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Abstract 

 

 The desiccation of the Mediterranean during the Messinian salinity crisis (MSC) 

is one of the most intriguing geological events of recent Earth history. However, the 

timing of its onset and end, as well as the mechanisms involved remain controversial. 

We present a novel approach to these questions by examining the MSC from the 
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Atlantic, but close to the Gibraltar Arc, analysing the complete Messinian record of the 

Montemayor-1 core of the Guadalquivir Basin (SW Spain). Flexural backstripping 

analysis shows a tectonic uplift trend that would have reduced the depth of the Rifian 

Corridors considerably. Nonetheless, the rate of tectonic uplift was insufficient to 

account for the close up of the corridors. At 5.97 Ma, a global cooling and associated 

glacioeustatic sea-level drop, estimated in 60 m, is observed. This would have been 

sufficient to restrict the Rifian corridors and to trigger the MSC. The later flooding of 

the Mediterranean occurred during a sea-level rise associated with global warming 

during a stable tectonic period. We postulate a two-step flooding event: 1) A 

glacioeustatic sea-level rise during interglacial stage TG 11 (5.52 Ma) led to subtropical 

Atlantic waters entering the west-central Mediterranean through pathways south of the 

Gibraltar Strait, probably the Rifian corridors. 2) A global sea-level drop at 5.4 Ma, that 

might have favoured intensification of regressive fluvial erosion in the Gibraltar 

threshold, along with the subsequent global sea-level rise would have generated the 

Gibraltar Strait leading to complete Mediterranean refilling during the earliest Pliocene. 

 

Keywords: Messinian salinity crisis, glacioeustatic sea-level change, Messinian 

reflooding, backstripping, Guadalquivir Basin, SW Spain 

 

1. Introduction  

 

 The Messinian salinity crisis (MSC) in the Mediterranean has attracted the 

interest of Earth scientists ever since the seminal publication by Hsü et al. (1973). The 

general consensus is that the Mediterranean was isolated from the Atlantic due to the 

closure of the Betic and the Rifian corridors and that this led to deposition of the Lower 

and Upper Evaporites. There are still key issues under intense debate. One of these 

concerns the main mechanisms that led to the isolation of the Mediterranean. Global 

glacioeustatic sea level lowering, regional tectonic uplift in the Gibraltar area, or a 

combination of both processes have been invoked as trigger mechanisms (Weijermars, 

1988; Kastens, 1992; Aharon et al., 1993; Butler et al., 1999; Duggen et al., 2003; 

Hilgen et al., 2007). Additionally, there is no consensus on the timing and causes of the 

reestablishment of normal marine conditions in the Mediterranean at the end of the 

MSC (Martín and Braga, 1994; Riding et al., 1998; Krijgsman et al., 1999a; Hilgen et 
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al., 2007). These difficulties can largely be attributed to the complex Messinian 

paleogeography of the Mediterranean associated with a variety of local tectono-

sedimentary regimes, and the continuing problems of accurate correlation of both deep-

basin and marginal-basin deposits. 

 Here we present planktonic and benthic oxygen stable isotope data that, in 

combination with published information, could provide a solution to the MSC 

conundrum. We have studied the Montemayor-1 core (Guadalquivir Basin, SW Spain) 

(Fig. 1) that shows a continuous Messinian sedimentary record in the vicinity of the 

Gibraltar Arc. The core is accurately dated (Fig. 2) and provides an unbiased 

perspective of the MSC from the open Atlantic Ocean, offering the unique opportunity 

of linking global oceanic processes with regional Mediterranean events coeval with the 

desiccation. This could provide a comprehensive model for understanding the 

desiccation and re-filling of the Mediterranean during the Messinian. The establishment 

of this model is the main aim of this work. 

 

2. The Montemayor-1 core  

 

 The Montemayor-1 core is located close to Huelva (SW Spain) (37°16′N, 

6°49′W; 52 m elevation) (Fig. 1) and consists of latest Tortonian-early Pliocene marine 

deposits (Larrasoaña et al., 2008; Pérez-Asensio et al., 2012a). According to the age 

model established for the core by Pérez-Asensio et al. (2012b) and later supplemented 

by Jiménez-Moreno et al. (2013) the interval studied ranges from 6.17 to 5.19 Ma. This 

age model was developed using magnetobiostratigraphic (Larrasoaña et al., 2008) and O 

stable isotope data (see a detailed explanation in Jiménez-Moreno et al., 2013) (Fig. 2). 

The age model shows that a discontinuity is present in the lower part of chron C3n and 

the uppermost part of chron C3r, and the core is continuous at least until the interglacial 

stage TG 7 (5.359 Ma). Therefore, the age model proves that most of the Messinian 

record is complete. 

 

3. Methodology 

 

 The stable oxygen isotope signals of foraminifers were used as a proxy of 

paleoclimatic changes related to glacioeustatic fluctuations (Figs. 3 and 4).The δ
18

O 
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stable isotopes analysis were performed on about 10 individuals of Cibicidoides 

pachydermus for benthic foraminifera and 20 individuals of Globigerina bulloides for 

planktonic foraminifera which were picked from the size fraction >125 μm. Before the 

analyses, foraminiferal shells were cleaned with an ultrasonic cleaner, and washed with 

demineralised water. Isotope analyses were performed at the Leibniz-Laboratory for 

Radiometric Dating and Isotope Research in Kiel (Germany). In this work, all the 

results are presented in δ-notation (‰), and standardised to the Vienna Pee Dee 

belemnite (VPDB) scale. A certain value of the National Bureau of Standards (NBS) 

carbonate standard NBS-19 was used to define this scale (see Pérez-Asensio et al., 

2012b for details). 

 Furthermore, the orbital obliquity and eccentricity were constructed using the 

Laskar orbital solutions La2004 and La2010 respectively (Laskar et al., 2004, 2011) 

following the recommendations of Laskar et al. (2011). To generate the ETP 

(eccentricity, obliquity, precession) curve the normalised eccentricity La2010 orbital 

solution, the normalised obliquity La2004 orbital solution and the negative normalised 

precession La2004 orbital solution were summed. 

 In addition, quantitative sea-level changes were estimated using a transfer 

function based on benthic foraminifera developed by Hohenegger (2005) and later 

modified by Báldi and Hohenegger (2008) and Hohenegger et al. (2008) (see a detailed 

explanation in Pérez-Asensio et al., 2012a). 

 Global sea-level curves of Hardenbol el al. (1998) and Miller et al. (2005), as 

well as the regional sea-level curve of 4th order eustatic cycles of Esteban et al. (1996) 

were used for comparison with the sea-level curve of the Montemayor-1 core. 

 Flexural backstripping analysis was carried out following the methodology 

proposed by Allen and Allen (1990). This method is used to reconstruct the vertical 

movement of the basin floor. Sediments are flexurally unloaded from the basement by 

applying different corrections for the paleobathymetric changes, compaction, loading 

effects of the sediments and eustatic sea-level fluctuations (Watts, 1988). According to 

the formula of Allen and Allen (1990), the vertical movement of the basement (Z) is: 

 

Z=Ç[S[(σm-σs)/(σm-σw)]-ΔSli[(σw)/(σm-σw)]]+Wdi-ΔSli[(σm)/(σm-σw)] 
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where σm is mantle density (3,300 kg×m
-3

), σs is sediment density (1,400 kg×m
-3

, 

average density for pelagic clay in marine environments (Hamilton, 1970; Orsi, 1991)), 

σw is water density (1,000 kg×m
-3

), Wdi is paleobathymetry of the Montemayor-1 core 

estimated with the transfer function, ΔSli is the eustatic sea-level change derived from 

the curve of Miller et al. (2005), S is the original thickness before compaction, and Ç is 

the isostatic compensation function. 

 The isostatic compensation function (Ç) was calculated with the following 

equation: 

 

Ç=[(σm-σs)]/[(σm-σs)+[D/g[(2π/λ)
4
]]] 

 

where g is gravitational acceleration (9.81 m×s
-2

), D is flexural rigidity (4.80×10
22 

N×m 

for a effective elastic thickness (Te) of 20 km in the Betic Cordillera (van der Beek and 

Cloetingh, 1992)), π is the mathematical constant, and λ is the wavelength of the 

periodic load which is 90 km for the western sector of the Guadalquivir Basin. 

 The original thickness before compaction (S) was estimated calculating the 

compaction of clays since the Montemayor-1 core consists of mostly bluish-greenish 

clays from the Arcillas de Gibraleón Formation (Fig. 2). For that purpose, the 

compaction of clays was calculated using the formula of Einsele (1992): 

 

hsl=[(1-np)/(1-nl)] x (hsp) 

 

where hsl is the original thickness before compaction, hsp is the compacted thickness, nl 

is the original mean porosity, and np is the final mean porosity after compaction. An 

average nl of 80%, and np of 20% for clays was used (Leeder, 1982; Velde, 1996; 

Boggs, 2009). Using this formula, the compaction of the Montemayor-1 core is 75%. 

 

4. Results 

 

 The paleodepth curve derived from the transfer function based on benthic 

foraminifera shows a long-term decreasing trend with 3 significant sea-level drops (Fig. 

3): 227 m at 5.98 Ma, 169 m at 5.76 Ma, and 97 m at 5.23 Ma. 
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 The benthic oxygen isotope record has a fluctuating trend and shows a gradual 

increase from 6.17 to 5.79 Ma (TG 22) (Figs. 3 and 4). In this interval, the benthic 
18

O 

values show an increase of 0.66‰ around 5.95 Ma, and another increase of 0.82‰ 

around 5.79 Ma (TG 22). Then, 
18

O decreases and reaches average values around 

0.5‰ from 5.7 Ma to 5.19 Ma. In this interval, a significant decrease of 0.68‰ is 

observed at 5.52 Ma (TG 11). The planktonic oxygen isotope record has a similar trend 

to the benthic O isotope record except for relatively low planktonic O values coinciding 

with high benthic O values around 5.79 Ma (TG 22). Furthermore, planktonic O values 

decrease by 1‰ at 5.52 Ma (TG 11), which is higher than the decrease of 0.68‰ 

observed in the benthic O isotope record (Fig. 4). 

 The flexural backstripping analysis shows a roughly stable tectonic period from 

7.24 to 5.99 Ma (Fig. 5). In the interval from 5.99 to 5.76 Ma, there is an uplifting trend 

of 0.6 mm/yr. This trend is limited by two abrupt pulses of tectonic uplift with values of 

18.7 mm/yr at 5.99 Ma and 16.5 mm/yr at 5.76 Ma. Another period with tectonic 

stability is observed from 5.76 to 5.38 Ma. Finally, there is a slight tectonic uplift from 

5.38 to 5.22 Ma. In this interval, two significant uplifting pulses are found at 5.33 and 

5.23 Ma. 

 

5. Discussion 

 

5.1. Onset of the MSC 

 

 The MSC started at 5.97 ± 0.02 Ma (Krijgsman et al., 1999a; Manzi et al., 

2013), coinciding with the onset of Lower Evaporite deposition. The paleodepth curve 

based on benthic foraminifera shows a significant sea-level fall of 227 m at this time 

based on benthic foraminifera (Pérez-Asensio et al., 2012a) (Fig. 3). A dramatic 

reduction in the dinoflagellate/pollen ratio in the core (Fig. 3) at this time also indicates 

shallowing (Jiménez-Moreno et al., 2013). Relative abundance of Quercus pollen, 

which mainly follows a long-term (400-ka) eccentricity trend (Jiménez-Moreno et al., 

2013) (Fig. 3), and other thermophilous plants, decreased substantially at this time 

pointing to cool and arid conditions concurrent with the beginning of the MSC 

(Jiménez-Moreno et al., 2013). This cooling and sea-level drop match with minima of 

the ETP, eccentricity and obliquity orbital curves, as well as with an increase in the 
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benthic 
18

O values of the Montemayor-1 core which is mainly forced by obliquity 

(Pérez-Asensio et al., 2012b) (Figs. 3 and 6). Similar increases in the benthic 
18

O 

values associated with a sea-level lowering have been documented in the Atlantic and 

Pacific oceans (Shackleton et al., 1995, Shackleton and Hall, 1997; Vidal et al., 2002) 

(Fig. 4). All these evidences point to a glacioeustatic origin for the sea-level drop related 

to the onset of the MSC. This cooling was probably associated with ice-sheet 

expansions on western Antarctica and the Arctic taking place during the late Miocene 

(Zachos et al., 2001). Furthermore, it could be estimated quantitatively assuming the 

late Pleistocene 
18

O/sea-level relationship, which relates an increase of 0.11‰ in the 


18

O to a global sea-level fall of 10 m (Fairbanks and Matthews, 1978). According to 

this relationship, the benthic 
18

O increase of 0.66‰ at the onset of the MSC would 

indicate a corresponding glacioeustatic sea-level fall of 60 m. 

 Flexural backstripping analysis shows a long-term tectonic stability period 

before the sea-level drop at the onset of the MSC. In addition, there is an uplifting trend 

from the MSC (5.99 Ma) to the TG 20 glacial stage (5.75 Ma) (Fig. 5). This time 

interval is limited by two pulses of tectonic rising with average values of 18.7 mm/yr at 

the base (5.99 Ma) and 16.5 mm/yr at the top (5.76 Ma). They are extremely high and 

probably unusually exaggerated due to the small global sea-level changes used in the 

analysis (Miller et al., 2005), which indicate corresponding sea-level drops of 40 m and 

16.8 m. However, our paleobathymetric data show sea-level falls of 227 m and 169 m 

respectively (Pérez-Asensio et al., 2012a). Furthermore, these estimated sea-level drops 

based on benthic foraminifera could also be exaggerated. Consequently, the high 

difference between the estimated sea-level drops and coeval global sea-level falls results 

in an anomalously high tectonic uplift rates. Therefore, the tectonic uplifting pulses at 

5.99 and 5.76 Ma appear not reliable. Considering these two pulses as outliers, the 

resulting average uplifting rate is 0.6 mm/yr, well within the ranges estimated for the 

Late Neogene uplift of the Betic Cordillera: from 0.2 to 0.7 mm/yr (Weijermars et al., 

1985; Braga et al., 2003). The onset of the MSC was at 5.97 ± 0.02 Ma which covers an 

interval of 0.04 Ma. The tectonic uplift of 0.6 mm/yr or 600 m/Ma would have 

produced a sea-level drop of 24 m during this interval. 

 Prior to the MSC, maximum paleodepths for the Betic and Rifian corridors were 

about 120 m and 100 m, respectively (Martín et al., 2001; Krijgsman et al., 1999b). The 

last Betic seaway, the Guadalhorce Corridor, was closed at 6.18 Ma (Pérez-Asensio et 
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al., 2012b). Since this event, the Rifian Corridors remained as the only Atlantic-

Mediterranean gateway (Esteban et al., 1996). The estimated long-term tectonic trend of 

0.6 mm/yr produced by the collision of the African and Eurasian plates would have 

reduced the depth of the Rifian Corridors substantially. Some estimates even suggest 

that the depth of the corridors might have been around 50 m prior to the MSC (Rohling 

et al., 2008). With this shallow corridor, small variations in sea-level could result in 

gypsum saturation in the Mediterranean (Rohling et al., 2008; Meijer, 2012). 

Nonetheless, the sea-level drop of 24 m produced by tectonic uplift at the onset of MSC 

was insufficient to close up this 50 m deep corridor. In contrast, the estimated 

glacioeustatic sea-level fall of 60 m at 5.97 Ma would be sufficient to restrict the Rifian 

corridors and produce a sufficiently negative water budget in the Mediterranean 

triggering the MSC. In summary, tectonic uplift was a secondary controlling factor, and 

the MSC was primarily triggered by a glacioeustatic sea-level fall. 

 

5.2. Closing the MSC 

 

 It has been suggested that the Upper Evaporites deposition took place from 5.50 

Ma to 5.33 Ma (Miocene/Pliocene boundary) (Krijgsman et al., 1999a). These deposits 

have been assumed coeval with the brackish-freshwater Lago-Mare deposits, implying a 

partial or complete disconnection of the Mediterranean (Krijgsman et al., 1999a). The 

presence of brackish-fresh waters in the whole Mediterranean during the late Miocene 

contrasts with the necessity of a continuous Atlantic marine inflow along with blocked 

Mediterranean outflow in order to produce kilometre-thick evaporites (Meijer and 

Krijgsman, 2005; Meijer, 2006; Krijgsman and Meijer, 2008). This has been also 

proven by geochemical data that suggest a marine origin for the Upper Evaporites in the 

Sorbas and Níjar basins (Playà et al., 1997; Lu et al., 2001, 2002). Moreover, fully 

marine post-evaporitic sediments were deposited in marginal basins of SE Spain during 

the late Messinian as consequence of a sea-level rise during the late Messinian (Riding 

et al., 1998; Aguirre and Sánchez-Almazo, 2004; Braga et al., 2006). These deposits 

contain a plethora of fully marine fauna, including hermatypic corals, coralline algae, 

echinoderms, demosponges, fish, bryozoans, foraminifera and bivalves, that inhabited 

the western and central Mediterranean during the late Messinian (Hsü et al., 1977, 1978; 

Cita et al., 1978; Riding et al., 1991; Martín et al., 1993; Martín and Braga, 1994; 
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Comas et al., 1996, Riding et al., 1998; Aguirre and Sánchez-Almazo, 2004; Braga et 

al., 2006, Carnevale et al., 2006a, 2006b, 2008; Bourillot et al., 2010a, 2010b). 

 In the central Mediterranean, the late Messinian transgression is also well-

documented by different geochemical proxies including strontium, carbon and oxygen 

isotopes, and fish assemblages (Keogh and Butler, 1999; Carnevale et al., 2008). 

Furthermore, geomorphologic features of late Messinian drainage systems in the 

western Mediterranean also point to a flooding before the Miocene/Pliocene boundary 

(Estrada et al., 2011; García et al., 2011, Bache et al., 2012). To accommodate all these 

findings, we postulate a two-step reflooding process of the Mediterranean during the 

latest Messinian. 

 Our results reveal a shift of 1‰ and 0.7‰ in δ
18

O of planktonic and benthic 

foraminifera, respectively, from the glacial stage TG 12 (5.55 Ma) to the interglacial TG 

11 (5.52 Ma) that correlates with a global sea level rise (Figs. 3 and 4). Eccentricity and 

ETP curves increase supporting a glacioeustatic control of this isotopic shift (Fig. 3). 

The same trend is recorded in the Rifian Corridors, Atlantic and Pacific oceans 

(Shackleton et al., 1995; Vidal et al., 2002; van der Laan et al., 2006) (Fig. 4), and is 

related to a period of global warming that persisted until the mid Pliocene (Vidal et al., 

2002). Using the 
18

O/sea-level relationship of Fairbanks and Matthews (1978) for the 

late Pleistocene, the decrease of 0.7‰ in benthic δ
18

O corresponds to a sea-level rise of 

63.6 m, close to our estimation of 68.3 m with the transfer function based on benthic 

foraminifera (Pérez-Asensio et al., 2012a). A similar sea-level rise of 70 m is observed 

in the marginal basins of SE Spain (Bourillot et al., 2010a). In addition, global sea level 

rise during the TG 12-TG 11 transition is ~75 m (Miller et al., 2005) (Fig. 4). 

 Backstripping analysis shows a tectonic stable period during the late Messinian 

(Fig. 5), suggesting that tectonism in the vicinity of the Gibraltar Arc was insignificant. 

Therefore, we propose that the glacioeustatic sea level rise at TG 11 (5.52 Ma) could 

have triggered the first reflooding step of the western and central Mediterranean shortly 

before the Miocene/Pliocene boundary (Fig. 6). This agrees with the view that a small 

connection to the Atlantic was sufficient to quickly reinundate the Mediterranean 

(Meijer and Krijgsman, 2005). This conclusion is also corroborated by the presence of 

late Messinian marine deposits in western and central Mediterranean marginal basins 

(Martín and Braga, 1994; Riding et al., 1998; Braga et al., 2006; Carnevale et al., 2006a, 

2006b, 2008; Bourillot et al., 2010a, 2010b). 
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 It is generally assumed that Atlantic waters flooded into the Mediterranean 

through the Gibraltar Strait (Blanc, 2002; Meijer and Krijgsman, 2005; Estrada et al., 

2011; Bache et al., 2012). In such a case, cold Atlantic waters would enter the 

Mediterranean (Martín et al., 2010). However, photozoan carbonates developed at the 

uppermost Messinian deposits in SE Spain (Martín and Braga, 1994; Braga et al., 2006; 

Martín et al., 2010). These data indicate the inflow of warm subtropical Atlantic waters 

into the Mediterranean during the first reflooding step from areas south of the Gibraltar 

Strait, probably through Rifian Corridors, promoting the formation of coral reefs in SE 

Spain (Martín et al., 2010). Messinian canyons excavated at NW Morocco shelf might 

have accounted for this first inundation (Loget and van den Driessche, 2006). 

Furthermore, the Rifian Corridors were not completely closed during the MSC because 

a continuous inflow of Atlantic water is crucial to develop kilometre-thick evaporite 

deposits formed in the Mediterranean basin during the MSC (Meijer and Krijgsman, 

2005; Meijer, 2006; Krijgsman and Meijer, 2008). Hence, a reflooding via the Rifian 

Corridors during the global sea-level rise related to TG 11 is very likely. 

 In the Sorbas Basin (SE Spain), marine post-evaporitic deposits are overlain by 

continental sediments of the Zorreras Member (Martín and Braga, 1994; Martín-Suárez 

et al., 2000). This indicates a sea-level drop at the very end of the Messinian (Martín 

and Braga, 1994; Martín and Braga, 1996). Bourillot et al. (2010a) estimated a sea-level 

fall of 30-40 m at the end of the Terminal Carbonate Complex (latest Messinian) in SE 

Spain basins. This, in turn, coincides with a global sea-level fall of approximately 25 m 

at about 5.4 Ma (TG 8) (Miller et al., 2005) (Fig. 3). In the central Mediterranean 

(Sicily, S Italy), this sea-level drop is related to the deposition of the non-marine fluvio-

lacustrine siliciclastic Arenazzolo formation (Hilgen and Langereis, 1988; van 

Couvering et al., 2000). 

 In the second step of the Mediterranean reflooding, the sea-level fall at 5.4 Ma 

would have accelerated the regressive fluvial erosion in the Gibraltar Isthmus (Blanc, 

2002; Loget et al., 2005; Loget and van den Driessche, 2006). The combined effect of 

local regressive erosion of the Gibraltar threshold in a context of global sea-level rising 

that started at 5.52 Ma and continued during the early Pliocene (Vidal et al., 2002), 

finally led to the complete opening of the Gibraltar Strait during the earliest Zanclean. 

As a consequence of the final opening of the Gibraltar Strait, catastrophic flows of more 

northern-derived and cooler Atlantic waters flooded the Mediterranean Sea (Martín et 
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al., 2010), resulting in a steady rise of the Mediterranean sea-level and filling up the 

entire Mediterranean Basin. 

 Bourillot et al. (2010a) proposed a similar two-step reflooding model. 

Nevertheless, this model contrasts with our proposal since Bourillot et al. (2010a) stated 

that the Atlantic waters flew into the Mediterranean through the Betic and/or Rifian 

corridors. Pérez-Asensio et al. (2012b) have recently demonstrated that the last active 

Betic seaway, the Guadalhorce Corridor, was closed at 6.18 Ma. Therefore, the first step 

of the reflooding should have been through the Rifian Corridors. This is supported by 

the inferred entrance of warm Atlantic waters, which is required to foster the 

development of coral reefs in the western Mediterranean. 

 Bache et al. (2009, 2012) also suggested that the entire Mediterranean was re-

flooded through the Strait of Gibraltar in two steps during interglacial TG 11 (late 

Messinian). According to these authors, during the step I (5.56?–5.46 Ma), there was a 

relatively moderate and slow sea-level rise as a result of the beginning of a 

progressively increasing erosion of the Gibraltar isthmus. Then, during the step II (5.46 

Ma), a particularly sudden and dramatic flooding was produced by the collapse of the 

Gibraltar channel. However, as suggested above, the reflooding related to the 

interglacial TG 11 was most likely through the Rifian Corridors as indicated by the 

presence of coral reefs in the western Mediterranean during the late Messinian. 

Moreover, this model postulates that the entire Mediterranean was flooded at 5.46 Ma. 

This means that Bache et al. (2009, 2012) did not take into consideration the relative 

sea-level drop shortly before the early Pliocene that promoted continental deposition in 

the western (Zorreras Member in the Sorbas Basin) and central Mediterranean (the 

Arenazzolo Formation of Sicily). Thus, the second step of the reflooding must have 

occurred during the earliest Zanclean, and not during the late Messinian, when the 

ultimate opening of the Strait of Gibraltar took place. Therefore, timing and reflooding 

pathways proposed by Bache et al. (2009, 2012) for the two-step re-filling of the 

Mediterranean are improbable since they are not concurrent with the available evidence. 

 

6. Conclusions 

 

 Our results show that tectonics in the Gibraltar Arc area played a secondary role 

in the onset of the MSC, and it had no influence in the end of the MSC. A glacioeustatic 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

12 

 

sea-level drop of at least 60 m was the triggering mechanism of the MSC initiation. For 

the end of the MSC, we postulate a two-steps flooding of the Mediterranean: 1) warm 

meridional Atlantic waters entering western-central Mediterranean through Rifian 

Corridors during the glacioeustatic stage TG 11 (5.52 Ma), and 2) intensification of 

regressive fluvial erosion in the Gibraltar threshold, together with a global sea-level rise, 

led to the opening of the Gibraltar Strait during the earliest Pliocene and the complete 

refilling of the Mediterranean.  
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Figure captions 

 

Figure 1. Paleogeographic map of the Gibraltar Arc area during the early Messinian, 

when the last active Betic gateway, the Guadalhorce Corridor, was open (based on 

Martín et al., 2009). The asterisk indicates the location of the studied core. 

 

Figure 2. Age model and sedimentation rate (in cm/kyr) for the Montemayor-1 core 

(based on Pérez-Asensio et al., 2012b and Jiménez-Moreno et al., 2013). Position of 

glacial stages TG 22, and TG 12, and interglacial stage TG 7 is indicated. Question 

marks show imprecision in the age model. 

 

Figure 3. A: Relative abundance of Quercus pollen (Jiménez-Moreno et al., 2013). B: 

Dinocyst/pollen ratio (Jiménez-Moreno et al., 2013) C: Paleodepth estimate based on 

benthic foraminiferal assemblages (Pérez-Asensio et al., 2012a). D: Eccentricity curve 

from La2010 orbital solution (Laskar et al., 2011). E: Obliquity curve from La2004 

orbital solution (Laskar et al., 2004). F: Eccentricity, tilt and precession (ETP) curve. G: 

Benthic 
18

O record in ‰ VPDB from the Montemayor-1 core. H: Global sea-level 

curves of Hardenbol el al. (1998) (light grey shading) and Miller et al. (2005) (black 

line), as well as the 4th order eustatic cycles of Esteban et al. (1996) (dark grey 

shading). Ages of the MSC onset (5.97 ± 0.02 Ma) and termination (5.52 Ma) are 

indicated with vertical lines.  

 

Figure 4. A: Benthic foraminiferal O isotope record from Site 926 in the Atlantic Ocean 

(Shackleton and Hall, 1997). B: Benthic foraminiferal O isotope record from Site 1085 

in the Atlantic Ocean (Vidal et al., 2002). C: Benthic foraminiferal O isotope record 
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from Site 846 in the Pacific Ocean (Shackleton et al., 1995). D: Global sea-level curve 

(Miller et al., 2005). E: Planktonic (grey) foraminiferal O isotope record from the 

Montemayor-1 core. F: Benthic (black) foraminiferal O isotope record from the 

Montemayor-1 core. Results are presented in ‰ VPDB. Age of the MSC onset and 

termination are indicated by the vertical lines. 

 

Figure 5. Estimation of the vertical movement of the basement in meters obtained by 

flexural backstripping analysis. Main stable tectonic periods, uplift trends, onset and 

end of the MSC are shown. 

 

Figure 6. Benthic oxygen isotope record (black) in ‰ VPDB from the Montemayor-1 

and obliquity curve (grey) from La2004 orbital solution versus age (based on Jiménez-

Moreno et al., 2013). Glacial and interglacial TG stages follow the nomenclature of 

Shackleton et al. (1995) and van der Laan et al. (2005, 2006). Horizontal dashed lines 

mark the ages of the onset and the termination of the MSC. The Miocene-Pliocene 

boundary is indicated by a horizontal solid line. 
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We study a complete Messinian Atlantic marine record from the Guadalquivir Basin. 

 

The causes of the onset and cessation of the Messinian salinity crisis are analysed. 

 

A glacioeustatic 60-m sea-level drop triggered the Messinian salinity crisis. 

 

A two-step flooding model is proposed for the end of the Messinian salinity crisis. 

 

A late Messinian glacioeustatic sea-level rise reinundated the Mediterranean. 
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