
Final degree work

COMPUTER ENGINEERING DEGREE

Faculty of Mathematics
University of Barcelona

CAROTID ARTERY IMAGE
SEGMENTATION

Author: Laia Nadal Zaragoza

Director: Laura Igual Muñoz
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Abstract

The main process causing most cardiovascular diseases is atherosclerosis, which is
responsible for the thickening of the major arteries walls. Concretely, the intima-
media thickness (IMT) of the carotid artery wall is an early and effective marker
of atherosclerosis progression. The measurement of the IMT is directly extracted
from the segmentation of two different layers of the carotid artery wall. In this
project, we present three fully automated techniques to perform the segmentation
of these two layers of the carotid artery wall using B-mode ultrasound images.
The segmentation of the carotid artery wall is a challenging problem due to image
noise, artifacts and image shape, intensity and resolution variability. One of the
developed methods is based on lumen detection. It first detects the lumen region of
the carotid artery and then it seeks the both layers using the differences between the
intensity values of the image. The other two methods are based on a classification
system, considering the image segmentation problem as a classification problem of
the image pixels into interior or exterior of the region formed by the two layers.
One of them uses the random forest classifier and the other one uses the stacked
sequential learning scheme with random forest as a base learner. We validate the
proposed techniques using a data set of B-mode images obtained from a clinical
institution and we compare its performances.

Resum

El principal procés que causa la gran majoria de les malalties cardiovasculars és
l’aterosclerosi, que comporta un engruiximent de la paret de les artèries més im-
portants. Concretament, el gruix de la regió intima-media de la paret de l’artèria
caròtida, anomenat IMT en l’àmbit cĺınic, és un indicador efectiu de la progressió
de l’aterosclerosi. El mesurament de l’IMT s’extreu directament de la segmentació
de dues capes de la paret de la caròtida. En aquest projecte, presentem tres
tècniques completament automàtiques per segmentar aquestes dues capes de la
paret de l’artèria caròtida utilitzant imatges d’ultrasò. La segmentació de la paret
de la caròtida suposa un problema dif́ıcil degut al soroll de les imatges, artefactes
i variabilitat en la forma, intensitat i resolució de les imatges. Un dels mètodes
desenvolupats es basa en la detecció de la regió del flux sanguini (lumen). Primer
es detecta aquesta regió i després es busquen les dues capes utilitzant les diferències
entre els valors d’intensitat de la imatge. Els altres dos mètodes es basen en un
sistema de classificació, considerant el problema de segmentació de la imatge com
un problema de classificació dels seus ṕıxels en interior o exterior de la regió form-
ada per les dues capes. Un d’ells utilitza el classificador anomenat random forest i
l’altre utilitza l’esquema anomenat stacked sequential learning amb random forest
com a classificador base. Les tres tècniques proposades són validades utilitzant un
conjunt d’imatges d’ultrasò obtingudes d’una institució cĺınica i es comparen els
resultats obtinguts.
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Resumen

El principal proceso que causa la gran mayoŕıa de las enfermedades cardiovasculares
es la aterosclerosis, que conlleva un engrosamiento de la pared de las arterias más
importantes. Concretamente, el grosor de la región intima-media de la pared de la
arteria carótida, llamado IMT en el ámbito cĺınico, es un indicador efectivo de la
progresión de la aterosclerosis. La medición del IMT se extrae directamente de la
segmentación de dos capas de la pared de la carótida. En este proyecto, presentamos
tres técnicas completamente automáticas para segmentar estas dos capas de la pared
de la arteria carótida utilizando imágenes de ultrasonido. La segmentación de la
pared de la carótida supone un problema dif́ıcil debido al ruido de las imágenes,
artefactos y variabilidad en la forma, intensidad y resolución de las imágenes. Uno
de los métodos desarrollados se basa en la detección de la región del flujo sangúıneo
(lumen). Primero se detecta esta región y luego se buscan las dos capas utilizando
las diferencias entre los valores de intensidad de la imagen. Los otros dos métodos
se basan en un sistema de clasificación, considerando el problema de segmentación
de la imagen como un problema de clasificación de sus ṕıxeles en interior o exterior
de la región formada por las dos capas. Uno de ellos utiliza el clasificador llamado
random forest y el otro utiliza el esquema llamado stacked sequential learning con
random forest como clasificador base. Las tres técnicas propuestas son validadas
utilizando un conjunto de imágenes de ultrasonido obtenidas de una institución
cĺınica y se comparan los resultados obtenidos.
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1 Introduction

The framework of this work is a research project developed in PRBB2 by a team of
professors of the Mathematics Faculty of the University of Barcelona together with
the clinical institution REGICOR3. This research project deals with the clinical
problem introduced below.

In this section we introduce, as said before, the clinical problem of this work
followed by some anatomical details and clinical measures. The motivation and
technical objectives of the work are also introduced.

1.1 Background of the clinic problem

The number one cause of death is cardiovascular diseases (CVDs), representing 31%
of all global deaths in 2012 according to World Health Organization [11]. CVDs are
disorders of the heart and blood vessels. The CVDs that are responsible for most
deaths are heart attacks and strokes. The leading cause of heart attacks and strokes
is atherosclerosis, a condition that provokes a thickening of the artery walls due to
plaque formation. This plaque is mainly made of lipids and blocks the blood’s
flow. Atherosclerosis starts early in life and becomes dangerous with aging. This
condition usually does not cause symptoms until it is severely advanced, so the key
to decrease the number of deaths due to CVDs is prevention.

The most used marker for early stages of atherosclerosis and cardiovascular risk
is the increase in carotid artery intima-media thickness (IMT). Therefore, the meas-
urement of IMT for the assessment of the artery is of paramount importance for
the prevention of CVDs.

Ultrasound images of carotid artery are the most used tool for diagnosis of carotid
plaques. They allow the assessment of the artery and the measurement of the IMT
to evaluate the progression of atherosclerosis. Ultrasound technique has the advant-
ages of being non-invasive, safe for the patients because it does not use dangerous
radiations, real-time, reliable and the equipment is economic. The main drawbacks
of this methodology are that ultrasounds are operator dependent, causing variations
in ultrasound images of the same location obtained by different operators; and that
ultrasound images have a low signal-to-noise ratio that reduces the quality of the
images.

2PRBB is the acronym for Parc de Recerca Biomèdica de Barcelona which means Barcelona
Biomedical Research Park.

3REGICOR is the acronym for REgistre GIrońı del COR which means Girona’s Heart Registry.
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1.2 Carotid artery and IMT measurement

The carotid artery [20] is a major blood vessel that ascends in the neck in order to
supply blood to the brain, neck and face. We have two carotid arteries, one on the
left side and one on the right side. Figure 1(a) shows the situation of the carotid
artery.

The carotid artery is divided into three vessels: the common carotid artery
(CCA), the external carotid artery (ECA) and the internal carotid artery (ICA).
The CCA is the main vessel and bifurcates into two branches: the ICA, which
supplies blood to the brain; and the ECA, which supplies blood to the neck and
face. This bifurcation is called carotid bulb and it is characterized by an enlargement
of the vessel. The differentiation of the ICA and ECA is based on their depth from
neck skin. Figure 1(b) shows the anatomy of the carotid artery.

The carotid artery walls are made of three layers: adventitia, the outer layer;
media, the middle layer; and intima; the inner layer. The transition from the lumen
(blood) to the intima layer is called lumen-intima (LI), and the transition from the
media layer to the adventitia layer is called media-adventitia (MA). The walls are
called near wall and far wall also depending on their depth from neck skin. The
distinct layers of the carotid artery are shown in Figure 2.

The IMT is defined as the distance between the LI and MA interfaces. See
Figure 3 for an example. The IMT can be visualized in a longitudinal image of any
carotid artery part (ECA, ICA, CCA, bulb) on both walls of the vessel. However,
the distinction between the different layers is more obvious in the far wall than
in the near wall and, for this reason, is more common to measure the IMT of the
carotid artery far wall. In addition, the amount of plaque is higher in the ICA and
the bulb, but it is hard to distinguish the LI and MA boundaries there because
of the low image quality in these zones. So the IMT is generally measured in the
CCA.

In order to assess the IMT and determine if it can be considered as plaque, the
Mannheim consensus is applied [17]. According to the Mannheim consensus, plaque
is defined as a focal structure that encroaches into the arterial lumen of at least
0.5mm or 50% of the surrounding IMT value or demonstrates a thickness higher
than 1.5mm. So if the measured IMT is lower than 1.5mm, it is said that the carotid
artery has no plaque and has low IMT; otherwise it is said that the carotid artery
has plaque and has high IMT.
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(a) (b)

Figure 1: (a) Course of the carotid artery along the neck. (b) Anatomy of the
different carotid artery vessels.4

Figure 2: Drawing of the carotid artery with the boundaries: (1) adventitia (NW),
(2) adventitia-media (NW), (3) intima-lumen (NW), (4) lumen-initima (FW), (5)
media-adventitia(FW) and (6) adventitia (FW). NW = Near Wall. FW = Far Wall.
Image obtained from [19].

4Image (a) is obtained from https://www.nlm.nih.gov/medlineplus/ency/imagepages/9552.htm
and image (b) is obtained from http://www.healthcentral.com/heart-disease/encyclopedia/
carotid-artery-surgery-series-4035452/.
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Figure 3: Ultrasound longitudinal image of the CCA. The picture indicates the near
wall, the far wall, the lumen (L), the LI and MA boundaries and the IMT. Image
obtained from [9].

1.3 Motivation and objectives of the project

As said in the previous section, measurement of the IMT using ultrasound images of
the CCA is the most widely used clinical exam for the evaluation of the progression
of atherosclerosis.

Habitually, the IMT is manually measured by a trained operator directly from
the ultrasound image during the exam, by drawing two markers on the image.
Nevertheless, manual measurements are user dependent, time consuming, prone to
errors and nonviable when a large number of images should be analyzed.

As the IMT is the distance between the LI and MA interfaces, its measurement
is related to the segmentation of the CCA wall. Segmentation of the CCA wall
means tracing the LI and MA boundaries (see Figure 3). The aim of performing
the segmentation of the CCA wall is to measure the IMT using the segmentation
acquired, so it is a previous step for the IMT measurement.

In order to avoid the manual measurement of the IMT and the manual segment-
ation of the CCA wall, many computer applications for the IMT measurement and
the segmentation of the CCA wall have been developed. These techniques can be di-
vided into semi-automated and completely automated. A semi-automated method
needs some user interaction whereas a completely automated method does not need
any user interaction during its execution.

The purpose of this work is to carry out a research project to develop a fully
automated technique to perform the segmentation of the CCA far wall using ultra-
sound B-mode longitudinal images5. Therefore, the project consists in developing

5See section 6.1 to know the source of the ultrasound images we have to develop the project.
All the ultrasound images shown in the Figures are taken from there.

4



a method that automatically traces the LI and MA boundaries of the far wall of
the CCA.

The difficulties of the segmentation come from the different appearances of the
LI and MA interfaces in the images and the fact that the images are a type of
ultrasound imaging. The first one is due to the fact that the LI and MA boundaries
morphology changes depending on whether the CCA of the image has plaque (high
IMT) or not (low IMT). Figure 4 shows an example of a CCA with plaque and
another example of a CCA without plaque in order to appreciate the difference in
the appearance of the LI-MA region which is marked in green. The second diffi-
culty concerns that the ultrasound has particular characteristics that complicate
the segmentation problem. One characteristic is the noise of the image. It can be
caused by the sound waves, that reduces the quality of the images; or by artifacts
such as aggregated red cells, which causes that artery lumen appears brighter than
it should be; and calcium deposition, causing shadowing on the ultrasound image.
Another ultrasound characteristic is that the resolution of the images is different
depending on the source. Finally, another characteristic is the intensity variability
of the images that provokes having very bright images while others very dark. See
Figure 5 for an example of intensity variability.

(a) (b)

Figure 4: (a) Ultrasound longitudinal image of the CCA with plaque (green lines).
(b) Ultrasound longitudinal image of the CCA without plaque (green lines).
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Figure 5: Two different ultrasound longitudinal images of the CCA with different
intensities.

1.4 Document structure

The document is structured as follows. Section 2 reports how the whole project was
planned initially, how the project was really planned after its development and an
economic estimation for the project. Section 3 summarizes several papers related to
the problem treated in this work. Section 4 reviews the methods used for the project
development. Section 5 explains the different implemented algorithms carried out
during the project to reach the objectives. Section 6 introduces the data set used,
explains the different validation measures computed to evaluate the algorithms,
shows the quantitative and qualitative results obtained, presents a discussion on
the results and shows the execution time of the methods. Section 7 covers the
conclusions and future work.

6



2 Planning

This section shows the planning of the project before starting it and the real plan-
ning after finishing it. Then, the economic cost that would have the project is
estimated.

2.1 Initial planning

Before starting the project, a previous planning of the project timeline was done.
This planning consists in predicting the tasks that should be done to develop the
project and estimating the time required for each task.

The main tasks considered to make the planning are: preparation, development
and memory writing. The preparation is the first step and consists in reading
different papers in order to get knowledge about the subject. This task also includes
getting familiar with the programming language and its tools. The following task
is development. This task can be divided into implementation and testing and
results. The implementation includes the code development and the testing and
results consist in doing different tests and validate them. The last task is the
memory writing to explain all the development of the project.

The final degree work consists of 18 ECTS credits and each credit corresponds to
25 work hours. So, the final degree work is equivalent to 450 work hours. In order
to develop the project, the number of available weeks is 20. Then, the amount of
hours of work during a week is 22.5. With this in mind, the estimated time for each
task is written in Table 1. Figure 6 shows the Gantt diagram of the initial planning.

TASKS ESTIMATED DURATION (Weeks)
Preparation 5

Project development 10
Implementation 6

Testing and results 4
Memory writing 5

Table 1: Tasks and estimated duration for the initial planning.

Figure 6: Gantt diagram of the initial planning.
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2.2 Real planning

Once the project is done, it can be said that the real timeline of the project has
been pretty tight to the initial planning. However, there are some changes from
the initial planning. The sub-tasks of development have been done concurrently
rather than sequentially. Also, the duration of the development task has increased
because the execution time of the validation of the different algorithms implemented
has been high. Because of this, the final part of the development and almost all
memory writing task have been done at the same time.

The real time required for each task is shown in Table 2 and the Gantt diagram
of the final planning is shown in Figure 7.

TASKS ESTIMATED DURATION (Weeks)
Preparation 5

Project development 14
Implementation 13

Testing and results 12
Memory writing 5

Table 2: Tasks and estimated duration for the real planning.

Figure 7: Gantt diagram of the real planning.

2.3 Economic evaluation

In order to estimate the cost of the project, we need to know the components needed
for the project development and its price.

Regarding the material for the project, we need a powerful computer and the
Matlab license. Regarding the employees, we need a programmer.

We consider that the programmer only has to do the development. We assume
that he/she does not need the preparation task because he/she knows the project
and the programming language and we assume that the memory writing task is
not needed either. So, the amount of hours that the programmer needs to develop
the project is equal to the number of hours estimated for the development task in
section 3.1: 225 hours (=10weeks · 22.5h/week). Considering that the programmer
works 4 hours a day from Monday to Friday, the project will be developed for nearly
three months.
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In Table 3, we summarize the prices of all the components required for the
project. We consider that the salary of the programmer is 15e/h. Using the in-
formation of the table, we conclude that the estimated cost of the project would be
10.175e.

COMPONENT PRICE (e)

Computer 800
Matlab license 6.000
Programmer 3.375 (225h·15e/h)

TOTAL 10.175

Table 3: Prices of all the components required for the project.
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3 Related work

The carotid wall segmentation and the IMT measurement are a very discussed issue
in the literature. Many computer applications have been developed in order to deal
with these problems.

In this section, we summarize several papers related to carotid wall segmentation
and IMT measurement.

The paper [19] is an overview of distinct techniques used for developing al-
gorithms for CCA wall segmentation and IMT measurement. It explains the dif-
ferent methodologies and refers to some works that have used these techniques. It
points to the reason for using the technique and the found advantages and lim-
itations. The methodologies that are shown are: Dynamic Programming (DP),
Hough Transform (HT), Nakagami Mixture Modelling, Active Contour (snakes, dis-
crete dynamic contour model, level sets), Edge Detection (ED) and Gradient-Based
Techniques and Combined approaches.

The paper [9], as the previous one, is an overview of different CCA segmentation
and IMT measurement methodologies. It explains the same techniques mentioned
in the previous paper adding one more: local statistics and snakes. It refers to
some works for each methodology and analyzes them too. Apart from that, this
paper also discusses the challenges in carotid wall segmentation and the different
performance metrics for validation. The related challenges are:

- Biological variability in normal and pathology: the morphology of the carotid
is different if there is plaque or there is not.

- Instrumental variability: the images acquired by different operators and scan-
ners present differences.

- Noise sources: they cause a pixelated effect in the images. The main noise
sources are speckle noise, blood backscattering and shadow cones.

The presented performance metrics are used to validate the algorithm perform-
ance with human tracings and are the following: Mean absolute distance (MAD),
Hausdorff distance (HD), Polyline distance metric (PDM), Percent statistic test
and correlation.

In [10], we find a compilation of image segmentation methods for distinct clinical
domains applied to ultrasound images, both two-dimensional and three-dimensional.
First, it presents various works based on segmentation classified by clinical applic-
ation. The clinical domains considered are: cardiology, breast cancer, prostate,
vascular diseases and obstetrics and gynecology. Apart from naming papers related
to segmentation in these domains, it also summarizes the validation done in some of
the papers discussed. Then, it presents various works based on segmentation clas-
sified by prior information used in the methodology. The distinct prior information
considered is: speckle (physics), intensity, shape and time (temporal models). Fi-
nally, it contains a selection of ten papers that have original ideas or good validation
and have been influential in segmentation literature.
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The paper [18] proposes a method that deals with the characterization of carotid
atherosclerosis and the following classification into symptomatic or asymptomatic
for computer-aided diagnosis (CAD) systems. The presented CAD system consists
of two stages: the feature extraction and the classification. The feature extraction
is based on image texture. The classification stage uses AdaBoost and Support
Vector Machine (SVM) classifiers. AdaBoost is designed with five different weak
classifiers and SVM uses five distinct kernel configurations. This paper also proposes
an index called symptomatic asymptomatic carotid index (SACI) calculated using
texture features to classify the images into symptomatic or asymptomatic with just
one number.

The paper [1] presents a fully automated method for plaque segmentation using
combined B-mode ultrasound (BMUS) and contrast enhanced ultrasound (CEUS)
images. This method is divided into three parts: nonrigid motion estimation and
compensation, automated vessel detection and plaque segmentation. In the first
part, it obtains single BMUS and CEUS images averaging the motion compensated
image sequences. In the second part, it classifies the vessel candidates, obtained
with a previous lumen identification, into jugular vein, CCA, ICA or ECA. This
detection is done in both BMUS and CEUS images. In the last part, the plaque
segmentation consists in segmenting the LI and MA interfaces and then applies the
Mannheim consensus (previously explained in section 1.2) to detect the plaque. The
LI segmentation is performed in both BMUS and CEUS images by a joint-histogram
classification approach followed by a 1D dynamic programming procedure. The MA
segmentation is performed in BMUS images by multidimensional dynamic program-
ming (MDP).

In the papers [6] and [5], authors introduce a user-independent algorithm for the
segmentation of the common carotid artery (CCA) far wall detecting the LI and
MA layers. This method is called CULEX (Completely User-independent Layers
Extraction). CULEX is structured in two stages: identification of the region of
interest (ROI) and segmentation. The ROI identification tries to find the region
where the CCA far wall is located. To achieve that, authors use the intensity
profile relative to each column of the image and search the pixel that may belong
to the distal adventitial wall and the pixel that may belong to the lumen. The
adventitia pixel is considered a local maximum of the intensities. The lumen pixel
is the minimum found descending the intensity profile from the adventitia pixel
found before and with low mean intensity and variance. The segmentation of the
LI and MA interfaces is provided by a gradient-based technique that determines,
for each column of the image, the two maximal values of the gradient which are
then considered the LI and MA markers. Then the segmentation is refined using
an active contour model (snake) to adjust the boundaries detection.

The paper [8] shows an automated edge-based technique for IMT measurement
called CARES (Completely automated robust edge snapper). CARES consists in
a combination of two existing methods: CALEX (Completely automated layers
extraction) and FOAM (First order absolute moment). CALEX allows detecting
the far adventitia layer using feature extraction and classification. Then, using the
far adventitia interface provided, CARES traces a ROI which is a rectangle that
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contains the intima and media boundaries. FOAM is an edge-based operator. It
performs a map similar to gradient that produces an enhancement of the edges. So,
given the ROI, CARES applies the FOAM operator to it and then does a heuristic
search of the maximum points in order to get the segmentation of the LI and MA
profiles.

The paper [13] shows an automated methodology for carotid location, segment-
ation of LI and MA layers and IMT measurement called CARES 3.0, which is an
improvement of a previous release called CARES. For the carotid location, authors
use a feature extraction and classification system that performs a tracing of the far
adventitial profile. The result is improved by lumen detection and spike removal.
Spike removal deletes some mistakes in the profile traced. For the segmentation
of LI and MA boundaries, authors build a ROI considering ten pixels below and
above of the given adventitia profile, make an edge enhancement using the FOAM
operator and then apply a heuristic search for LI and MA peaks.
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4 Methodology

This section is an overview of the algorithms used for developing the segmentation
of the CCA far wall method. All of them are classification algorithms considering
that the classification problems can be used for segmentation. So, we have trans-
formed our segmentation problem into a classification problem.

4.1 Supervised classification system

The goal of the supervised classification is to learn a model from an input data that
can be used to predict the classes of new data. The input data is called training
data/set and the new data is called test data/set. The training data (S) consists
of a set of different examples where each example is a pair consisting of a feature
vector (xi) that describes the example, and the known class (yi) of the example, also
called label. The test data is a set of examples with unknown label that consists of
only the feature vector of each example. A test example cannot be included in the
training data.

Then, given a classifier A and a training data S = {(x1, y1), ..., (xi, yi), ..., (xn, yn)}
with n examples, where xi is the feature vector of the i-th example and yi is the
label of the i-th example, a classification algorithm learns a model f from the train-
ing data using the given classifier, f = A(S), which is able to predict the class label
y of a new example x, y = f(x).

The supervised classification scheme consists of two stages: training and test.
The training stage constructs the classifier training it with the feature vectors xi

and labels yi of the training data S. The test stage classifies the test data examples
represented for its feature vector x using the classifier trained f in the first stage. In
both stages, before the classifier training and before the classification respectively,
a previous step is required: feature extraction. Feature extraction constructs a
feature vector for each example which contains only the descriptive features of the
examples in order to reduce the input data by removing the irrelevant features.
Each feature included in the feature vector is a predictor (tm). Figure 8 shows the
graphical scheme of the supervised classification system.

Figure 8: Supervised classification scheme.
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4.2 Random forest

A random forest is a classifier consisting of an ensemble of decision trees. Each
decision tree is independently grown using a random sub-sample of the training
data S. So, for each decision tree, a subset of examples is chosen, with replacement,
from the training set. Apart from building each decision tree using a different
training set, random forest includes another element of randomness in the way of
building the decision tree. Each decision tree is constructed seeking the best option
from a subset of features randomly selected for each node. Once every decision
tree is built, given a new example x, its prediction y is the majority class of the
predictions ŷi from each single decision tree.

Some of the properties of random forest classifiers [14, 3, 16, 15] are: their ro-
bustness to overfit, their randomness, they show high predictive accuracy, they can
handle multiple features, they can work with high-dimensional data, their applic-
ability to both binary and multi-class problems, and they are not very sensitive to
the values of their parameters.

A decision tree is a classifier based on the idea of asking different questions about
the data features (predictors) until reaching a decision. A tree consists of a set of
nodes and a set of edges. A node of a decision tree symbolizes a question and an
edge of a decision tree symbolizes an answer indicating the path to follow. The
feature (predictor) that best divides the data would be represented by the root
node. The classification of a new example x starts at the root and follows the path
until reaching a terminal node (leaf node) which determines the predicted label y.

There are a lot of algorithms that defines how to construct the node function
to build a decision tree. One of them is called CART [2]. It creates a binary
decision tree that is constructed by splitting a node into two child nodes repeatedly,
beginning with the root node that contains the whole training data S. The tree
growing algorithm seeks the best split (node function) for each node. It consists in
following this steps for each node n, starting from the root node (considering the
case that the predictors of the feature vector are ordinal):

1. For each predictor tm of the feature vector xi = (t1, ..., tM), {tm}m∈M , sort
the J different values {vj}j∈J that the predictor can take from the smallest to the
largest. Go through each value vj except the first one. Split the node according to
it using the following rule:

if tm < vj, xi goes to the left child node, otherwise, goes to the right.

The best split point λm of the predictor tm among all vj is the one that maximizes
a splitting criterion. This step finds the best split for each predictor: tm < λm,
m ∈M . If t is an ordinal predictor with J different values, there are J - 1 different
splits on t.

2. Among all the best splits found in step 1, choose the one that maximizes the
splitting criterion to find the best split of the node n: tn < λn.

3. Split the node using the split found in step 2.

4. If a node is pure, that is, all xi in a node have identical label yi, the node will
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not be split (there are more stopping rules that can be applied).

See Figure 9 for an example.

There are several splitting criterion. The most used ones are based on the purity
of the nodes such as the Gini splitting criterion or based on the entropy of the
nodes.

CART algorithm uses the Gini splitting criterion: given a node n, the Gini
splitting criterion is the decrease of impurity defined as

G(n) = I(n)− pL · I(nL)− pR · I(nR)

where pL and pR are the probabilities of sending a case to the left child node nL

and to the right child node nR respectively, and I(n) is the Gini impurity measure
at a node n defined as

I(n) = 1−
∑
i∈I

p(yi|n)2 ∈ [0, 1[

where p(yi|n) denotes the fraction of examples belonging to label yi at a given node
n. Gini impurity reaches its minimum, I(n)=0, when all examples in the node have
the same label.

Figure 9: Binary decision tree with its node functions tp < λp defined by CART
algorithm. Image obtained from [14].

4.3 Stacked sequential learning

In many classification problems, contextual information is useful to solve ambiguous
cases in classification. Stacked sequential learning algorithm takes advantage of this
fact. An example of contextual information would be neighbors’ labels information
or neighbors’ probabilities of belonging to one of the classes information.

Stacked sequential learning is a meta-learning algorithm, in which an arbitrary
base learner A is augmented so as to make it aware of the labels y of nearby examples
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[4]. A meta-learning technique uses a combination of different classifiers in order to
predict a test example.

Stacked sequential learning [4] is simple to implement and can be applied to
almost any base learner. It has the drawback of having a high training time.

It has been demonstrated [4] that stacked sequential learning improves the per-
formance of non-sequential base learners and, sometimes, it also improves the per-
formance of learners that are designed for sequential tasks.

Stacked sequential learning scheme is based on a two layers classifier. First of
all, a classifier A is trained and tested performing a K-fold cross-validation on the
original data set S. Then, an extended data set S’ is created using the original data
S and the predicted labels ŷi from the previous classification. Finally, the classifier
A is trained with this extended data S’ obtaining the model f’. The first training
stage is called first step and the second training stage is called second step.

In order to test a new example x, it must be previously extended (x’) by adding
the prediction features. This procedure is done by training the base classifier A
with all the data set S, testing the new example with the trained classifier f and
then constructing the extended example following the same procedure as before.
Once the new example is extended, it is tested using the classifier trained with S’
in the second step, which gives the final predicted labels y (y=f’(x’)).

Algorithm 1 shows the stacked sequential learning algorithm [4]. It is divided
into learning algorithm, which corresponds to the training stage, and inference
algorithm, which corresponds to the test stage. The first instruction of the training
stage performs the K-fold cross-validation and stores each xi ∈ S joined with its
predicted label ŷt in a set called Ŝ. These predictions are then used in 2. to create
the data set S’ of extended instances x′i. Each extended example x′i is a vector
containing the example xi and the predicted labels ŷi of the Wh previous examples
and the Wf following ones, including the predicted label yi of xi. The third step
returns the trained models f=A(S) and f’=A(S’) used in the test stage. Test stage
computes in the second instruction the extended example x’ using the predictions
ŷ=f(x) obtained in instruction number 1. Step number 3 returns the final prediction
y of x.

Figure 10 shows the idea of stacked sequential learning using a graphical scheme.
The procedure for extending the data in this example uses a window W of size
W=Wh=Wf=2, meaning that the predicted labels from the W previous ones to the
W following ones are added to the extended data. So, this scheme shows that in
the first stage, the predicted labels ŷi are generated using the corresponding obser-
vation xi. In the second stage, the final label yi is generated by a classifier using
the observation xi and the predicted labels ŷi−2, ŷi−1, ŷi, ŷi+1 and ŷi+2 as inputs.
Color gray in the nodes means that the node is an input for a classifier, color white
means that the node is an output of a classifier, and the mix of these two colors
means that the node works as an input and as an output.
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Algorithm 1: Stacked Sequential Learning

Parameters: a history size Wh, a future size Wf , and a cross-validation para-
meter K.

Learning algorithm: Given a sample S = {(xi, yi)}, and a learning algorithm
A:

1. Construct a sample of predictions ŷi for each xi ∈ S as follows:

(a) Split S into K equal-sized disjoint subsets S1, ..., SK

(b) For j = 1, ..., K, let fj = A(S − Sj)

(c) Let Ŝ = {(xi, ŷi) : ŷi = fj(xi) and xi ∈ Sj}

2. Construct and extended data set S ′ of instances (x′i, yi) by converting each
xi to x′i as follows: x′i = (xi, ŷi −Wh, ..., ŷi +Wf )

3. Return two functions: f = A(S) and f ′ = A(S ′).

Inference algorithm: given an instance vector x:

1. Let ŷ = f(x)

2. Carry out Step 2 above to produce an extended instance x′ (using ŷ in
place of ŷi)

3. Return f ′(x′)

Figure 10: Stacked sequential learning scheme, W=2. Image obtained from [4].
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Another version of stacked sequential learning is called multi-scale stacked se-
quential learning [12]. The scheme of multi-scale stacked sequential learning in-
cludes a new block in the scheme of stacked sequential learning. This new block
defines the policy for creating the neighborhood model of the predicted labels. As
before, in the multi-scale stacked sequential learning scheme a classifier is trained
with the input data set S and the predicted labels ŷi are obtained. Then, instead
of using these predicted labels to construct the extended data set S’, the new block
represents the output of the classifier according to a multi-scale decomposition. Fi-
nally, a grid sampling of the resulting decomposition is done to create the extended
data S’. This new data set S’ is used, as before, to train a second classifier which
produces the final predictions y. So the difference between stacked sequential learn-
ing and multi-scale stacked sequential learning is the way of defining the extended
data set S’.
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5 Development

In order to achieve the objectives of the work, we have developed three different
methods. One is based on lumen extraction and the others two are based on a
classification system.

This section explains the implementation details of each method and reports the
programming language used to perform the algorithms.

5.1 LI-MA segmentation based on lumen extraction

The aim of this method is to automatically detect the LI and the MA layers of the
carotid artery in the far wall using a previous lumen extraction. The method is
implemented following the ideas proposed in the papers [7, 8].

The method can be divided into two parts: an approximate detection of the
artery lumen and the segmentation of the LI and MA boundaries.

The lumen detection is based on the fact that the pixels belonging to the lumen
have a neighborhood with specific properties. These properties are a low mean
intensity and a low standard deviation. So in this part we compute, for each pixel,
the mean and the standard deviation of the intensity values corresponding to its
(11x11) neighborhood. Before doing that computation, we apply to the image a
Gaussian filter in order to smooth it. See Figure 11 for an example. Then, we
consider lumen pixels as those with a neighborhood mean intensity lower than a
threshold th1=0.12 and a neighborhood standard deviation lower than a threshold
th2=0.14. These parameters have been manually set using the whole training set.
Once we have the image pixels classified into lumen pixel and non-lumen pixel,
we need to remove as much false positives (FP) as we can. The result of the
classification is represented in a binary image where 1 means lumen pixel and 0
means non-lumen pixel. To remove the FP, we perform a morphological closing
on the binary image and we search for the biggest connected component, which is
considered the lumen region. See Figure 12a and 12b for an example. However, it
may happen that the biggest connected component is not the lumen. We correct
that imposing that the lumen is the biggest connected component not being too
close to the top/bottom boundaries of the image. Even doing this, still there are
cases that the lumen is not detected correctly and we need to discard these cases.
To achieve that, we assume that all the lumens have a similar size (area). Therefore,
we compute the median of all the areas, excluding the one we are testing, and reject
the lumens whose area is not close enough to the median value.

The segmentation of the LI and MA boundaries of the carotid far wall uses the
result given by the lumen detection, specifically the lumen boundary which separ-
ates the lumen from the far wall. This boundary is moved 0.4 mm upwards from its
position in order to avoid, in some cases, that the lumen boundary includes part of
the far wall, and therefore, improve the performance of the method. See Figure 12c
for an example. We first enhance the image using three Gaussian smoothing filters
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obtaining values close to zero in a region without intensity changes and obtaining
high values otherwise. Afterwards, for each column of the image, we search for the
point which is marked as LI. This point is the maximum of the intensity profile be-
longing to the 75-th percentile and it is exactly the first maximum placed after the
lumen far boundary. Then, for each column of the image, we search for the point
which is marked as MA. This point is a maximum of the intensity profile belonging
to the 90-th percentile and it is exactly the first maximum placed after LI point
founded before. If there is not a point with these conditions, we skip the column
and continue with the next one. Finally, we have for each column the LI and MA
set of points and we compute the curve that best fits to each set of points so as to
obtain two curves which are the estimated LI and MA boundaries respectively. We
use a cubic spline for that fitting.

(a) (b)

Figure 11: Example of an image after applying the Gaussian smoothing filter. (a)
Original image. (b) Smoothed image.

(a) (b) (c)

Figure 12: Example of the output of the lumen detection. (a) Original image. (b)
The red region indicates the detected lumen region by the method. (c) The yellow
line indicates the bottom boundary of the detected lumen and the blue line indicates
the considered bottom lumen boundary after moving it upwards.
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5.2 LI-MA segmentation based on a classification system

As we said at the beginning of section 5, we have performed two methods based
on a classification system. The aim of these methods is to automatically detect
the LI and the MA layers of the carotid artery in the far wall using a classification
system, more exactly, a supervised classification system. Said in other words, these
methods deals with the image segmentation problem as a classification problem. In
order to work with a classification system, each pixel of the images is considered
as an example of the data set. As the purpose is to segment the region inside
two boundaries, the LI and the MA, there are two obvious classes/labels: inside
the region formed by the LI and MA layers and outside this region. We have
assigned label 1 to the pixels inside the region and label 0 to the pixels outside
the region. See Figure 13a for an example. As it can be seen in Figure 13a, the
pixels belonging outside the region has quite different features whether they are
above the region or below the region. Therefore, another way to label the pixels is
considering three classes: inside the region, above the region and below the region.
We have assigned label 1 to the pixels inside the region, label 2 to the pixels above
the region and label 3 to the pixels below the region. See Figure 13b for an example.
Even these classifications of the pixels seem evident, we can try to verify that the
pixels belonging to each label are really separable by doing a study of the features
(section 5.2.1). After doing this study and choosing which labels can be used, we
can proceed to implement the methods.

Both proposed methods follow the flowchart represented in Figure 14. Given
the input images, first they are modified in the pre-processing step. Then, the
classification step is applied to the image pixels, which is divided into two stages: the
training stage and the test stage. Finally, the classification obtained goes through
the post-processing step, which outputs the final segmentation.

One of the methods is the implementation of a classification system using random
forest as a classifier. The other method is the implementation of a classification
system using stacked sequential learning with random forest as a base learner. The
second method also includes the implementation of the stacked sequential learning
scheme (explained in section 4.3).

The following subsections present the feature extraction including the feature
study done and explain the pre-processing step, the development of both training
and test stages, and the post-processing step.
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(a) (b)

Figure 13: Labels assignment. Green lines indicate the LI-MA region. (a) Case of
two labels. (b) Case of three labels.

Figure 14: General flowchart of the methods based on a classification system.

5.2.1 Feature extraction

As we explained in section 4.1, before the training and test stages, there is a step
we need to do: feature extraction.

The feature vector xi of an example (pixel) is defined as a 5x5 patch of intensity
values which corresponds to the 5x5 neighborhood of xi and itself. Therefore, given
a pixel p{i,j}, its corresponding feature vector is:

xp{i,j} = (p{i−2,j−2}, p{i−1,j−2}, ..., p{i,j}, ..., p{i+1,j+2}, p{i+2,j+2})

See Figure 15 for an example. This patch of 5x5 pixels corresponds to a patch
of 0.2mm x 0.2mm.

Figure 15: Illustration of the patch definition.

22



Now that we have defined the feature vector, we can proceed to develop the
study of the features. The goal of this study is to figure out if the features of the
pixels from different labels are distinct enough from each other. If so, it means that
the labels are separable enough so that the classifier can distinguish them properly.

In order to prove that, we have done different tests with the training data S. The
construction of the training data is explained in the next subsection. Each feature
vector xi of the examples has 25 different features (predictors), whose values are
intensity values of the image (pixel values). We have done the tests listed below for
the case of two labels and for the case of three labels:

- Plot the values of the features

In this test we have separated the training data S by labels yi. Then, for each
label, we have plotted the mean of the data values of each feature. Finally, we have
put together the different graphics obtained for each label in one graphic to see the
differences between the labels better. We have also included, for each label, a plot
of the standard deviation of the data values of each feature in order to visualize the
variability of the values. Figure 16 shows the graphic in the case of two labels and
Figure 17 shows the graphic in the case of three labels.

As it can be seen in Figure 16, the both lines of the means graphics are different
to each other; however, the mean data values of the label 0 are mixed with some
of the mean data values of the label 1. Concretely, the variability of the label 0 is
approximately from 0 to 0.55 and the variability of the label 1 is approximately from
0.15 to 0.45 (standard deviations). This is because of the high range of intensity
values of the pixels belonging to label 0. If we look at Figure 13a, we can see that
label 0 contains pixels very dark (the ones belonging to the lumen, above the LI-MA
region) and it also includes bright pixels (the ones belonging to the far wall, below
the LI-MA region). On the other hand, we can see that the pixels of the label 1
are bright but not as much as the bright ones of the label 0. Then, even though
the range of each label are different, the range of the label 0 includes the range
of the label 1. Therefore, the classifier could learn the features of the label 1 and
distinguish them between the pixels of the label 0 that have low intensity or high
intensity, but it would be hard for the classifier to differentiate the pixels of the
label 0 that have intensity values similar from the intensity values of the label 1
and vice versa.

As it can be seen in Figure 17, the mean values of each label of the different
means graphics are not mixed. This is due to the fact that we are considering three
labels instead of two. Consequently, we are separating the bright pixels to the dark
ones of the label 0. So, the labels are quite separable. However, we can see that
the variability of the label 3 overlaps with the variability of the label 1, and the
variability of the labels 1 and 2 are close (standard deviations). This means that
the classifier could differentiate pretty good the label 1 from the label 2, but there
would be some pixels of the label 3 and some pixels of the label 1 hard to classify
correctly. It is harder to separate the label 1 from label 3 than from label 2 because
the similitude of the intensity values of the label 1 and 3 is higher than the similit-
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ude of the intensity values of the label 1 and 2.

Figure 16: Plot of the mean and the standard deviation of the data values for each
feature separated by labels. The means correspond to the graphics drawn and the
standard deviations are the horizontal lines. The x axis is the features (predictors)
and the y axis is the intensity values. Graphic in the case of two labels. Blue
corresponds to label 1 and pink corresponds to label 0. The blue lines overlap part
of the pink lines because they are drawn above them.

Figure 17: Plot of the mean and the standard deviation of the data values for each
feature separated by labels. The means correspond to the graphics drawn and the
standard deviations are the horizontal lines. The x axis is the features (predictors)
and the y axis is the intensity values. Graphic in the case of three labels. Blue
corresponds to label 1, red corresponds to label 2 and green corresponds to label 3.
The green lines overlap part of the blue lines because they are drawn above them.

24



- Histograms of the values

In this test we have separated the training data S by labels yi. Then, for each
label, we have averaged the feature vector xi for each example of the training data.
Finally, we have computed the histogram of the examples for each label. Figure 18
shows the histograms in the case of two labels and Figure 19 shows the histograms
in the case of three labels.

The histograms show us the same facts we have seen in the previous test. In the
case of two labels (see Figure 18), label 0 covers almost the whole range of intensity
values and, for that reason, it overlaps label 1, that has a smaller particular range
of intensity values. Then, the pixels belonging to this range of values would be
difficult to predict its class and this would generate errors. The same happens in
the case of three labels (see Figure 19). Some of the examples of label 2 and some
of the examples of label 3 overlap the region of label 1. However, as there are more
examples of label 3 than label 2 that overlap label 1, there would be more errors
between label 1 and 3 than between label 1 and 2. So, with this test we draw the
same conclusions as before.

(a) (b)

Figure 18: Histograms in the case of two labels. Blue corresponds to label 1 and
pink corresponds to label 0. The x axis is the intensity values and the y axis is
the number of cases belonging to the bins. (a) Histogram of the intensity values of
each example that belongs to label 1. (b) Histogram of the intensity values of each
example that belongs to label 0.
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(a) (b)

(c)

Figure 19: Histograms in the case of three labels. Blue corresponds to label 1, red
corresponds to label 2 and green corresponds to label 3. The x axis is the intensity
values and the y axis is the number of cases belonging to the bins. (a) Histogram
of the intensity values of each example that belongs to label 1. (b) Histogram of
the intensity values of each example that belongs to label 2. (c) Histogram of the
intensity values of each example that belongs to label 3.

To sum up, we have seen that the different labels are quite separable in both
options (using two labels and using three labels). For that reason, we have chosen
both options to work with and all the tests have been performed for both cases.
However, we have also seen that there are overlaps between the data of the differ-
ent labels. This will difficult the classification of some examples and will make the
segmentation a challenging task.
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5.2.2 Pre-processing step

This step modifies the input images in order to ease the classification. They are
converted to gray scale. They are also equalized, which means that their intensity
values are mapped in order to cover the entire possible range of values. This en-
hances their contrast. In addition, the images are normalized to the range [0 1].
Finally, the images are smoothed using a Gaussian smoothing filter (see Figure 11)
to reduce the pronounced differences between the intensity values.

5.2.3 Classification system: training stage

After defining the feature vector (section 5.2.1), we need to know which pixels of
the image are going to be part of the training data. Said in other words, we have to
choose the examples for the training data S. In order to do this, we have to define a
region of the image that comprises a balanced percentage of examples for each label
yi. Then, the pixels inside this region are the examples that compose the training
data. This region is called region of interest (ROI).

We have defined two different ways of choosing the training ROI for the training
data based on the ground truth (GT) of the images (section 6.1). The first one
consists in building a rectangle that comprises the pixels inside the GT and some
more pixels above and below it. The right and left boundaries of the rectangle are
defined by the right and left limits of the GT respectively. The top and bottom
boundaries of the rectangle are defined by finding the lower row of the image and
the higher row of the image that covers the GT and then decreasing θ1 mm the lower
row and increasing θ1 mm the higher row to include more pixels of the outside of the
GT. See Figure 20a for an example. The second ROI also consists in constructing
a region that comprises the pixels inside the GT and some more pixels above and
below it. But in this case the ROI is not a rectangle. The ROI definition consists
in dilating θ2 mm the top and bottom boundaries of the GT in order to keep its
form for the ROI. The right and left boundaries of the ROI are the right and left
limits of the GT respectively, as in the first ROI. See Figure 20b for an example.

If we consider all the pixels of the ROI as belonging to the training data, there
would be too much examples to compute. Thus, we define a sub-sampling by
choosing 1 of every 10 pixels of the ROI.

To decide how many millimeters (mm) we need to dilate the rectangle that
comprises the GT in the first ROI (θ1), and how many mm we need to increase the
boundaries of the second ROI (θ2), we have to choose those mm values that generate
a balanced training data. In order to verify that, we have computed the percentage
of each label yi in the training data S defined by the ROI and the sub-sampling.
Table 4 shows the percentages obtained for the definitive ROIs (θ1 = 0.4mm and
θ2 = 0.8mm) in the case of two labels and Table 5 in the case of three labels.

Once the feature vector xi and the ROI are defined, we can construct the train-
ing data S={xi, yi} and learn the model f training a classifier A using S: f=A(S).
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(a) (b)

Figure 20: Example of the definition of the ROIs in the training stage. (a) Image
of the first training ROI explained in the text. Green corresponds to GT, blue
corresponds to the ROI obtained and the red points represent the lower and the
higher rows of the GT, which are used as a reference to build the rectangle. The
vertical distance between the red point and the rectangle is θ1. (b) Image of the
the second training ROI explained in the text. Green corresponds to GT, blue
corresponds to the ROI obtained. The vertical distance between blue and green
lines (top and bottom) for each column of the image is θ2.

ROI 1 ROI 2
Percentage of labels 1 43% 43.2%
Percentage of labels 0 57% 56.8%

Table 4: Percentage of each label in the training data S depending on the ROI used.
Case of two labels. ROI 1 refers to the first ROI explained in section 5.2.3 and
ROI 2 refers to the second one.

ROI 1 ROI 2
Percentage of labels 1 43% 43.2%
Percentage of labels 2 33% 28.6%
Percentage of labels 3 24% 28.2%

Table 5: Percentage of each label in the training data S depending on the ROI used.
Case of three labels. ROI 1 refers to the first ROI explained in section 5.2.3 and
ROI 2 refers to the second one.
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5.2.4 Classification system: test stage

As in the previous subsection, once we have defined the feature vector of the test
examples (section 5.2.1), we need to define which pixels of the image are going to
form the test data. So, we have to choose a ROI for the test data.

We have defined three different test ROIs. As we are in the test stage, we cannot
use the GT of the image that is being tested, but we can use the GT of the other
images. So, these three ROIs are based on the GT of the training images. The
first ROI follows the idea of the first ROI explained for the training data. The test
ROI is a rectangle built using the information of the lumen extraction (explained in
section 5.1) and the information of the ROIs of the training images (the first training
ROI explained). First, for each training image, given the bottom boundary of the
lumen detected of an image, we select a point of this lumen boundary and we
compute how many pixels separate this point from the bottom of the image ROI
vertically (differences down) and how many pixels separate the lumen boundary
from the top of the image ROI vertically (differences up). See Figure 21a for an
example. Then, we compute the maximum of both differences up and differences
down computed for the training ROIs. Given the bottom boundary of the lumen of
the test image, we define the top and the bottom boundaries of the ROI adding the
maximum of differences up above the lumen boundary and adding the maximum
of differences down below the lumen boundary. Finally, we define the left and right
boundaries of the ROI as the ones of the left and right boundaries of the training
ROIs respectively that construct the widest rectangle. The second ROI is defined
as the first one but using the second type of training ROI explained instead of the
first type. As before, we compute the differences up and the differences down. See
Figure 21b for an example. Then, rather than create a rectangle, we dilate the
bottom lumen boundary the maximum of differences up above and the maximum
of differences down below to keep its form. The right and left boundaries of the
ROI are defined in the same way as before. The last ROI we create uses the method
developed for the segmentation based on lumen extraction (section 5.1). The top
boundary of the ROI is the LI layer found by the method moved some mm above
and the bottom boundary of the ROI is the MA layer found by the method moved
some mm below. The right and left boundaries are defined as the other two ROIs.

Once the feature vector and the test ROI are defined, we can construct the test
data and predict the labels y of the test examples x using the model f learned in
the previous stage: y=f(x).
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(a) (b)

Figure 21: Example of the definition of the ROIs in the test stage. (a) Training
image used to construct the first test ROI explained in the text. (b) Training image
used to construct the second test ROI explained in the text. In both cases, blue
corresponds to a ROI obtained in the training stage, red corresponds to the lumen
detection output, the yellow point R represent the point selected of the bottom
lumen boundary used as a reference to compute the differences up and differences
down, differences up = R-A and differences down = B-R.

5.2.5 Post-processing step

This step refines the result obtained with the classification system. Given a mask
with the classification result for the label 1, we first fill the holes. See Figure 22a
and Figure 22b for an example. Then, we use morphological opening and closing
operations to create connected components. See Figure 22c and Figure 22d. The
structuring element for these operations is an horizontal rectangle. The dimensions
of each rectangle have been manually set testing different values and choosing the
best for the whole training set. In further experiments, new values should be es-
timated by cross validation. Finally, we choose the connected component that has
points belonging to the middle row of the ROI. See Figure 22e and Figure 23. We
can make this assumption because the ROI is defined so that the pixels belonging
to the label 1 are placed in the middle rows of the ROI. Therefore, there will be
pixels labeled as 1 in the middle row of the ROI in the majority of cases.
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(a) (b)

(c) (d) (e)

Figure 22: Post-processing example. (a) Mask with the classification result for the
label 1 (without post-processing). (b) Fill holes step output. (c) Opening operation
output. (d) Closing operation output. (e) Final output of the post-processing step.

Figure 23: Example of a mask with the classification result with its ROI painted in
blue. The red line corresponds to the middle row of the ROI.
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5.3 Programming language

MATLAB (abbreviation of MATrix LABoratory) is a high-level technical comput-
ing language and interactive environment for algorithm development, data visual-
ization, data analysis, and numerical computation. As the name suggest, its basic
element of data is a matrix that does not require dimensioning. This allows solv-
ing many technical computing problems in much less time than it would take to
run a program written in another language. So MATLAB is oriented to matrix
manipulations, besides plotting functions and data, implementation of algorithms
and many other interesting features. MATLAB is equipped with multiple toolboxes
that increase its functionality and enhance its power.

As we work with images and MATLAB represents images using matrices, we
have chosen this programming language because of its flexibility when working
with matrices and vectors, its image processing toolbox and its statistics toolbox
that can be used to solve supervised machine learning problems. We have worked
with MATLAB R2014a release.
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6 Experimental results

In this section, we introduce the considered data set, we define the validation meas-
ures used to evaluate each of the methods implemented, we present the results
obtained and we discuss them. The execution time for each of the methods is also
shown.

6.1 Data set

We consider a data set from REGICOR, Girona’s Heart Registry, created with 30
subjects.

As explained in paper [21], the 30 subjects from REGICOR data set were part of
the cohort of a longitudinal study conducted at the project Girona Heart Registry.
The images were collected from 2007 to 2010. The subjects were aged between 35
and 84, and those with a history of previous cardiovascular disease were excluded.
Two trained sonographers performed the carotid artery ultrasound scans with an
Acuson XP128 ultrasound system equipped with L75-10 MHz transducer and a
computer program extended frequency (Siemens-Acuson, Mountainview, Califor-
nia, United States). Ultrasound longitudinal images were obtained in B-mode from
CCA with resolution 23.5 pixels/mm. A total of 42 images have been considered
in this project, 21 with plaque and 21 without plaque. The LI-MA region was
manually segmented by an expert and that segmentation is what we use as a GT
to validate the methods.

6.2 Validation measures

In order to quantitatively validate the method based on lumen extraction (explained
in section 5.1), we compute overlap measure using the given GT from REGICOR
images. Overlap is calculated as follows:

overlap = 2 · GT ∩ S
GT + S

where GT corresponds to the pixels belonging inside the LI-MA region given by the
GT and S corresponds to the pixels belonging inside the automatic segmentation
of the LI-MA region given by the method.

In order to quantitatively validate the methods based on a classification system
(explained in section 5.2), a leave one out cross validation is used. Considering
positive labels the pixels classified as belonging to the interior of the LI-MA region,
and negative labels the pixels classified as belonging to the exterior of the LI-MA
region, we calculated the accuracy, the sensitivity and the specificity measures as
follows:
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accuracy =
TP + TN

P +N

sensitivity =
TP

P

specificity =
TN

N

where TP=True Positive, TN=True Negative, P=Positive and N=Negative. We
also computed the overlap measure to validate the methods based on a classification
system in the same way explained above.

6.3 Results

In this subsection we show the quantitative and qualitative results obtained for each
of the methods developed. Then a discussion on the results is presented.

6.3.1 Quantitative results

We first present the results of the overlap measure obtained for the method based
on lumen extraction. We have validated the method using all the images, using only
the images with low IMT and using only the images with high IMT. The results
are shown in Table 6. As it can be seen, the method has a poor performance as
the results are not good enough because overlap should be higher. We can also
observe that the method performs better when the IMT of the images is low. This
is because of the absence of plaque. When there is plaque (high IMT), the shape
of the region we are looking for is irregular and this brings the method to make
mistakes.

OVERLAP(%)

All cases 74.39%
Low IMT cases 78.07%
High IMT cases 70.72%

Table 6: Quantitative results of the overlap and the distance function for the method
based on lumen detection.

34



The quantitative results of the overlap and the accuracy, sensitivity and spe-
cificity for the methods based on a classification system are presented in Table 7.
We have validated the methods using both two and three labels cases.

As we can see in Table 7, the performances of random forest using the different
ROIs are very similar to each other, in both with and without post-processing step
cases. We can also see that the post-processing step improves the results except in
the ROI 2/ROI 2 case. In this case, the post-processing step is not helping to refine
the result. It can be seen that the results using two labels and the results using three
labels are equivalent. As our method of random forest includes the post-processing
step, we conclude that the best combination of ROIs for that method is ROI 1/
ROI 1. In this case, the best results are obtained using two labels, even though the
difference between two and three labels is minuscule.

Regarding to the stacked sequential learning method, we have chosen to work
with the best ROIs obtained for random forest method. We have performed two
versions of stacked sequential learning: stacked sequential learning using the labels
predicted in the first step to create the extended data S’, and multi-scale stacked
sequential learning with three scales and using the probabilities of each observation
of belonging to a specific class obtained in the first step to create the extended data
S’. Comparing the results of Table 7 for both versions, we obtain that the accuracy
and specificity are higher in the case of multi-scale stacked sequential learning ver-
sion and the sensitivity and the overlap are higher in the case of stacked sequential
learning version, in both with and without post-processing step cases. As we are
looking for the pixels inside the LI-MA region, we are interested in having a high
rate of TP (section 6.2). Then, we can conclude that stacked sequential learning
outperforms multi-scale stacked sequential learning owing to the high specificity of
stacked sequential learning in comparison with the specificity of multi-scale stacked
sequential learning. We can also see in Table 7 that the post-processing step mean-
ingfully improves both versions of the method. Note that the structuring elements
used in the post-processing step for the opening and closing operations have been
optimized for each version of the method using the whole training set. For stacked
sequential learning, we have used a rectangle of height h=2 and width w=25 as
structuring element for the opening operation and a rectangle of h=1 and w=90
as structuring element for the closing operation. For multi-scale stacked sequential
learning, we have used a rectangle of h=4 and w=17 as structuring element for the
opening operation and a rectangle of h=1 and w=90 as structuring element for the
closing operation. As in the previous method, it can also be seen that using two
labels rather than three or vice versa does not change the performance of stacked
sequential learning. For this reason, we have just executed multi-scale stacked se-
quential learning using one of the two possibilities of number of labels. We have
decided to execute multi-scale stacked sequential learning using two labels instead
of three. Using three labels is more computationally expensive due to the fact that
we are using probabilities to define the extended data set. So in the case of three
labels, we have three probabilities (one for each label) and, consequently, we should
perform one versus all. To sum up, the best result for our stacked sequential learn-
ing method is reached performing the first version explained and using three labels
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instead of two.

Globally, we can see in Table 7 that stacked sequential learning is the algorithm
that gets the best performance among all.

Using random forest with the best ROIs combination obtained and the best
version obtained for stacked sequential learning scheme, we have build another
table (Table 8) with the validation results of the methods (with post-processing
step) separating the low IMT from the high IMT cases. In this way, we can analyze
the differences between the results for these two types of images of the data set.
As we can see in Table 8, both methods obtain the best results if the images do
not have plaque (low IMT cases). This is the same situation we have seen in the
method based on lumen extraction.

METHOD TRAINING/ 2 LABELS (%) 3 LABELS (%)
TEST ROIS Acc Sens Spec Ov Acc Sens Spec Ov

RF without
post-process

ROI 1/ ROI 1 85.59 85.30 86.40 71.15 85.25 85.59 85.90 70.79
ROI 2/ ROI 2 79.57 86.63 78.70 57.69 79.07 86.80 78.09 57.22
ROI 1/ ROI 3 85.67 85.39 86.50 72.32 85.45 85.62 86.16 72.12

RF with
post-process

ROI 1/ ROI 1 92.87 88.68 93.82 84.83 92.77 88.94 93.66 84.77
ROI 2/ ROI 2 90.21 57.41 94.29 54.53 89.92 55.40 94.17 52.56
ROI 1/ ROI 3 91.90 79.99 94.39 77.05 91.87 82.36 93.94 79.12

SSL without
post-process

ROI 1/ ROI 1 85.15 85.28 86.08 71.23 85.19 85.53 86.07 71.35

SSL with
post-process

ROI 1/ ROI 1 92.05 88.21 93.15 84.14 92.61 88.82 93.69 85.05

MSSL
without
post-process

ROI 1/ ROI 1 88.01 65.76 95.38 70.48 - - - -

MSSL with
post-process

ROI 1/ ROI 1 92.22 70.73 98.84 80.29 - - - -

Table 7: Quantitative results for the methods based on a classification system
using all the images for the validation. RF=Random Forest, SSL=Stacked
Sequential Learning, MSSL=Multi-scale Stacked Sequential Learning, without post-
process means without applying the post-processing step, with post process means
applying the post-processing, Acc=Accuracy, Sens=Sensitivity, Spec=Specificity
and Ov=Overlap. For the training ROIs, ROI 1/ROI 2 refers to the first/second
ROIs explained in section 5.2.3. For the test ROIs, ROI 1/ROI 2/ROI 3 refers to
the first/second/third ROIs explained in section 5.2.4. Bold rows indicate the best
result for RF and for SSL.
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METHOD TRAINING/ 2 LABELS (%) 3 LABELS (%)
TEST ROIS Acc Sens Spec Ov Acc Sens Spec Ov

RF, low
IMT cases

ROI 1/ ROI 1 94.16 87.87 95.09 82.52 94.03 88.22 94.89 82.48

RF, high
IMT cases

ROI 1/ ROI 1 91.57 89.49 92.55 87.13 91.51 89.66 92.42 87.06

SSL, low
IMT cases

ROI 1/ ROI 1 93.17 88.11 93.95 81.76 94.01 88.86 94.82 83.21

SSL, high
IMT cases

ROI 1/ ROI 1 90.93 88.31 92.35 86.52 91.20 88.78 92.55 86.89

Table 8: Quantitative results for the methods based on a classification system
using the images with low IMT and the images with high IMT separ-
ately for the validation. RF=Random Forest, SSL=Stacked Sequential Learning,
Acc=Accuracy, Sens=Sensitivity, Spec=Specificity and Ov=Overlap. The training
ROI 1 refers to the first ROI explained in section 5.2.3. The test ROI 1 refers to
the first ROI explained in section 5.2.4. Bold rows indicate the best result for RF
and for SSL.

6.3.2 Qualitative results

In the following Figures are presented some qualitative results of the different meth-
ods.

Figure 24 show qualitative results of the method based on lumen detection. As
it can be seen, the fitting of the predicted LI and MA layers to the GT is much
better in Figure 24a (low IMT) than in Figure 24b (high IMT). So the qualitative
results corroborate the conclusions we have drawn previously with the quantitative
results.

For the methods based on a classification system, we first show some qualitative
results of the ones that get the best quantitative results for random forest and for
stacked sequential learning and compare them: random forest with post-processing
step using training ROI 1 and test ROI 1 (Figure 25 and Figure 26), and stacked
sequential learning with post-processing step using training ROI 1 and test ROI 1
(Figure 27 and Figure 28). These results are shown in both two and three labels
cases. Then, we show some images of the results of random forest using training
ROI 2 and test ROI 2 with post-processing to understand why the quantitative
results with post-processing are worse than without post-processing step (Figure
29). The qualitative results for random forest using training ROI 1 and test ROI 3
are not shown because the results are equivalent to the results obtained for random
forest using training ROI 1 and test ROI 1 (Figure 25 and Figure 26). Finally,
we show a comparison between stacked sequential learning and multi-scale stacked
sequential learning versions (Figure 30).
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We can see that there are no differences between the results using two labels and
the results using three labels in both random forest and stacked sequential learning
methods (comparing Figures 25 and 26 for random forest and comparing Figures 27
and 28 for stacked sequential learning). It also can be seen that the performance of
random forest (Figures 25 and 26) is equivalent to the performance of the stacked
sequential learning (Figures 27 and 28). As we can see in Figures 25 and 26, and
also in Figures 27 and 28, when the images have high IMT, the method tends to
make mistakes, while when the images have low IMT, the method is pretty accurate.
If we look at the image of the first row and second column of the Figures 25b, 26b,
27b and 28b, we can see that the mistakes are due to the fact that both methods
classify many pixels outside the LI-MA region, said in other words there are many
FP.

As we can see in the images of the third column of Figure 29, the regions seg-
mented as LI-MA region (color blue) are far from the GT (color green). This is
because the selection of the connected component for the post-processing step fails.
This is the reason why the quantitative results are worse with the post-processing
step in this particular case.

In Figure 30, we show the improvements and drawbacks of multi-scale stacked
sequential learning over stacked sequential learning using two different examples
(Figure 30a and 30b). As we can see in the second column of Figure 30a, the image
of the first row, which corresponds to the output of stacked sequential learning,
has many FP; whereas if we look at the image of the second row, which corres-
ponds to the output of multi-scale stacked sequential learning, almost all FP have
disappeared. So, considering that the output of the first step in both versions is
almost the same (first column), multi-scale stacked sequential learning deletes a
great majority of the FP that stacked sequential learning presents. On the other
hand, we can see in the second row of Figure 30b that the output of multi-scale
stacked sequential learning has a lot of holes inside the LI-MA region that the out-
put of stacked sequential learning does not have. This makes that the final output
with post-processing step (third column) of multi-scale stacked sequential learning
is worse than the output of stacked sequential learning. So, considering that the
output of the first step in both versions is almost the same (first column) as in the
previous example, multi-scale stacked sequential learning is not capable to detect
the LI-MA region as properly as stacked sequential learning. This explains the
low sensitivity of multi-scale stacked sequential learning version in the quantitat-
ive results compared to the sensitivity of the other version of stacked sequential
learning.
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(a) Images with low IMT.

(b) Images with high IMT

Figure 24: Qualitative results of the method based on lumen detection. Green
corresponds to the GT, blue corresponds to the segmentation obtained for LI and
red corresponds to the segmentation obtained for MA.
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(a) Images with low IMT.

(b) Images with high IMT

Figure 25: Qualitative results of random forest using training ROI 1 and test
ROI 1 in the case of two labels. Green corresponds to the GT and blue corres-
ponds to the segmentation obtained for the LI-MA region.
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(a) Images with low IMT.

(b) Images with high IMT

Figure 26: Qualitative results of random forest using training ROI 1 and test
ROI 1 in the case of three labels. Green corresponds to the GT and blue corres-
ponds to the segmentation obtained for the LI-MA region.
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(a) Images with low IMT.

(b) Images with high IMT

Figure 27: Qualitative results of stacked sequential learning in the case of two
labels. Green corresponds to the GT and blue corresponds to the segmentation
obtained for the LI-MA region.
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(a) Images with low IMT.

(b) Images with high IMT

Figure 28: Qualitative results of stacked sequential learning in the case of three
labels. Green corresponds to the GT and blue corresponds to the segmentation
obtained for the LI-MA region.
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(a) Images with low IMT.

(b) Images with high IMT

Figure 29: Qualitative results of random forest using training ROI 2 and test
ROI 2 in the case of two labels. Green corresponds to the GT and blue corresponds
to the segmentation obtained for the LI-MA region.
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(a) Image 1

(b) Image 2

Figure 30: Two example images to compare stacked sequential learning and
multi-scale stacked sequential learning. For each image, the first row corres-
ponds to stacked sequential learning and the second row corresponds to multi-scale
stacked sequential learning; the first column corresponds to output of the first step
of stacked sequential learning scheme, the second columns corresponds to the out-
put without post-processing step and the third column corresponds to the output
with post-processing step. Green corresponds to the GT and blue corresponds to
the segmentation obtained for the LI-MA region.45



6.3.3 Discussion

We have seen that the method based on lumen extraction is too simple for this chal-
lenging problem so the classification methods outperform its performance. However,
we have also seen that random forest is not accurate enough due to the high num-
ber of pixels belonging outside the LI-MA region classified as belonging inside the
region (FP). In order to reduce the amount of FP, we performed stacked sequential
learning adding a second step to random forest providing it with contextual inform-
ation. Even so, we have seen that the performance of stacked sequential learning is
equivalent to the performance of random forest, so this second step is not helping
to improve the results. Then, we developed another version of stacked sequential
learning, multi-scale stacked sequential learning, to reduce the number of FP that
stacked sequential learning has not been able to remove. Multi-scale stacked sequen-
tial learning provides contextual information at different scales in the second step.
We have observed that multi-scale stacked sequential learning is able to reduce the
number of FP. Nevertheless, it presents another problem: it generates some false
negatives (FN) that stacked sequential learning does not present. So, multi-scale
stacked sequential learning is not improving the final result, even though it reduces
the amount of FP. The definition of a useful second step is a difficult task due to
the complexity of the images.

6.4 Execution time

Here we present the duration of the execution for each method implemented. These
execution times are taken on a computer with 4GB of RAM and a Core i7 processor
which has 4 cores.

As we can see in Table 9, the methods based on a classification system take
longer than the method based on lumen detection. In addition, it can be seen that
both versions of stacked sequential learning are the most time-consuming ones, due
to its two-step scheme.

METHOD TRAINING/TEST ROIS EXECUTION TIME

Method based on lumen detection - 30”

Random forest
ROI 1/ ROI 1 1h 15’
ROI 2/ ROI 2 1h 30’
ROI 1/ ROI 3 1h 10’

Stacked sequential learning ROI 1/ ROI 1 40h

Multi-scale stacked sequential learning ROI 1/ ROI 1 30h

Table 9: Execution times for each method developed. For the training ROIs, ROI
1/ROI 2 refers to the first/second ROIs explained in section 5.2.3. For the test ROIs,
ROI 1/ROI 2/ROI 3 refers to the first/second/third ROIs explained in section 5.2.4.

46



7 Conclusions

In this work, we have developed three methods to automatically segment the LI and
MA layers of the CCA far wall. The first one is based on CCA lumen extraction
followed by a search of the image intensity peaks to locate the desired layers. The
other two methods are based on a supervised classification system, considering the
image segmentation problem as a classification problem of the image pixels into in-
terior or exterior of the region originated by the LI and MA layers. One of them uses
random forest as a classifier and the other one uses the stacked sequential learning
scheme with random forest as a base learner. In particular, we have performed two
versions of stacked sequential learning: stacked sequential learning and multi-scale
stacked sequential learning. The first one uses the labels predicted in the first step
to create the extended data S’ and the second one uses a multi-scale decomposition
of the predicted probabilities of each binary class to create the extended data S’.

In order to deal with the resolution variability of the images, we have implemen-
ted the whole code using millimeters instead of pixels. Then, given the resolution
of the image, we compute the number of pixels equivalent to the mm value. This
number of pixels will be different depending on the image resolution. In this way,
the code is independent of the acquisition machine.

We have seen that stacked sequential learning is the method that best approaches
the segmentation. Even though the results are pretty close to the desired segment-
ation, the performance is not as proper as we would like due to the FP that the
method generates.

As future work, we should carry out more tests in order to find a way of de-
fining a second step for stacked sequential learning which performs good enough
to obtain an accurate segmentation of the LI and MA layers. As in multi-scale
stacked sequential learning we are using the probabilities of the pixels of belong-
ing to a specific class, one test to perform could be analyze these probabilities
and only test again those pixels whose probabilities of belonging to a specific class
are low. In this way, we could avoid classifying badly a pixel in the second step
which has been correctly classified in the first step with high probability. So we
would decide which pixels should be tested again depending on its probabilities.
In addition, apart from using random forest as a classifier, we could also try using
other classifiers. Furthermore, we could compare other segmentation techniques, as
snakes, instead of using a classification system to segment the LI and MA layers.
Moreover, we should also validate the segmentation using other data sets, in order
to compare the performance on other resolutions. Finally, after obtaining a proper
LI-MA region segmentation, we could automatically extract the IMT and validate
this measurement with more data.
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