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ABSTRACT: A convergent synthesis of fluvirucinin B1 from acid ent-6a and nitrile ent-9, involving an organocopper coupling, a 

stereoselective allylation, a ring-closing metathesis reaction, and a stereoselective hydrogenation as the key steps, is reported. The 

starting building blocks have been prepared in a straightforward manner from a common phenylglycinol-derived lactam 1. An 

unprecedented regioselective oxidation of phenylglycinol-derived secondary amines 5 to carboxylic acids 6 has been developed.  

Fluvirucins  are  14-membered  macrocyclic  lactams isolat-

ed
1–3 

from the fermentation broth of actinomycete strains. 

They are glycosides characterized by the presence of an ami-

nosugar moiety (L-mycosamine, its 4-epimer, or an N-

substituted derivative) attached at the C-3 or C-9 positions of 

the core lactam nucleus through a hydroxy group. They also 

incorporate a methyl or ethyl substituent at the C-2 (1S-

hydroxyethyl in fluvirucin A2), C-6 (absent in some members), 

and C-10 positions (Figure 1). Fluvirucins possess important 

and varied biological activities, such as antifungal,
1  

antibi-

otic,
2
  antiviral,

2   
and anthelmintic.

3
 In particular, fluvirucin B1 

(Sch 38516) exhibits potent antifungal
1a,c

 and anti-influenza 

virus
2a

 activities,
4
 the latter partially retained in the corre-

sponding aglycon fluvirucinin B1.
2b 

 

 

Figure 1. Representative fluvirucins. 

 

Although only one total synthesis of a fluvirucin has been 

reported,
5
 the synthesis of the macrolactam aglycons of fluvir-

ucins, known as fluvirucinins, has received more attention.
6-10

 

A key point in the synthesis of fluvirucinins is the stereocon-

trolled assembly of the stereocenters on the macrocyclic ring. 

Taking into account that all fluvirucinins B possess the same 

substitution and stereochemical patterns at the C-2 (R-Et), C-9 

(S-OH), and C-10 (R-Et) positions, differing only in the C-6 

substituent   (none   in  fluvirucinin  B0,  S-Me in B1, S-Et in  

 

Scheme 1. Unified Synthetic Strategy to Fluvirucinins B 
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B2-5), we envisaged a unified synthetic strategy to these macro-

lactams in which the C-2  and C-10 ethyl substituents would 

come from a common enantiopure amino diol 2, easily acces-

sible by reductive opening of oxazolopiperidone lactam 1.
11 

Scheme 1 outlines our synthetic plan. 

Amino diol 2 would be converted to a 5-hydroxypentanoic 

acid derivative A by oxidative removal of the phenylglycinol 

moiety and then to the C1–C6 fragment of fluvirucinins B by 

copper-catalyzed coupling of the corresponding iodide with an 

appropriately substituted (R = H, Me or Et) alkenyl Grignard 

reagent. In turn, the secondary amino group of amino diol 2 

would be oxidized to a cyano group, and the resulting 5-

hydroxypentanenitrile B would be converted to the C7–N 

fragment of fluvirucinins B after the incorporation of the C-9 

stereogenic center by a stereoselective allylation of an alde-

hyde. Linkage of the two fragments by an amidation reaction, 

followed by a ring-closing metathesis and stereoselective 

hydrogenation of the resultant alkene would complete the 

synthesis of the target fluvirucinins B. The success of our 

synthetic plan would rely on the development of efficient 

procedures for the oxidative removal of the phenylglycinol 

moiety present in amino diol 2 to afford 5-hydroxypentanoic 

acid and 5-hydroxypentanenitrile derivatives.  

The conversion of a secondary amine to a carboxylic acid is 

a challenging, unprecedented transformation. Taking into 

account that primary amines are oxidized to nitro derivatives 

by treatment with m-chloroperbenzoic acid,
12

 we decided to 

study this oxidation using a set of phenylglycinol-derived 

secondary amines structurally related to 2.  

To our delight, treatment of the O-protected amino diols 5a–

d with an excess of m-CPBA (4.2 equiv) in refluxing CH2Cl2 

directly afforded the corresponding carboxylic acids 6a–d, 

bearing a variety of substituents (ethyl, benzyl, isopropy-

lidenedioxy) in good yields (Scheme 2). Considering that 

amino diols 4 are available with virtually any type of substitu-

tion pattern,
11

 the above oxidative procedure opens a general 

synthetic entry to enantiopure 5-hydroxypentanoic acid deriva-

tives. 

The formation of carboxylic acids 6 can be accounted for by 

considering the generation of the nonconjugated nitrones 7
13

 

and their m-CPBA-promoted oxidative cleavage
14 

with subse-

quent oxidation of the resulting aldehyde. The oxidative 

cleavage also produces a nitroso derivative, which was isolat-

ed as the corresponding nitroso dimer 8 (Scheme 3).  

 

Scheme 2. Oxidative Removal of the Chiral Inductor. Access 

to Enantiopure O-Protected 5-Hydroxypentanoic Acids 

 

 

In support of this mechanism, nitrone 7e, prepared by 

Na2WO4/hydrogen peroxide–urea oxidation
13b

 of the simple 

secondary amine 5e, was converted to hydroxypentanoic acid 

derivative 6e (45% from 5e) and dimer 8 by treatment with m-

CPBA (2.5 equiv).
 

 

Scheme 3. Proposed Mechanism for the m-CPBA-Promoted 

Oxidation of Secondary Amines 5 

 

 
On the other hand, the generation of a 5-hydroxy-

pentanenitrile by oxidative cleavage of the phenylglycinol 

moiety of the starting O-protected amino diol was successfully 

accomplished in a single step using molecular iodine in aque-

ous ammonia.
15  

In this way, secondary amine 5a was convert-

ed to nitrile 9 in 71% yield (Scheme 4). 

This transformation involves the initial generation of an 

imine and its reaction with ammonia to form an aminal, which 

decomposes to a primary amine and an imine. Subsequent 

oxidation and hydrolytic steps lead to the nitrile and (tert-

butyldiphenylsilyloxy)methyl phenyl ketone, regardless of the 

regioselectivity of the initial oxidation.  

 

Scheme 4. Oxidation of Secondary Amine 5a to Nitrile 9 

 

 

 

Having developed straightforward procedures for the con-

version of secondary amines 5 to functionalized carboxylic 

acids 6 and nitrile 9, to evaluate the feasibility of the unified 

strategy outlined in Scheme 1, we undertook the synthesis of 

fluvirucinin B1. To achieve the required 2R and 10R configu-

ration characteristic of fluvirucinins B, we started from the 

(S)-phenylglycinol-derived secondary amine ent-4a (= 2), 

which was converted, as in the above (R)-phenylglycinol 

series, to hydroxy acid ent-6a (A; Prot = TBDPS) and hydroxy 

nitrile ent-9 (B; Prot = TBDPS).  

Scheme 5 outlines the synthesis of fluvirucinin B1. The C1–

C6 fragment (compound 12) was prepared from carboxylic 

acid ent-6a, which was converted, via an alcohol, to iodide 10.  



 

Scheme 5. Total Synthesis of Fluvirucinin B1
a 

 

a
 The carbon numbering of the intermediates corresponds to that of fluvirucinin B1 

 

A subsequent cross-coupling with 2-propenylmagnesium 

bromide in the presence of a catalytic amount of CuI
16

 (bond 

formed C5–C6) provided the protected alcohol 11, which was 

desilylated and oxidized to carboxylic acid 12 (23% overall 

yield from 1). 

On the other hand, after the protected hydroxy nitrile ent-9 

was converted to aldehyde 13, a stereoselective allylation 

using the (S,S)-Leighton reagent
17

 installed the C-9 stereogenic 

center to give homoallylic syn alcohol 14
18

 (bond formed C8–

C9). Protection of the hydroxy group of 14, followed by reduc-

tion of the cyano group, afforded amine 15 (the C7-N fragment 

of fluvirucinins B) in 21% overall yield from 1. 

Coupling of the two fragments, carboxylic acid 12 and 

amine 15, took place in excellent yield to give amide 16. A 

subsequent ring-closing metathesis reaction (bond formed C6–

C7), followed by stereoselective catalytic hydrogenation of the 

resulting 1.2:1 mixture of trisubstituted olefins 17, generated 

the  C-6  stereocenter  of  the macrocycle,
19 

 leading  to  the  

O-protected fluvirucinin derivative 18. The NMR data of our 

silyl derivative 18 matched those reported in the literature,
5b,9b 

 

 

 

Figure 2. X-ray crystal structure of the fluvirucinin B1 precursor 

18. 

and its mp and absolute rotation were consistent with those 

previously reported.
9b 

Additionally, the absolute configuration 

of 18 was unambiguously established by X-ray crystallog-

raphyic  analysis
20 

 (Figure 2). A final removal of the silyl 

protecting group completed the synthesis of fluvirucinin B1, 

whose NMR data and [] value are reported for the first time 

(see the Supporting Information). 

The convergent enantioselective synthesis of fluvirucinin B1 

herein reported consists of 12 linear synthetic steps from phe-

nylglycinol-derived lactam 1
21

 in the longest linear sequence. 

The overall yield was 11%, which compares advantageously 

with previous syntheses
9
 of this aglycon. The synthesis also 

features an unprecedented oxidation of phenylglycinol-derived 

secondary amines 5 to diversely substituted enantiopure 5-

hydroxypentanoic acid derivatives 6. By using an appropriate 

alkenyl Grignard reagent in the assembly of the C1–C6 frag-

ment, the strategy we have developed could be applied to the 

synthesis of fluvirucinins B0 and B2–5. 
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