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Abstract

In this work we introduce and combine an effective Lagrangian formalism with the inverse amplitude

method to unitarize WLWL → WLWL and ZLZL → ZLZL amplitudes in an extended electroweak symmetry

breaking sector. We derive the unitarisation method via dispersion relations, and discuss different ways of

finding the possible resonant states. We compare the two amplitudes calculated with the equivalence theorem

approximation and with an exact computation. Moreover, since a diboson excess has been observed near

2 TeV —albeit with very limited statistical significance— in WW , WZ and ZZ final states at the LHC

experiments, we constrain the Lagrangian low-energy parameters by limiting the region of the parameter

space where a resonance around 2 TeV may appear, and also derive the width of these resonances. Computing

the cross-section for two processes we get an idea of how the signal varies along the parameter space, and from

the amplitudes we introduce unitarized form factors and vertex functions to allow for a proper treatment of

the resonances in Monte Carlo generators and a more precise comparison with experiment.
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1 Introduction

In 2012, ATLAS [1] and CMS [2] discovered a scalar that behave as the Higgs boson, and poured some light in

the possible pattern of electroweak (EW) symmetry breaking. The mass of the found scalar particle is about

125 GeV and it is a firm candidate to be considered as the Higgs and to complete the Minimal Standard Model

(MSM). However, the dynamical origin of the Higgs and hence of the electroweak symmetry breaking sector

(EWSBS) is yet to be elucidated, suggesting existence of a theory beyond the Standard Model (SM) to be

explored at the LHC Run II.

There has been plenty of works [3–5] trying to reproduce the electroweak symmetry breaking pattern even

with an absence of a light scalar by demanding the existence of a new level of compositeness in the electroweak

(EW) sector, making the EW theory an effective theory. In most of these papers, the beyond-SM theories are

strongly interacting and thus non-perturbative at a certain scale, producing heavier resonant states, which have

arisen as the main phenomenological prediction of such theories nowadays, as they are helpful to constrain the

Lagrangian couplings.

Since this theories are strongly interacting, they have been clearly inspired by QCD, specially pion physics,

whose aim was to reproduce some resonant behaviour within the regime of an effective theory that later could

be explained with the fundamental one with quarks and gluons.

The general procedure to find resonances in this kind of effective theories is to focus on gauge boson WW or

ZZ scattering in the EW theory and in pion-pion scattering in QCD. One uses the so called chiral perturbation

theory (ChPT) [6] that consists in writing an effective Lagrangian only constrained by the symmetry of the

theory, allowing to perform a perturbative expansion of the momentum, and particularly in the EW sector it

has to reproduce the low energy EW observed behaviour.

This expansion does not violate unitarity appreciably at sufficiently low energies, but at high energies

unitarity is not guaranteed. In order to solve this obstacle, one has to unitarise by hand the amplitudes, trying

to respect the symmetries and the analytic properties of the amplitudes. In this work we will use the so called

inverse amplitude method (IAM), that is derived from dispersion relations.

In June 2015, ATLAS [7] and CMS [8] reported a diboson excess around 2 TeV using the accumulated 8

TeV data, that can be interpreted as one of these resonances mentioned above. ATLAS looks for the invariant

mass distribution of a pair of jets that are compatible with a highly boosted W or Z boson and they reported

a little excess with a global significance of 2.5σ. CMS combines dijet and final states with one or two leptons

and concludes that there is a small excess around 1.8 TeV with 1.8σ.

The aim of this work is to present a non-linear sigma model effective Lagrangian to describe a strongly

interacting EWSBS [3], and constrain some of its parameters to the new data reported by ATLAS experiment

through the scattering of the longitudinal components of gauge bosons WL. Many letters concerning this issue

have been published since the discovery of the Higgs boson [9–13], computing WLWL scattering using the

equivalence theorem (ET) approximation or computing them exactly1 by means of the IAM. Our analysis is

presented by first describing the Lagrangian used in our computations, as well as the role of the parameters

appearing in it. We discuss a partial wave analysis since we develop an isospin formalism due to the custodial

symmetry of our Lagrangian (SU(2)L × SU(2)R → SU(2)V ). We also introduce the IAM deriving it form

1By “exactly” we mean that the ET is only applied at certain diagrams at 1 loop level
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dispersion relations, and once the amplitudes are unitarised we explain how to find the poles that lead to

resonances. In consideration of dealing with the ET approximation, we carry out a comparison between the

exact and the ET amplitudes for different values of the Lagrangian parameters, and analyse the advantages and

disadvantages of the two methods. Finally we focus on the ATLAS reported excess to interpret this resonances

as a iso-scalar or iso-vector2 state from WLWL scattering with the exact amplitudes in the custodial limit3 and

a Higgs of 125 GeV, and we try to constrain some of the effective couplings provided by the effective theory.

In pursuance of explaining the signal we compute the cross section of the amplitudes W+W− → W+W− and

ZZ → ZZ, as a naive way to compare the different values. In an attempt to be able to compare with more

conviction the computations with the experiment, we derive the form factor and the vertex function, to be

probed in a Monte-Carlo simulation.

2 Electroweak Chiral Lagrangian

The effective Lagrangian containing the electroweak light degrees of freedom that we will consider is inspired

by the Non-Linear sigma model

L = −1

2
TrWµνW

µν − 1

4
TrBµνB

µν +
1

2
∂µh∂

µh− M2
H

2
h2 − d3(λv)h3 − d4

λ

4
h4 (1)

+
v2

4

(
1 + 2a

(
h

v

)
+ b

(
h

v

)2

+ ...

)
TrDµU

†DµU +
∑

aiOi .

where

U = exp
(
i
w · τ
v

)
and, DµU = ∂µU +

1

2
igW i

µτ
iU − 1

2
ig′BiµUτ

3. (2)

The w are the three Goldstone of the global group SU(2)L×SU(2)R → SU(2)V . This symmetry breaking is the

minimal pattern to provide the longitudinal components to the W± and Z and emerging from phenomenology.

The Higgs field h is a gauge and SU(2)L×SU(2)R singlet and the Oi are a set of higher dimensional operators.

In an energy expansion and at the next-to-leading order it is sufficient to consider the O(p4) operators. This

formulation is strictly equivalent to others where the Higgs is introduced as part of a complex doublet, as

S-matrix elements are independent of the parameterization.

The operators Oi include the complete set of operators defined e.g. in [3; 9; 16]. As previously stated, we

will be interested in WW scattering and work in the strict custodial limit. Therefore, only a restrict number of

operators have to be considered; namely of the possible 13 O(p4) operators only two O4 and O5 will contribute

to WLWL scattering4 in the custodial limit:

O4 = Tr [VµVν ] Tr [V µV ν ] O5 = Tr [VµV
µ] Tr [VνV

ν ] , (3)

where Vµ = (DµU)U†. We could easily extend the analysis to include non-custodial contributions, but we see

little or no reason to do so at present.

2Notice that if there is signal in the three channels, the resonance should not be iso-scalar, but as pointed in [14] the huge

background makes the signal difficult to interpret
3In the non-custodial limit iso-tensor states may appear as physical states as in [15]
4When we talk about WW or WLWL scattering we refer generically to any scattering of vector bosons. Concrete processes are

specified when needed.
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The parameters a and b control the coupling of the Higgs to the gauge sector [5]. Couplings containing

higher powers of h/v do not enter WW scattering and they have not been included in (1). The two additional

parameters d3, and d4 parameterize the three- and four-point interactions of the Higgs field. The MSM case

corresponds to setting a = b = d3 = d4 = 1 in Eq. (1). Current LHC results give the following bounds for a,

a4,5:

a = [0.67, 1.33], a4 = [−0.094, 0.10], a5 = [−0.23, 0.26] 90%CL (4)

see [17; 18] . Present data clearly favours values of a close to the MSM value (a = 1). We shall consider here

this case and the a = 0.95 one, in order to see whether there is much different phenomenology when getting

a little apart of the MSM. a > 1 will not be considered since a previous work [11] shows that it has a quite

different behaviour and many problems arise. The parameter b is almost totally undetermined at present and

actually does not play a very relevant role in the present discussion. We will assume b = a2 because then there is

no inelastic contribution WW → hh in the scalar channel and simplifies the computations substantially. Some

works involving inelastic channels can be found in [5; 12; 13].

We also have to bear in mind that effective theories have a cut-off. In this case, our cut-off is set to Λ = 4πv ≈
3 TeV, where v is the Higgs v.e.v.

3 Partial Wave Analysis

As long as we assume exact custodial symmetry, we are able to develop an isospin (I) formalism for our ampli-

tudes. Since we are dealing with two particle scattering, our isospin amplitudes are divided in the I = 0, 1 or 2

channels. The amplitude A(W a
L(pa) +W b

L(pb)→ W c(pc)L +W d(pd)L) will be denoted by Aabcd(pa, pb, pc, pd).

Using isospin and Bose symmetries this amplitude can be expressed in terms of a universal function as

Aabcd(pa, pb, pc, pd) = δabδcdA(s, t, u) + δacδbdA(t, s, u) + δadδbcA(u, t, s). (5)

with A(s, t, u) = A+−00(p+, p−, p0, p′0). The fixed-isospin amplitudes are given by the following combinations

T0(s, t, u) = 3A(s, t, u) +A(t, s, u) +A(u, t, s) (6)

T1(s, t, u) = A(t, s, u)−A(u, t, s)

T2(s, t, u) = A(t, s, u) +A(u, t, s) .

In writing these expressions we assume exact crossing symmetry 5. We also write the reciprocal relations (also

assuming exact crossing symmetry)

A+0+0(s, t, u) =
1

2
T1(s, t, u) +

1

2
T2(s, t, u) (7)

A+−+−(s, t, u) =
1

3
T0(s, t, u) +

1

2
T1(s, t, u) +

1

6
T2(s, t, u)

A++++(s, t, u) = T2(s, t, u)

A0000(s, t, u) =
1

3
T0(s, t, u) +

2

3
T2(s, t, u) .

5This remark is pertinent because amplitudes involving longitudinally polarized bosons are not crossing symmetric. The formulae

can be easily extended to this case but become somewhat more involved and will not be reported here. See [9].
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Other amplitudes (such as e.g. A+−00(s, t, u)) can be obtained trivially from the previous ones using obvious

symmetries (and crossing symmetry too).

The partial wave amplitudes for fixed isospin I and total angular momentum J are defined by

tIJ(s) =
1

64π

∫ 1

−1
d(cos θ)PJ(cos θ)TI(s, t, u) , (8)

where the PJ(x) are the Legendre polynomials and t = (1 − cos θ)(4M2
W − s)/2, u = (1 + cos θ)(4M2

W − s)/2
with MW being the W,Z mass t00, t11 and t20 are the first non-vanishing partial waves in the present case.

Working with partial waves is useful because their unitarity properties are easier to check and implement. This

unitarity requires that [19]

|tIJ | < 1 ,

ImtIJ = σ(s)|tIJ |2
(9)

where σ(s) =
√

1− 4M2
W /s is the two-body phase space. Once obtained the partial waves, ChPT allows us to

perform an expansion on the external momentum such as

tIJ = t
(0)
IJ + t

(1)
IJ + ... (10)

In our case, this expansion violates unitarity. This is where we use the IAM we explain below to unitarise them,

i.e, to fulfil Equation (9).

4 The Inverse Amplitude Method

As we just mentioned, Equation (10) might violate unitarity at sufficiently high energies. In fact, the terms in

the perturbation only respect unitarity perturbatively, namely

Imt
(0)
IJ = 0

Imt
(1)
IJ = σt

(0)
IJ

2
.

(11)

We need a method to unitarise these amplitudes and at the same time keep the proper analytic properties of

the partial waves. We will derive the IAM and make use of it for our following calculations.

4.1 Derivation of the IAM at 1 loop

From S-matrix theory we know that the partial waves should present a characteristic analytic structure in

the complex s plane. For WW scattering processes, they are analytic except for a right cut (unitary cut) for

4M2
W < s < ∞ and a left cut for −∞ < s < 0, the last cut is needed in order to obey crossing symmetry.

Knowing the analytic structure of the partial waves, we can construct an integral equation known as dispersion

relation by applying Cauchy’s theorem to our amplitudes

tIJ = C0 + C1s+ C2s
2 +

s3

π

∫ ∞
4M2

ImtIJ(s′)

s′3(s′ − s− iε)
ds′ +

s3

π

∫ 0

−∞

ImtIJ(s′)

s′3(s′ − s− iε)
ds′ . (12)

This is called a thrice-subtracted dispersion relation, where the last two terms represent the left and right cuts.

The reason to expand up to order s3 (three subtractions) is because we need the integral contour to vanish at
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infinity, and since our amplitudes contain O(p4) terms that behave as s2 at high energies, we need s3 terms or

higher in the denominator in order to cancel the contour integral. The same reasoning would be implemented

if we were dealing with higher order operators and we would need more subtractions to the dispersion relation,

but at one loop it is sufficient to deal with three subtractions.

With the help of the ChPT expansion in (10), we can easily put Equation 12 as a function of the perturbative

partial waves. By comparison, since we know that t
(0)
IJ is real and it has the form of

t
(0)
IJ = a0 + a1s , (13)

and the only imaginary part can come from t
(1)
IJ , that has the proper analytic form

t
(1)
IJ = b0 + b1s+ b2s

2 +
s3

π

∫ ∞
4M2

Imt
(1)
IJ (s′)

s′3(s′ − s− iε)
ds′ +

s3

π

∫ 0

−∞

Imt
(1)
IJ (s′)

s′3(s′ − s− iε)
ds′ , (14)

then we are lead to

tIJ = a0 + b0 + (a1 + b1)s+ b2s
2 +

s3

π

∫ ∞
4M2

Imt
(1)
IJ (s′)

s′3(s′ − s− iε)
ds′ +

s3

π

∫ 0

−∞

Imt
(1)
IJ (s′)

s′3(s′ − s− iε)
ds′ . (15)

This is nothing new, since we have an amplitude that obeys a certain perturbative unitarity relations (11) but

not the full one (9). Our next step is to apply this ChPT combined with the full unitarity relation. In order to

do that we claim that the function 1/tIJ carries the same analytic structure of tIJ . Hence, we define a function

as

D =
t
(0)
IJ

2

tIJ
(16)

where the numerator plays the role of easing the reasoning. We can construct an analogous dispersion relation

for the function D neglecting the possible infinity contributions arising from the zeros of the partial wave:

D = D0 +D1s+D2s
2 + +

s3

π

∫ ∞
4M2

ImD(s′)

s′3(s′ − s− iε)
ds′ +

s3

π

∫ 0

−∞

ImD(s′)

s′3(s′ − s− iε)
ds′ , (17)

imposing unitarity we have

ImD = −t(0)IJ
2 ImtIJ
|tIJ |2

= −t(0)IJ
2
σ = −Imt

(1)
IJ (18)

and by performing the same perturbative treatment as before we arrive at

D(s) =
t
(0)
IJ

2

tIJ
= a0 − b0 + (a1 − b1)s− b2s2 −

s3

π

∫ ∞
4M2

Imt
(1)
IJ (s′)

s′3(s′ − s− iε)
ds′ − s3

π

∫ 0

−∞

Imt
(1)
IJ (s′)

s′3(s′ − s− iε)
ds′ . (19)

Notice that the unitary relation only holds exactly on the right cut, so we have done the approximation

ImD ' −Imt
(1)
IJ for the left cut. From Equation 19 we can identify that

tIJ =
t
(0)
IJ

2

t
(0)
IJ − t

(1)
IJ

. (20)

This last equation is the so called IAM amplitude. It fulfills unitarity relation exactly and has the proper

analytic cuts. This form of the partial wave amplitudes is used in different channels to compute resonances

and cross sections in what follows of the present work. The poles in the respective unitarised partial wave

amplitudes dictate the presence or absence of EWSBS resonances in the different channels. Here we do not

derive the inelastic case or the massless one. They are nicely derived in [13]. The IAM has been proven useful

before in nuclear physics. It is able to reproduce the poles related to the ρ and the σ mesons in ππ scattering

in some of the works in [20], and it has been used in some works on elucidating the nature of the EWSBS

[9; 11–13; 20].
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4.2 Finding resonance poles

Once applied the IAM to our amplitudes, we should look for a resonance pole in each channel. In order

to do that, we display two methods and comment on their strengths and weaknesses respectively. We only

interpret the pole as a resonance if this pole lays in the second Riemann sheet (negative imaginary part). If

the pole lays in the first Riemann sheet it is considered unphysical, hereby the region embraced by the pole is

automatically discarded. The first method is the formal one and consists of performing an analytic continuation

of the amplitude provided that the S matrix is a unitary matrix. The second method is an approximation only

suitable when the pole is near enough the real axis, and it does not need explicitly the analytic continuation.

• Method with Analytic Continuation

In order to perform a continuation to the second Riemann sheet, we could simply tune the logarithms of

our amplitudes such as

logII(−z) = log |z|+ i(arg z − π) , (21)

or in a more formal attempt to have an analytic expression for the second sheet, we use the unitarity

property of the S matrix:

SII =
1

SI
, (22)

where the super-index refer to the first (physical) and second (unphyisical) Riemann sheets. This equation

implies that the continuation of a partial wave amplitude from the first sheet to the second one is [13; 21]

tIIIJ =
tIIJ

1− 2iσtIIJ
. (23)

Therefore we can find the pole on the second Riemann sheet by looking for the following zero in the

massless case:

tIIJ(s) + i/2 = 0 (24)

or what is the same for the IAM amplitude at 1-loop,

t
(0)
IJ (s)− t(1)IJ (s)− 2i[t

(1)
IJ (s)]2 = 0 , (25)

and we locate the complex pole s = (m−iΓ/2)2 directly. In Figure 1 we depict the three different channels

in a region of the parameter space a4, a5 where there is a pole in the second Riemann sheet for the vector

and the scalar channels, while the tensor channel presents no resonances. This method is exact, but it is

computationally harder than the one we present next.

• Method for Poles Near the Real Axis

This method is very easy to implement and it has a nice result when comparing to the exact one. The

first step is to look for the zero of the real part of the denominator of the IAM amplitude, namely:

Re(t
(0)
IJ (s)− t(1)IJ (s)) ≡ ReDen(s) = 0 . (26)

At this point we obtain what we consider the real part of the pole (s = m2). Making a Taylor expansion

of the denominator around m2 up to order one

Den(s) = Den(m2) +
dDen

ds

∣∣∣
m2

(s−m2) + ...

=
dDen

ds

∣∣∣
m2

(s−m2) + ...

(27)
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(c) Tensor

Figure 1: For a = 1,b = 1 and a4 = 0.0002, a5 = −0.0001 , we plot the first Riemann sheet (blue) and the

second one (brown) for the imaginary part of the amplitude in the three different channels. (a) The scalar

amplitude has a pole on the second Riemann sheet corresponding to M = 2064 GeV. (b) The vector amplitude

has a pole on the second Riemann sheet corresponding to M = 1881 GeV. Notice the different range compared

with the scalar channel as the resonance is narrower in this channel. (c) The tensor channel does not present

a resonant behaviour. In this channel and for this values of a and b the resonances, if present, only appear on

the first Riemann sheet.

we perform a “continuation” putting spole = (m− iΓ/2)2 in Equation 27, and take the imaginary part of

the denominator, approximating ImDen(spole) 'ImDen(m2) . All in all we end up with

ImDen(m2) = −dDen

ds

∣∣∣
m2
mΓ , (28)

and from here we can extract Γ. The positive thing of this method is that we do not search directly for

complex roots. Instead, we find a real root of a real function and then we find the complex part of that

pole. Finding the poles in this way is only valid when they are near the real axis.

Setting a = 1 and b = a2 for different values of a4, a5, the maximum numerical difference between the two

methods is found in the resonances of the scalar channel where the difference is in the second digit. Curiously,
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the minimum difference is also found in the scalar channel, being the mass and the width equal up to the 6th

digit. We will generally use the second method, which is easier to implement.

5 Goodness of the Equivalence Theorem

Once included the electroweak interactions, the Goldstone bosons “disappear” and become the longitudinal

components of the gauge bosons. Somehow we can identify the Goldsone bosons and their behaviour with that

of the gauge bosons. This is a simple explained version of the ET, and a deeper look can be found in [22; 23].

Expressing mathematically the theorem is very simple

T (WLWL →WLWL) ' T (ωω → ωω) +O
(
MW√
s

)
, (29)

where MW is the mass of the gauge boson and
√
s is the center of mass energy. Looking at the equation,

one realizes that ET allows us to identify the longitudinal components of the gauge bosons with the Goldstone

bosons at energies
√
s�MW . This approximation makes the calculation of the amplitudes much easier, since

now we treat scalar particles. Therefore the couplings of the Goldstone bosons with the gauge bosons vanish

(g = g′ = 0), and the only degrees of freedom left will be the GB (massless in the Landau gauge [24]), and the

Higgs boson.

In this section our aim is to test the use of the ET in front of the exact amplitudes at 1-loop. ET amplitudes

have been calculated in [25] while the exact amplitudes can be found in [9; 11]. The main obstacle of this

approximation is that with the MSM values for the parameters a and b (a = b = 1), it is not able to produce

dynamical resonances in the parameter space a4, a5 with the IAM method, as the tree level amplitude vanishes

when a = 1. For that reason, all of our computations are done with a = 0.95 and b = a2.

In order to make a first comparison, we plot in Figure 2 the chiral expansion for the three isospin channels

together with the same amplitudes obtained with the IAM6. We placed ourselves in a region of the parameter

space yielding a vector and a scalar resonances both with the ET approximation and the exact calculation.

We see that being the chiral expansion plots very similar, the IAM plots differ quite significantly. The scalar

resonance is M exact
S ' 2400 GeV and MET

S ' 1700 GeV, while the vector resonance reads M exact
V ' 2200 GeV

and MET
V ' 1700 GeV. The difference is notable and it is also very appreciable in the figure. Furthermore, we

can see that the widths are much broader for the exact amplitudes, but that comparison is delicate because we

are testing different masses.

In pursuance of comparing the relation mass-width, we show in Figure 3 the relation between the mass and

the width for different poles found in a sweep of the parameter space a4, a5 for the three channels. for the same

number of points, we may appreciate that the exact amplitude has more dispersion than the ET amplitude.

The resonance poles in the ET case have lower masses in general, and we see that for a fixed mass the absolute

value of Γ is also lower using the ET.

Seeming that the results with the ET are substantially different from the exact ones, we claim that for the

purpose of sweeping the a4 − a5 plane looking for resonances it is a great approximation as we see in Figure

4. The presence of resonances in the parameter space is practically the same7: the ET allows a little bit more

6In this plots we work in TeV since the amplitudes computed the equivalence theorem work in the TeV scale
7One can find such comparisons for a = 1.3 in [11] for the exact computations and in [26] with the ET approximation.
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space without resonances near a4 = a5 = 0. Although the picture is almost the same, the value of the masses

and the widths is remarkably different, as stated before.
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Figure 2: For a = 0.95,b = a2 and a4 = 0.000325, a5 = −0.000105 , we plot the perturbative chiral expansion

and the IAM amplitudes for the three channels. The scalar channel yields a resonance at M exact
S ' 2400 GeV,

MET
S ' 1700 GeV. The vector channel at M exact

V ' 2200 GeV, MET
V ' 1700 GeV. The tensor channel does

not contain any resonance. Notice the different range of the y−axis in the plots. The ET amplitudes used are

computed in [25] and the exact ones in [9; 11], as in Figures 3 and 4.
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Figure 3: For a = 0.95,b = a2, we display 4000 points corresponding to resonance poles, comparing the ET and

the exact resonances plotting mass vs width for the three different channels. Notice the dispersion of the exact

calculation while in the ET approximation the trend is quite clear.
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Figure 4: For a = 0.95,b = a2, the plot shows a sweep of the a4 − a5 plane where a resonance is found in the

ET approximation or in the exact calculation. Those resonances are classified in the three different channels.

Notice that there are several regions of overlapping, and the region a4 = a5 = 0 has no poles.
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6 Constraining the effective Lagrangian coefficients

The data collected by ATLAS and CMS experimentalists fits with a 2 TeV resonance in diboson experiments.

In this section we should analyse and constrain the regions in the parameter space where this may occur in our

model for a = 1 and a = 0.95. For that reason, we perform the computations using the exact amplitudes found

in [9; 10] and look for resonances with 1.8 < M < 2.2 TeV.

6.1 a = 1

After requiring a resonance in the vector channel with a mass in the quoted range one gets in a a4 − a5 plane

the region shown on the left in Figure 5 for a = 1. An analogous procedure but assuming that the resonance is

the I = 0, J = 0 channel results in the allowed region in the a4 − a5 plane depicted in Figure 6.

We would like to emphasize the very limited range of variation for the parameters that is shown in Figures

5 and 6. The constants a4 and a5 lay in the small region |a4|, |a5| < 5× 10−4. (This region includes of course

the MSM value a4 = a5 = 0 but —obviously— there are no resonances there.)

In order to convey a picture of the sort of predictive power of unitarisation techniques we plot in Figure 7

the allowed bands in the broader range |a4|, |a5| < 0.01 that was considered in a previous work [9] as still being

phenomenologically acceptable. Indeed, setting even a relatively loose bound for the mass of the resonance

restricts the range of variation of the relevant low-energy constants enormously. In the same figure we show a

blown-up of the region where both a scalar and a vector resonance in this mass range may coexist. The dashed

area is excluded as acceptable for effective EWSBS theories (see [11]). In Figure 8 we show the compatible

vector or scalar resonances assuming that the 2 TeV resonance is scalar or vectorial.

We may notice that the width of the scalar channel is in general larger than in the vector channel. This fact

is in agreement with Figure 2, when we were testing the ET.

6.2 a = 0.95

For a = 0.95, we show in Figure 9 the same picture as in Figure 5. Analogously, in Figure 10 we show the

region of the parameter space where a scalar resonance mass between 1.8 and 2.2 TeV is found. We see that

there is a wider region of the parameter space where both vector and scalar masses are suitable to the range

of masses demanded. Nonetheless, the restriction of the parameter space due to this demand is very similar

to the one taking a = 1. The main difference with the a = 1 plots, is that the width increases significantly in

both channels, but specially in the scalar one. In the scalar channel, the width is multiplied by a factor of 4,

while in the vector channel it is increased by a factor from 2 to 4. This trend may suggest that the lower the a

parameter, the wider is the resonance, and it gives us some intuition in order to compare with the experiment

in future works.

We could also present the same plots as in the a = 1 case corresponding to Figures 7 and 8, but these new

plots would not change the argument made previously as they are very similar. Therefore we do not show them.
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Figure 5: For a = 1 and b = 1: (a) allowed values for a4, a5 corresponding to a vector resonance with a mass

between 1.8 TeV and 2.2 TeV. Note the extremely limited range of variation that is allowed in the figure for

the low-energy constants. (b) The corresponding widths as predicted by unitarity using the IAM method. The

characteristic value is 20 GeV, quite narrow for such a large mass. The dashed area is excluded on causality

grounds stemming from the I = 2 channel.
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Figure 6: For a = 1 and b = 1: (a) allowed values for a4, a5 corresponding to a scalar resonance with a mass

between 1.8 TeV and 2.2 TeV. (b) The corresponding widths as predicted by unitarity using the IAM method;

characteristic values are in the 70-100 GeV range.

15



-0.010 -0.005 0.000 0.005 0.010
-0.010

-0.005

0.000

0.005

0.010

a5

a
4

Scalar & Vector Resonances with Masses �2TeV

Excluded by tensor

VectorScalar

(a)

-0.0004 -0.0002 0.0000 0.0002 0.0004

-0.0004

-0.0002

0.0000

0.0002

0.0004

a5

a
4

IAM: a=1

Excluded by tensor

Scalar MS>1 TeV

Vector

1850

1950

2050

2150

(b)

Figure 7: (a) This plot makes visible how restrictive for the low-energy constants of the EWSBS effective

Lagrangian becomes the requirement of yielding a resonance in the 1.8 TeV < M < 2.2 TeV range. The dashed

area is excluded on causality grounds. (b) Blow-up of the region of overlap where vector and scalar resonances

may coexist. The broad strip shows the region of admissible vector resonances with masses in the 1.8-2.2 TeV

range. The shaded area in the upper-right part contains scalar resonances of mass > 1 TeV. For a = 0.95 this

picture is very similar and we think that to get the idea it is sufficient with this one.
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Figure 8: (a) Viable scalar resonance masses in the region of interest in the a4-a5 plane for a = 1 assuming a

vector resonance in the 1.8 TeV < M < 2.2 TeV range. (b) The reverse situation: assuming a scalar mass in

the 1.8 TeV < M < 2.2 TeV range and depicting the possible values for a vector resonance compatible with it.

For a = 0.95 this picture is very similar and we think that to get the idea it is sufficient with this one.
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Figure 9: For a = 0.95 and b = a2: (a) allowed values for a4, a5 corresponding to a vector resonance with a

mass between 1.8 TeV and 2.2 TeV. (b) The corresponding widths as predicted by unitarity using the IAM

method; characteristic values are in the 40-70 GeV range.
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Figure 10: For a = 0.95 and b = a2: (a) allowed values for a4, a5 corresponding to a scalar resonance with

a mass between 1.8 TeV and 2.2 TeV. (b) The corresponding widths as predicted by unitarity using the IAM

method; characteristic values are in the 200-400 GeV range.

7 Experimental visibility of the resonances

The statistics so far available from the LHC experiments is limited. Searching for new particles in the LHC

environment is extremely challenging and analysing the contribution of possible resonances to an experimental
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Figure 11: Experimental signal of resonances for a = 1 and a = 0.95: the resonance cross sections are given in

fb, the LHC energy has been taken to be 8 TeV and the EWA approximation is assumed in this calculation.

Left: estimated cross section for the process WLWL → WLWL as a function of the parameters a4, a5 due

to a vector resonance. Right: cross section for the process ZLZL → ZLZL due to a scalar resonance. The

contribution from the 125 GeV Higgs is also included in both cases.

signal is not easy without a well defined theoretical model with definite predictions for the couplings, form

factors, etc. The IAM method is able not only of predicting resonance masses and widths but also their

couplings to the WLWL. In [9; 11] the experimental signal of the different resonances was compared to that

of a MSM Higgs with an identical mass. Because the decay modes are similar (in the vector boson channels

that is) and limits on different Higgs masses are very documented, this was a rather intuitive way of presenting

the cross-section for possible EWSBS resonances, but it is not that useful for heavy resonances as the signal of

an hypothetical Higgs of analogous mass becomes very broad and diluted. This point and several others are
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discussed in detail in [9]. Here we shall give very simple estimates of some cross-sections based on the Effective

W Approximation (EWA) [27] in a couple of channels. These estimates should be taken as extremely tentative

and only relevant to establish comparisons between different masses and channels. In the last section we will

introduce form factors and vertex functions to allow for a proper comparison with experiment. Please note that

in the amplitudes where scalars contribute the contribution of the 125 GeV Higgs is also included.

Some results for the cross sections are depicted in Figure 11 for a = 1 and a = 0.95 the processes W+
LW

−
L →

W+
LW

−
L and ZLZL → ZLZL. In the first process we quote the contribution from a possible vector ∼2 TeV

resonance only (a scalar resonance is also possible in this process). In the second case only scalar exchange is

possible and its mass is considered as MS > 1TeV . Note that both diboson production modes are sub-dominant

at the LHC with respect to gluon production mediated by a top-quark loop and that the possible resonances

in the scenario discussed here couple only to dibosons.

Compared to the preliminary experimental indications, the results quoted for the cross-sections of these

two specific processes are low, particulary for vector resonances, but there are several caveats. First of all, the

EWA tends to underestimate the cross-sections and it is difficult to assess its validity in the present kinematical

situation. Second, in this region of parameter space the cross-sections do change very quickly with only small

changes of the parameters thus adding an element of uncertainty. Finally, the quoted cross sections correspond

to considering only the interval s ∈ [M − 2Γ,M + 2Γ] so as to have some intuition on the contribution of

the resonance itself. It should also be mentioned that, as discussed in [9], there is an enhancement in the

W+W− → W+W− channel when both the vector and scalar resonances become nearly degenerate; this is

possible in a limited region of parameter space. We also see that comparing the two different values of a, the

cross section in both processes enhances when we lower a a little bit.

Interesting as partial waves for a given process may be, they are not that useful to implement unitarisation

in a Monte Carlo generator in order to make detailed quantitative comparison with experiment. One would need

to implement diagrammatic and for that one needs vertex functions and propagators wherewith to construct

and compute the contribution from different topologies. Our proposal to tackle this problem is presented next.

8 Introducing form factors

We would like to express any amplitude as the sum of exchanges of resonances in the s, t and u channels, as it

is diagrammatically expressed in Figure 12. That is, we decompose, say A+0+0

A+0+0 =
∑
IJ

(AIJs +AIJt +AIJu ) (30)

Not all IJ receive contributions from all three channels. For example, in the case A+0,+0 a possible scalar

resonance only contributes to the t-channel. In addition, not all processes are resonant in all regions of parameter

space, so the above decomposition assumes resonance saturation. Let us now define the vector form factor as8

〈W i
L(p1)W j

L(p2)|Jkµ |0〉 = (p1 − p2)µFV (s)εijk (31)

8conservation of vector current has been used due to SU(2) symmetry.

19



Figure 12: Decomposition of a process in (unitarised) form factors and resonance propagators.

where Jµk is the interpolating vector current with isospin index k that creates the resonance ρ and FV (s) is the

vector form factor. From this form factor we derive a vector vertex function Kµ via the relation [28]

Kµ(p1, p2) = (p1 − p2)µFV (s)(s−M2
pole) (32)

Let us focus for instance on the amplitude A+0+0 that has potentially contributions from a vector and a

tensor. The IAM does exclude the I = 2 contribution [11] so let us consider A11
s for this process. It can be

expressed as

A11
s = Kµ gµν −

kµkν
k2

s−M2
pole

K∗ν = |FV (s)|2(s−M∗2pole)(−2t− s) = |FV (s)|2(s−M∗2pole)(−s cos θ) (33)

where Mpole = M − iΓ/2. Analogous decompositions exist for A11
t and A11

u . In fact we do not need to consider

A11
t and A11

u at all because assuming exact isospin symmetry A11(s, t, u) = (−1)IA11(s, u, t). Here we assume,

and it is a necessary ingredient of the present approach, that external lines are on-shell.

On the other hand from unitarisation we know that

A+0+0 ' A11 = 96πt11(s) cos θ, (34)

so neglecting further partial waves it is natural to identify

|FV (s)|2 = − 96πt11(s)

s(s−M∗2pole)
(35)

where for tIJ we use the IAM approximation. Although |FV |2 should of course be real and positive, when

using the identification above we get a tiny imaginary part (Im|FV |2 ∼ 10−2Re|FV |2) due to the fact that we

are missing possible channels (including non-resonant contributions) and terms in the partial wave expansion.

However we can regard the description of the amplitude via vertex functions and resonance propagators as quite

satisfactory in the regions where resonances are present.

Neglecting the gauge boson mass (quite justified at 2 TeV) unitarity requires the form factor to obey the

following relation within a vector dominance region [16]

ImFV (s) = t∗11(s)FV (s). (36)

Equation (36) allows us to extract the phase of FV (s). Thus, combining the phase and the modulus we obtain

the vector form factor

FV (s) = |FV (s)| exp

(
i arctan

Ret11
1− Imt11

)
. (37)

Similar techniques could allow us to define a unitarised scalar form factor FS(s) and a vertex function directly

derived from the unitarised amplitude that in this channel is

A00 = 32πt00(s) (38)
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Figure 13: Left: plot of the effective coupling of the vector resonance KV (s)
√
s for the value M = 1881

GeV corresponding to a = 1 a4 = 0.0002,a5 = −0.0001 . Right: plot of the effective coupling for a scalar

resonance KS(s) corresponding to the same values of a4 and a5 that yields a scalar mass M = 2064. Note

that in both cases the coupling is quite large, certainly non-perturbative. In fact, on the scalar resonance the

effective coupling is ∼ 30 times the coupling of a MSM Higgs with identical mass.

and assuming resonance dominance. In Figure 13 we plot the vertex functions KV (s) and KS(s) obtained by

the method just described:

|KV (s)| ∼ |FV (s)||s−M2
pole|, |KS(s)| ∼ |FS(s)||s−M2

pole|. (39)

Note that the function KV (s) is dimensionless while KS(s) has units of energy. However for vector resonances,

the effective coupling is typically KV (s)
√
s (see the expression for the form factor and the associated Feynman

rule). In the last figure we plot these effective couplings normalised to the scale v. The contribution to the form

factor from the 125 GeV Higgs is negligible around the scalar resonance at ∼ 2 TeV.

Once we feel confident that the combination of resonant propagators and the vertex functions just given re-

produces very satisfactorily the unitarised amplitudes we can pass on this information to Monte Carlo generator

practitioners to implement these form factors in a generator.

The expressions for Mpole, t00(s) and t11(s) needed to reproduce the diagrammatic expansion for the various

values of a and a4, a5 can be found in [9–11] (and [12; 13] if a full use of the equivalence theorem is made9).

9 Conclusions

In this work we explored some phenomenological consequences of a strongly interacting EWSBS. We focused

on a non-linear sigma model effective Lagrangian inspired by QCD, and adding the gauge and scalar terms

reproducing the EW behaviour at low energies. Introducing some deviations to the MSM via different parameters

such as a, b, a4 or a5, we were able to perform a partial wave chiral expansion for WLWL scattering at 1-loop

level using isospin formalism, and in an attempt to restore the unitarity of this expansion we introduced and

derived the IAM which unitarises and keeps the analytic properties of the partial waves.

Furthermore, we provided a comparison of the ET with the exact amplitudes, seeing that for the purpose

of predicting a resonance mass or width is not the best tool, but in order to reproduce the a4, a5 map of scalar,

9Please note that t-channel W exchange is not included in some of these works.
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vector and tensor poles is a nice approximation at least for a < 1, since it cannot reproduce resonant behaviour

when the gauge boson-higgs couplings are set to the MSM values.

For this reason we used exact amplitudes to explore the parameter space a4, a5 looking for scalar and vector

resonances with a mass in the range 1.8 TeV < M < 2.2 TeV —as it would be the case if one considers

the preliminary results coming from the LHC experiment to be the first hints of the existence of new WLWL

interactions— for a = 1 and a = 0.95, and noticed how the fact of restricting to this mass range constrained

the a4 and a5 values. We determined the widths of such resonances, which are significantly narrow for a = 1

but they do become much broader when a = 0.95. We also computed the cross sections for two processes using

the EWA for a = 1 and a = 0.95, one aiming attention at a vector resonance and the other one at a scalar

resonance. We saw that when a is lower than one, the signal increases for both processes.

In consideration of performing a deeper analysis on the possible extended EWSBS, we derived the form

factor and the vertex function from the amplitudes via a diagrammatic method, paying attention where there

is a scalar resonance dominant region or a vector one in the parameter space. We plotted the vertex functions

for the scalar and vector channels normalised with the EW scale v and saw that the possible new couplings are

larger. These vertex functions and form factors could be included in a full detector simulation, in the interest

of comparing directly with experiments.

We hope the second run of LHC to pour some light on the insight of WW scattering, and to confirm or

disprove the little excess that appeared in the data of the LHC run I, which has triggered a lot of activity [29].

For future works, it is interesting to focus on a > 1 features and the consequences of including inelastic channels

like WW → hh by setting b 6= a2. It is also important to compare different unitarisation methods with the

IAM to see if they lead to a similar resonance’s behaviour.
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