubated in the stream affected by the wildfire
and a neighboring control stream. Microbial and total leaf-litter breakdown were faster in the stream affected
by fire. Faster microbially induced litter decomposition in the fire-affected stream could be attributed almost
entirely to increased water temperatures, but total litter breakdown rates were enhanced by higher shredder
abundance in coarse-mesh leaf bags in the fire-affected than control stream. Lower leaf-litter inputs in the fire-
affected than in the control stream probably led to lower benthic organic matter levels, leading to increased
shredder aggregation in leaf packs, thereby accelerating leaf breakdown rates. Our study indicates that past
wildfires can modify key ecosystem processes, such as leaf decomposition, in the long term in Mediterranean
streams.
Key words: wildfire, leaf decomposition, Mediterranean streams, long-term effects, litterfall, shredders, ecosystem
process, landscape disturbance, ecosystem function, resource tracking, climate change

Wildfires are expected to increase in frequency and in-
tensity because of climate change and changes in land
use and management (Bowman et al. 2011, Dury et al.
2011, IPCC 2014). Fire is recognized as one of the main
factors that shape ecosystems (Bond and Keeley 2005,
Cowling et al. 2005), but few investigators have studied its
effects on stream ecosystem processes (but see Robinson
et al. 2005, Betts and Jones 2009, Koetsier et al. 2010).
Leaf-litter inputs and decomposition fuel many stream
food webs, and the authors of a recent review recom-
mended conducting additional studies on fire effects on
the key ecosystem process of leaf-litter breakdown (Ver-
kaik et al. 2013a). Experimental studies suggest that de-
composition rates of burned leaves do not differ from
(Gama et al. 2007), or are faster than (Vieira et al. 2011),
those of unburned leaves. Koetsier et al. (2010), authors of

the only study we know of fire effects on stream leaf-litter
breakdown in the long term, found that litter decomposi-
tion rates were faster in fire-affected than in unaffected ref-
erence streams in a temperate forest. These results provide
evidence of the need for additional studies on fire effects on
stream leaf-litter breakdown in other biomes, such as Med-
iterranean regions, where fire is common.

Wildfires could stimulate leaf decomposition mediated
by microbes by reducing riparian canopy cover, thereby in-
creasing water temperatures (Koetsier et al. 2010, Boyero
et al. 2011, Martínez et al. 2014, Cooper et al. 2015). Re-
ductions in canopy cover also increase light availability,
potentially enhancing microbial decomposition via in-
creases in algal production on leaf litter (Danger et al.
2013). Moreover, algal development on leaves could in-
crease litter palatability, accelerating litter breakdown me-
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diated by macroinvertebrate activity (Lagrue et al. 2011).
In contrast, fire-induced reductions in canopy cover could
increase ultraviolet radiation levels, thereby reducing leaf-
litter mass loss (Pancotto et al. 2003, Dieter et al. 2011).
Wildfires also could modify microbially mediated litter
decomposition rates by increasing dissolved nutrient con-
centrations, which would accelerate decomposition (Wood-
ward et al. 2012), and by increasing the scour and de-
position of fine sediment, which could reduce (Benfield
et al. 2001, Lecerf and Richardson 2010) or increase (Pig-
gott et al. 2012) decomposition. However, these effects of
fire on nutrients and sediment are often short-lived, so
litter decomposition may not be affected over the long
term by these agents (Benfield et al. 2001, Earl and Blinn
2003, Vila-Escalé 2009, Lecerf and Richardson 2010, Ver-
kaik et al. 2013a).

Macroinvertebrate-mediated leaf breakdown could de-
crease postfire if shredding invertebrate density decreases
(Molles 1982, Vieira et al. 2004, Oliver et al. 2012, Verkaik
et al. 2013a, Cooper et al. 2015). Fire-mediated decreases
in shredder density can be attributed to decreased leaf-
litter inputs and retention postfire and to the vulnerability
of shredders to scouring floods induced by fire (Verkaik
et al. 2013a, Cooper et al. 2015). Observational (Boulton
and Lake 1992, Friberg 1997, González and Graça 2005)
and experimental (Richardson 1991, Dobson and Hildrew
1992, Wallace et al. 1997) studies indicate that shredder
densities in streams are related to organic matter avail-
ability. Knowledge about the effects of wildfires on organic
matter inputs to streams is limited, but terrestrial subsidies
of leaf litter to streams appear to increase immediately
postfire and decrease over the following years (Britton
1990, Jackson et al. 2012). On the other hand, increased
stream temperatures postfire could increase shredder ac-
tivity. Wildfires may have little effect on leaf breakdown
mediated by macroinvertebrate activity in the long term
because the abundance and taxonomic and functional com-
position of macroinvertebrate communities in Mediterra-
nean streams often recover quickly after wildfires (Vila-
Escalé 2009, Verkaik et al. 2013a, b).

The aim of our study was to assess the long-term (8 y)
effects of a wildfire on leaf-litter breakdown in a Mediter-
ranean stream. We differentiated between fire effects on
microbial and overall leaf decomposition to better under-
stand the mechanisms accounting for wildfire effects on
this ecosystem process. We conducted a decomposition
experiment using Populus alba leaves enclosed in coarse-
or fine-mesh bags incubated in a stream affected by fire
and in a neighboring control stream. To assess some of
the key factors potentially mediating the effects of the
wildfire on stream litter breakdown, we monitored the ri-
parian canopy cover postfire, temperature and light levels
during the decomposition experiment, litterfall input over
1 y encompassing the decomposition experiment, and the
abundances of macroinvertebrate functional feeding groups

(FFGs) in streams draining burned and unburned catch-
ments over the first 5 y postfire and in leaf bags during the
experiment (8 y postfire). We hypothesized that 8 y after a
wildfire: 1) microbial leaf decomposition would be faster in
the fire-affected than control stream because of increases in
water temperature and 2) macroinvertebrate-mediated leaf
breakdown would be similar between the fire-affected and
control streams because of the rapid recovery of macro-
invertebrate communities, including shredder densities,
postfire.

METHODS
Study area

We worked in 2 adjacent 1st-order streams, separated by
<5 km. The fire-affected stream was Vall d’Horta stream
(lat 41°39′15″N, long 2°4′13″E), and the control stream
was Castelló stream (lat 41°40′42″N, long 2°1′49″E). The
streams are in the protected area of Sant Llorenç del
Munt i l’Obac Natural Park (50 km inland from Barce-
lona, northeastern Spain). This area is characterized by a
calcareous geology and a Mediterranean climate, with
mild winters and warm springs and summers. Rainfall is
irregular and intense, occurs primarily in winter but also
in spring and autumn, and summers are normally very dry.
The protected area is dominated by Holm Oak (Quercus
ilex L.) and Aleppo pine (Pinus halepensis Miller) forests
and Mediterranean shrubs (for a detailed description see
Bonada et al. 2007b, Verkaik et al. 2013b). In August 2003,
a wildfire burned 4543 ha of forest in the Natural Park
and surrounding areas.

Both streams are tributaries of the Ripoll River in the
Besòs basin, and their catchments are mainly forested, do-
minated by Aleppo pine with small areas of cereal cultiva-
tion (<15%). The selected 100-m reach in each stream was
<2 m wide and <50 cm deep, with a bedrock stream bed. In
the 2003 fire, 62.1% of the catchment of the fire-affected
stream, including its riparian zone, was burned. Riparian
and upland forests have not recovered completely at this
site. The control stream was unaffected by the wildfire and
continues to be shaded by a well-developed canopy (Ta-
ble 1). In summer 2012, riparian vegetation at the fire-
affected site consisting of 25 to 50% trees, 25% shrubs,
and 25 to 50% annual herbs, whereas the control reach
was lined by a well developed riparian forest (>75% trees)
with understory shrubs. These 2 reaches, 1 additional con-
trol reach, and 5 additional fire-affected reaches were mon-
itored by Verkaik et al. (2013b) for 5 y postfire, and we
reanalyzed data from that study to estimate the responses
of invertebrate FFGs to fire.

Canopy cover and physicochemical measurements
Riparian canopy cover was estimated annually as part

of a riparian forest quality index (QBR index; Munné
et al. 2003) at the control and fire-affected sites from 2 mo
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after the fire until summer 2012. We reanalyzed the
canopy cover data collected by Verkaik et al. (2013b)
for 2 control and 6 fire-affected reaches over the first
5 y postfire. We also made physicochemical measure-
ments throughout the litter-decomposition experiment
(n = 6 times). We measured dissolved O2, pH, and con-
ductivity in situ with a Multiline P4 WTW meter (YSI;
Yellow Springs, Ohio), and we estimated discharge from
mean depth, transect width, and water velocity with a flow
meter (miniAir®; Schiltknecht, Gossau, Switzerland). We col-
lected water samples by hand, filtered them through GF/F
Whatman filters, and analyzed them for soluble nutrients.
We measured NH4

+-N and soluble reactive P (PO4
3–-P)

with spectrophotometric methods (Murphy and Riley
1962) and NO3

–-N with ionic chromatography methods
(EPA method 9056, USEPA 1993; UV/V KONTRON
model 332; Kontron AG, Zürich, Switzerland). We de-
ployed submersible temperature/light data loggers (HOBO
Pendant; Onset Computer Corporation, Bourne, Massa-
chusetts) under water to record water temperature and
light intensity every 10 min at each site throughout the
leaf-bag experiment.

Benthic macroinvertebrate communities
We compared the abundances of benthic macroin-

vertebrate FFGs at 2 control and 6 fire-affected sites over
the first 5 y postfire by reanalyzing the data collected by
Verkaik et al. (2013b). At each site and time, macroin-
vertebrate kick samples were collected with a 250-μm net
from all extant habitats over a standard 4-min period.
Macroinvertebrate samples were processed as outlined be-
low for macroinvertebrates collected from leaf bags.

Litterfall input
We measured vertical litterfall inputs with 0.28-m2 traps

(3 at the fire-affected site and 3 at the control site) placed
in the riparian zone (Pozo et al. 1997). Traps were made of
rigid baskets 60 cm in depth and lined with a 1-mm mesh,
allowing us to retain all coarse particulate organic matter
(CPOM) while allowing water to escape during rain events.
Litter in traps was removed 12 times during a year (4 Oc-
tober 2011–4 October 2012), with increased sampling
frequency in autumn. We oven-dried litter (60°C, 72 h),
and sorted it as leaves, bark and twigs, or fruits and flowers.
We weighed and combusted (500°C, 12 h) this material to
measure ash-free dry mass (AFDM).

Leaf-litter decomposition experiment
We conducted the leaf-bag experiment in autumn–

winter (23 November 2011–15 March 2012). We col-
lected leaves of white poplar (Populus alba L.) in Octo-
ber 2011 just after abscission, and air-dried them at room
temperature to constant mass. Leaf bags (15 × 20 cm)
containing 3 g of leaves (SE = 0.06 g) were made of 2 mesh
sizes: coarse (10 mm) and fine (250 μm). Coarse-mesh bags
allowed macroinvertebrate colonization, thus, more closely
simulated natural leaf-litter breakdown processes, whereas
fine-mesh bags excluded virtually all macroinvertebrates,
thereby allowing us to assess the relative contribution of
microbial (fungi and bacteria) activity to litter decomposi-
tion (see Young et al. 2008).

We deployed 30 bags of each mesh type at the fire-
affected and control sites in pools because leaves accu-
mulated in the pools of these streams. We placed 12
additional bags in the control site for 24 h to correct for

Table 1. Mean (±1 SE) values of characteristics of the control and fire-affected sites during the
litter decomposition experiment (23 November 2011–15 March 2012), and results of analyses
of variance comparing characteristics between control and fire-affected sites. PAR = photosyn-
thetically active radiation.

Control Fire affected F p

Elevation (m asl) 451 485 – –

Catchment area (ha) 290 510 – –

Burned area (%) 0 62.1 – –

Discharge (L/s) 5.5 ± 1.5 18.6 ± 7.7 2.8 0.12

Water temperature (°C) 5.6 ± 0.2 8.2 ± 0.2 77 <0.001

PAR (μmol m–2 s–1) 10.1 ± 0.5 21.5 ± 1.0 264 <0.001

pH 8.16 ± 0.02 8.09 ± 0.02 4.0 0.07

Conductivity (μS/cm) 492 ± 2 485 ± 2 4.7 0.06

DO (% saturation) 86.8 ± 0.3 89.3 ± 0.2 4.8 0.09

NH4
+-N (μg/L) 23 ± 1 24 ± 1 1.7 0.22

NO3
–-N (μg/L) 124 ± 14 640 ± 13 744 <0.001

PO4
3–-P (μg/L) <10 <10 – –
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initial leaf mass losses resulting from leaching and acci-
dental transport losses (Gessner et al. 1999). We removed
6 litter bags of each type (coarse and fine mesh) from
each site 5, 12, 26, 58, and 113 d after deployment. At
retrieval, we placed litter bags individually in Ziploc® bags
and transported them in refrigerated containers to the
laboratory, where we processed them immediately. We
washed the material in each litter bag, collected inver-
tebrates on a 250-μm sieve, and preserved them in 70%
ethanol. We oven-dried (60°C, 72 h) and combusted litter
material (500°C, 12 h) to measure AFDM remaining.

We counted macroinvertebrates, identified them to the
lowest possible taxonomic level (usually genus), and mea-
sured them using ImageJ software (version 1.47; National
Institutes of Health, Bethesda, Maryland). We classified
taxa to FFGs following Tachet et al. (2010). We calculated
individual biomass using published body length–dry mass
equations (Dumont et al. 1975, Smock 1980, Meyer 1989,
Benke et al. 1999, Baumgärtner and Rothhaupt 2003, Ohta
et al. 2011), except Hydracarina, Ostracoda, Cladocera, Oli-
gochaeta, and Nematoda for which we used biovolume
data (Ramsay et al. 1997).

Data analysis
All statistical analyses were performed using the pro-

grams R (version 2.15.2; R Project for Statistical Comput-
ing, Vienna, Austria) and SPSS (version 21.0; IBM Corp.,
Armonk, New York). We compared riparian canopy cover
at the 2 control and 6 fire-affected streams over the first
5 y postfire, and between the fire-affected and control
experimental sites from 2003 to 2012 with repeated mea-
sures analysis of variance (rmANOVA). We compared
mean daily light intensity, mean daily water temperature,
and other physicochemical variables between the fire-
affected and control sites over the experimental period with
1-way ANOVAs. We log(x)-transformed litter-input data
(as g AFDM m–2 d–1) and analyzed inputs to fire-affected
and control sites with an rmANOVA. We compared the
abundances of different macroinvertebrate FFGs in 2 con-
trol and 6 fire-affected streams over the first 5 postfire
years with rmANOVA. For each sampling date, we used
the nonparametric Kruskal–Wallis test to identify the times
when macroinvertebrate abundance of different FFGs dif-
fered significantly between control and fire-affected sites.

We used an exponential decay model (Bärlocher 2005)
to quantify leaf breakdown rates:

Mt ¼ M0e
−kt; (Eq. 1)

where Mt is the leaf-litter AFDM at time t, M0 is the
initial AFDM corrected for leaching and transportation
mass losses, –k is the decomposition rate, and t is the
time in d. To test for significant differences in leaf de-
composition rates among sites and mesh sizes, we con-

ducted an analysis of covariance (ANCOVA) on ln(x)-
transformed AFDM remaining (dependent variable), with
site and mesh size as fixed factors and time (d) as a co-
variate (Zar 2010). We adjusted α levels for pairwise com-
parisons of decomposition rates between all sites and mesh
sizes with Bonferroni corrections. We corrected for tem-
perature effects on leaf breakdown rates, by repeating the
analyses using degree days (dd) instead of days (d) as the
covariate. We calculated dd as mean daily temperatures ac-
cumulated by each sampling day (Minshall et al. 1983,
Irons et al. 1994, Menéndez et al. 2003).

We standardized macroinvertebrate abundance and bio-
mass in coarse-mesh leaf bags per gram of leaf-litter AFDM
remaining in leaf bags. We log(x + 1)-transformed macro-
invertebrate abundance and analyzed differences between
sites with ANCOVA, with site as a fixed factor and time as
a covariate. We applied Bonferroni corrections to control
for comparison-wise error.

RESULTS
Canopy cover and physicochemical measurements

Canopy cover was lower at fire-affected than control
sites over the first 5 y postfire (F1,5 = 8.2, p < 0.04; Fig. 1A)
and were consistently lower from 2003–2012 at the fire-
affected than control experimental sites (F1,15 = 7.1, p <
0.02; Fig. 1B). Both sites had alkaline pH, high dissolved

Figure 1. Mean (±1 SE) riparian canopy cover at 2 control
and 6 fire-affected sites (Verkaik et al. 2013b data) over the first
5 years postfire (A) and at the control and fire-affected sites
(this study) from 2003–2012 (B).

Volume 34 December 2015 | 1485

This content downloaded from 23.235.32.0 on Fri, 13 Nov 2015 14:49:38 PM
All use subject to JSTOR Terms and Conditions



O2 levels, low discharge, and low nutrient concentrations
during the study period (Table 1). Mean daily light inten-
sity, mean daily water temperature, and NO3

–-N concen-
tration were substantially higher in the fire-affected than
control sites (Table 1, Fig. 2A, B).

Benthic macroinvertebrate communities
The abundances of shredders, scrapers, and gather-

ing collectors peaked in the 1st year postfire at fire-
affected sites while remaining relatively constant at con-
trol sites, but after >2 y postfire, the abundances of all
FFGs were very similar between control and fire-affected
sites (Fig. 3A–E). No significant effects of fire on a time ×
site interaction were detected over the study period
(rmANOVA, all p > 0.05). In summer 2007, shredders
abundances were 523 ± 234 individuals (ind)/sample at
the control sites and 417 ± 101 ind/sample at the fire-
affected sites. These data indicate that the abundances of
FFGs were similar between fire-affected and control sites
3 y before the litter-decomposition experiment and prob-
ably at the time of the experiment.

Litter input
Total litter input from October 2011 to October 2012

was 2.5× higher at the control (134.6 ± 19.8 g AFDM

Figure 2. Mean (±1 SE, n = 144 measurements/d) daily light
intensity as photosynthetically active radiation (PAR) (A) and
water temperature (B) at the control and fire-affected sites dur-
ing the litter decomposition experiment (23 November 2011–
15 March 2012).

Figure 3. Mean (±1 SE) abundances of shredders (A), scrap-
ers (B), predators (C), gathering collectors (D), and filtering
collectors (E) at 2 control and 6 fire-affected sites over the first
5 y postfire (data collected by Verkaik et al. 2013b). ■ indicates
marginally significant difference between control and fire-affected
sites on a sampling date (p < 0.10).
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m–2 y–1) than fire-affected site (52.6 ± 12.0 g AFDMm–2 y–1)
(F1,4 = 13.2, p < 0.025; Fig. 4A). Leaf inputs were higher at
the control than at the fire-affected site (F1,4 = 9.7, p < 0.04;
Fig. 4B), but inputs of bark, twigs, fruits or flowers did not
differ between sites. Both total litter and leaf inputs were
affected by a site × sampling date interaction (total litter:
F11,44 = 2.2, p < 0.03; leaf input: F11,44 = 4.5, p < 0.001), with
leaf inputs peaking from late spring to early autumn in the
control site but remaining at low, constant levels in the fire-
affected site (Fig. 4B). Leaf litter made up 62% of the total

annual litter input and consisted primarily of leaves of Q.
ilex, Q. robur, P. alba, Viburnum sp., Salix sp., P. halepensis,
and Fraxinus sp.

Leaf-litter decomposition experiment
The loss of poplar leaf mass was well fit by an expo-

nential model, with a slightly better fit to dd than d (R2

higher in all 4 cases; Table 2). Litter mass loss over time
without temperature correction differed between sites
(F1,115 = 63, p < 0.001) and mesh sizes (F1,115 = 26, p <
0.001), and was faster at the fire-affected than control site,
and in coarse than in fine-mesh bags (Table 2; Fig. 5A).
Using dd instead of d as the independent variable, leaf
breakdown rates also differed between sites (F1,115 = 10.5,
p = 0.002) and mesh sizes (F1,115 = 48, p < 0.001). How-
ever, pairwise comparisons showed mass loss differences be-
tween sites for coarse- (F1,57 = 19, p < 0.001) but not for
fine-mesh bags (F1,57 = 1.9, p = 0.18; Fig. 5B). Litter-loss
rates were greater in coarse- than fine-mesh bags at both
sites (control: F1,57 = 23, p < 0.001; fire-affected: F1,57 = 30,
p < 0.001; Fig. 5B).

Across all coarse-mesh leaf bags, total macroinverte-
brate density varied from 1 to 127 and shredder density
from 0 to 76 ind/g leaf-litter AFDM. Total macroinverte-
brate, shredder, scraper, and predator abundances in coarse-
mesh bags were higher at the fire-affected than control
site (F1,57 = 9–16, p < 0.005 to < 0.001), but the abundances
of gathering and filtering collectors did not differ between
sites. The biomass of total macroinvertebrates (F1,57 =
4.8, p < 0.04; Fig. 6A) and shredders (F1,57 = 4.4, p < 0.04;
Fig. 6B) in coarse-mesh bags were higher at the fire-affected
than control site, but no intersite differences were de-
tected for the biomass of other FFGs (Fig. 6C–F).

DISCUSSION
In a recent review of wildfire effects on Mediterranean

streams, Verkaik et al. (2013a) concluded that algal, inver-
tebrate, and amphibian communities recover faster post-
fire in Mediterranean streams than in streams in other cli-
matic regions (1–4 y in Mediterranean streams vs 5–10 y
in non-Mediterranean streams). However, our study indi-

Figure 4. Mean (±1 SE; n = 3 replicate litter traps) total litter
(A) and leaf (B) inputs at control and fire-affected sites from
4 October 2011 to 4 October 2012. Gray area indicates the time
period when the leaf decomposition experiment was done.

Table 2. Mean (SE) leaf-litter breakdown rates (–k) and R2 values for regressions of ln(x)-
transformed leaf mass remaining vs time in days (d) and cumulative degree days (dd).

Site Mesh

d dd

–k SE R2 –k SE R2

Control Coarse 0.00445 0.00025 0.92 0.00084 0.000032 0.96

Control Fine 0.00370 0.00019 0.93 0.00069 0.000026 0.96

Fire Coarse 0.00774 0.00036 0.94 0.00098 0.000034 0.97

Fire Fine 0.00484 0.00038 0.85 0.00062 0.000040 0.90
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cates that the legacy effects of wildfire accelerated leaf-litter
breakdown in a Mediterranean stream for up to 8 y post-
fire. We also found that wildfire reduced and altered the
timing of allochthonous organic matter inputs into a
stream after 8 y postfire. Despite the high resilience to fire
of biological communities in Mediterranean streams, our
study suggests that past wildfires in Mediterranean streams
can have long-term consequences for stream ecosystem
processes (Koetsier et al. 2010). The leaf-litter decomposi-
tion component of our study was based on only 2 streams
(fire-affected vs control), but additional data and observa-
tions from these and other sites and times indicate that
these 2 streams were similar before fire affected 1 of them
and that the proposed mechanisms responsible for our
results (see below) are consistent with this information.
Thus, we treat our study as an example of how wildfire

can trigger long-term changes in ecosystem processes in
Mediterranean streams. Our study also illustrates how land-
scape history, a factor often overlooked in stream ecology,
can influence the functioning of lotic ecosystems.

Our results show, as we expected, that opening of the
riparian forest canopy by fire increased site light levels and,
consequently, water temperature (Gresswell 1999, Koetsier
et al. 2010). Wildfire also reduced annual litter inputs, pri-
marily leaf inputs, by 2.5× after 8 y postfire. Leaf inputs
peaked from late spring to early autumn in the control
site, consistent with the results of Fioretto et al. (2003) for
a low Mediterranean shrubland stream and with the con-
tention of Gasith and Resh (1999) and González (2012)
that litterfall should be more protracted in Mediterranean
than in temperate streams, which have a marked autumnal
peak. In contrast, litter inputs to the fire-affected site were
lower and more constant, indicating that wildfire affected
both the quantity and timing of litter inputs (Jackson et al.
2012).

Leaf-breakdown rates were low but similar to published
data for P. alba leaves during autumn–winter in Mediter-
ranean rivers (Menéndez et al. 2003). Litter-breakdown
rates without temperature correction were faster at the fire-
affected than control site in both fine- and coarse-mesh
bags. However, fine-mesh decomposition rates did not dif-
fer between sites after temperature correction, indicating
that microbially mediated decomposition differences be-
tween sites were driven almost entirely by differences in
temperature. Consistent with our hypothesis, the removal
of riparian cover by fire apparently led to higher water
temperatures, which increased microbial activity and litter
decomposition in the fire-affected site, consistent with lit-
erature data indicating the primacy of temperature in de-
termining litter-decomposition rates (Webster and Benfield
1986, Short and Smith 1989, Gessner et al. 1998, Ferreira
and Chauvet 2011a). Despite the low nutrient concentra-
tions recorded in our study sites, dissolved NO3

–-N concen-
trations were >5× higher in the fire-affected than control
site, which may have contributed to acceleration of micro-
bial leaf decomposition at the fire-affected site (Benstead
et al. 2009, Ferreira and Chauvet 2011b, Woodward et al.
2012). Nevertheless, the lack of difference in decomposition
rates in fine-mesh bags between sites when expressed as a
function of dd suggests that temperature was the primary
factor driving microbial decomposition rates.

Leaf breakdown was faster in coarse- than fine-mesh
bags in both sites, and overall decomposition was faster
in the fire-affected than the control site. These differences
persisted even after temperature corrections. Thus, differ-
ences in total decomposition rates between sites should
be caused by factors additional to temperature (McArthur
et al. 1988). Physical fragmentation and abrasion of leaves
were unlikely to be important for leaf breakdown in our
study because leaves were deployed in pools at water veloc-

Figure 5. Mean (±1 SE; n = 6 replicate leaf bags) % initial
Populus alba leaf-litter mass remaining in coarse- and fine-
mesh bags at control and fire-affected sites over 113 d ex-
pressed over time (A) and over cumulative degree days (dd) (B).
Curves with the same letter do not have significantly different
decomposition rates (p > 0.05).
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ities <0.15 m/s, far below threshold velocities reported to
affect leaf-breakdown rates (Ferreira et al. 2006). Moreover,
we saw no evidence of the mechanical fragmentation of
leaves. Sediment deposition was unlikely to be important
to leaf breakdown because no differences in substrata char-
acteristics were discernible between sites, and burial of leaf
bags by sediment was not observed. After dismissing the ef-
fects of possible differences in current velocity, mechanical
fragmentation, and sediment deposition on leaf decomposi-
tion between bags with different mesh sizes, we isolated the
effects of shredders on leaf-breakdown rates by subtracting
k-values in fine-mesh bags from those in coarse-mesh bags.
These calculations showed that shredder-mediated leaf-
breakdown rates were 3.9× higher at the fire-affected than
the control site (0.0029 vs 0.00075) when expressed /d
and 2.4× higher when expressed /dd (0.00036 vs 0.00015).
This difference in shredder-mediated leaf-breakdown rates
between study sites could be attributed to intersite differ-
ences in shredder densities in coarse-mesh bags, which
were significantly higher in the fire-affected than the con-
trol site by the end of the experiment. Therefore, faster
overall leaf decomposition in the fire-affected than the con-
trol site probably was caused by both higher microbial ac-

tivity, driven by higher temperatures, and higher shredder
activity in coarse-mesh bags in the fire-affected site.

Higher shredder abundance and biomass in coarse-mesh
bags in the fire-affected site were not driven by differences
in shredder abundance in the benthos of fire-affected vs
control sites because benthic invertebrate abundances re-
covered quickly postfire, and shredder densities were simi-
lar between sites affected and unaffected by fire within 3 y
postfire. We also think it is unlikely that shredder aggrega-
tion in the leaf bags was driven by refuge responses to
predators (Lagrue et al. 2011) because vertebrate predators
were absent at both sites and invertebrate predators could
move freely into and out of coarse-mesh bags. On the other
hand, a variety of studies indicate that shredders aggregate
in resource patches when litter availability is low, thereby
accelerating litter breakdown (Baldy and Gessner 1997,
Rowe and Richardson 2001, Tiegs et al. 2008). We did not
measure in-stream CPOM levels, but lower litter inputs to
the fire-affected than control sites from May to Septem-
ber probably led to lower in-stream CPOM levels from
November to March, when the leaf-bag experiment was
done. Our results show that Populus leaf-decomposition
rates were slow, with leaves lasting several months before

Figure 6. Mean (±1 SE; n = 6 replicate bags) biomass (mg/g remaining leaf ash-free dry mass [AFDM]) of total invertebrates
(A), shredders (B), scrapers (C), predators (D), gathering collectors (E), and filtering collectors (F) in coarse-mesh bags at the control
and fire-affected streams over the experimental period.
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being totally skeletonized (e.g., ∼54% of the leaf mass re-
mained in control leaf bags after nearly 4 mo in autumn–
winter; Fig. 5A, B).

Moreover, wildfires may reduce retention of benthic
CPOM in streams by altering the characteristics and in-
puts of woody debris and removing debris dams via post-
fire flooding (Vieira et al. 2011, Vaz et al. 2013). A year
after a fire in southern California, CPOM levels were
lower in fire-affected than reference sites, but in subse-
quent years, CPOM levels became similar in streams
draining burned vs unburned catchments where riparian
vegetation remained intact, but remained lower at sites
where riparian vegetation burned (Cooper et al. 2015).
These results suggest that wildfire effects on CPOM avail-
ability depend on the condition of the riparian forest. In ad-
dition, higher light availability and NO3

–-N concentration
in the fire-affected site could have increased algal growth
on leaves, and increased NO3

–-N concentrations could
have increased leaf N content, with both enhancing litter
quality and attractiveness to shredding invertebrates (Rob-
inson and Gessner 2000, Lagrue et al. 2011, Tant et al.
2013). Therefore, shredder aggregation in leaf bags at the
fire-affected site could be attributed to resource tracking
by shredders where leaf-litter inputs and probably benthic
levels were low and, perhaps, where leaf palatability was
high.

The observed fast recovery of shredder abundances post-
fire despite reductions in litter inputs suggests a weak re-
lationship between litter inputs and shredder density
(Linklater 1995), in contrast to studies showing positive
relationships between leaf-litter inputs or availability and
shredder density (Richardson 1991, Dobson and Hildrew
1992, Boulton and Lake 1992, Friberg 1997, González and
Graça 2005). Recovery of shredder abundances after wild-
fire might be explained by shredder dietary shifts to avail-
able secondary resources when leaf litter becomes scarce
(Mihuc and Minshall 1995, Costantini and Rossi 1998,
Graça 2001, Dangles 2002), such as after a wildfire. Au-
thors of several stable-isotope studies have reported a
postfire shift from a detritus-based to a periphyton-based
food web in streams (Spencer et al. 2003, Mihuc and
Minshall 2005, Cooper et al. 2015). Compared to temper-
ate streams, Mediterranean streams have more macro-
invertebrates with traits favoring dispersion and rapid
recolonization of disturbed streams, such as aerial active
dispersal, more frequent reproduction, and small size, which
can explain the fast recovery of macroinvertebrate abun-
dances postfire (Bonada et al. 2007a, Verkaik et al. 2013b).
In fact, 5 y postfire, only a few individual taxa with low
mobility and limited dispersal capacity were still less abun-
dant in fire-affected than control sites (Verkaik et al. 2013b).
The observed peak in the abundances of shredders, scrapers,
and gathering collectors in the fire-affected sites in the
1st year postfire may be caused by a short-term increase

in resource availability. Britton (1990) reported an in-
crease in leaf-litter input to streams immediately postfire
but a decrease over the following years, and Cooper et al.
(2015) showed that in-stream algal production where ri-
parian vegetation was burned increased after the 1st post-
fire wet period apparently because of increased light and
high nutrient concentrations, but declined afterward de-
spite the high light levels.

In conclusion, our study shows that a wildfire that oc-
curred 8 y ago accelerated leaf-litter decomposition in a
Mediterranean stream because of increased microbial ac-
tivity associated with higher water temperatures engen-
dered by removal of canopy cover and by shredder ag-
gregation in leaf packs, probably because of scarcity or high
palatability of leaf litter in the fire-affected stream. These
results indicate that wildfire effects on the riparian forest
are key factors mediating wildfire effects on streams, as sug-
gested in previous studies (Arkle and Pilliod 2010, Verkaik
et al. 2013a, Cooper et al. 2015). More research on the ef-
fects of wildfires on riparian–stream linkages and eco-
system processes is needed to develop effective mana-
gement practices, given the general lack of scientific
studies on these topics and projected increases in wildfire
risk.

ACKNOWLEDGEMENTS
We are grateful to Raúl Acosta, Núria Cid, Isabelle Perrée,

Iraima Verkaik, and especially to Pau Fortuño for their assis-
tance in the field. We thank Iraima Verkaik for allowing us to
include her data to improve our work. We thank the Diputació
de Barcelona and the Parc Natural Sant Llorenç del Munt i
l’Obac for allowing us to conduct the experiment at their facili-
ties. We thank Meritxell Abril for her comments and sugges-
tions on an earlier version of the manuscript. Thoughtful sug-
gestions and comments by Guest Editor Scott D. Cooper, Editor
Pamela Silver, and 3 anonymous referees greatly improved the
manuscript. This research was funded by the Ministerio de Econ-
omía y Competitividad del Gobierno de España, FURIMED-2
project (ref: CGL2008-03388). PR-L was supported by a FPU
(Formación del Profesorado Universitario) fellowship (AP2009-
1470) from the Ministerio de Educación, Cultura y Deporte del
Gobierno de España.

LITERATURE CITED
Arkle, R. S., and D. S. Pilliod. 2010. Prescribed fires as ecologi-

cal surrogates for wildfires: a stream and riparian perspec-
tive. Forest Ecology and Management 259:893–903.

Baldy, V., and M. O. Gessner. 1997. Towards a budget of leaf litter
decomposition in a first-order woodland stream. Comptes Ren-
dus de l’Académie des Sciences - Serie III - Sciences de la Vie
320:747–758.

Bärlocher, F. 2005. Leaf mass loss estimated by litter bag tech-
nique. Pages 37–42 in M. A. S. Graça, F. Bärlocher, and M. O.
Gessner (editors). Methods to study litter decomposition: a
practical guide. Springer, Dordrecht, The Netherlands.

1490 | Fire effects on leaf breakdown P. Rodríguez-Lozano et al.

This content downloaded from 23.235.32.0 on Fri, 13 Nov 2015 14:49:38 PM
All use subject to JSTOR Terms and Conditions



Baumgärtner, D., and K.-O. Rothhaupt. 2003. Predictive length–
dry mass regressions for freshwater invertebrates in a pre-
alpine lake littoral. International Review of Hydrobiology 88:453–
463.

Benfield, E. F., J. R. Webster, J. L. Tank, and J. J. Hutchens. 2001.
Long-term patterns in leaf breakdown in streams in response
to watershed logging. International Review of Hydrobiology
86:467–474.

Benke, A. C., A. D. Huryn, L. A. Smock, and J. B. Wallace. 1999.
Length–mass relationships for freshwater macroinvertebrates
in North America with particular reference to the southeastern
United States. Journal of the North American Benthological
Society 18:308–343.

Benstead, J. P., A. D. Rosemond, W. F. Cross, J. B. Wallace, S. L.
Eggert, K. Suberkropp, V. Gulis, J. L. Greenwood, and C. J.
Tant. 2009. Nutrient enrichment alters storage and fluxes of
detritus in a headwater stream ecosystem. Ecology 90:2556–
2566.

Betts, E. F., and J. B. Jones. 2009. Impact of wildfire on stream
nutrient chemistry and ecosystem metabolism in boreal for-
est catchments of interior Alaska. Arctic, Antarctic, and Al-
pine Research 41:407–417.

Bonada, N., S. Dolédec, and B. Statzner. 2007a. Taxonomic and
biological trait differences of stream macroinvertebrate com-
munities between mediterranean and temperate regions: im-
plications for future climatic scenarios. Global Change Bio-
logy 13:1658–1671.

Bonada, N., M. Rieradevall, and N. Prat. 2007b. Macroinvertebrate
community structure and biological traits related to flow per-
manence in a Mediterranean river network. Hydrobiologia
589:91–106.

Bond, W. J., and J. E. Keeley. 2005. Fire as a global “herbivore”:
the ecology and evolution of flammable ecosystems. Trends
in Ecology and Evolution 20:387–394.

Boulton, A. J., and P. S. Lake. 1992. Benthic organic matter and
detritivorous macroinvertebrates in two intermittent streams
in south-eastern Australia. Hydrobiologia 241:107–118.

Bowman, D. M. J. S., J. Balch, P. Artaxo, W. J. Bond, M. A.
Cochrane, C. M. D’Antonio, R. DeFries, F. H. Johnston, J. E.
Keeley, M. A. Krawchuk, C. A. Kull, M. Mack, M. A. Moritz, S.
Pyne, C. I. Roos, A. C. Scott, N. S. Sodhi, and T. W. Swetnam.
2011. The human dimension of fire regimes on Earth. Journal
of Biogeography 38:2223–2236.

Boyero, L., R. G. Pearson, M. O. Gessner, L. A. Barmuta, V.
Ferreira, M. A. S. Graça, D. Dudgeon, A. J. Boulton, M. Cal-
listo, E. Chauvet, J. E. Helson, A. Bruder, R. J. Albariño, C. M.
Yule, M. Arunachalam, J. N. Davies, R. Figueroa, A. S. Flecker,
A. Ramírez, R. G. Death, T. Iwata, J. M. Mathooko, C.
Mathuriau, J. F. Gonçalves, M. S. Moretti, T. Jinggut, S.
Lamothe, C. M’Erimba, L. Ratnarajah, M. H. Schindler, J.
Castela, L. M. Buria, A. Cornejo, V. D. Villanueva, and D. C.
West. 2011. A global experiment suggests climate warming
will not accelerate litter decomposition in streams but might
reduce carbon sequestration. Ecology Letters 14:289–294.

Britton, D. L. 1990. Fire and the dynamics of allochthonous
detritus in a South African mountain stream. Freshwater
Biology 24:347–360.

Cooper, S. D., H. M. Page, S. W. Wiseman, K. Klose, D.
Bennett, T. Even, S. Sadro, C. E. Nelson, and T. L. Dudley.

2015. Physicochemical and biological responses of streams
to wildfire severity in riparian zones. Freshwater Biology.
doi:10.1111/fwb.12515

Costantini, M. L., and L. Rossi. 1998. Competition between two
aquatic detritivorous isopods–a laboratory study. Hydrobi-
ologia 368:17–27.

Cowling, R. M., F. Ojeda, B. B. Lamont, P. W. Rundel, and R.
Lechmere-Oertel. 2005. Rainfall reliability, a neglected fac-
tor in explaining convergence and divergence of plant traits
in fire-prone mediterranean-climate ecosystems. Global Ecol-
ogy and Biogeography 14:509–519.

Danger, M., J. Cornut, E. Chauvet, P. Chavez, A. Elger, and A.
Lecerf. 2013. Benthic algae stimulate leaf litter decomposi-
tion in detritus-based headwater streams: a case of aquatic
priming effect? Ecology 94:1604–1613.

Dangles, O. 2002. Functional plasticity of benthic macroinver-
tebrates: implications for trophic dynamics in acid streams.
Canadian Journal of Fisheries and Aquatic Sciences 59:1563–
1573.

Dieter, D., D. von Schiller, E. M. García-Roger, M. D. M.
Sánchez-Montoya, R. Gómez, J. Mora-Gómez, F. Sangiorgio,
J. Gelbrecht, and K. Tockner. 2011. Preconditioning effects
of intermittent stream flow on leaf litter decomposition.
Aquatic Sciences 73:599–609.

Dobson, M., and A. Hildrew. 1992. A test of resource limitation
among shredding detritivores in low order streams in south-
ern England. Journal of Animal Ecology 61:69–77.

Dumont, H. J., I. Van de Velde, and S. Dumont. 1975. The dry
weight estimate of biomass in a selection of Cladocera,
Copepoda and Rotifera from the plankton, periphyton and
benthos of continental waters. Oecologia (Berlin) 19:75–97.

Dury, M., A. Hambuckers, P. Warnant, A. Henrot, E. Favre, M.
Ouberdous, and L. François. 2011. Responses of European
forest ecosystems to 21st century climate: assessing changes
in interannual variability and fire intensity. iForest - Biogeo-
sciences and Forestry 4:82–99.

Earl, S. R., and D. W. Blinn. 2003. Effects of wildfire ash on
water chemistry and biota in South-Western U.S.A. streams.
Freshwater Biology 48:1015–1030.

Ferreira, V., and E. Chauvet. 2011a. Future increase in temperature
more than decrease in litter quality can affect microbial litter
decomposition in streams. Oecologia (Berlin) 167:279–291.

Ferreira, V., and E. Chauvet. 2011b. Synergistic effects of water
temperature and dissolved nutrients on litter decomposition
and associated fungi. Global Change Biology 17:551–564.

Ferreira, V., M. A. S. Graça, J. L. M. P. de Lima, and R. Gomes.
2006. Role of physical fragmentation and invertebrate activ-
ity in the breakdown rate of leaves. Archiv für Hydrobiologie
165:493–513.

Fioretto, A., S. Papa, and A. Fuggi. 2003. Litter-fall and litter
decomposition in a low Mediterranean shrubland. Biology
and Fertility of Soils 39:37–44.

Friberg, N. 1997. Benthic invertebrate communities in six Dan-
ish forest streams: impact of forest type on structure and
function. Ecography 20:19–28.

Gama, M., A. L. Gonçalves, V. Ferreira, M. A. S. Graça, and C.
Canhoto. 2007. Decomposition of fire exposed Eucalyptus
leaves in a Portuguese lowland stream. International Review
of Hydrobiology 92:229–241.

Volume 34 December 2015 | 1491

This content downloaded from 23.235.32.0 on Fri, 13 Nov 2015 14:49:38 PM
All use subject to JSTOR Terms and Conditions



Gasith, A., and V. Resh. 1999. Streams in Mediterranean climate
regions: abiotic influences and biotic responses to predict-
able seasonal events. Annual Review of Ecology and System-
atics 30:51–81.

Gessner, M. O., E. Chauvet, and M. Dobson. 1999. A perspec-
tive on leaf litter breakdown in streams. Oikos 85:377–384.

Gessner, M. O., C. T. Robinson, and J. V. Ward. 1998. Leaf
breakdown in streams of an alpine glacial floodplain: dy-
namics of fungi and nutrients. Journal of the North Ameri-
can Benthological Society 17:403–419.

González, E. 2012. Seasonal patterns of litterfall in the flood-
plain forest of a large Mediterranean river. International Re-
view of Hydrobiology 31:173–186.

González, J. M., and M. A. S. Graça. 2005. Influence of detritus
on the structure of the invertebrate community in a small Por-
tuguese stream. International Review of Hydrobiology 90:534–
545.

Graça, M. A. S. 2001. The role of invertebrates on leaf litter
decomposition in streams: a review. International Review of
Hydrobiology 86:383–394.

Gresswell, R. E. 1999. Fire and aquatic ecosystems in forested
biomes of North America. Transactions of the American
Fisheries Society 128:193–221.

IPCC (International Panel on Climate Change). 2014. Climate
change 2014: impacts, adaptation, and vulnerability. Part A:
global and sectoral aspects. Contribution of Working Group II
to the 5th Assessment Report of the Intergovernmental Panel
on Climate Change. C. B. Field, V. R. Barros, D. J. Dokken, K. J.
Mach, M. D. Mastrandrea, T. E. Bilir, M. Chatterjee, K. L. Ebi,
Y. O. Estrada, R. C. Genova, B. Girma, E. S. Kissel, A. N. Levy,
S. MacCracken, P. R. Mastrandrea, and L. L. White (editors).
Cambridge University Press, Cambridge, UK.

Irons, J. G., M. W. Oswood, R. J. Stout, and C. M. Pringle.
1994. Latitudinal patterns in leaf litter breakdown: is tem-
perature really important? Freshwater Biology 32:401–411.

Jackson, B. K., S. M. P. Sullivan, and R. L. Malison. 2012. Wild-
fire severity mediates fluxes of plant material and terrestrial
invertebrates to mountain streams. Forest Ecology and Man-
agement 278:27–34.

Koetsier, P., T. R. B. Krause, and Q. M. Tuckett. 2010. Present
effects of past wildfires on leaf litter breakdown in stream
ecosystems. Western North American Naturalist 70:164–
174.

Lagrue, C., J. S. Kominoski, M. Danger, J.-M. Baudoin, S. La-
mothe, D. Lambrigot, and A. Lecerf. 2011. Experimental
shading alters leaf litter breakdown in streams of con-
trasting riparian canopy cover. Freshwater Biology 56:2059–
2069.

Lecerf, A., and J. S. Richardson. 2010. Litter decomposition can
detect effects of high and moderate levels of forest distur-
bance on stream condition. Forest Ecology and Manage-
ment 259:2433–2443.

Linklater, W. 1995. Breakdown and detritivore colonisation of
leaves in three New Zealand streams. Hydrobiologia 306:241–
250.

Martínez, A., A. Larrañaga, J. Pérez, E. Descals, and J. Pozo.
2014. Temperature affects leaf litter decomposition in low-
order forest streams: field and microcosm approaches. FEMS
Microbiology Ecology 87:257–267.

McArthur, J V., J. R. Barnes, B. J. Hansen, and L. G. Leff. 1988.
Seasonal dynamics of leaf litter breakdown in a Utah alpine
stream. Journal of the North American Benthological Soci-
ety 7:44–50.

Menéndez, M., O. Hernández, and F. A. Comín. 2003. Seasonal
comparisons of leaf processing rates in two Mediterranean
rivers with different nutrient availability. Hydrobiologia 495:159–
169.

Meyer, E. 1989. The relationship between body length parameters
and dry mass in running water invertebrates. Archiv für Hy-
drobiologie 117:191–203.

Mihuc, T. B., and G. W. Minshall. 1995. Trophic generalists vs.
trophic specialists: implications for food web dynamics in
post-fire streams. Ecology 76:2361–2372.

Mihuc, T. B., and G. W. Minshall. 2005. The trophic basis of
reference and post-fire stream food webs 10 years after wild-
fire in Yellowstone National Park. Aquatic Sciences 67:541–
548.

Minshall, G. W., R. C. Petersen, K. W. Cummins, T. L. Bott,
J. R. Sedell, C. E. Cushing, and R. L. Vannote. 1983. In-
terbiome comparison of stream ecosystem dynamics. Eco-
logical Monographs 53:1–25.

Molles, M. C. 1982. Trichopteran communities of streams as-
sociated with aspen and conifer forests: long-term structural
change. Ecology 63:1–6.

Munné, A., N. Prat, C. Solà, N. Bonada, and M. Rieradevall.
2003. A simple field method for assessing the ecological
quality of riparian habitat in rivers and streams: QBR index.
Aquatic Conservation: Marine and Freshwater Ecosystems
13:147–163.

Murphy, J., and J. P. Riley. 1962. A modified single solution
method for the determination of phosphate in natural waters.
Analytica Chimica Acta 27:31–36.

Ohta, T., Y. Miyake, and T. Hiura. 2011. Light intensity regulates
growth and reproduction of a snail grazer (Gyraulus chinensis)
through changes in the quality and biomass of stream periphy-
ton. Freshwater Biology 56:2260–2271.

Oliver, A. A., M. T. Bogan, D. B. Herbst, and R. A. Dahlgren.
2012. Short-term changes in-stream macroinvertebrate com-
munities following a severe fire in the Lake Tahoe basin,
California. Hydrobiologia 694:117–130.

Pancotto, V. A., O. E. Sala, M. Cabello, N. I. López, T. M.
Robson, C. L. Ballaré, M. M. Caldwell, and A. L. Scopel.
2003. Solar UV-B decreases decomposition in herbaceous
plant litter in Tierra del Fuego, Argentina: potential role of
an altered decomposer community. Global Change Biology
9:1465–1474.

Piggott, J. J., K. Lange, C. R. Townsend, and C. D. Matthaei.
2012. Multiple stressors in agricultural streams: a mesocosm
study of interactions among raised water temperature, sedi-
ment addition and nutrient enrichment. PLoS ONE 7(11):
e49873.

Pozo, J., E. González, and J. R. Díez. 1997. Inputs of particulate
organic matter to streams with different riparian vegetation.
Journal of the North American Benthological Society 16:602–
611.

Ramsay, P. M., S. D. Rundle, M. J. Attrill, M. G. Uttley, P. R.
Williams, P. S. Elsmere, and A. Abada. 1997. A rapid method
for estimating biomass size spectra of benthic metazoan com-

1492 | Fire effects on leaf breakdown P. Rodríguez-Lozano et al.

This content downloaded from 23.235.32.0 on Fri, 13 Nov 2015 14:49:38 PM
All use subject to JSTOR Terms and Conditions



munities. Canadian Journal of Fisheries and Aquatic Sciences
54:1716–1724.

Richardson, J. S. 1991. Seasonal food limitation of detritivores in a
montane stream: an experimental test. Ecology 72:873–887.

Robinson, C. T., and M. O. Gessner. 2000. Nutrient addition
accelerates leaf breakdown in an alpine springbrook. Oecologia
(Berlin) 122:258–263.

Robinson, C. T., U. Uehlinger, and G. W. Minshall. 2005. Func-
tional characteristics of wilderness streams twenty years fol-
lowing wildfire. Western North American Naturalist 65:1–
10.

Rowe, L., and J. S. Richardson. 2001. Community responses to
experimental food depletion: resource tracking by stream
invertebrates. Oecologia (Berlin) 129:473–480.

Short, R. A., and S. L. Smith. 1989. Seasonal comparison of leaf
processing in a Texas stream. American Midland Naturalist
121:219–224.

Smock, L. A. 1980. Relationships between body size and bio-
mass of aquatic insects. Freshwater Biology 10:375–383.

Spencer, C. N., K. O. Gabel, and F. R. Hauer. 2003. Wildfire
effects on stream food webs and nutrient dynamics in Gla-
cier National Park, USA. Forest Ecology and Management
178:141–153.

Tachet, H., P. Richoux, M. Bournard, and P. Usseglio-Polatera.
2010. Invertébrés d’eau douce: systématique, biologie, écologie.
CNRS Éditions, Paris, France.

Tant, C. J., A. D. Rosemond, and M. R. First. 2013. Stream
nutrient enrichment has a greater effect on coarse than on
fine benthic organic matter. Freshwater Science 32:1111–
1121.

Tiegs, S. D., F. D. Peter, C. T. Robinson, U. Uehlinger, and M. O.
Gessner. 2008. Leaf decomposition and invertebrate coloniza-
tion responses to manipulated litter quantity in streams.
Journal of the North American Benthological Society 27:321–
331.

USEPA (US Environmental Protection Agency). 1993. Determi-
nation of inorganic ions by ion chromatography. EPA Method
9056. US Environmental Protection Agency, Washington,
DC.

Vaz, P. G., E. C. Merten, D. R. Warren, C. T. Robinson, P.
Pinto, and F. C. Rego. 2013. Which stream wood becomes

functional following wildfires? Ecological Engineering 54:82–
89.

Verkaik, I., M. Rieradevall, S. D. Cooper, J. M. Melack, T. L.
Dudley, and N. Prat. 2013a. Fire as a disturbance in Medi-
terranean climate streams. Hydrobiologia 719:353–382.

Verkaik, I., M. Vila-Escalé, M. Rieradevall, and N. Prat. 2013b.
Seasonal drought plays a stronger role than wildfire in shap-
ing macroinvertebrate communities of Mediterranean streams.
International Review of Hydrobiology 98:1–13.

Vieira, N. K. M., T. R. Barnes, and K. A. Mitchell. 2011. Effects
of wildfire and postfire floods on stonefly detritivores of the
Pajarito Plateau, New Mexico. Western North American
Naturalist 71:257–270.

Vieira, N. K. M., W. H. Clements, L. S. Guevara, and B. F. Jacobs.
2004. Resistance and resilience of stream insect communities
to repeated hydrologic disturbances after a wildfire. Freshwater
Biology 49:1243–1259.

Vila-Escalé, M. 2009. Efectes d’un incendi forestal en una riera
mediterrània (Sant Llorenç del Munt, 2003). PhD Thesis,
Universidad de Barcelona, Barcelona, Spain.

Wallace, J. B., S. L. Eggert, J. L. Meyer, and J. R. Webster. 1997.
Multiple trophic levels of a forest stream linked to terres-
trial litter inputs. Science 277:102–104.

Webster, J. R., and E. F. Benfield. 1986. Vascular plant break-
down in freshwater ecosystems. Annual Review of Ecology
and Systematics 17:567–594.

Woodward, G., M. O. Gessner, P. S. Giller, V. Gulis, S. Hladyz,
A. Lecerf, B. Malmqvist, B. G. McKie, S. D. Tiegs, H. Cariss,
M. Dobson, A. Elosegi, V. Ferreira, M. A. S. Graça, T.
Fleituch, J. O. Lacoursière, M. Nistorescu, J. Pozo, G. Risno-
veanu, M. Schindler, A. Vadineanu, L. B.-M. Vought, and E.
Chauvet. 2012. Continental-scale effects of nutrient pollu-
tion on stream ecosystem functioning. Science 336:1438–
1440.

Young, R. G., C. D. Matthaei, and C. R. Townsend. 2008.
Organic matter breakdown and ecosystem metabolism:
functional indicators for assessing river ecosystem health.
Journal of the North American Benthological Society 27:605–
625.

Zar, J. H. 2010. Biostatistical analysis. 5th edition. Prentice Hall,
Upper Saddle River, New Jersey.

Volume 34 December 2015 | 1493

This content downloaded from 23.235.32.0 on Fri, 13 Nov 2015 14:49:38 PM
All use subject to JSTOR Terms and Conditions



RESEARCH ARTICLE

Small but Powerful: Top Predator Local
Extinction Affects Ecosystem Structure and
Function in an Intermittent Stream
Pablo Rodríguez-Lozano*, Iraima Verkaik, Maria Rieradevall, Narcís Prat

Freshwater Ecology and Management (F.E.M.) Research Group, Departament d’Ecologia, Facultat de
Biologia, Universitat de Barcelona, Barcelona, Spain

* pablorodriguezlozano@gmail.com

Abstract
Top predator loss is a major global problem, with a current trend in biodiversity loss towards

high trophic levels that modifies most ecosystems worldwide. Most research in this area is

focused on large-bodied predators, despite the high extinction risk of small-bodied freshwa-

ter fish that often act as apex consumers. Consequently, it remains unknown if intermittent

streams are affected by the consequences of top-predators’ extirpations. The aim of our re-

search was to determine how this global problem affects intermittent streams and, in partic-

ular, if the loss of a small-bodied top predator (1) leads to a ‘mesopredator release’, affects

primary consumers and changes whole community structures, and (2) triggers a cascade

effect modifying the ecosystem function. To address these questions, we studied the top-

down effects of a small endangered fish species, Barbus meridionalis (the Mediterranean

barbel), conducting an enclosure/exclosure mesocosm experiment in an intermittent stream

where B. meridionalis became locally extinct following a wildfire. We found that top predator

absence led to ‘mesopredator release’, and also to ‘prey release’ despite intraguild preda-

tion, which contrasts with traditional food web theory. In addition, B. meridionalis extirpation
changed whole macroinvertebrate community composition and increased total macroinver-

tebrate density. Regarding ecosystem function, periphyton primary production decreased in

apex consumer absence. In this study, the apex consumer was functionally irreplaceable;

its local extinction led to the loss of an important functional role that resulted in major

changes to the ecosystem’s structure and function. This study evidences that intermittent

streams can be affected by the consequences of apex consumers’ extinctions, and that the

loss of small-bodied top predators can lead to large ecosystem changes. We recommend

the reintroduction of small-bodied apex consumers to systems where they have been extir-

pated, to restore ecosystem structure and function.
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Introduction
Predation is an important species interaction that has implications for biological populations,
communities, and ecosystems. In addition to affecting prey abundance and distribution, preda-
tion affects other non-prey taxa and ecosystem processes through indirect pathways [1,2]. In
recent decades, human activity has caused the extinction of many apex consumers (i.e., top
predators) [3,4], and several studies have indicated subsequent ecosystem changes that are
complex, unpredictable, and largely unknown [4,5]. Given that current biodiversity loss is bi-
ased towards species in the higher trophic levels [3,6], the ecosystem impacts of top-predator
decline remain a research priority [7].

The extinction of top predators is often associated with an increase in mesopredators [8–10],
i.e., any mid-ranking predator in a food web. An ecosystemmay have several mesopredators,
and a mesopredator in one systemmay be a top predator in another system [8]. ‘Mesopredator
release’ often leads to a decrease in the prey [9,10], a straightforward conclusion, termed a ‘tro-
phic cascade’, when each trophic level is connected in a direct and negative way [9,11,12]. But, as
showed in a recent review about apex-mesopredator-prey interactions [10], not all trophic webs
have a linear shape. From the 32 studies, Brashares et al. [10] found that 40% of the interactions
were triangular: those in which top predators feed on mesopredators and also on prey, resulting
in intraguild predation (IGP; characterised by predators that feed on other predators with which
they share prey taxa). If IGP occurs, the apex consumer exerts top-down control on both meso-
predator and prey, and then, apex consumer extinction would liberate mesopredator and prey
from its top-down structuring forces. However, in that case, ‘mesopredator release’ could also
lead to an increase on prey top-down control, neutralising apex consumer loss. This would result
in a negative or a null net effect on prey taxa, and consequently, dampen the trophic cascade on
primary production [13–15]. In addition, according to the predator-mediated coexistence theory
[16] and to recent modelling work [17], apex consumer loss can cause secondary extinctions in
adjacent and non-adjacent trophic levels [12,18,19], mainly because predators can facilitate coex-
istence among prey species. Thus, top predator extinctions have been related not only to an in-
crease in mesopredator abundance but also to a decline in biodiversity [9,12].

Intermittent streams are present in all climate areas and are ecologically unique [20,21], but
most research in these systems focused on how hydrological variability shapes community at-
tributes and biogeochemical processes [21,22], while the role of top-down structuring forces
has been largely overlooked. Furthermore, intermittent streams often lack large aquatic con-
sumers that are often considered to be top predators, and instead, are typically inhabited by
predaceous invertebrates and small-bodied fish [23,24]. These systems have been considered a
refuge from vertebrate predation [23,25], and even from invertebrate predation, as some stud-
ies suggest predatory invertebrates have lower abundances in intermittent than in permanent
streams [26]. Other research evidence indicates that predation pressure increases with stream
fragmentation in isolated pools, typically in summer, when predatory lentic invertebrates (odo-
nates, hemipterans and coleopterans) replace reophilous taxa [27–30]. Regarding predatory
vertebrates, previous studies of intermittent streams show that predatory fish can affect stream
macroinvertebrates in terms of: whole community assemblage and total density [31], the densi-
ties of specific groups (e.g., air breathing macroinvertebrates [32]), total biomass [33], and prey
body condition [34]. Other studies suggest that predatory fish have no effect on macroinverte-
brate communities [35]. All these studies were performed in dry season conditions, in isolated
pools or in pools that became isolated during the experiment, when predation pressure reaches
its peak in these systems. The importance of predation in intermittent streams during periods
of flow remains unknown.

Top Predator Local Extinction in an Intermittent Stream
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The objective of our research was to determine if the loss of an endangered apex consumer
from an intermittent stream would result in major changes to ecosystem structure and func-
tion. Barbus meridionalis (A. Risso, 1827), also known as the Mediterranean barbel, is an en-
demic small-bodied fish in the Mediterranean intermittent streams of Spain and France, and
often act as apex consumer in these ecosystems. This species is considered ‘vulnerable’ in the
Spanish Red Book and ‘near threatened’ internationally. We studied the top-down impacts of
B.meridionalis to determine if the loss of the top predator (1) leads to a ‘mesopredator release’,
affecting primary consumers and changing whole community structure, and (2) triggers a cas-
cade effect modifying ecosystem function (i.e., periphyton primary production). Barbus meri-
dionalis has been classified as an insectivore benthic species [36] that feeds primarily on
chironomid larvae, detritus (which could be explained by its benthic feeding behaviour), may-
flies and isopods (mainly primary consumers [37]). Thus, apex consumer extirpation might
not lead to ‘mesopredator release’, and instead could promote a trophic cascade resulting in
‘prey release’ and lower primary production (i.e., ‘prey release’ hypothesis, see Fig. 1A). Alter-
natively, B.meridionalis could feed on two trophic levels (i.e., macroinvertebrate secondary
and primary consumers), in which case top predator removal would trigger a ‘mesopredator re-
lease’ due to IGP. According to IGP theory, ‘mesopredator release’ could compensate apex con-
sumer extirpation in terms of prey top-down control, and the trophic cascade would be
dampened with no impact on prey or primary production (i.e., ‘mesopredator release’ hypothe-
sis, see Fig. 1B). To address these questions, we performed a field experiment using enclosure/
exclosure mesocosms in a Mediterranean stream where B.meridionalis became locally extinct
following a wildfire.

Methods

Ethics statements
This study was authorized by the Autonomous Government of Catalonia (Generalitat de Cata-
lunya) and the Natural Parks Department of the Government of Barcelona (Diputació de Bar-
celona). The University of Barcelona reviewed and approved the project without requirement
for ethics approval. Fish were euthanized following the standard protocol recommended by the
animal welfare service at the University of Barcelona (anaesthetized using Tricaine methane-
sulfonate (MS- 222)), and all efforts were made to minimize animal stress and suffering during
this study.

Study area
The Vall d’Horta stream (41°40’24’‘N, 2°02’4’‘E; Altitude: 480 m asl) is a first order stream lo-
cated in the protected area of Sant Llorenç del Munt i l’Obac Natural Park (50 km inland from
Barcelona, NE Spain). The main stream course is formed from the confluence of the Pregona
and Font del Llor creeks draining to the Ripoll‘s Basin (a tributary of the Besòs River). This
hilly area is characterised by a Mediterranean climate and a calcareous geology, with alternat-
ing highly permeable and less permeable substrates where springs are located (see [27,38] for a
detailed site description). Barbus meridionalis is a common fish within these intermittent
streams that find refuge in the remaining permanent pools during periods of hydrological dis-
connection (usually in summer). In August 2003, a wildfire burned a forested area of 4543 ha,
affecting 62% of the Vall d’Horta basin. As a consequence of this wildfire, B.meridionalis be-
came locally extinct in some of the affected streams, even in the pools, potentially due to chem-
ical changes that occurred during the first rainfall events [39]. The fish population has not
recovered since the fire, most likely due to natural and human barriers in the lower part of the
study site.

Top Predator Local Extinction in an Intermittent Stream
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We conducted the experiment in a 100 m reach formed by a large pool where riparian vege-
tation was not burned by the wildfire. This reach was selected because, as observed in the years
before the fire, barbels took refuge in these pools to survive periodic drought conditions present
in the area when intermittent Mediterranean streams were reduced to isolated pools [40].
Physicochemical water analyses (n = 9) were performed before, during, and at the end of the
experiment. The results (presented as the mean ± SE) confirmed that water of this reference
stream was hard (conductivity: 520 ± 5 μS cm-1; pH: 7.9 ± 0.1) and oligotrophic (N-NO3

-1:
0.29 ± 0.02 mg l-1; N-NH3: 0.019 ± 0.003 mg l-1; P-PO4

3-<0.01 mg l-1). The stream discharge
averaged 15.7 ± 0.9 l s1, which, with the very low water velocity in the pool (< 1 cm s-1), natu-
rally kept the pool water renewed and oxygenated (DO2: 9.6 mg l-1, 84.7%) during our study.

Mesocosm design
We performed an enclosure/exclosure mesocosm experiment to manipulate B.meridionalis
densities. Removal experiments that simulate the loss of one or more species from a natural
community can reveal the consequences of apex consumer extinctions and assess biodiversity-
ecosystem function (BD-EF) relationships [41].

We used nine large cages (100 x 100 cm surface, 70 cm height; see Fig. 2) covered with a 10
mmmesh that retained fish but allowed macroinvertebrate emigration/immigration, thereby
minimising the impact of our experimental design on the rate of prey exchange with the ben-
thos [42,43]. In each cage, four plastic trays (40 x 40 cm surface, bottom of 1 mmmesh size)
were used as replicates (36 trays in total); each tray contained four medium-sized stones for

Fig 1. Diagram of the trophic interactions in intermittent stream food webs in the presence and absence of the apex consumer. This diagram
describes our two hypotheses related to apex consumer extirpation: a) ‘prey release’ hypothesis and b) ‘mesopredator release’ hypothesis. Circumference
size in top predator absence diagrams represents the density decrease, increase or persistence compared to the top predator presence diagram. Arrows
represent trophic interactions. Thicker arrows = magnified trophic interactions due to apex consumer extirpation; grey arrows = lost trophic interactions after
apex consumer extirpation.

doi:10.1371/journal.pone.0117630.g001
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macroinvertebrate colonisation and three glass tiles (2 x 4 cm) for periphyton colonisation (see
Fig. 2). Tray substrates within the mesocosms were complex due to the material deposited dur-
ing the colonisation period; substrate was formed by a mixture of sediment, detritus and leaves,
which provided some refuge to invertebrates [44,45] along with the initial added stones. To
study the consequences of B.meridionalis extirpation, we tested three treatments with varying
barbel density levels in the enclosures: i) no fish; ii) barbels at low density (i.e., 2 individuals m-2,
the known pre-fire density; A. de Sostoa pers. comm.); and iii) barbels at high density (i.e., 4 in-
dividuals m-2, twofold the pre-fire density). Barbels were caught using an electrofishing source
downstream from our study site, and individuals selected for the experiment were approximately
the same size (total length 101.8 ± 2.6 mm; mean ± SE) and weight (2.3 ± 0.2 g). To ensure simi-
lar initial conditions, barbels were kept in observation for 24 h before starting the experiment
after electrofishing and transportation.

Sampling and laboratory protocols
The field experiment was conducted in late spring of 2010 before pool disconnection (flow av-
eraged 15.7 ± 0.9 l s1), over the course of five weeks. Three weeks were allowed for periphyton
and macroinvertebrate colonisation, a time previously described as adequate for equilibrating
the mesocosm and background macroinvertebrate densities [46]. Two weeks were allowed for
barbel interaction. During the colonisation period, the cage tops were opened to facilitate aerial
colonisation and the entrance of organic material. Before the addition of barbels to the experi-
mental enclosures, one tray per cage (n = 9) was removed and sampled to test if there were dif-
ferences in colonisation among cages. Barbel density levels were randomly assigned to
enclosures, and the cage tops were closed following barbel introductions to avoid bird or mam-
mal predation. After two weeks of interaction, mesocosms were destructively sampled with the
same effort for each tray (n = 27; 9 trays per treatment). Tray contents (with stones) were care-
fully washed in a 250 μmmesh sieve and preserved in 4% formalin until being processed in the
laboratory. All samples were sorted, counted and identified. Taxonomic resolution was primar-
ily to the genus level, including Chironomidae. Some Diptera were identified to the family
level, and Oligochaeta, Ostracoda, Cladocera, Copepoda, Hydracarina and terrestrial inverte-
brates identified to higher levels. Each taxon was categorised as either secondary or primary
consumer according to Merritt and Cummins and Tachet et al. [47,48]. Periphyton net prima-
ry production was measured as the net accumulation of chlorophyll-a on artificial substrata
[49]. Chlorophyll-a was measured after extraction in acetone (90%) for 24 h in the dark at 4°C,
sonication for 5 min at 40 kHz, and filtration (GF/F Whatman 0.7 μm-pore size). Following
Jeffrey and Humphrey [50], chlorophyll-a concentration was determined spectrophotometri-
cally (Perkin-Elmer, Lambda UV/VIS).

In order to test if B.meridionalis also feeds on predatory invertebrates (not only on primary
consumers), and therefore, if intraguild predation occurs, we analysed barbels’ gut contents.

Fig 2. Diagram of the experimental enclosure. Diagram of the experimental enclosure and one of the four
identical trays that contained stones for macroinvertebrate colonisation and glass tiles for periphyton
colonisation. Dimensions are indicated.

doi:10.1371/journal.pone.0117630.g002
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Barbels were euthanised using an overdose of anaesthetic (MS-222). Gut contents were pre-
served in 4% formalin, sorted, counted, and identified at the same taxonomic level as the ben-
thic samples.

Data analysis
To test differences among the three barbel density treatments, we used the non-parametric
Kruskal-Wallis test (K-W test). Then, pairwise Mann-Whitney U-tests were used to detect sig-
nificant differences between treatments. We compared total macroinvertebrate abundance
(total number of individuals m-2), taxa richness (number of different taxa), rarefied taxa rich-
ness (taxa richness corrected by macroinvetebrate abundance in the sample), Simpson’s diver-
sity index (D, calculated as D ¼ Siðniðni � 1Þ=NðN � 1ÞÞ, where ni is the number of
individuals of taxon i and N is the total number of macroinvertebrates [51]), abundance of
common taxa (number of individuals of each abundant taxon, i.e.,> 50 ind m-2 in the treat-
ment lacking barbels), and periphyton net primary production (net accumulation of chloro-
phyll-a) among the three treatments.

We used permutational multivariate analysis of variance (PERMANOVA, ‘Adonis’ function
in R) on the Bray-Curtis distance matrix, after the log-transformation of the macroinvertebrate
abundance data, to test differences in macroinvertebrate community composition among treat-
ments. Afterwards, we used indicator species analysis, using ‘IndVal’ test in R, to identify
which taxa of the macroinvertebrate communities could serve as indicator for each barbel den-
sity treatment. The ‘IndVal’ test calculated the indicator value for each taxon, combining mea-
surements of taxon specificity to each established barbel density treatment with taxon fidelity
within each treatment [52]. The significance of ‘IndVal’measures was tested using the Monte
Carlo test with 9999 permutations.

We also calculated predator:prey ratios for abundance and richness, dividing the abundance
(or richness) of secondary consumers by that of primary consumers for each sample. To test
for intraguild predation, we also categorised each taxon found in the gut contents as either pri-
mary or secondary consumer, and calculated the proportion (%) of each category in the con-
tents. All statistical analyses were performed in R 2.15.2., we used ‘vegan’ and ‘labdsv’ packages
[53].

Results
We found 81 taxa (76 aquatic invertebrates, 1 amphibian, and 4 terrestrial invertebrates)
throughout the mesocosm experiment. Macroinvertebrate communities in the mesocosm were
similar to those found during previous research in the stream [38]. Primary consumers were
typically chironomids, mayflies (such asHabroplebia sp. Baetis sp. or Caenis sp.), gastropods
(such as Gyraulus sp. or Radix sp.) and crustaceans (Cladocera and Ostracoda); while second-
ary consumers were dominated by predatory chironomids (Zavrelimyia sp. and Procladius
sp.), water beetles (mainly from Dytiscidae family), hemipterans (Parasigara sp.), Odonates
(such as Chalcolestes viridis, Sympetrum sp. or Aeshna sp.) and leeches (Helobdella stagnalis)
(S1 Table). Community-level analyses of the macroinvertebrate samples before the addition of
barbels to the enclosures showed a homogeneous colonisation of the experimental cages. Total
macroinvertebrate density, taxa richness, Simpson’s diversity index, and community composi-
tion did not differ among cages (K-W tests, p>0.1; Adonis, F = 0.69, p = 0.87). Similarly, signif-
icant differences in periphyton net primary production were not observed (K-W test, χ2 = 0.39,
p = 0.83).

Barbel presence reduced macroinvertebrate total density (χ2 = 9.09, p = 0.011); macroinver-
tebrate density declined almost by half (46.2%) in the treatment with high barbel density
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compared to the treatment that did not contain barbels (U = 12, p = 0.01). We did not detect
significant differences among treatments in taxa richness (χ2 = 4.29, p = 0.12) or in the Simp-
son’s diversity index (χ2 = 0.77, p = 0.68). The density of the most abundant macroinvertebrate
taxa declined when barbels were present, but vulnerability varied among prey (Fig. 3, S1
Table). We distinguished four patterns of abundance related to barbel density: i) a decrease in
abundance proportional to barbel density for some taxa such as Habrophlebia sp. and Chalco-
lestes viridis (see Fig. 3C,F); ii) a sharp decrease in abundance at barbel presence (i.e., at both
low and high barbel densities but not proportional to barbel presence) for other taxa (e.g., mo-
bile predators Stictonectes sp. and Chaoborus sp.; see Fig. 3G-H); iii) a significant reduction in
taxa abundance only at high barbel density treatment compared to the other treatments (e.g.
Zavrelimyia sp.; see Fig. 3B); and iv) no change in abundance for other taxa irrespective of bar-
bel densities (e.g., Gyraulus sp.; see Fig. 3D).

There were significant differences among the three treatments in the composition of macro-
invertebrate communities (Adonis, F = 2.39, p<0.001). Twelve taxa were identified as indica-
tors in the treatment that did not contain barbels (Table 1) and two taxa in the low barbel
density treatment. No indicator taxa were found in the high barbel density treatment.

When we analysed macroinvertebrate communities separately for primary and secondary
consumers, we detected that B.meridionalis density affected primary consumer abundance
(χ2 = 7.38, p = 0.025; Fig. 4A) but not primary consumer richness (χ2 = 1.19, p = 0.55) or rare-
fied richness (χ2 = 1.42, p = 0.49; Fig. 4B). Top predator absence increased secondary consumer
abundance (χ2 = 12.49, p = 0.002; Fig. 4C) and richness before (χ2 = 12.89, p = 0.002) and after
rarefaction (χ2 = 8.17, p = 0.017; Fig. 4D). The ratio for predator:prey abundance marginally
increased (abundance: χ2 = 5.40, p = 0.07, Fig. 4E) in the absence of barbels, whereas the ratio
for predator:prey richness increased significantly (richness: χ2 = 12.00, p = 0.002; rarefied rich-
ness: χ2 = 9.92, p = 0.007; Fig. 4F).

Gut content analysis revealed that predatory invertebrates (secondary consumers)
amounted to, on average, 22.8 ± 3.5% (mean ± SE) of the individuals in the barbels’ gut con-
tents. The most abundant predators found in the gut contents were Zavrelimyia sp. (a chirono-
mid), Parasigara sp. (an hemipteran), and Stictonectes sp. (a water beetle). Other predatory
invertebrates including Odonates (such as Lestidae, Libellulidae and Aesnidae families) and
other water beetles (such as Agagus sp. or Nebrioporus sp.) were also found in B.meridionalis
gut contents.

Periphyton primary production declined in the absence of B.meridionalis (χ2 = 17.82, p<0.001;
Fig. 5, S1 Table).

Discussion
This study demonstrated that apex consumer extinctions in intermittent streams may result in
major changes to the system’s structure and function. Like others [8–10,54], our study showed
how a top predator extirpation led to ‘mesopredator release’ in terms of abundance and rich-
ness. More importantly, top predator loss led to ‘prey release’, which contrasts with traditional
food web theory and IGP literature. In addition, it triggered a trophic cascade that reduced pe-
riphyton primary production. Macroinvertebrate community composition also changed due to
B.meridionalis absence. These results, along with other studies done in temporary salt marshes
[55] and streams [56,57], support that the effects of the loss of small-bodied fish are equivalent
to local extinctions of larger apex consumers in other ecosystems (e.g., the arctic fox, wolf, jag-
uar, sea otter or large reef fish [4,54,58]). Most studies about the consequences of the extinc-
tions of top predators have been focused on large-bodied predators in terrestrial an marine
systems [8,9], usually associating large-bodied species to the top of the food webs and small-
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bodied species to lower trophic levels [5,18], positing also that large-bodied species are at much
greater extinction risk than smaller species (see [59]). However, as showed in this study, small-
bodied fish in aquatic ecosystems may also exert strong top-down effects, supporting further
that ‘keystone species’ is not a body-size dependent concept, ‘keystone species’ are those whose
effects in the ecosystem are disproportionate to their abundance [60,61]. Moreover, Jenkins
[62] suggests that aquatic species, in particular freshwater fish, are more vulnerable to extinc-
tion than terrestrial species, and Olden et al. [63] highlight that the most globally threatened
freshwater fish are small-bodied species. Putting together the results of this study with the fact
that numerous small-bodied freshwater fish are at extinction risk, it seems critical to persist in
the consideration of the ecological consequences of their possible losses.

Ecosystem structure: ‘mesopredator release’ and ‘prey release’
Mesopredators were more abundant in mesocosms lacking barbels, supporting the ‘mesopre-
dator release’ hypothesis (see Fig. 1B), which confirms that the loss of small-bodied top preda-
tors may have this main common effect with large-bodied predator extirpations [8–10,54].
Several predatory invertebrates that characterised the enclosures lacking barbels (e.g. Zavreli-
myia sp., Parasigara sp. and Stictonectes sp.; see Table 1) dominated barbel gut contents, indi-
cating that fish predation contributed to density reduction for these taxa in the presence of
barbels. Other taxa, such as Chaoborus sp., were not found in barbel gut contents, suggesting
that the density decline for some taxa was likely the result of induced emigration.

Fig 3. Macroinvertebrate abundance for eight common taxa in the three barbel treatments.Macroinvertebrate abundance for eight of the most
abundant taxa (> 50 ind m-2 in the treatment lacking barbels) in the three treatments with varying B.meridionalis densities. Bars represent mean ± SE
(individuals m-2). Graphs are sorted by taxa abundance: (a) Tanytarsus sp., (b) Zavrelimyia sp., (c) Habrophlebia sp., (d)Gyraulus sp., (e) Radix sp., (f)
Chalcolestes viridis, (g) Stictonectes sp. and (h)Chaoborus sp. Red bars = treatment without barbels; yellow bars = treatment with a low density of barbels;
blue bars = treatment with a high density of barbels. Different letters correspond to significant differences resulting from the pairwise comparisons among
treatments (U-test, p<0.05).

doi:10.1371/journal.pone.0117630.g003
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Mesopredator abundance thus appears to be controlled by the top predator through the combi-
nation of predation and possible non-consumption impacts such as competition or induced
emigration. Moreover, mesopredator richness also increased in top predator absence. Conse-
quently, a basic element of trophic webs was altered [64]: predator:prey ratios differed among
the barbel density treatments (see Fig. 4E-F). Even though predator:prey richness ratio has
been previously considered invariant due to underlying community assembly rules [65–67],
our results support other studies that did not find conservative predator:prey ratios [68,69] and
suggest that secondary and primary consumers respond unequally to the presence of a
top predator.

‘Mesopredator release’ did not lead to a negative or a null effect on primary consumers (see
Fig. 4A), which conflicts with the original IGP theory [13–15,70]. In contrast, top predator ab-
sence led to increased primary consumer abundance (i.e., ‘prey release’), which indicates that
the top predator was more effective than mesopredators at suppressing prey. A growing body
of literature has posited that top predator presence does not necessarily lead to higher prey
abundance if the mesopredator exclusively uses alternate prey [71] or is cannibalistic [72].
However, these new perspectives on IGP are difficult to apply in empirical studies because
models continue to oversimplify real food webs (e.g. by modelling food webs with just one in-
termediate predator). The IGP meta-analysis of Vance-Chalcraft et al. [73] concluded that top
predator presence usually leads to ‘prey release’, as predicted by trophic cascade theory, howev-
er, it suggested that this is unclear in lotic ecosystems. In this sense, our results showed that the
role of the apex consumer was not functionally replaced by the remaining species [74,75], sug-
gesting that the predator assemblage is more important than diversity per se [6,76], with species
identity being the critical factor.

Our study confirmed top predator extirpation modified the whole community composition.
This finding was previously reported for intermittent streams exclusively by Williams et al.
[31], who found fish have a top-down effect on macroinvertebrate assemblages in isolated
pools. But to our knowledge, our study is the first in demonstrating top predator extirpation

Table 1. Macroinvertebrate taxa detected as significant indicators for the three barbel density
treatments.

Taxa T IndVal P

Chaoborus sp. 1 72.05 <0.001

Cloeon sp. 1 70.88 <0.001

Parasigara sp. 1 69.02 <0.001

Procladius sp. 1 65.10 0.008

Chalcolestes viridis 1 64.04 <0.001

Agabus sp. 1 63.40 0.010

Stictonectes sp. 1 62.69 <0.001

Ostracoda 1 56.53 0.002

Cladocera 1 55.97 0.010

Radix sp. 1 53.33 0.019

Habrophlebia sp. 1 48.90 <0.001

Zavrelimyia sp. 1 44.30 0.012

Oulimnius sp. 2 56.56 0.007

Copepoda 2 49.97 0.021

T—Treatments: 1 = treatment without barbels, 2 = treatment with a low density of barbels. IndVal—

indicator value. P—its respective p-value.

doi:10.1371/journal.pone.0117630.t001

Top Predator Local Extinction in an Intermittent Stream

PLOSONE | DOI:10.1371/journal.pone.0117630 February 25, 2015 9 / 16



Fig 4. Barbusmeridionalis density effects onmacroinvertebrate abundance and rarefied richness for primary and secondary consumers. Barbus
meridionalis density effects on macroinvertebrate abundance (mean ± SE individuals m-2) and rarefied taxa richness (mean ± SE rarefied taxa sample-1) for:
(a-b) primary consumers, (c-d) secondary consumers, and (e-f) the ratio of secondary to primary consumers (mean ± SE ratio sample-1). Red bars =
treatment without barbels; yellow bars = treatment with a low density of barbels; blue bars = treatment with a high density of barbels. Different letters
correspond to significant differences resulting from the pairwise comparisons among treatments (U-test, p<0.05).

doi:10.1371/journal.pone.0117630.g004

Fig 5. Periphyton net primary production measured as the chlorophyll-a on tiles for the three
experimental treatments. Bars represent mean ± SE (mg m-2 d-1). Red bars = treatment without barbels;
yellow bars = treatment with a low density of barbels; blue bars = treatment with a high density of barbels.
Different letters correspond to significant differences resulting from the pairwise comparisons among
treatments (U-test, p<0.05).

doi:10.1371/journal.pone.0117630.g005
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can change community composition in a running intermittent stream. The treatment lacking
barbels was the only that contained a large number of associated indicator taxa (see Table 1).
Therefore, the presence of B.meridionalis prompted a macroinvertebrate community that was
a subset of the macroinvertebrate community without the top predator. The responses of inver-
tebrate populations to barbel presence were highly taxon-dependent, which supports evidence
elsewhere that taxa within a trophic level are not functionally equivalent [75,77]. No taxon was
however positively affected by barbel presence. We found a statistically significant response
even from highly mobile taxa that could rapidly recolonise the enclosures by drift [56,78], indi-
cating a strong top-predator impact. These results indicate that some invertebrates have diffi-
culty co-occurring with this apex consumer. Thus, the local extinction of B.meridionalis
offered a competitive advantage for these vulnerable species to predation, and did not lead to
an extinction cascade, which conflicts with the predator-mediated coexistence theory [16].
Likewise, it contrasts with several studies that relate top predator extinctions to a decline in bio-
diversity [9,12]; we did not find a relationship between top predator loss and total taxa richness
or Simpson’s diversity, only for mesopredator richness that increased in top predator absence.

Several studies have emphasised that top predators may be functionally extinct from an eco-
system before being extirpated [18,54,79]. Management efforts to maintain threatened top
predators at persistent levels can be ecologically irrelevant if the top predator population does
not reach a functionally effective abundance. In our study, the top predator at low density (i.e.,
pre-fire density) led to an effective suppression of mesopredators, modified the whole macroin-
vertebrate community composition, and increased indirectly periphyton primary production,
compared to the treatment without barbels. However, part of the top predator functional role
was only revealed at higher fish density, since the suppression of mesopredator richness and
primary consumers’ abundance did not occur at low top predator density. These results place
apex consumer density as a continuum factor that modulates top predator effects in the ecosys-
tem, confirming that studies about functional extinction thresholds that research top-down ef-
fects of apex consumers’ extinctions at different densities are particularly relevant for
ecosystem restoration and conservation purposes.

Ecosystem function: primary production response
Periphyton net primary production was significantly lower in the absence of B.meridionalis
(see Fig. 5), confirming a strong trophic cascade effect that modified ecosystem function. This
effect could occur through several different mechanisms, which are not necessarily mutually
exclusive. Changes in primary consumer density could not fully explain the decline in primary
production in top predator absence (see Fig. 4A). However, primary production could be top-
down controlled by one or more taxa due to differences in the strength of this interaction, with
herbivore identity being the key in the herbivore-producer interface. In this case, B.meridiona-
lis extirpation could have increased the abundance of taxa that placed strong pressures on pe-
riphyton, triggering a trophic cascade without increasing the total abundance of primary
consumers. Another explanation could be that predatory invertebrates were actually omnivo-
rous, and ‘mesopredator release’ (see Fig. 4C) led to the increased consumption of periphyton.
In addition to density-dependent causes, top predator presence could have led to higher prima-
ry production through a trait-mediated effect, reducing foraging activity by herbivores [77]. Al-
though positive interactions have been studied less frequently by benthologists [2], B.
meridionalis presence could have had a direct positive effect on periphyton production via nu-
trient release and/or by increasing light availability as a result of reduced sediment deposition
through feeding foraging movements [35]. These results demonstrate that trophic cascades can
be strengthened at the herbivore-producer interface, and contrast with those of Shurin et al.
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[80], which established that predators more strongly affected primary consumers compared
to producers.

Our primary production results have implications for the management of natural and
human-altered ecosystems. For instance, our results could modify the general view of how
predatory fish abundance is linked to primary production in freshwater ecosystems, given that
our results conflicted with traditional trophic cascade theory (which holds that each trophic
level is related to the level above and below it in a direct and negative way [11]). In agroecosys-
tems, biological-control practitioners often consider IGP, a very common interaction among
aphidophagous predators and parasitoids [14,81]. In this context, Finke and Denno [15] ad-
vised against promoting diverse predator assemblages in which IGP was common because it
would weaken the suppression of herbivore pests and reduce productivity. These kinds of gen-
eralisations can lead to ineffective management practices, particularly given that our results
showed that IGP did not dampen the trophic cascade and that neither IGP nor diversity were
linked to cascade strength. Instead, in agreement with Borer et al. [82], cascade strength de-
pended on the identity of predators and herbivores. Therefore, we recommend that managers
place more importance on species identity in decision-making processes to better predict
management outcomes.

Conclusions and Implications
We conclude that intermittent streams may be affected by the consequences of top predator
extinctions. In this study, the apex consumer was functionally irreplaceable, despite its small-
bodied size and even at low population densities, its local extinction led to the loss of an im-
portant functional role that resulted in major changes to the ecosystem. Top predator absence
triggered a ‘mesopredator release’, but also a ‘prey release’, and changed the whole macroin-
vertebrate community composition. Regarding ecosystem function, periphyton primary pro-
duction declined indirectly due to top predator loss. We highlighted that the consequences of
this species loss were unforeseen, particularly given that our results were not supported by
traditional food web theory. Which ecological responses in mesocosms can be extrapolated
to real ecosystems is an open ecological question [83]. Brown et al. [84] demonstrated that
aquatic mesocosms can reproduce replicable and realistically not just physicochemistry and
macroinvertebrate community composition but complex food webs. Our in-stream meso-
cosms were carefully design to not be a methodological artefact: mesh size allowed macroin-
vertebrate emigration/inmigration, and complex tray subsrates within the mesocosms
provided refuge to macroinvertebrates. However, spatial complexity and refuge diversity
were probably lower in the mesocosms compared to natural stream conditions, which may
have increased predator-prey encounter rates. On the other hand, we used conservative top
predator densities (i.e., the stream’s pre-fire average density and its double); however, B.mer-
idionalis can reach higher densities in stream isolated pools during the dry period (up to 20
ind m-2, usually in summer) suggesting that the impact of this top predator could be even
higher than observed here. Thus, despite of the limitations of our study, our main result is
consistent, the extirpation of a small-bodied top predator can led to deep system changes in
an intermittent stream, at least in the hydrological conditions during our experiment. How-
ever, research at larger spatial and temporal scales is needed to integrate the impact of hydro-
logical variability in intermittent streams.

Small-bodied freshwater fish species usually lack commercial value and are often overlooked
in conservation management even when considered threatened [85,86]. Based on our results,
we recommend that reintroduction programs be considered for small-bodied fish in intermit-
tent streams, where species such B.meridionalis had become extirpated. Reintroduction
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programs would allow not just for recovery of endangered species populations (e.g., B.meridio-
nalis), but for the restoration of the ecosystem. Likewise, reintroductions should be considered
within a restoration ecology framework, not focusing on mere species presence, but on ecologi-
cal effectiveness. Because habitat fragmentation often drives apex consumer extirpations
[10,87] and can hinder following natural recolonisation, we also recommend the improvement
of ecosystem connectivity as a preventive tool as well as a first step in restoration programs. In
the context of freshwater ecosystems’ conservation, given the high extinction risk of small-bod-
ied freshwater fish, our study evidences that unpredictable ecosystem changes in these ecosys-
tems may occur if conservation efforts are not undertaken.

Supporting Information
S1 Table. Taxa abundance and periphyton primary production data for the three experi-
mental treatments. Taxa are sorted by decreasing abundance in the treatment without top bar-
bels. Category: 1 = primary consumer; 2 = secondary consumer.
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