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Abstract

This bachelor’s degree final thesis deals with the problem of pattern formation in
living forms, with special interest in animal skin. Mathematically, this phenomenon
is caused due to perturbations on a system of differential equations initially in
equilibrium, the so-called reaction-diffusion system, which is time independent but
it becomes spatially unstable when is perturbed. This spatial instability is the one
which causes the pattern. Therefore, we have started this project obtaining this
mathematical model and then studying under which conditions the system becomes
spatially unstable. Particularly, these conditions were given by the mathematician
Alan Turing in The Chemical Basis of Morphogenesis in 1952. Furthermore, a-
nother important point developed in this undergraduate thesis has been to apply
this theory on animal body, particularly, to see how the geometry of the body
affects the design of the resulting pattern (striped or spotted). Finally, we have
made some simulations of the system of differential equations in adapted domains
with the characteristics we want to emphasize of animal body (scale, thickness and
curvature). In order to do them, we have designed three programs in C which
approximate the solution of the system using the explicit scheme of a numerical
method, the so-called finite difference method.
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1 Introduction

This project stems, firstly, from my huge interest in applied mathematics and bio-
logy.

Nowadays it is known that lots of biological processes are explained by ma-
thematical models, which enable us to make predictions and to understand better
some biological problems with special complexity. However, traditionally these two
scientific areas worked separately, and that is the reason why there are more and
more research groups trying to give mathematical models to different biological
processes.

One of the biological phenomena that is currently studied the most is pattern
formation. One looks around and can observe that there is a large number of
patterns in nature: desert dunes, spider webs, animal skin (zebras, leopards...),
leaves... This observation of the nature led many scientists to wonder why they are
originated, and thus some theories started to appear.

However, the most known and accepted mathematical theory and model are the
ones given by Alan Turing in 1952 in his article The Chemical Basis of Morphogene-
sis. Particularly, he studied pattern formation in living forms.

This theory states that pattern formation takes place during the morphogenesis,
which is the shaping of an organism by embryological processes of differentiation of
cells, tissues and organs and the development of organ systems according to the ge-
netic blueprint of the potential organism and enviromental conditions. Particularly,
Turing affirmed that patterns emerge from the appearance of instabilities over two
processes that occur simultaneously: chemical reactions and diffusion, which affect
the concentration of a specific substances called morphogens.

Although Turing’s theory is the most accepted one for pattern formation, it is
quite general in that it includes many species and patterns. This is why many
modern scientists have taken this theory as a starting point to study specific cases.

One example of them, and the one that I will study along my project, is the
mathematician James D. Murray. He developed and applied Turing’s theory in
animals, like mammals (zebras, leopards, big cats...), seashells, butterflies...

Particularly, when I was looking for the topic of my project, I discovered an
article which started with the question: “How do zebras get its stripes?”. I found
really interesting to obtain a mathematical explanation of this phenomenon, so I
decided to focus my project on mammals and, specifically, study why there are
some animals with stripes and some other ones with spots.

Structure of the project

The topic of my project can be summarized as the study of pattern formation on
animal skin. From this, I have developed its contents through four more chapters.

The theory of my project starts in Chapter 2. I have mentioned before that
Alan Turing stated that pattern formation in living forms emerge from a combi-
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nation of two biological processes: chemical reactions and diffusion. Therefore, I
started this chapter, and so my project, modeling these two processes in order to
finally obtain a general model for pattern formation. It consists of a system of
partial differential equations, the so-called reaction-diffusion system.

Once obtained this model, our next goal, which is developed in Chapter 3,
was to study how patterns take place from disturbances applied to this reaction-
diffusion process. However, it is difficult to deal with this problem directly since
it is nonlinear. Therefore, we did a previous linearization of the system around an
equilibrium, using tools of dynamical systems. Then, we imposed Alan Turing’s
hypothesis on the linearized system and obtained some mathematical conditions
for pattern formation.

In Chapter 4 we study pattern formation on animal skin. We start giving Mur-
ray’s theory, which explains, firstly, the biological process in which patterns are
formed and, secondly, how geometry affects the resulting pattern, that is, the ap-
pearance of stripes or spots according to body constraints. In particular, he started
studying the skin of legs and tails, because it is similar to a cylinder surface, which
is well known by the mathematicians and which is useful to show the importance
of the thickness. However, because of the kind of boundary conditions that we
consider along this project, our study is on a torus, from which we also can observe
the effect of the curvature.

Finally, we have included a last section of simulations, Chapter 5. We have cho-
sen a particular reaction-diffusion system, the Schakenberg’s model in three domains
(1D, flat torus and torus), from which we select one parameter related with geome-
try and we tune it in order to obtain different patterns and show its importance.
To do the simulations we have used a explicit finite difference method.
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2 Reaction-diffusion systems

In the introduction of the project we have explained that pattern formation in
animals takes place during the morphogenesis due to perturbations in two processes
that occur simultaneously, chemical reactions and diffusion of substances called
morphogens.

Therefore, our goal in this chapter is to obtain a mathematical model of reaction-
diffusion systems. We have started modeling the two processes mentioned before:
chemical reactions and diffusion. They are developed in sections 2.1 and 2.2 inde-
pendently, that is, one in the abscence of the other one. Then, using this informa-
tion, in section 2.3 we have been able to give the general model we want to obtain,
which we will see that consists of a system of partial differential equations.

2.1 Modeling of chemical reactions

Chemical reactions are the variation of substances concentration due to the inte-
raction with other species and with itself. The usual notation for this process is:

s∑
i=1

lijXi
kj−→

s∑
i=1

rijXi, j = 1, . . . , r,

where:

- s denotes the number of substances and index i indicates each substance.

- r denotes the number of reactions and index j indicates each reaction.

- Xi are the substances.

- li and ri are the stoichiometric coefficients (numbers of molecules of each subs-
tance).

- kj is the rate or kinetic constant of each reaction j. We will see what does it
mean in 2.1.1.

The modeling of this process is based in the law of mass action. We will start
introducing this law and then we will develop the model of general reactions.

Therefore, our main goal in this section is to study along 2.1.1, 2.1.2 and 2.1.3
the shape of the equations which model chemical reactions. However, from these
equations, we have been able to give in 2.1.1 further information which complements
the theory of this project.

Observation 1. In order to simplify, in case of reactions with a small number
of species, it is usual to denote by capital letters A, B, C... each substance (see
subsections 2.1.1 and 2.1.2).
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2.1.1 Law of mass action: a simple example

We first consider a very simple reaction:

A+B
k−→ C,

Let a=[A], b=[B] and c=[C] be the concentrations of substances A, B and C.
We usually call the left terms of the reaction (in this case A and B) reactants and,
the right ones (C), products.

Our first assumption is that the rate v of the reaction corresponds to the number
of collisions between the reactants A and B (r1ab, r1 constant) multiplied by the
probability that indeed the reaction happens in case of collision (r2). Thus,

v = r1r2ab = kab,

that is, the reaction rate is proportional to the products of the concentrations of
the reactants (law of mass action). Particularly, this proportion corresponds to the
kinetic constant k of the reaction.

Therefore, we can describe now the variation of a, b and c by:

∆a = −kab∆t, ∆b = −kab∆t, ∆c = kab∆t.

where the signs represent the appearance or disappearance of the substance. Then,
if ∆t→ 0,

da

dt
= −kab, db

dt
= −kab, dc

dt
= kab.

Finally, as an extension of the project, we introduce the concept of first integral
and we will see that they have to do with the conservation of mass and we can use
them to find solutions of the system of nonlinear differential equations with any
initial condition.

Definition 2.1.1.1. A continously differentiable function H : U ⊂ Rn → R is
said to be a first integral of the system dx

dt
= f(x), x ∈ U , if H(x(t)) is constant

for any solution x(t) of the system, that is, its orbital derivative satisfies Ḣ(x) :=
DH(x)f(x) = 0 ∀x ∈ U .

We now define the functions:

H1(a, b, c) = a+ c

H2(a, b, c) = b+ c
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These functions satisfy:

Ḣ1(a, b, c) = ȧ+ ċ = −kab+ kab = 0

Ḣ2(a, b, c) = ḃ+ ċ = −kab+ kab = 0

which implies that H1 and H2 are constant for any solution (a(t), b(t), c(t)), so that,
they are first integrals of the system.

Particularly, if we define the function

H(a, b, c) = a+ b+ 2c

we observe that its orbital derivative is 0 as well and thus it is a first integral of the
system.

Therefore, through these functions we can see that there is a preservation of
mass.

These first integrals are also useful to find a solution of the nonlinear system of
equations. Given any initial condition

a(0) = a0 b(0) = b0 c(0) = c0

we obtain:

H1(a0, b0, c0) = a0 + c0,

H2(a0, b0, c0) = b0 + c0.

We have seen that these functions are constant. Thus,

H1(a(t), b(t), c(t)) = H1(a0, b0, c0),

H2(a(t), b(t), c(t)) = H2(a0, b0, c0).

It determines two planes and lead to the system of equations:{
a(t) + c(t) = a0 + c0

b(t) + c(t) = b0 + c0

which solutions are lines. We can write:{
a(t) = a0 + c0 − c(t)
b(t) = b0 + c0 − c(t)

However, we have additional information that we can use to obtain explicit
solutions of c(t). We can substitute this expressions of a(t) and b(t) in the differential
equation

dc

dt
= kab,

5



obtaining (for a0 6= b0):

dc

dt
= k(a0 + c0 − c(t))(b0 + c0 − c(t))

Therefore, we have an ODE of only c(t) which we can solve using variables separa-
tion and obtain the solution

c(t) =
(a0 + c0)− (b0 + c0)e(a0−b0)(kt+C)

1− e(a0−b0)(kt+C)
,

where C is a constant determined by the initial condition c(0) = c0.

Thus, from the conservation of mass and the first integrals, we have the solution
of the system with initial conditions a(0) = a0, b(0) = b0 and c(0) = c0, which is
(for a0 6= b0):

a(t) = a0 + c0 −
(a0 + c0)− (b0 + c0)e(a0−b0)(kt+C)

1− e(a0−b0)(kt+C)

b(t) = b0 + c0 −
(a0 + c0)− (b0 + c0)e(a0−b0)(kt+C)

1− e(a0−b0)(kt+C)

c(t) =
(a0 + c0)− (b0 + c0)e(a0−b0)(kt+C)

1− e(a0−b0)(kt+C)
.

2.1.2 Reversible reactions

We now consider a reversible reaction, i.e,

A+B
k1
�
k2

C

with reaction rates k1 and k2.

We can consider this reaction as the following system of two reactions:

A+B
k1−→ C

C
k2−→ A+B

Therefore, the equations for the reversible reaction are:

da

dt
= −k1ab+ k2c,

db

dt
= −k1ab+ k2c,

dc

dt
= k1ab− k2c,

where the first term of the right side of the equalities corresponds to the first reaction
and, the second term, to the second reaction.

Finally, we can observe that this reaction has the same first integrals of the
reaction studied before, that is,
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H(a, b, c) = a+ b+ 2c

H1(a, b, c) = a+ c

H2(a, b, c) = b+ c

are constant for all a(t), b(t) and c(t).

Therefore, one can repeat the same process of the previous case and obtain
explicit solutions of a(t), b(t) and c(t) from the differential equation:

dc

dt
= k1(a0 + c0 − c(t))(b0 + c0 − c(t)) + k2c(t).

However, since the procedure is more complex than the first one and it is sup-
plementary information of the project, we just indicate the equation.

2.1.3 General reactions

We now consider the general case that we have given at the beginning of 2.1, which
was:

s∑
i=1

lijXi
kj−→

s∑
i=1

rijXi, j = 1, . . . , r

In this case we only give the system of differential equations which models these
reactions. Taking xi = [Xi] as the concentration of each Xi, we obtain from the law
of mass action:

Ẋ1 = −k1l11

s∏
i=1

X li1
i + k1r11

s∏
i=1

X li1
i + . . .

Ẋ2 = −k1l21

s∏
i=1

X li1
i + k1r21

s∏
i=1

X li1
i + . . .

...

Ẋs = −k1ls1

s∏
i=1

X li1
i + k1rs1

s∏
i=1

X li1
i + . . .

Therefore, we can write the ODE system for general reactions as:

Ẋi =
r∑
j=1

kj(rij − lij)
s∏

n=1

X lnj
n , i = 1, . . . , s.

In conclusion, from these three different cases studied along this section, we can
say that the general shape of the equations which model chemical reactions is a
nonlinear ODE system which depends on time.
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2.2 Modeling of diffusion

The second biological process that we have to study is diffusion, which is the one
generated by a substance’s random movement. The classical diffusion mathematical
modeling is based on the Fick’s laws and conservation of mass.

We start with u(t, x) ∈ R as a substance concentration at the point x ∈ R3 and
time t inside a container.

The model assumes that there is a flux, J(t, x) ∈ R3, that is a vector which
points into the generical direction of movement and |J(t, x)| is proportional to the
amount of particles which flow in that direction per unit time.

We choose a test volume Ω with boundary Γ. If no reactions take place, then the
only factor which influences the change of concentration in Ω is the flux through Γ,
i.e.,

d

dt

∫
Ω

u(t, x)dV = −
∫

Γ

J(t, x)dS

where dV corresponds to volume integral (R3) and dS to surface integration (R2).

Let’s explain carefully the equality above.

On the one hand, the first part of the equality represents the variation of the con-
centration in the test volume. On the other hand, we remember that, by definition,
we can write the surface intergral in the form:∫

Γ

FdS =

∫
Γ

F~ndS

where ~n is the unit normal vector to the surface. Hence, the physical interpretation
of the second integral is the total flux through the surface Γ.

Therefore, this equality means that the variation of concentration of the particles
in Ω corresponds to the quantity of them entering through Γ to the test volume.

We now remember the Gauss divergence theorem:∫
Γ

J(t, x)dS =

∫
Ω

divJ(t, x)dV

Using this theorem in the above expression we obtain:

d

dt

∫
Ω

u(t, x)dV = −
∫

Ω

divJ(t, x)dV

→
∫

Ω

(
∂

∂t
u(t, x) + divJ(t, x))dV = 0

Since this equation is satisfied for all Ω, the integral can be omitted, leading to

∂

∂t
u+ divJ = 0 (2.1)
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the so-called first law of Fick.

The elimination of the volume interal is justified by:

Proposition 2.2.0.1. If f : U ⊂ Rn → R is a continous function such that
∀ Ω ⊂ U compact

∫
Ω
fdV = 0, then f = 0.

Proof. We start supposing that ∃ x ∈ U such that f(x) > 0. This implies that
∃ δ > 0 such that B̄δ(x) ⊂ U and ∀ y ∈ B̄δ(x) satisfies f(y) > 0. Taking Ω = B̄δ(x),
which is compact since it is a closed ball, we obtain by the integral properties:

f(y) > 0 ∀y ∈ Ω =⇒
∫

Ω

fdV > 0.

If f(x) < 0 the proof follows similar lines and we come to
∫

Ω
fdV < 0.

Therefore, we have shown that if f 6= 0 then
∫

Ω
fdV 6= 0, from which we can

conclude that, if we have the conditions stated in the lemma,
∫

Ω
fdV = 0 implies

f = 0.

�

We now introduce Fick’s second law. This law says that flux moves from the side
with the highest concentration to the lowest. In order to model it, we remember
that the gradient of u ∈ R3

Ou =

 ∂u
∂x1
∂u
∂x2
∂u
∂x3


points to the region with the highest concentration. Therefore, we can conclude that
flux has the direction of the negative gradient of the particle distribution. Hence,
we obtain the equality

J = −DOu

where D is the diffusion coefficient. We assume it is homogeneus, thus D is constant.

Inserting the second law into (2.1), we obtain the diffusion equation

∂u

∂t
= divOu = D∆u,

which is also called heat equation.
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2.3 General model of reaction-diffusion systems

Once seen the mathematical models of chemical reactions and diffusion, we can give
a model for the general reaction-diffusion systems. This model consists of a system
of partial differential equations which depends on time and space. Specifically, it is
given by the expression:

∂u

∂t
= g(u) +D∆u

where:

- x ∈ Rn.

- u(t, x) = (u1(t, x), ..., um(t, x)) shows the concentration of each substance.

- g(u) = (g1(u1, ..., um), ..., gm(u1, ..., um)) is the reaction rate vector.

- D = is the diffusion matrix.

- ∆ is the Laplacian operator.

In other words, as we have studied in 2.1 and 2.2, g(u) corresponds to the
reactive part of the system and, as we have seen in 2.3, D∆t, to the diffusive one.
Particularly, as we have studied in 2.1, each gi(u) is a nonlinear function which
shows the subtances concentration which depends on time.

Futhermore, in order to simplify the system, we consider that the diffusion coef-
ficients Di are constant.

If we want to study this systems in particular domains we can introduce a new
parameter γ , which is proportional to the domain size (scale) and we can rewrite
our initial system as follows

∂u

∂t
= γf(u) +D∆u.

That is, we will consider functions g(u) adapted to the dimensions of the domains
in which take place the reaction-diffusion systems that we want to study.
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3 Turing instability. Activator-inhibitor systems

Alan Turing in The Chemical Basis of Morphogenesis in 1952 explained how pat-
terns emerge in living forms. He proposed a morphogenetic mechanism which con-
sists in two simultaneous processes: kinetic reactions and diffusion, which affect the
concentration of specific substances called morphogens.

Once given this system (which we have modeled in 2.3), he stated that the
pattern is originated from a state in equilibrium and constant which is stable to
temporal perturbations, but becomes unstable due to spatial perturbations.Turing
proposed, as well, that this instability is due to diffusion.

Therefore, his theory can be given by the following conditions:

(i) In the absence of diffusion, that is, when the system is only given by the
chemical kinetics, the state must be stable to small perturbations. We call this
equilibrium base state and we denote it by ub.

(ii) When diffusion takes place some oscillatory modes of the system must be
unstable to small spatial perturbations but it is time-independent. The instability
caused by diffusion is called diffusion driven instability.

We have another condition in case of two morphogens:

(iii) The diffusion coefficient of the two substances must differ substantially.

We observe that these conditions are heuristic. Therefore, our goal in this chapter
is to obtain mathematical ones which are equivalent to the ones we have already
given, that is, conditions that our reaction-diffusion equations must satisfy in order
to pattern formation can occur. However, it is complicated to deal with this kind
of systems directly and thus we will have to do a previous linear analysis.

The instability that leads to pattern formation is also called Turing instability.
We will see in the last section that this kind of instability in case of two mor-
phogens leads to an activator-inhibitor system, that is, one morphogen will induce
the production of substance and, the other one, the loss.

3.1 Linear stability: basics

This section is a conceptual framework of the general linear analysis that we will
apply in our study of the appearance of Turing instability.

We have seen in the second chapter that we will work with systems with dynamics
described by partial differential equations of the form

∂u

∂t
= g(u) +D∆u,

where g(u) = γf(u).

Apart from γ and the coefficients of matrix D, this system can show more pa-
rameters in the expression of function f . Then, our linear study will be based on
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taking one of these parameters as a control parameter p, which we can tune and
obtain different asymptotic behavior of the system.

We will consider that our domain is [0, A1] × · · · × [0, An] and, in addition, we
will take periodic boundary conditions.

We start remembering that the first Turing’s condition was that, in the absence
of diffusion, the state is stable in a base solution ub, which means:

(i) g(ub) = 0.

(ii) Dg(ub) has all eigenvalues with negative real part.

We now can write the general solution of the system as:

u(t, x) = ub + v(t, x),

where v(t, x) is the correction. Hence, we can rewrite our system of differential
equations in the form:

∂v

∂t
(t, x) = g(ub + v(t, x)) +D∆v(t, x).

This is the moment when we do the linearization around ub. Performing it we
obtain:

∂v

∂t
(t, x) ≈ Dg(ub)v(t, x) +D∆v(t, x). (3.1)

Using Fourier series, we can express the solutions of this system with periodic
boundary conditions as:

v(t, x) =
∑
q∈Zn

vq(t)e
2πiq x

A ,

with x
A

= ( x1
A1
, . . . , xn

An
), and so e2πi q

A =
∏n

j=1 e
2πiqj

xj
Aj .

This technique is called Spectral method and we have learnt it in the course of
Partial differential equations.

Substituting the last expression in (3.1):

∑
q∈Zn

v̇q(t)e
2πiq x

A =
∑
q∈Zn

Dg(ub)vq(t)e
2πiq x

A −D
∑
q∈Zn

4π2(
n∑
j=1

q2
j

A2
j

)vq(t)e
2πiq x

A .

This implies that, for each q, we have:

v̇q(t) = Dg(ub)vq(t)−D4π2(
q

A
)2vq(t) = (Dg(ub)−D4π2(

q

A
)2))vq(t),

where ( q
A

)2 =
q21
A2

1
+ · · ·+ q2n

A2
n
.
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The stability of the system can be studied now from the eigenvalues σq of the
n× n matrix Dg(ub)−D4π2( q

A
)2.

We have learnt in the courses of Ordinary differential equations and Mathe-
matical models and dynamical systems that the eigenvalues with Re(σq) > 0 de-
termine instability, while the ones with Re(σq) < 0 determine stability.

Therefore, while Re(σq) < 0 the system is stable. However, when we are tuning
control parameter p it could happen that, for a certain value p = pc, Re(σq) may
cross 0 and changes its sign to positive for some values of q. This phenomenon is
called bifurcation.

We now can introduce two important values of q which have important roles in
pattern formation:

- The first value q from whichRe(σ(q)) becomes positive is called critical wave vec-
tor and we denote it qc.

- We call qm the vector wave from which Re(σ(q)) has the maximum value (not
necessarily qc).

The imaginary part of the growth rate evaluated at the critical wave number
determines a critical frequency ωc given by

ωc = −Im(σqc)

that defines a characteristic oscillatory time scale for the growing perturbation. We
can distinguish two cases:

(a) If ωc = 0, the instability is towards a stationary state and the pattern will
only grow in time. This type of instability is called stationary and was the one
studied by Turing, and the one which we will study along this project.

(b) If ωc 6= 0, the instability is oscillatory and the pattern will be modeled by
oscillations of period T = 2π

ωc
. This type of instability is called Hopf bifurcation.

3.2 Turing instability

Using the previous conceptual framework of linear analysis, we now give in this
part of the chapter the mathematical conditions equivalent to the ones that we have
mentioned in the introduction of the chapter, that is, the mathematical conditions
needed for pattern formation.

First of all, we introduce some new notation for this section:{
M = Dg(ub)

Mq = D(g(ub))−D4π2( q
A

)2 = M −D4π2( q
A

)2.

Furthermore, we denote mij = ∂fi
∂xj
|ub . This implies that the coefficients of matrix

M are γmij for i = 1, . . . ,m and j = 1, . . . , n.

We now remember that the first hypothesis that Turing stated is that in the
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absence of diffusion there is an equilibrium state, called ub, which we have seen in
section 3.1 that satisfies:

(i) g(ub) = 0.

(ii) M has all its eigenvalues σ with negative real part.

These eigenvalues σ are the solution of

det(M − σI) = 0.

From now on, in order to simplify, we will consider the two dimensional case
with two morphogens.

Two dimensional case with two morphogens

Returning to our previous study, in this case we have the following expression of
the above determinant:

det(M − σI) = σ2 − (trM)σ + detM.

Equating this expression to zero we obtain that these eigenvalues are given by:

σ =
1

2
trM ± 1

2

√
(trM)2 − 4detM.

From this expression we can deduce this following lemma (which is justified
bellow in the Figure 1):

Lemma 3.2.0.1. The real parts of the eigenvalues σ are negative, that is, the sta-
bility occurs, when the trace of the matrix is negative and the determinant positive.

Figure 1: Stability regions in the trM -detM plane, from source: [2]. Particularly,
Aq corresponds to our matrix M .
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Therefore, applying this lemma to matrix M we obtain two mathematical con-
ditions equivalent to the first Alan Turing’s hypothesis:{

tr(M) = γm11 + γm22 < 0
det(M) = γ2m11m22 − γ2m12m21 > 0

We now focus on the second condition he gave. This implies that we return to
the case with diffusion.

From now on, if coefficient D1 satisfies D1 6= 0, matrix D will be expressed in
the equivalent form:

D =

(
1 0
0 d

)
,

where d = D2

D1
is the ratio of diffusion coefficients. We write D in this form in order

to have a new parameter d which we will be able to tune and obtain bifurcations.

Now, to study the stability in the presence of diffusion, we have to observe the
eigenvalues of matrix Mq.

However, from Lemma 3.2.0.1, it is equivalent to observe the signs of

{
tr(Mq) = γm11 + γm22 − (1 + d)4π2| q

A
|2

det(Mq) = d(4π2)2| q
A
|4 − (γdm11 + γm22)4π2| q

A
|2 + γ2(m11m22 −m12m21)

Comparing this trace with the trace of M , we obtain

tr(Mq) = γm11 + γm22 − (1 + d)4π2| q
A
|2 < γm11 + γm22 < 0

Thus, from the Lemma 3.2.0.1, we can conclude that the instability produced by
diffusion is caused by a change of sign of the determinant of Mq.

If we observe this determinant we can see that it is a parabola in the quantity
k = 4π2| q

A
|2. One condition for the instability may be asking when the minimun

value of the parabola becomes negative. Let’s find this value:

detMq(k) = dk2 − γ(dm11 +m22)k + γ2(m11m22 +m21m12).

d(det(Mq))

dk
= 2dk − (dγm11 + γm22)

d(det(Mq))

dk
= 0 ⇐⇒ km =

dγm11 + γm22

2d
(⇐⇒ dm11 +m22 > 0)

det(Mqm) = γ2(m11m22 −m12m21)− (γdm11 + γm22)2

4d
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This expression becomes negative when

dm11 +m22 > 2
√
d(m11m22 −m12m21)

(it is well defined because we have seen that dm11 +m22 > 0)

Therefore, gathering all the information we have developed along this subsection,
we can conclude that the two first heuristic conditions that Alan Turing gave for
pattern formation are equivalent to the mathematical conditions:

(i) m11 +m22 < 0

(ii) m11m22 −m12m21 > 0

(iii) dm11 +m22 > 0

(iv) dm11 +m22 > 2
√
d(m11m22 −m12m21)

From (i) and (iii) we obtain that m11 and m22 must have opposite signs.These
two coefficients have to do with the reactive part of the reaction-diffusion system.
Besides, we remember that terms mij have appeared when we have linearized our
equations around ub. Particularly, if we focus on the reactive part of the system,
this linearization is:

∂u1

∂t
≈ u1b +m11(u1 − u1b) +m12(u2 − u2b). (3.2)

∂u2

∂t
≈ u2b +m21(u1 − u1b) +m22(u2 − u2b). (3.3)

Therefore, if we consider, for instance, m11 > 0 and m22 < 0, it implies that an
increase of u1 over the uniform state induces its own productions while u2 inhibits
its own production. Thus, we can call u1 activator and u2 inhibitor.

Now, from (ii) we obtain that m12 and m21 have opposite signs, as well. Hence,
observing the linearization given by (3.2) and (3.3), there are essentialy two kinds
of reaction-diffusion models capable of exhibiting diffusion-driven instability with
matrix M taking one of the following forms:[

+ −
+ −

]
pure activator-inhibitor model,[

+ +
− −

]
cross activator-inhibitor model.

In addition, we remember that the third heuristic condition which Alan Turing
gave for pattern formation was that the diffusion coefficients of the two morphogens
must differ substantially. Hence, from (iii) and (iv) we can write mathematically
this condition as:

d >>
−m22

m11

> 1.
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Figure 2: Schematic representation of the two kinds of activator-inhibitor systems,
(a) and (c) correspond to the pure one; (b) and (d) to the cross one from the source:
[6]. Particularly, u corresponds to our u1 and, v, to u2.

Particularly, this expression means that the inhibitor diffuses much faster than
the activator. Gierer and Meinhard in 1972 called this phenomenon local activation
with long-range inhibition . The range is the mean distance a molecule can travel
between its production and disappearance.

Finally, we discuss the two cases mentioned above separately:

(a) Pure activator inhibitor model: u1 is the activator, which is also self-activating,
while the inhibitor, u2, inhibits not only u1, but also itself. Thus, the two species
are at high or low density in the same region as the pattern grows.

(b) Cross activator inhibitor model: u2 is the activator but also self-inhibiting
and diffuses more quickly. Therefore, u1 is at high density where u2 is low and vice
versa (“predator-prey model”).
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4 Pattern formation on animal skin: The impor-

tance of the geometry of the body

Once we have studied how patterns are formed from instabilities performed in a
reaction diffusion system initially in equilibrium, our goal in this chapter is to study
how patterns take place on animal skin and to see how their geometry (thickness,
curvature...) affects the resulting pattern.

First of all, we will introduce the most accepted theory for this phenomenon,
which is the one introduced by the mathematician James D. Murray in 1989. He
studied how patterns are formed in animals and how their thickness affects their
design.

To show the importance of thickness, he studied legs and tails and considered
their skin as a cylinder surface. We can obtain this surface taking periodic boundary
conditions in two parallel sides of the rectangular domain [0, A]× [0, B]. We observe
that this domain and these boundary conditions are similar to the ones that we have
considered along all this project, and so we have been able to use some previous
information. Therefore, studying the effect of thickness is equivalent to do the same
with the narrowness of the rectangle.

However, animals are three dimensional. This is the reason why we have made
a short discussion of the importance of the curvature in a real torus. Particularly,
we will see that there is a relation between studying the thickness in a flat torus
and doing the same with the curvature in a torus.

4.1 Murray’s theory

James D. Murray stated in 1989 that pattern formation in animals takes place
during the morphogenesis, which we have defined in the introduction of this project.
Besides, he affirmed that in this process occur some perturbations in a reaction-
diffusion system which affects the concentration of substances called morphogens,
which can be hormones, genes...(they are not specified). Finally, he argued that
these instabilities are reflected on animal skin due to the subsequent differentiation
of the cells to produce melanin, which are the cells that affect animal pigmentation.

Once we have shown in what is based this theory, we can introduce its hyphotesis:

(i) The unstable mode that dominates the system and the spatial coat pattern
have the same spatial structure.

(ii) The unstable mode is determined by the parameter pair (d, γ).

(iii) Spatial patterns occur only if d is sufficiently large, and it leads to an
unstable eigenvalue range.

(iv) Narrower geometry of the rectangle [0, A]×[0, B] is easier to produce stripes.

The justification of this last hypothesis is based on the fact that 1D domains
can only produce striped patterns and 2D domains can lead not only to striped
patterns but to spotted ones. Besides, this statement has an important role in the
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justification of some applications in animals body that we will develop at the end
of the subsection 4.2.2.

4.2 Effect of the geometry

Apart from the geometry of the domain, we have mentioned the importance of two
of the reaction-diffusion system parameters (d and γ) to the final pattern. We also
have said that the first hypothesis of Murray’s theory states that the unstable mode
which dominates the system has the same structure than the spatial coat pattern.
Therefore, study the importance of geometry, scale or diffusion is equivalent to see
how giving different values to the parameters A, B, γ and d determine what mode
will dominate the system. This problem is called mode selection.

In the third chapter we have seen that the critical wavenumber kc of the 2D
reaction-diffusion system with two morphogens is given by:

kc =
dm11 +m22

2dc
.

Furthermore, we remember that we have considered:

k = 4π2| q
A
|2.

Particularly, since we have considered q ∈ Z2, if we take q = (m,n), we can write
k = 4π2(m

2

A2 + n2

B2 ).

Hence, for d > dc there is a range of wavenumbers k2
1 < k2 = 4π2(m

2

A2 + n2

B2 ) < k2
2.

This range is obtained from the zeros from the zeros k2
1 and k2

2 of det(Mq)(k), which
are:

k2
1 =

γ

2d
[(dm11 +m22)− {(dm11 +m22)2 − 4d(m11m22 −m12m21)}1/2], (4.1)

k2
2 =

γ

2d
[(dm11 +m22) + {(dm11 +m22)2 − 4d(m11m22 −m12m21)}1/2]. (4.2)

Therefore, we have obtained a range of unstable modes that depends on some
parameters which we can tune in order to obtain different patterns. However, owing
to the fact that our goal is to study the geometry, we will only study γ, A and B.

4.2.1 Effect of the scale

In this subsection we focus on the scale of the animal body (quantified by the
parameter γ), that is, how big or small it is.

From the unstable range exposed above, we observe that if the domain size is
too small, that is γ small enough, even the lowest nonzero mode lie outside the
unstable range. Thus, no spatial pattern can be generated. This implies that,
in general, very small animals can be expected to be uniform in color. Examples of
this statement are rats, squirrels and small dogs.
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Furthermore, as the size of the animal increases, γ reaches some bifurcation
values and different patterns take place. However, for very large domains the mor-
phogen concentration distribution is again almost uniform. Thus, the structure of the
pattern of a big animal is very fine. Examples of this case are elephants and bears.

Therefore, as a conclusion, we can confirm that medium sized animals are the ones
that can show more range of patterns. We can see a lot of examples in nature, like
zebras, giraffes and big cats.

4.2.2 Importance of the thickness

To study how thickness affects the mode that will dominate the system, we have
to focus on the geometry of the domain. We remember that we have considered
a flat torus, which is represented in a rectangle [0, A] × [0, B]. Furthermore, in
the introduction of the chapter it has been said that the study of the thickness is
equivalent to observe the narrowness of this rectangle.

Hence, our goal in this part of the project is to study how the narrowness of
[0, A] × [0, B] leads to the appearance of some different patterns. Particularly, we
consider B fixed and we tune A.

We remember from the beginning of this section that we have the following range
of wavenumbers:

k2
1 < k = 4π2(

m2

A2
+
n2

B2
) < k2

2,

with k1 and k2 given by the expressions (4.1) and (4.2) respectively. Therefore,
from this range, we can consider two different cases according to the value of A:

(i) A is small or too large. This implies that there is no mode m that belongs to
the unstable range. Therefore, the unstable range only include modes n and thus
this case is equivalent to the 1-dimensional one which is the one that leads to the
appearance of striped patterns.

(ii) A is sufficiently large. In this case there exist modes n belonging to the
unstable range. Hence, we are in the two-dimensional case and we can obtain a
pattern which can be spotted or striped.

We now can observe that this theory justify some phenomenons that we see in
some mammals body.

On the one hand, tails and legs are usually very thin and so they can only have
striped patterns. However, there exists legs that are big enough at one end and
become gradually thinner and thinner. In this case, we can see a gradation from a
2D pattern at the thick end to a 1D pattern at the thin end.

On the other hand, animal body is usually thick enough but not too much, so
that, their skin is considered a 2D domain.

Therefore, we can conclude:

- There can be animals all striped.
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- There can be animals with spotted body and striped tail and legs.

- There can be animals with spotted body and a gradation of spots to stripes in
their legs and tail.

- There is no animal with striped body and spotted legs and tail.

Figure 3: (a) represents a very thin tale which only can have a striped patterns.
Conversely, (b) and (c) show the gradation of a spotted pattern (in the thick end)
to a striped one (thin end). Source: [6].

4.2.3 Short discussion about the curvature of the torus

Along all this project we have considered rectangles [0, A] × [0, B] and periodic
boundary conditions. This is the reason why we have been able to study above the
effect of the narrowness rigorously using previous information. However, we cannot
use this information for the curvature of the torus since its Laplacian operator of
the scalar function u is not the same.

We start remembering the parametrization of this surface:

χ(θ1, θ2) =

 (R1 +R2cosθ2)cosθ1

(R1 +R2cosθ2)sinθ1

R2sinθ2


where:

- R1 is the distance between the centre of the torus and the centre of the conduct.

- R2 is the radius of the conduct.

- θ1 is the angle along R1.

- θ2 is the angle along R2.
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With this notation, the Laplacion operator of u in the torus is given by the
expression:

∆u =
1

(R1 +R2 cos(θ2))2
uθ1θ1 −

sin θ2

R2(R1 +R2 cos θ2)
uθ2 +

1

R2
2

uθ2θ2 . (4.3)

This result is justified on Appendix A.

Hence, in order to do an accurate study of the curvature we should have repeated
the same process for the corresponding system. However, since we also want to
do some simulations and a numerical study of the system, we only have made
a comparison between the study of thickness and curvature and obtained some
conclusions. To do it, we can compare Laplacian operation of u in the torus (4.3)
with the one in the flat torus, which has the expression:

∆∗u =
4π2

A2

∂2u

∂x2
+

4π2

B2

∂2u

∂y2
.

Observing these two formulas one can easily observe that, their second derivatives
are multiplied by weights that are inverse to the parameters we want to study
(A,B,R1 and R2). Hence, we can think that the study of thickness from tuning A
and B is similar to the study of curvature from tuning R1 and R2.

We have seen that as thick as a domain is, it is more likely to produce 2D patterns.
Therefore, from the above reasoning, we can argue that more curved domains tend
more to 2D patterns than less curved ones. Particularly, if we consider parameter
R2 fixed, we can say that if R1 has a value close to R2 we will have more 1D patterns
and, conversely, if R2 � R1 we will have probably more 2D patterns.

However, to give a stronger justification of the results, we have made some simu-
lations in Chapter 5 tuning R1 as we have explained in which we can see that this
forecast of the effect of the curvature is satisfied.
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5 Simulation results

At this time of the project we have given a mathematical model for reaction-diffusion
systems, studied Turing instability under which pattern formation takes place and
explained how the geometry of animal body affects the appearance of stripes or
spots.

Our goal now is thus gather all this information in order to do simulations of a
specific reaction-diffusion system, the Schakenberg’s model, from which we will tune
indendently the parameters A, B and γ to show the importance of the geometry of
the body that we have explained in the previous chapter.

Therefore, our first step in this chapter is to obtain the necessary conditions for
Turing instability and the range of unstable wavenumbers in the particular model
we have chosen. Then, we introduce the numerical method we will use to do our
simulations, which is a explicit finite difference method. Finally, we give the results
of these simulations and hence we show graphically the effect of γ, A and B (and
R1 and R2 as well) in three different domains: 1D, flat torus and torus.

5.1 Conditions for pattern formation in Schakenberg’s model

We have mentioned in the beginning of the chapter that we will consider in our
simulations the Schakenberg’s model, which is:{

∂u1
∂t

= γf1 + ∆u1
∂u2
∂t

= γf2 + d∆u2,
(5.1)

where: {
f1 = a− u1 + u2

1u2

f2 = b− u2
1u2.

However, before designing a program which implements it, we need to study
under which conditions of this system pattern formation can take place. We now
remember that we have to start finding the base state which appears in the absence
of diffusion. Therefore, this equilibrium point is found imposing the conditions
f1 = 0 and f2 = 0, from which we obtain:

ub = (a+ b,
b

(a+ b)2
).

Now we have to study under which conditions spatial instabilities due to diffusion
take place. However, we first have to compute the first partial derivatives of the
kinetic functions f1 and f2, that is, the coefficients mij from the section 3.2, which
are:
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m11 =
b− a
a+ b

, m21 =
−2b

a+ b
,

m12 = (a+ b)2, m22 = −(a+ b)2.

Therefore, from the section 3.2, we remember that in order to Turing instability
occur in this system (and so pattern formation takes place), we need the conditions:

(i) m11 +m22 < 0 =⇒ 0 < b− a < (a+ b)3

(ii) m11m22 −m12m22 > 0 =⇒ (a+ b)2 > 0

(iii) dm11 +m22 > 0 =⇒ d(b− a) > (a+ b)2 > 0

(iv) dm11+m22 > 2
√
d(m11m22 −m12m21) =⇒ [d(b−a)−(a+b)3]2 > 4d(a+b)3.

However, in addition to these conditions, we have to choose values of γ, A and B
that lead to the existence of modes which belong to the particular unstable range:

k2
1 < k2 = 4π(

m2

A
+
n2

B
) < k2

2,

with:

k1 = γ
d(b− a)− (a+ b)3 −

√
[d(b− a)− (a+ b)3]2 − 4d(a+ b)4

2d(a+ b)

k2 = γ
d(b− a)− (a+ b)3 +

√
[d(b− a)− (a+ b)3]2 − 4d(a+ b)4

2d(a+ b)
.

5.2 A finite difference method for reaction-diffusion sys-
tems

Once we have developed all the theory we wanted to study, it is the moment to
obtain some numerical results to show it. Hence, this section consists of an expla-
nation of a numerical method, the so-called finite difference method, from which we
will be able to obtain solutions of reaction-diffusion systems.

Along all this project we have considered a rectangle [0, A]× [0, B] as a domain
and periodic boundary conditions. Therefore, we will start developing in detail this
case. However, we want to do, as well, 1D simulations and on a torus. Hence, we
will include two substections giving this method in these two domains using the
previous information of the flat torus case.

Therefore, our goals are:

(i) To discrete our spatial and temporal domains.

(ii) To use the previous step in order to obtain discrete information from the
boundary conditions that are necessary to approximate the solutions of our system.
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(iii) To approximate, independently, spatial and temporal derivatives.

(iv) To explain the explicit scheme, which we will use to do the simulations.

5.2.1 Spatial and temporal approximation

Let’s explain, firstly, spatial approximation. We remember that our domain is a
rectangle [0, A]× [0, B].

We start dividing horizontal and vertical sides of the domain in Mx and My

intervals with length hx = A
Mx

and hy = B
My

, respectively. Hence, we obtain a mesh

with (Mx + 1)× (My + 1) nodes. We identify each node with the index (i, j), where
i shows the horizontal position and j, the vertical.

Similarly, we divide total time T in N intervals with length ∆t = T
N

enumerated
by the index n.

5.2.2 Boundary conditions

We remember that our boundary conditions are periodic. It implies that the right
side nodes of the rectangular domain correspond exactly to the left side ones, and
the top nodes correspond to the bellow ones. Particularly, we can write:

u0,j = uMx,j, j = 1, . . . ,My − 1

ui,0 = ui,My , i = 1, . . . ,Mx − 1.

Besides, we can generalize this explanation and say that periodic boundary con-
ditions mean that the solution in one node (i, j) is the same that the one in the
node (Mx + i,My + i).

The choice of boundary conditions has a huge relevance when we apply the finite
difference method. We will see in the section bellow that in order to approximate
spatial derivatives in one node (i, j) of the rectangular domain we need the infor-
mation of its four neighbours (i− 1, j), (i+ 1, j), (i, j − 1) and (i, j + 1). However,
boundary nodes only have two or three. This is the moment when boundary condi-
tions take importance, we can consider that the missing nodes are the ones displaced
Mx + i or My + j (or i −Mx or j −My) positions. For instance, solutions in the
nodes (i,My) have the neighbours ui,My−1 and ui,1.

5.2.3 Derivatives approximation

In this subsection we approximate spatial and temporal derivatives independently
and then, in the following section, we gather them together to get different discrete
schemes which give us an approximate solution of our systems.

Particularly, we have obtained the derivatives approximations using finite diffe-
rences, the scheme of which is introduced in the course of Numerical methods I.
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Temporal derivative approximation

In order to give an approximation of ut in one point (xi, yj, tn), we can perform a
first order finite differences formula:

ut(tn, xi, yj) ≈
un+1
i,j − uni,j

∆t
.

Spatial derivative approximation

We remember that in reaction-diffusion models the spatial derivatives appear in the
Laplacian operator. Thus, we have to approximate second derivatives uxx and uyy
in a certain node. This approximation of the second derivative is usually applying
the central differences scheme:

uxx(tn, xi, yj) ≈
uni+1,j − 2uni,j + uni−1,j

h2
x

,

Performig the same process for uyy we obtain:

uyy(tn, xi, yj) ≈
uni,j+1 − 2uni,j + uni,j−1

h2
y

.

Finally, we can write the Laplacian operator in the following form:

∆u = uxx + uyy =
uni+1,j − 2uni,j + uni−1,j

h2
x

+
uni,j+1 − 2uni,j + uni,j−1

h2
y

.

with i = 0, . . . ,Mx − 1 and j = 0, . . . ,My − 1.

5.2.4 Explicit method for reaction-diffusion equations

There exist some schemes which enable us to obtain numerical solutions of the
discrete system that we have built before. These schemes are classified according
to the convergence order of their temporal scheme and the time when Laplacian
operator is evaluated. Particularly, we will explain explicit method.

In this scheme, the temporal derivative is given by first order approximation and
the right part of the equation is evaluated at time n.

Thus, we write:

un+1
i,j − uni,j

∆t
= g(uni,j) +D

(
uni+1,j − 2uni,j + uni−1,j

h2
x

+
uni,j+1 − 2uni,j + uni,j−1

h2
y

)
.

Applying some algebra on this expression we obtain:

un+1
i,j = uni,j + ∆tg(uni,j) + ∆tD

(
uni+1,j − 2uni,j + uni−1,j

h2
x

+
uni,j+1 − 2uni,j + uni,j−1

h2
y

)
.
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where n = 0, 1, . . . , N − 1, i = 0, . . . ,Mx − 1 and j = 0, . . . ,My − 1.

Therefore, from this last expression we can observe that to obtain the solution
at a certain time we only have to substitute the previous information. That is, to
find the solution at time n = 1 we substitute in the last equality the values of u
and g at time n = 0 that we have from the initial conditions. Thus, performing
some iterations, we can get the solution at time n+ 1 substituting the information
we have obtained at time n.

This method is simple but its stability is limited, that is, we have to choose ∆t
with h2-order to have some stability. It means that a detailed solution requires
smaller steps, and so, more iterations.

Explicit finite difference method stability is explained and justified in the Ap-
pendix B.

Explicit method for the one dimensional case

In this case the domain is an interval [0, A] with periodic boundary conditions, as
well. Therefore, the Laplacian of u for this case is:

∆u = uxx.

Hence, the explicit finite difference method for the one dimensional case is:

un+1
i = uni + ∆tg(uni ) + ∆tD

(
uni+1,j − 2uni,j + uni−1,n

h2
x

)
.

Explicit method with a torus as a spatial domain

In order to be able to give the explicit finite difference method for the torus, we must
have in mind its parametrization, which we have introduced in section 4.4. From
this expression, we obtain that the explicit scheme on the torus is quite similar to
the flat torus one, but there are two differences.

On the one hand, the spatial domain that we consider is the square [0, 2π]×[0, 2π],
and the spatial variables are θ1 and θ2 instead of x and y. Therefore, spatial steps
are:

hθ1 = h1 =
2π

M1

hθ2 = h2 =
2π

M2

,

where M1 and M2 correspond to the number of horizontal and vertical nodes of the
mesh, respectively.

On the other hand, we remember from Chapter 4 that we can write the Laplacian
of u on the torus with angles θ1 and θ2 by the expression:
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∆u =
1

(R1 +R2 cos(θ2))2
uθ1θ1 −

sin θ2

R2(R1 +R2 cos θ2)
uθ2 +

1

R2
2

uθ2θ2 .

Hence, the discretization of the Laplacian changes in that second derivatives are
multiplied by two new factors and it has appeared as well a first derivative, which
can be aproximated by the central differences scheme:

uθ2(θ1i, θ2i, tn) ≈
uni,j+1 − uni,j−1

2h2

.

Therefore, the explicit scheme for this case is:

un+1
i,j = uni,j+∆tg(uni,j)+D(

1

(R1 +R2 cos(θ2j))2

δ2
1

h2
1

+
1

R2
2

δ2
2

h2
2

− sin(θ2j)

R2(R1 +R2 cos(θ2j))

uni,j+1 − uni,j−1

2h2

),

where: {
δ2

1 = ui+1,j − 2ui,j + ui−1,j

δ2
2 = ui,j+1 − 2ui,j + ui,j−1

5.3 Simulations

We have arrived at the final part of the project, which is the one that shows graphi-
cally all the contents developed along it. All the simulations have been done exe-
cuting three programs in C designed for this project, which are explained and
specified in Appendix C, and using gnuplot (for the cases 1D and flat torus) and
ParaView (for the torus case).

In all the simulations we have performed Schakenberg’s model (5.1) and con-
sidered fixed a, b, d, total time T and temporal step ∆t. Particularly, we have
taken:

- a = 0.1.

- b = 0.9.

- d = 10.

- T = 5.

-∆t = 0.00001.

These values of the parameters a, b and d are the most frequently used for this
kind of simulations since they satisfy, for appropiate values of A, B and γ, Turing’s
conditions and lead to the existence of modes which belong to the unstable range.
Furthermore, it has been chosen this temporal step in order to have stability in our
explicit scheme.

Conversely, we have tuned the geometrical parameters independently, according
to which characteristic we want to focus. Specifically, γ (scale) has been tuned in
1D simulations, A (thickness) in flat torus ones and R1 (curvature) on the torus.
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One dimensional simulations

As we have mentioned before, we use this case to see the importance of the scale,
quantified by γ. In order to show it, we have executed our first program considering
fixed A = 2, and tuning γ with values: γ = 114, γ = 1000, γ = 10000 and
γ = 50000.

From this pictures we can se how the number of modes grows more and more
while γ increases but, for too large values (γ = 50000), the concentration is almost
uniform, that is, the system has reached a new equilibrium and no pattern takes
place.

(a) (b)

(c) (d)

Figure 4: (a) γ = 114. (b) γ = 1000. (c) γ = 10000. (d) γ = 50000
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Flat torus simulations

In this subsection we include two kinds of graphics: ones in 3D, which are useful to
show the instabilities of the system, and the other ones (with the same parameters)
in 2D in which we can see the resulting pattern on the domain. Besides, as we
have mentioned before, the parameter which has been tuned is A, from which we
can see the importance of the thickness of the body or, equivalently, the effect of
the narrowness of the rectangle. Hence, parameters γ and B have been considered
fixed, particularly, γ = 1000 and B = 5.

We now remember that, in 4.2.2, we have justified that small values of A lead
to 1D patterns (stripes) and, conversely, sufficiently large values of this parameter
produce 2D patterns (stripes or spots).

As evidence, we can see in Figure 5 how increasing values of this paramater we
have a gradation from a striped pattern to a spotted one.

(a) (b)

(c) (d)
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(e) (f)

(g) (h)

Figure 5: (a) and (b): A = 2; (c) and (d): A = 3; (e) and (f): A = 4; (g) and (h):
A = 5.

Torus simulations

In this final simulations we also have started representing two types of graphics:
ones which show the instabilities, as the previous case, and another ones which
shows the pattern on a torus with the specific radius we consider. As we have
said before, we want to show the effect of the curvature tuning the parameter R1.
Particularly, we have considered fixed γ and R2 with values γ = 700 and R2 = 0.5.

We now remmember that, in 4.2.3, we have justified that small values of R1 lead
to 1D patterns (stripes) and, conversely, sufficiently large values of this parameter
produce 2D patterns (stripes or spots).

As evidence, we can see in Figure 6 how increasing values of this paramater we
have a gradation from a pattern which is quite striped to a totally spotted one.
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(a) (b)

(c) (d)

(e) (f)

Figure 6: (a) and (b): R1 = 0.6; (c) and (d): R1 = 0.75; (e) and (f): R1 = 1.
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6 Conclusions

6.1 Conclusions on the approach of the project

The mathematical problem of pattern formation can be studied by different areas.
One can choose one of them and start to develop it with precision focusing on this
particular area. However, in this project we have given a general vision of how each
mathematical branch interferes with this problem in order to have a global vision
of it.

We first have learnt how we obtain the general reaction-diffusion system of equa-
tions from studying the modeling of chemical reactions and diffusion. If one wants
to focus in this area, it could be a good idea to model some examples of chemical
reactions which can appear during the morphogenesis. Besides, we have given (as
additional information for this project) solutions for the substances concentrations
in the simplest case. Therefore, one could have computed, as well, solutions for
cases with higher complexity.

In the third chapter the area which acquires more importance is differential e-
quations and dynamical systems because we have mainly studied a bifurcation,
the so-called Turing instability. However, if one wants to deepen this topic, there
is the option of studying the Hopf bifurcation, which is similar to Turing’s one but
it is oscillatory instead of stationary.

Once finished this chapter, topology and geometry get the lead role in Chap-
ter 4. First of all, we have seen that studying the effect of the narrowness of the
rectangle [0, A]× [0, B] that we have considered along this project is equivalent to
see how the thickness of the animal body affects the resulting pattern. In addition,
we have been interested in study the importance of the curvature, particularly con-
sidering a torus as our domain. However, we have not done a rigorous explanation
since it recquires to repeat most of the contents of the third chapter with the form of
Laplacian in the torus. Therefore, if there is an interest to deepen this part one can
do a rigorous study in this surface and as well in another ones like spheres, cones...
Furthermore, there some researchers studying this importance of the geometry in
growing domains.

Finally, we have made a numerical study of the problem using the explicit finite
difference method. This method is clear and easy to program. However, its stability
is limited and we have to consider sufficiently small temporal step to have accurate
solutions. Therefore, one option to expand the vision of the problem from this area
is, on the one hand, to study implicit schemes of the finite difference method or, on
the other hand, study directly some other methods with higher complexity.

All in all, although it is more usual to choose one area and focus on it, I am
delighted with my decision to make a global vision of the problem, because I think
it is very interesting to see how different mathematical areas work together in a
same topic giving a high variety of useful information.
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6.2 Conclusions on the results of the project

As we have explained above, along all this project we have developed some diffe-
rent aspects about pattern formation (reaction-diffusion models, Turing instability
and the influence of the geometry). Furthermore, to show the results graphically,
we have designed a program in C using all this information. Then, after execu-
ting it tuning some geometrical parameters, we have observed that the simulations
correspond to the results we have given in this bachelor’s thesis.

Therefore, we could think that our contents are correct. However, we have made
a last check to ensure that our program is correct as well. This test has consisted of
simulating Figure 5.3 of the source [9] and verifying that the results are the same.
Since all the programs designed in this project follow the same structure we have
chosen only one of them: flat torus case.

We can see in Figure 5 that we have obtained similar patterns, which is another
sign to contemplate that our outcome is correct. In addition, we can also see the
effect of the parameter γ in flat torus.

(a) (b) (c)

(d) (e) (f)

Figure 7: Simulations of the Schakenberg’s model with γ = 114, γ = 1000 and
γ = 5000. (a), (b) and (c) are obtained from my program and (d), (e) and (f) from
source [9].
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A Laplacian on a torus

We start with the general case of a surface parametrized by χ : D ⊂ R2 → R3 in
orthogonal coordinates (ζ, η), which satisfy:

<
∂χ

∂ζ
,
∂χ

∂η
>= 0

with < · , · > denoting the inner product.

In this case, the Laplacian operator of a scalar function u is expressed by:

∆u =
1

h1h2

[(
h2

h1

uζ)ζ + (
h1

h2

uη)η],

where the subindex denotes derivation (uζ = ∂u
∂ζ

) and: h1 =
∣∣∣∂χ∂ζ ∣∣∣

h2 =
∣∣∣∂χ∂η ∣∣∣

In section 4.4. we have parametrized torus as follows

χ(θ1, θ2) =

 (R1 +R2 cos θ2) cos θ1

(R1 +R2 cos θ2) sin θ1

R2 sin θ2

.
Therefore, we can compute the laplacian we want to obtain using the first formula

of this appendix. We thus need the expressions of h1 and h2:

h1 =

∣∣∣∣ ∂χ∂θ1

∣∣∣∣ =

∣∣∣∣∣∣
 −(R1 +R2 cos θ2) sin θ1

(R1 +R2 cos θ2) cos θ1

0

∣∣∣∣∣∣ = R1 +R2 cos θ2

h2 =

∣∣∣∣ ∂χ∂θ2

∣∣∣∣ =

∣∣∣∣∣∣
 −R2 cos θ1 sin θ2

−R2 sin θ1 sin θ2

R2 cos θ2

∣∣∣∣∣∣ = R2

Replacing h1 and h2 in the first formula we obtain:

∆u =
1

R2(R1 +R2 cos θ2)
[(

R2

R1 +R2 cos θ2

uθ1)θ1 + (
R1 +R2 cos θ2

R2

uθ2)θ2 ]

=
1

(R1 +R2 cos(θ2))2
uθ1θ1 −

sin θ2

R2(R1 +R2 cos θ2)
uθ2 +

1

R2
2
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B Stability of the explicit finite difference method

We will develop this section around the one dimensional case

∂u

∂t
= g(u) +D

∂2u

∂y2
.

However, as it is not the main goal of this project, we will simplify it omitting
nonlinear terms, that is, considering g(u)=0 and obtaining the equation

∂u

∂t
= D

∂2u

∂y2
,

which is the diffusion equation in one dimension.

We now remember from the fifth chapter that the explicit scheme of finite dif-
ference method for reaction-diffusion equation in 1D with g(u) = 0 is:

un+1
j = unj +

D∆t

h2
(unj+1 − 2unj + unj−1).

Specifically, in matrix notation:
un+1

0

un+1
1
...

un+1
m−1

 =


un0
un1
...

unm−1

+ D∆t
h2


−2 1 0 . . . 1
1 −2 1 . . . 0
. . . . . . . . . . . . . . . . . .
1 0 0 . . . 2




un0
un1
...

unm−1


Calling C the previous matrix, we can rewrite the explicit scheme in the form:

un+1 = (I +
D∆t

h2
C)un.

Therefore we can write for any time n:

un = (I +
D∆t

h2
C)nu0.

Now, in order to have stability, we have to impose that the eigenvalues σj of
matrix (I + D∆t

h2
C) must satisfy:

|σj| ≤ 1,

for j = 0, . . . , n− 1. Hence, we need to compute these eigenvalues. First of all, we
give a definition and a lemma which will be useful to do this calculation.

Definition B.0.0.1. A circulant matrix is a n×n matrix whose rows are composed
of cyclically shifted versions of a list (c0, . . . , cn−1), that is, a matrix which has the
form:
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c0 cn−1 cn−2 . . . c1

c1 c0 cn−1 . . . c2

c2 c1 c0 . . . c3

. . . . . . . . . . . . . . . . . . . . . . . . .
cn−1 cn−2 cn−3 . . . c0


Lemma B.0.0.1. The corresponding eigenvalues λ of a circulant matrix C with
components (c0, . . . , cn−1) are:

λj = c0 + cn−1ωj + cn−2ω
2
j + · · ·+ c1ω

n−1
j ,

where ωj = exp(2πij
n

), i =
√
−1 and j = 0, 1, . . . , n− 1.

We now observe that our matrix C of the explicit scheme is a circulant matrix
with coefficients: 

c0 = 2
c1 = cn−1 = 1

c2 = · · · = cn−2 = 0

Therefore, its eigenvalues λj are:

λj = −2 + ωj + ωn−1
j = −2 + exp(

2πij

n
) + exp(

2πij(n− 1)

n
).

However, the eigenvalues that we want to study are the ones of (I + D∆t
h2
C). One

can easily observe that they are:

σj = 1 +
D∆t

h2
λj = 1 +

D∆t

h2
(−2 + exp(

2πij

n
) + exp(

2πij(n− 1)

n
)).

We now can impose the stability condition:

|σj| ≤ 1 ⇐⇒ |1 +
D∆t

h2
(−2 + exp(

2πij

n
) + exp(

2πij(n− 1)

n
))| ≤ 1

(1)⇐⇒ |(1−2
D∆t

h2
)+
D∆t

h2
(exp(

2πij

n
)+exp(

−2πij

n
))| ≤ 1

(2)⇐⇒ |(1−2
D∆t

h2
)+2

D∆t

h2
cos(

2πj

n
)| ≤ 1

(3)⇐⇒ |1− 4
D∆t

h2
sin2(

2πj

2n
)| ≤ 1 ⇐⇒ 0 ≤ 4

D∆t

h2
sin2(

2πj

2n
) ≤ 2

⇐⇒ 0 ≤ D∆t

h2
≤ 1

2 sin2(2πj
2n

)
.

The equivalences are justified by:

(1) The complex exponential is 2πi periodic.

(2) eyi + e−yi = 2cos(y).

(3) cos 2α = 1− 2 sin2 α.
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The last condition we have obtained is equivalent to:

0 ≤ D∆t

h2
≤ 1

2
≤ ⇐⇒ ∆t ≤ h2

2D
.

This is the reason why in 5.2.4 we have said that we have to choose ∆t with
h2-order to have some stability.
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C The program

We have designed three programs in C, which differ in what domain we have taken
in each one: 1D, flat torus and torus. However, they have the same structure:

- We have considered a mesh of 50 intervals (or 50× 50 in 2D case).

- The program asks you to give the values of the parameters of the model, the
dimensions of its domain, total time and temporal step.

- The initial conditions are oscillations around the base state. Particularly, we
have used the following ones (from [9]):

One dimensional case

u1(0, x) = u1b + 0.001
25∑
j=1

cos(2πjx)

j
,

u2(0, x) = u2b + 0.001
25∑
j=1

cos(2πjx)

j
.

Two dimensional cases

u1(0, x, y) = u1b + 0.0016 cos(2π(x+ y)) + 0.01
8∑
j=1

cos(2πj),

u2(0, x, y) = u2b + 0.0016 cos(2π(x+ y)) + 0.01
8∑
j=1

cos(2πj).

- We have taken periodic conditions. It implies that solutions in one node i or
(i, j) are the same ones of the ones in the node M + i or (M + i,M + j) respectively.
This is the reason why we have used the modulus operator in C % along all the
program in expressions like u[(M + i)%i]

- We have applied the explicit scheme explained in section 5.2.4.

One dimensional case

1 #inc lude<s t d i o . h>
#inc lude<math . h>

3 #inc lude<s t d l i b . h>

5 #de f i n e p i 3.1415926535897932
#de f i n e M 50

7

double gm= 0 ;
9

/∗FUNCTIONS OF THE MODEL∗/
11 double f 1 ( double a , double u1 , double u2 ) {

double f 1 ;

40



13 f 1=gm∗ ( a−u1∗(1−u1∗u2 ) ) ;
r e turn f1 ;

15 }

17 double f 2 ( double b , double u1 , double u2 ) {
double f 2 ;

19 f 2=gm∗ (b−u1∗u1∗u2 ) ;
r e turn f2 ;

21 }

23 i n t main ( void ) {
i n t n , i , j , N;

25 double a , b , l , d , h , T, pastemp , x [M+1] , sum [M+1] , u1 [M+1] , u2 [M+1] ,
u1b [M+1] , u2b [M+1] ;

27 p r i n t f ( ” Introduce parameters a , b , gm and d :\n” ) ;
s can f ( ”%l f %l f %l f %l f ” , &a , &b , &gm, &d) ;

29

p r i n t f ( ” Introduce length , t o t a l time T and temporal s tep \n” ) ;
31 s can f ( ”%l f %l f %l f ” , &l , &T, &pastemp ) ;

33 /∗SPATIAL STEP∗/
h=l /M;

35

/∗DISCRETE DOMAIN∗/
37 x [ 0 ]= 0 . ;

f o r ( i =0; i<M; i++){
39 x [ i +1]=x [ i ]+h ;
}

41

/∗NUMBER OF TEMPORAL ITERATIONS∗/
43 N=( in t ) ( (T/pastemp )+1) ;

45 /∗BASE STATE∗/
f o r ( i =0; i<M+1; i++){

47 u1b [ i ]= a+b ;
u2b [ i ]=b/( ( a+b) ∗ ( a+b) ) ;

49

}
51

/∗INITIAL CONDITIONS∗/
53 f o r ( i =0; i<M+1; i++){

sum [ i ]=0 . ;
55 f o r ( j =0; j <25; j++){

sum [ i ]+=( cos (2 ∗ pi ∗ ( j +1)∗x [ i ] ) /( j +1) ) ;
57 }

u1 [ i ]=u1b [ i ]+0.001 ∗sum [ i ] ;
59 u2 [ i ]=u2b [ i ]+0.001 ∗sum [ i ] ;
}

61

FILE ∗ pat te rns1d in ;
63 pat t e rns1d in=fopen ( ” pat t e rns1d in . dat” , ”w” ) ;

i f ( pa t t e rns1d in==NULL) e x i t (1 ) ;
65

f o r ( i =0; i<M+1; i++){
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67 f p r i n t f ( patterns1d in , ”%l f %l f %l f \n” , x [ i ] , u1 [ i ] , u2 [ i ] ) ;

69 }

71 f o r (n=0; n<N; n++){
f o r ( i =0; i<M+1; i++){

73 u1 [ i ]=u1 [ i%M]+(pastemp∗ f 1 ( a , u1 [ i%M] , u2 [ i%M] ) )+(pastemp∗ ( 1 . / ( h∗h) ) ∗ ( u1
[ ( i +1)%M]−2∗u1 [ i%M]+u1 [ ( i −1)%M] ) ) ;

u2 [ i ]=u2 [ i%M]+(pastemp∗ f 2 (b , u1 [ i%M] , u2 [ i%M] ) )+(d∗pastemp∗ ( 1 . / ( h∗h) ) ∗ (
u2 [ ( i +1)%M]−2∗u2 [ i%M]+u2 [ ( i −1)%M] ) ) ;

75 }
}

77 FILE ∗ patterns1d ;
patterns1d=fopen ( ” patterns1d . dat” , ”w” ) ;

79 i f ( patterns1d==NULL) e x i t (1 ) ;

81 f o r ( i =0; i<M+1; i++){
f p r i n t f ( patterns1d , ”%l f %l f %l f \n” , x [ i ] , u1 [ i ] , u2 [ i ] ) ;

83

}
85

re turn 0 ;
87 }

Flat torus

1 #inc lude<s t d i o . h>
#inc lude<math . h>

3 #inc lude<s t d l i b . h>

5

#de f i n e p i 3.1415926535897932
7 #de f i n e Mx 50
#de f i n e My 50

9

double gm= 0 ;
11

13 /∗FUNCTIONS OF THE MODEL∗/
double f 1 ( double a , double u1 , double u2 ) {

15 double f 1 ;
f 1=gm∗ ( a−u1∗(1−u1∗u2 ) ) ;

17 re turn f1 ;
}

19

double f 2 ( double b , double u1 , double u2 ) {
21 double f 2 ;

f 2=gm∗ (b−u1∗u1∗u2 ) ;
23 re turn f2 ;
}

25

i n t main ( void ) {
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27 i n t n , i , j , k , N;
double a , b , lx , ly , d , hx , hy , T, pastemp , x [Mx+1] , y [My+1] , sum [Mx

+1] [My+1] , u1 [Mx+1] [My+1] , u2 [Mx+1] [My+1] , u1b [Mx+1] [My+1] , u2b [Mx
+1] [My+1] ;

29

p r i n t f ( ” Introduce parameters a , b , gm and d :\n” ) ;
31 s can f ( ”%l f %l f %l f %l f ” , &a , &b , &gm, &d) ;

33 p r i n t f ( ” Introduce length , heigth , t o t a l time T and temporal s tep \n” ) ;
s can f ( ”%l f %l f %l f %l f ” , &lx , &ly , &T, &pastemp ) ;

35

/∗SPATIAL STEP∗/
37 hx=lx /Mx;

hy=ly /My;
39

/∗DISCRETE DOMAINS∗/
41 x [ 0 ]= 0 . ;

f o r ( i =0; i<Mx; i++){
43 x [ i +1]=x [ i ]+hx ;
}

45 y [ 0 ]= 0 . ;
f o r ( j =0; j<My; j++){

47 y [ j+1]=y [ j ]+hy ;
}

49

/∗NUMBER OF TEMPORAL ITERATIONS∗/
51 N=( in t ) ( (T/pastemp )+1) ;

53 /∗BASE STATE∗/
f o r ( i =0; i<Mx+1; i++){

55 f o r ( j =0; j<My+1; j++){
u1b [ i ] [ j ]= a+b ;

57 u2b [ i ] [ j ]=b/( ( a+b) ∗ ( a+b) ) ;
}

59 }

61 /∗INITIAL CONDITIONS∗/
f o r ( i =0; i<Mx+1; i++){

63 f o r ( j =0; j<My+1; j++){
sum [ i ] [ j ]=0 . ;

65 f o r ( k=0; k<8;k++){
sum [ i ] [ j ]+=( cos (2 ∗ pi ∗k∗x [ i ] ) ) ;

67 }
u1 [ i ] [ j ]=u1b [ i ] [ j ]+0.0016 ∗ cos (2 ∗ pi ∗ ( x [ i ]+y [ j ] ) ) +0.001∗sum [ i ] [ j ] ;

69 u2 [ i ] [ j ]=u2b [ i ] [ j ]+0.0016 ∗ cos (2 ∗ pi ∗ ( x [ i ]+y [ j ] ) ) +0.001∗sum [ i ] [ j ] ;
}

71 }

73 FILE ∗ pat t e rn s In ;
pa t t e rn s In=fopen ( ” pat t e rn s In . dat” , ”w” ) ;

75 i f ( pa t t e rn s In==NULL) e x i t (1 ) ;

77 f o r ( i =0; i<Mx+1; i++){
f o r ( j =0; j<My+1; j++){
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79 f p r i n t f ( patterns In , ”%l f %l f %l f %l f \n” , x [ i ] , y [ j ] , u1 [ i ] [ j ] , u2 [ i ] [ j ] )
;

}
81 }

83

f o r (n=0; n<N; n++){
85

f o r ( i =0; i<Mx+1; i++){
87 f o r ( j =0; j<My+1; j++){

u1 [ i ] [ j ]=u1 [ i%Mx] [ j%My]+(pastemp∗ f 1 ( a , u1 [ i%Mx] [ j%My] , u2 [ i%Mx] [ j%My] ) )
+(pastemp∗ ( 1 . / ( hx∗hx ) ) ∗ ( u1 [ ( i +1)%Mx] [ j%My]−2∗u1 [ i%Mx] [ j%My]+u1 [ (Mx+
i −1)%Mx] [ j%My] ) )+(pastemp∗ ( 1 . / ( hy∗hy ) ) ∗ ( u1 [ i%Mx] [ ( j +1)%My]−2∗u1 [ i%
Mx] [ j%My]+u1 [ i%Mx] [ (My+j−1)%My] ) ) ;

89 u2 [ i ] [ j ]=u2 [ i%Mx] [ j%My]+(pastemp∗ f 2 (b , u1 [ i%Mx] [ j%My] , u2 [ i%Mx] [ j%My] ) )
+(d∗pastemp∗ ( 1 . / ( hx∗hx ) ) ∗ ( u2 [ ( i +1)%Mx] [ j%My]−2∗u2 [ i%Mx] [ j%My]+u2 [ (
Mx+i −1)%Mx] [ j%My] ) )+(d∗pastemp∗ ( 1 . / ( hy∗hy ) ) ∗ ( u2 [ i%Mx] [ ( j +1)%My]−2∗
u2 [ i%Mx] [ j%My]+u2 [ i%Mx] [ (My+j−1)%My] ) ) ;

91 }
}

93

95 }

97 FILE ∗ pat t e rns ;
pa t t e rns=fopen ( ” pat t e rns . dat” , ”w” ) ;

99 i f ( pa t t e rns==NULL) e x i t (1 ) ;

101 f o r ( i =0; i<Mx+1; i++){
f o r ( j =0; j<My+1; j++){

103 f p r i n t f ( patterns , ”%l f %l f %l f %l f \n” , x [ i ] , y [ j ] , u1 [ i ] [ j ] , u2 [ i ] [ j ] ) ;
}

105 }

107 re turn 0 ;
}

Torus

#inc lude<s t d i o . h>
2 #inc lude<math . h>
#inc lude<s t d l i b . h>

4

#de f i n e p i 3.1415926535897932
6 #de f i n e M1 50
#de f i n e M2 50

8

double gm=0;
10

/∗FUNCTIONS OF THE MODEL∗/
12 double f 1 ( double a , double u1 , double u2 ) {
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double f 1 ;
14 f 1=gm∗ ( a−u1∗(1−u1∗u2 ) ) ;

r e turn f1 ;
16 }

18 double f 2 ( double b , double u1 , double u2 ) {
double f 2 ;

20 f 2=gm∗ (b−u1∗u1∗u2 ) ;
r e turn f2 ;

22 }

24 i n t main ( void ) {
i n t n , i , j , k , N;

26 double a , b , R1 , R2 , d , h1 , h2 , T, pastemp , theta1 [M1+1] , theta2 [M2
+1] , sum [M1+1] [M2+1] , u1 [M1+1] [M2+1] , u2 [M1+1] [M2+1] , u1b [M1+1] [M2
+1] , u2b [M1+1] [M2+1] , x [M1+1] [M2+1] , y [M1+1] [M2+1] , z [M1+1] [M2+1] ;

28 p r i n t f ( ” Introduce parameters a , b , gm and d :\n” ) ;
s can f ( ”%l f %l f %l f %l f ” , &a , &b , &gm, &d) ;

30

p r i n t f ( ” Introduce R1 , R2 , t o t a l time T and temporal s tep \n” ) ;
32 s can f ( ”%l f %l f %l f %l f ” , &R1 , &R2 , &T, &pastemp ) ;

34 /∗SPATIAL STEP∗/
h1=2∗ pi /M1;

36 h2=2∗ pi /M2;

38 /∗DISCRETE DOMAINS∗/
theta1 [ 0 ]= 0 . ;

40 f o r ( i =0; i<M1; i++){
theta1 [ i +1]=theta1 [ i ]+h1 ;

42 }
theta2 [ 0 ]= 0 . ;

44 f o r ( j =0; j<M2; j++){
theta2 [ j+1]=theta2 [ j ]+h2 ;

46 }

48 /∗NUMBER OF TEMPORAL ITERATIONS∗/
N=( in t ) ( (T/pastemp )+1) ;

50 p r i n t f ( ”number o f i t e r a t i o n s : %d” , N) ;

52 /∗BASE STATE∗/
f o r ( i =0; i<M1+1; i++){

54 f o r ( j =0; j<M2+1; j++){
u1b [ i ] [ j ]= a+b ;

56 u2b [ i ] [ j ]=b/( ( a+b) ∗ ( a+b) ) ;
}

58 }

60 /∗INITIAL CONDITIONS∗/
f o r ( i =0; i<M1+1; i++){

62 f o r ( j =0; j<M2+1; j++){
sum [ i ] [ j ]=0 . ;

64 f o r ( k=0; k<8;k++){
sum [ i ] [ j ]+=( cos (2 ∗ pi ∗k∗ theta1 [ i ] ) ) ;
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66 }
u1 [ i ] [ j ]=u1b [ i ] [ j ]+0.0016 ∗ cos (2 ∗ pi ∗ ( theta1 [ i ]+ theta2 [ j ] ) ) +0.001∗sum [ i

] [ j ] ;
68 u2 [ i ] [ j ]=u2b [ i ] [ j ]+0.0016 ∗ cos (2 ∗ pi ∗ ( theta1 [ i ]+ theta2 [ j ] ) ) +0.001∗sum [ i

] [ j ] ;
}

70 }

72 FILE ∗ patternsTorIn ;
patternsTorIn=fopen ( ” patternsTorIn . dat” , ”w” ) ;

74 i f ( patternsTorIn==NULL) e x i t (1 ) ;

76 f o r ( i =0; i<M1+1; i++){
f o r ( j =0; j<M2+1; j++){

78 f p r i n t f ( patternsTorIn , ”%l f %l f %l f %l f \n” , theta1 [ i ] , theta2 [ j ] , u1 [ i
] [ j ] , u2 [ i ] [ j ] ) ;

}
80 }

82

f o r (n=0; n<N; n++){
84

f o r ( i =0; i<M1+1; i++){
86 f o r ( j =0; j<M2+1; j++){

u1 [ i ] [ j ]=u1 [ i%M1 ] [ j%M2]+(pastemp∗ f 1 ( a , u1 [ i%M1 ] [ j%M2] , u2 [ i%M1 ] [ j%M2] ) )
+(pastemp∗ ( 1 . / ( (R1+(R2∗ cos ( theta2 [ j ] ) ) ) ∗ (R1+(R2∗ cos ( theta2 [ j ] ) ) ) ) ) ∗
( 1 . / ( h1∗h1 ) ) ∗ ( u1 [ ( i +1)%M1 ] [ j%M2]−2∗u1 [ i%M1 ] [ j%M2]+u1 [ (M1+i −1)%M1 ] [ j
%M2] ) )+(pastemp∗ ( 1 . / (R2∗R2) ) ∗ ( 1 . / ( h2∗h2 ) ) ∗ ( u1 [ i%M1 ] [ ( j +1)%M2]−2∗u1 [
i%M1 ] [ j%M2]+u1 [ i%M1 ] [ (M2+j−1)%M2] ) )−(pastemp∗ ( s i n ( theta2 [ j ] ) ) ∗ ( u1 [ i
%M1 ] [ ( j +1)%M2]−u1 [ i%M1 ] [ ( j−1)%M2] ) /(2 ∗h2∗R2∗ (R1+(R2∗ cos ( theta2 [ j ] ) )
) ) ) ;

88 u2 [ i ] [ j ]=u2 [ i%M1 ] [ j%M2]+(pastemp∗ f 2 (b , u1 [ i%M1 ] [ j%M2] , u2 [ i%M1 ] [ j%M2] ) )
+(d∗pastemp∗ ( 1 . / ( (R1+(R2∗ cos ( theta2 [ j ] ) ) ) ∗ (R1+(R2∗ cos ( theta2 [ j ] ) ) ) )
) ∗ ( 1 . / ( h1∗h1 ) ) ∗ ( u2 [ ( i +1)%M1 ] [ j%M2]−2∗u2 [ i%M1 ] [ j%M2]+u2 [ (M1+i −1)%M1
] [ j%M2] ) )+(d∗pastemp∗ ( 1 . / (R2∗R2) ) ∗ ( 1 . / ( h2∗h2 ) ) ∗ ( u2 [ i%M1 ] [ ( j +1)%M2
]−2∗u2 [ i%M1 ] [ j%M2]+u2 [ i%M1 ] [ (M2+j−1)%M2] ) )−(d∗pastemp∗ ( s i n ( theta2 [ j
] ) ) ∗ ( u2 [ i%M1 ] [ ( j +1)%M2]−u2 [ i%M1 ] [ ( j−1)%M2] ) /(2 ∗h2∗R2∗ (R1+(R2∗ cos (
theta2 [ j ] ) ) ) ) ) ;

90 }
}

92

94 }

96 FILE ∗patternsTor ;
patternsTor=fopen ( ” patternsTor . dat” , ”w” ) ;

98 i f ( patternsTor==NULL) e x i t (1 ) ;
f p r i n t f ( patternsTor , ”x coord , ycoord , z coord , s c a l a r \n” ) ;

100

FILE ∗patternsTorGnuplot ;
102 patternsTorGnuplot=fopen ( ”patternsTorGnuplot . dat” , ”w” ) ;

i f ( patternsTorGnuplot==NULL) e x i t (1 ) ;
104
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106

f o r ( i =0; i<M1+1; i++){
108 f o r ( j =0; j<M2+1; j++){

x [ i ] [ j ] = (R1+R2∗ cos ( theta2 [ j ] ) ) ∗ cos ( theta1 [ i ] ) ;
110 y [ i ] [ j ] = (R1+R2∗ cos ( theta2 [ j ] ) ) ∗ s i n ( theta1 [ i ] ) ;

z [ i ] [ j ] = R2∗ s i n ( theta2 [ j ] ) ;
112 f p r i n t f ( patternsTorGnuplot , ”%l f %l f %l f %l f \n” , theta1 [ i ] , theta2 [ j

] , u1 [ i ] [ j ] , u2 [ i ] [ j ] ) ;
f p r i n t f ( patternsTor , ”%l f , %l f , %l f , %l f \n” , x [ i ] [ j ] , y [ i ] [ j ] , z [ i ] [ j

] , u1 [ i ] [ j ] ) ;
114

}
116 }

118 re turn 0 ;
}
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