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Abstract

In this paper a dissimilarity index between statistical populations is pro-
posed without the hypothesis of a specific statistical model. We assume that
the studied populations differ on some relevant features which are measured
trough convenient parameters of interest. We assume also that we dispose
of adequate estimators for these parameters. To measure the differences be-
tween populations with respect the parameters of interest, we construct an
index inspired on some properties of the information metric which are also
presented. Additionally, we consider several examples and compare the ob-
tained dissimilarity index with some other distances, like Mahalanobis or
Siegel distances.

Keywords and phrases: Information metric, Mahalanobis distance, Siegel
distance, Dissimilarity index.

1 Introduction

The distance concept has been proved to be a very useful tool in data analysis
and statistics, in order to study the similarity or dissimilarity between physical
objects, usually, in a wide sense, populations. See for instance the classical works
of Mahalanobis (1936), Bhattacharyya (1942) or Rao (1945), the foundations of
the information metric studied in Atkinson and Mitchell, Burbea and Rao (1982),
or Burbea (1986), some applications to statistical inference in Amari (1985), Oller
and Corcuera (1995) or Cubedo and Oller (2002), applications to data analysis
in Gabriel (1971), Huber (1985), Friedman (1987), Gower and Harding (1988),
Greenacre(1993), Cook, Buja, Cabrera, and Hurley (1995) or Gower and Hand
(1996) and more recent papers on foundations of distances in statistics like Lindsay,
Markatou, Ray, Yang and Chen (2008) among many others.

In the present paper we are interested to define a distance between p different
statistical populations Ω1, · · · , Ωp. We assume that the studied populations dif-
fer on some relevant features which are measured trough convenient parameters
of interest ξ = (ξ1, · · · , ξk)t, although we shall not suppose a particular paramet-
ric statistical model for the distribution of data. After obtaining for every statistical
population a data matrix Xi of order ni×m, we define certain convenient vectorial
statistic T = (T1, . . . , Tk)t, and we assume that it is an unbiased and consistent
estimator of ξ in each population. From this relevant statistic T we shall construct
a dissimilarity index between statistical populations, which we shall refer hereafter
as Relevant Features Dissimilarity (RFD). This index is inspired on some proper-
ties of the information metric. Additionally, a Multidimensional Scaling has been
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realized to compare the differences between our dissimilarity with Mahalanobis
and Siegel distances.

2 Some remarks on the information metric

We first introduce some notation. Let χ be a sample space, a a σ–algebra of subsets
of χ and µ a positive measure on the measurable space (χ,a). In the present paper,
a parametric statistical model is defined as the triple {(χ,a, µ) , Θ , f}, where
(χ,a, µ) is a measure space, Θ, also called the parameter space, is a manifold, and
f is a measurable map, f : χ×Θ −→ R such that f(x, θ) ≥ 0 and dPθ = f(·, θ)dµ
is a probability measure on (χ,a), ∀θ ∈ Θ. We shall refer µ as the reference
measure of the model.

Although in general Θ can be any manifold, for many purposes it will be
enough to consider the case that Θ is a connected open set of Rn, and, in this
case, it is customary to use the same symbol (θ) to denote points and coordinates,
notation which we are going to use hereafter. Additionally, we shall assume that
function f satisfy certain standard regularity conditions which allow us to define
on Θ a Riemannian structure induced by the probability measures, referred as the
information metric, and given by

ds2 =
n∑

i,j=1

gij(θ)dθidθj

where gij(θ) are the components of the Fisher information matrix. For further
details, see Amari (1985), Atkinson and Mitchell (1981), Burbea and Rao (1982)
or Burbea (1986) among many others.

Let us denote the expectation, the covariance and the variance, with respect
the probability measure dPθ = f(·, θ)dµ, as Eθ(X), covθ (X, Y ) and var θ (X)
respectively.

Let us define now D as the class of maps X : χ × Θ −→ R such that X(·, θ)
is measurable map with finite variance with respect the probability measure dPθ,
∀θ ∈ Θ, which additionally satisfy the condition

∂

∂θi
Eθ(X(·, θ)) =

∫

χ
X(x, θ)

∂f(x, θ)
∂θi

dµ, ∀θ ∈ Θ, i = 1, . . . , n

Observe that this condition is fulfilled in many situations, for instance when X
is not dependent on θ or in most of the cases when Eθ(∂X(·, θ)/∂θi) = 0, like
X(x, θ) = log f(x, θ).

2



Additionally, let us consider the n-dimensional vector space:

Hθ =<
∂ log f(·, θ)

∂θ1
, . . . ,

∂ log f(·, θ)
∂θn

> ⊂ L2(f(·, θ) dµ)

where we have identified, as usual, the functions ∂ log f(·, θ)/∂θi, which form a
basis of Hθ, as elements of L2(f(·, θ) dµ). Then Hθ inherits a scalar product,
<,>Hθ

= covθ (·, ·), since Eθ(∂ log f(·, θ)/∂θi) = 0. Observe that, with respect
the above-mentioned basis, the corresponding scalar product matrix is the Fisher
information matrix G = (gij(θ)).

We can identify this Euclidean vector space with the tangent space at θ, Θθ,
which also has an Euclidean structure induced by the information metric, through
the correspondence:

n∑

k=1

Zk ∂ log f(·, θ)
∂θk

←→
n∑

k=1

Zk

(
∂

∂θk

)

which is, clearly, a natural lineal isometry between Hθ and Θθ. Then, fixed θ, the
tangent vectors may be viewed as random maps, and we shall make use of this
identification, hereafter, when necessary.

Notice also that the projection map πθ : L2(f(·, θ) dµ) −→ Hθ is well defined,
with X(·, θ) − πθ(X(·, θ)) ∈ H⊥

θ . The following proposition make explicit some
properties of the above–mentioned identification.

Proposition 2.1 Let X ∈ D and define U(·, θ) = πθ(X(·, θ)) and V (·, θ) =
X(·, θ)− U(·, θ). Then

a) U(·, θ) =
n∑

i=1




n∑

j=1

gij(θ) covθ

(
X(·, θ), ∂ log f(·, θ)

∂θj

)
 ∂ log f(·, θ)

∂θi

where gij(θ) are the elements of the inverse of the Fisher information matrix,
G = (gij(θ)).

Moreover, identifying the tangent vectors with the elements of Hθ, we have

b) grad (Eθ (X(·, θ))) = U(·, θ)
c) ‖grad (Eθ (X(·, θ))) ‖2

θ = var θ (U(·, θ))
d) var θ (X(·, θ)) = ‖grad (Eθ (X(·, θ))) ‖2

θ + var θ (V (·, θ))
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Proof:

Observe that U(·, θ) = πθ(X(·, θ)) ∈ Hθ then

U(·, θ) = U1 ∂ log f(·, θ)
∂θ1

+ . . . + Un ∂ log f(·, θ)
∂θn

where the coefficients U i are determined in order to minimize ‖X(·, θ)−U(·, θ)‖2
θ.

It is straightforward to prove that

(1) U i =
n∑

j=1

gij(θ) covθ

(
X(·, θ), ∂ log f(·, θ)

∂θj

)

and a) follows. On the other hand, since X ∈ D and thus Eθ

(
∂ log f(·, θ)

∂θi

)
= 0,

we have
∂

∂θi
Eθ(X(·, θ)) =

∫

χ
X(x, θ)

∂f(x, θ)
∂θi

µ(dx)

= covθ

(
X(·, θ), ∂ log f(·, θ)

∂θi

)

Therefore the i-th component of grad (Eθ(X(·, θ))), with respect the basis vector
field ∂/∂θ1, . . . ∂/∂θn, at θ, is given by

grad (Eθ(X(·, θ)))i =
n∑

α=1

giα(θ) covθ

(
U(·, θ), ∂ log f(·, θ)

∂θα

)

and taking into account (1) and the natural lineal isometry between Hθ and Θθ, we
can write

grad (Eθ(X(·, θ))) = U(·, θ)
the square of its norm is given by

‖grad (Eθ(X(·, θ))) ‖2
θ = var θ (U(·, θ))

and since X(·, θ) = U(·, θ) + V (·, θ) and covθ (U(·, θ), V (·, θ)) = 0 we obtain

var θ (X(·, θ)) = ‖grad (Eθ(X(·, θ))) ‖2
θ + var θ (V (·, θ))

completing the proof. ¥

Let us define now S ⊂ D as the subclass of maps such that var θ (X(·, θ)) ≤ 1
∀θ ∈ Θ, then from Proposition 2.1, as an immediate consequence, we have the
following corollary:
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Corollary 2.2 Let X ∈ S then

‖grad (Eθ(X(·, θ))) ‖θ ≤ 1 ∀θ ∈ Θ

We can prove also the following property

Proposition 2.3 Let X ∈ D, and let α : [a, b] −→ Θ be a piecewise C∞ curve
parametrized by the arc length, a, b ∈ R, a < b, such that ν = α(a) and
ξ = α(b). Let also define ΦX(θ) = Eθ(X(·, θ)) and ∆ΦX = ΦX(ξ) − ΦX(ν).
Then

(2)
∣∣∣∣
d(ΦX ◦ α)

ds

∣∣
s=s∗

∣∣∣∣ ≤ σX(α(s∗))

and

(3) |∆ΦX | ≤
(

max
s∈[a,b]

σX (α(s))
)

l(ν, ξ)

where l(ξ, ν) is the curve length between ν and ξ, and σX(θ) =
√

var θ (X(·, θ)).
If X ∈ S and α is a minimal geodesic, then we shall have

(4) |∆ΦX | ≤ ρ(ν, ξ)

being ρ(ν, ξ) the Rao distance between ν and ξ.

Proof:

With a customary notation, let us denote the curve α parametrized by the arc
length s as α(s) = (θ1(s), . . . , θn(s)), then the components of the tangent vector
to α, in each smooth piece, are given by dα/ds = (dθ1/ds, . . . , dθn/ds), and, by
the chain rule, using classical notation, we have

d(ΦX ◦ α)
ds

=< grad (ΦX) ,
dθ

ds
>θ

where <,>θ is the scalar product either in Θθ, where the point θ is on the curve α.

From proposition (2.1) and Cauchy-Schwarz inequality, we have

∣∣∣d(ΦX ◦ α)
ds

∣∣∣ =
∣∣ < grad (ΦX) ,

dθ

ds
>θ

∣∣ ≤ ∥∥grad (ΦX)
∥∥

θ

∥∥dθ

ds

∥∥
θ
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where θ = α(s) and taking into account that since the curve is parametrized by the
arc-length the norm of the tangent vector is equal to one and Proposition 2.1 we
have ∣∣∣d(ΦX ◦ α)

ds

∣∣∣ ≤ σ ◦ α

which prove (2), and therefore

|∆ΦX | =
∣∣∣∣
∫ b

a

d(ΦX ◦ α)
ds

ds

∣∣∣∣ ≤
∫ b

a

∣∣∣∣
d(ΦX ◦ α)

ds

∣∣∣∣ ds

≤
∫ b

a
σ(α(s)) ds ≤

(
max
s∈[a,b]

σX (α(s))
)

l(ν, ξ)

which prove (3). Additionally, if α is a minimal geodesic and var θ (X(·, θ)) ≤ 1
we obtain

|∆ΦX | ≤ ρ(ν, ξ)

completing the proof. ¥

The following proposition shall supply an interpretation of the information
metric.

Proposition 2.4 Let θ0 ∈ Θ and Z ∈ Θθ0 with Z 6= 0. Let X ∈ S and ΦX(θ) =
Eθ(X(·, θ)). Moreover, let us define the map w : S −→ R such that

w(X) = Z(ΦX)

then
max
X∈ S

w(X) = ‖Z‖θ0

where the norm in Θθ0 is the norm corresponding to the information metric and a
random map such that maximizes the above-mentioned expression is given by

X(·, θ0) = Z1 ∂ log f(·, θ)
∂θ1

∣∣∣∣
θ=θ0

+ . . . + Zn ∂ log f(·, θ)
∂θn

∣∣∣∣
θ=θ0

+ C

where Z1, . . . , Zn are the components of Z with respect the basis vector field
∂/∂θ1, . . . ∂/∂θn at θ0, and C is almost surely a constant (dependent only on θ0).

Proof:
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Taking into account Proposition 2.1 and the natural lineal isometry between Hθ

and Θθ, we have that w(X) = Z(ΦX) = < grad (ΦX) , Z >Θθ0
= < U,Z >Hθ0

where U = U(·, θ) = πθ(X(·, θ)) and Z is identified with the corresponding
vector in Hθ0 . For a fixed norm of U , by Cauchy-Schwarz inequality w(X) is
maximized if we choose X such that U(·, θ0) = λZ for a convenient λ but, since
X ∈ S, we also have that

|λ|2‖Z‖2
Hθ0

= ‖U‖2
Hθ0

= var θ0 (U(·, θ0)) ≤ var θ0 (X(·, θ0)) ≤ 1

then λ < 1/‖Z‖Hθ0
. Combining these results, we obtain that w(X) = λ‖Z‖2

Hθ0
≤

‖Z‖Hθ0
and therefore

max
X∈ S

w(X) = ‖Z‖θ0

maximum which is attained when we choose λ = 1/‖Z‖Hθ0
. Observe that when

the maximum is attained we have var θ0 (U(·, θ0)) = var θ0 (X(·, θ0)) = 1 and thus
X(·, θ0)− U(·, θ0) must be almost surely a constant C, and then

X(·, θ0) = U(·, θ0) + C =
n∑

i=1

Zi ∂ log f(·, θ)
∂θi

∣∣∣∣
θ=θ0

+ C

completing the proof. ¥

This result can be interpreted as follows. Given two close statistical popula-
tions, corresponding to parameters θ0 and θ1 = θ0 +∆θ, and a random variable X ,
a measure, based on X , to quantify the difference between both populations can
be the mean value change when we move from one population to the other. It sug-
gests to define a mesure, independent of X , of the difference between populations,
as the maximum of the previously mentioned dependent on X measures, with the
restriction that var θ0 (X) = 1. Observe that from Propositions 2.1 and 2.4 we have

∆ΦX = ΦX(θ1)− ΦX(θ0) ≈
n∑

i=1

covθ0

(
X,

∂ log f(·, θ)
∂θi

∣∣∣∣
θ=θ0

)
∆θi

Varying X ∈ S, this quantity is maximized when we chose

X ≈ 1
∆s

n∑

i=1

∂ log f(·, θ)
∂θi

∣∣∣∣
θ=θ0

∆θi

where

∆s =

√√√√
n∑

i,j=1

gij(θ)∆θi∆θj
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and the maximum is precisely equal to ∆S. In other words, the information metric
is a local mesure of the maximum mean value change of standardized random
variables, in a neighborhood of θ0. This interpretation suggest a simple method to
define a dissimilarity index to discriminate populations even when we do not have
parametric statistical model as we shall see in the previous section.

3 Distances between statistical populations

Let us consider now the case that we are interested to define a distance between
p different objects on which we have performed measurements obtaining results
which may be identified as samples of a m-dimensional random vector X over p
different statistical populations Ω1, . . . , Ωp, obtaining, for every statistical popula-
tion, a data matrix which rows are the X values over each particular individual of
the corresponding sample, i.e. for the population Ωi we obtain the data matrix Xi

of order ni ×m.

As we have said in the introduction, we shall assume that the statistical pop-
ulations differ in some relevant features which are measured trough a vectorial
parameter of interest ξ = (ξ1, . . . , ξk)t, although we shall not assume a particu-
lar parametric statistical model for the distribution of X . We may try to define
a distance, or at least a dissimilarity index, between the populations Ω1, . . . , Ωp,
inspiring us in the results of the previous section, see proposition (2.4).

First of all we need to define certain convenient statistic T = (T1, . . . , Tk)t,
where T is a vector valued measurable function of the samples Xi, and we assume
that it is an unbiased and consistent estimator of the parameter of interest ξ and it
has covariance finite for each population. Therefore we shall write

(5) ξi = E(T |Ωi) and Ψi = cov(T |Ωi) i = 1, . . . , p

We shall also require that the covariance of T at each statistical population satisfy

(6) lim
ni→∞

niΨi = Ξi

where Ξi is a k × k symmetric, regular and positive definite matrix, which is, es-
sentially, a standardized version of the T covariance matrix independent of sample
size.

The values of the statistic T can be evaluated for each sample matrix Xi, ob-
taining T̂i ≡ T (Xi), and, in the absence of model assumptions, we can obtain also
an unbiased estimation of Ψi, Ψ̂i, through Bootstrap methods, by re-sampling the
rows of the data matrix Xi, and also an estimation of Ξi, Ξ̂i = niΨ̂i.
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Under this framework, we can define a non necessarily symmetric dissimilar-
ity index between the statistical populations Ωi and Ωj , δij . We define this index
as the supremum of the differences of the estimated expected values of any linear
combination of T1, . . . , Tk, αtT , where α is a k × 1 vector, between both popu-
lations under the constraint that the estimated standardized variance of this linear
combination at Ωi is less equal to one, i.e.

(7)
δij = sup αt(T̂j − T̂i) = sup αt(T̂j − T̂i)

αtΞ̂iα ≤ 1 niα
tΨ̂iα ≤ 1

In order to find this supremum, we consider the following proposition

Proposition 3.1 Given a k × 1 vector v, the supremum of any linear combination
of its components v1, · · · , vk, that is, αtv, where α is a k×1 vector of real values,
under the constraint αtAα ≤ 1, where A is a k×k symmetric and positive definite
matrix is

sup αtv =
√

vtA−1v
αtAα ≤ 1

Proof:

Taking into account that A is symmetric and positive definite matrix, if we let
β = A1/2α and ω = A−1/2v, where A1/2 is the symmetric square root of A,
our optimization problem is equivalent to find a vector β such that maximices βtω
subject to the constraint βtβ ≤ 1. Clearly, by Cauchy-Schwarz inequality, the
maximum is attained when β = λω and βtβ = 1. Therefore λ must be equal to
1/
√

ωtω and
sup βtω =

√
ωtω

βtβ ≤ 1

and, in terms of α and v, we have

sup αtv =
√

vtA−1v
αtAα ≤ 1

completing the proof. ¥

Taking into account the previous proposition, we can define a dissimilarity
index δij through:

(8) δij =
√

(T̂j − T̂i)tΞ̂−1
i (T̂j − T̂i) =

√
1
ni

(T̂j − T̂i)tΨ̂−1
i (T̂j − T̂i)
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Thus, the matrix ∆ = (δij) is a p × p non symmetric dissimilarity matrix
between the populations Ω1, . . . ,Ωp.

It is possible to approximate ∆ by the symmetric matrix D, using the next
proposition:

Proposition 3.2 The closest symmetric matrix to the dissimilarity matrix ∆, using
the trace norm, is D = (∆ + ∆t)/2.

Proof:Observe that with the scalar product defined, in the square matrix vector
space, by < A, B >= tr(AtB) it is straightforward to prove that symmetric and
antisymmetric matrices are orthogonal. On the other hand it is well known that
any square matrix can be uniquely expressed as the sum of a symmetric plus an
antisymmetric matrices, namely ∆ = (∆ + ∆t)/2 + (∆ − ∆t)/2. Therefore
(∆ + ∆t)/2 is the orthogonal projection of ∆ into the subspace of symmetric
matrices, concluding the proof. ¥

4 Simulation results

In order to assess the performance of the dissimilarity we have used simulations
where several samples from known distributions have been generated. Our choose
has been for multivariate normal populations since in addition to Mahalanobis dis-
tance with the assumption of homogeneity of variances, we can compare our dis-
similarity with Siegel distance, as introduced by Calvo et al.(2002), without as-
sumptions about the covariance matrices. Of course our dissimilarity could also be
applied to any data without restrictions about the parametric model.

A total of 9 trivariate normal populations have been simulated with three dif-
ferent mean vectors: M1 = (0, 0, 0),M2 = (1,−1, 1) and M3 = (1, 2, 3) and
covariance matrices of the form

Σi =




1 ρ ρ
ρ 1 ρ
ρ ρ 1




The parameters for simulations are summarized below

For each population a sample of size n=500 has been simulated. The most
plain choice of statistics T in this situation are the mean values and the different
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Pop. 1 2 3 4 5 6 7 8 9
mean M1 M2 M3 M1 M2 M3 M1 M2 M3

ρ 0 0 0 1/3 1/3 1/3 -1/3 -1/3 -1/3

Table 1: Parameters for simulations.

coefficients of covariance matrices, so each population is characterized by nine
parameters (µ1, µ2, µ3, σ11, σ12, σ13, σ22, σ23, σ33).

Once obtained the samples and computed the statistics we have obtained the
matrix of coordinates for each population shown in Table 2.

µ̂1 µ̂2 µ̂3 σ̂11 σ̂12 σ̂13 σ̂22 σ̂23 σ̂33

T̂1 -0.041 -0.018 0.005 0.991 0.019 0.010 1.069 0.019 0.880
T̂2 1.053 -0.960 1.024 0.991 0.069 -0.060 0.902 0.065 1.051
T̂3 0.982 1.964 2.961 1.024 0.053 -0.048 0.972 0.048 0.978
T̂4 -0.033 -0.024 -0.020 1.107 0.533 0.393 1.113 0.409 1.081
T̂5 0.978 -0.959 1.043 1.022 0.328 0.241 1.074 0.334 0.999
T̂6 0.948 1.953 2.952 1.095 0.355 0.303 0.964 0.298 0.938
T̂7 0.013 -0.080 -0.012 0.967 -0.271 -0.348 1.025 -0.429 1.079
T̂8 0.994 -0.995 0.914 0.951 -0.300 -0.301 0.983 -0.314 0.980
T̂9 1.069 1.899 3.005 1.119 -0.367 -0.388 0.974 -0.361 1.039

Table 2: Final coordinates of populations.

Unbiased estimations of covariance matrices Ψ̂i for these statistics in each
population have been obtained through 10000 bootstrap samples from each popu-
lation sample. Finally using (8) we obtain the dissimilarity matrix D between the
nine populations. As mentioned before and since we are working with multivariate
normal distributions we can compare our dissimilarity not only with Mahalanobis
distance under the assumption of a common covariance matrix, but also with Siegel
distance between general multivariate normal populations as proposed by Calvo et
al.(2002) and which is a lower bound of the Rao distance between multivariate nor-
mal distributions that has not been obtained explicitly until now. Siegel distances
have been computed following (2.6) in Calvo et al. (2002).

Table 3 shows the dissimilarities computed based on relevant features (RFD)
and Siegel distances between the 9 simulated populations. In Table 4 we compare
RFD dissimilarity with the usual Mahalanobis distance after estimating a pooled
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covariance matrix.

Pop.1 Pop.2 Pop.3 Pop.4 Pop.5 Pop.6 Pop.7 Pop.8 Pop.9
Pop.1 0.000 1.876 3.785 0.729 1.966 3.621 1.003 2.045 5.309
Pop.2 1.672 0.000 3.509 2.158 0.468 3.581 2.101 1.039 4.674
Pop.3 2.765 2.651 0.000 3.459 3.404 0.532 5.099 4.487 1.262
Pop.4 0.644 1.888 2.622 0.000 2.158 3.189 2.260 3.105 5.447
Pop.5 1.742 0.439 2.590 1.836 0.000 3.386 2.597 1.833 4.836
Pop.6 2.682 2.679 0.494 2.477 2.569 0.000 5.145 4.787 2.291
Pop.7 0.892 1.826 3.295 1.486 2.048 3.271 0.000 1.659 6.491
Pop.8 1.715 0.824 3.063 2.130 1.215 3.121 1.510 0.000 5.535
Pop.9 3.367 3.134 0.964 3.311 3.134 1.418 3.767 3.459 0.000

Table 3: RFD dissimilarities for the 9 simulated populations in the upper part and
Siegel distances in the lower part.

Pop.1 Pop.2 Pop.3 Pop.4 Pop.5 Pop.6 Pop.7 Pop.8 Pop.9
Pop.1 0.000 1.876 3.785 0.729 1.966 3.621 1.003 2.045 5.309
Pop.2 1.800 0.000 3.509 2.158 0.468 3.581 2.101 1.039 4.674
Pop.3 3.673 3.487 0.000 3.459 3.404 0.532 5.099 4.487 1.262
Pop.4 0.027 1.806 3.693 0.000 2.158 3.189 2.260 3.105 5.447
Pop.5 1.765 0.076 3.473 1.772 0.000 3.386 2.597 1.833 4.836
Pop.6 3.651 3.475 0.035 3.672 3.461 0.000 5.145 4.787 2.291
Pop.7 0.085 1.743 3.705 0.074 1.709 3.684 0.000 1.659 6.491
Pop.8 1.722 0.129 3.575 1.727 0.134 3.562 1.661 0.000 5.535
Pop.9 3.700 3.456 0.119 3.720 3.444 0.144 3.729 3.546 0.000

Table 4: RFD dissimilarities for the 9 simulated populations in the upper part and
Mahalanobis distances in the lower part.

We present in Table 5 Spearman’s rank correlation coefficient between the three
computed measures.

Dissimilarity (RFD) Siegel
Siegel 0.98147
Mahalanobis 0.87979 0.90862

Table 5: Spearman’s rank correlation between the three computed measures
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Finally in order to obtain a graphical representation of the similarities between
the populations we have done a Multidimensional Scaling (MDS) based on Maha-
lanobis distance and on our dissimilarity (RFD). Fig. (1) shows the result obtained
for the RFD dissimilarity in the big frame and the corresponding result for Maha-
lanobis distance in the upper right frame.
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Figure 1: MDS based on RFD dissimilarity (big frame) and Mahalanobis distance
(upper right frame) of the 9 simulated populations
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5 Some applications to real data

5.1 Archaeological data

As an example, we consider the classical dataset on Egyptian skulls from five dif-
ferent epochs reported by Thomson and Randall-Maciver (1905) which has been
widely used in so many different works. Data consists of four measurements of
150 male Egyptian skulls from five time periods: Early Predynastic, Late Predy-
nastic, 12th − 13th dynasty, Ptolemaic and Roman. The four variables measured
were: MB (Maximal Breadth of Skull), BH (Basibregmatic Height of Skull), BL
(Basialveolar Length of Skull) and NH (Nasal Height of Skull).

In Table 6 we show the interdissimilarity matrix obtained by the method devel-
oped in the present paper with means and different coefficients of covariance ma-
trices as coordinates. Figure 2a give us a representation in two dimensions through
a Multidimensional Scaling of the dissimilarity matrix. Obviously the first axis can
be interpreted as time, from most recent on the right to most distant on the left. The
second axis has a not so clear interpretation but we observe that central values are
occupied by native Egyptian populations before any foreign invasion, while late
populations, where native Egyptian rulers had vanished long ago, diverge from the
centerline in an almost perpendicular way. The result is quite different of that ob-
tained by the standard Canonical Discriminant Analysis (CDA) as can be seen in
Figure 2b.

Early P. Late P. Dyn. 12-13 Ptolemaic Roman
Early P. 0.000
Late P. 2.045 0.000

Dyn. 12-13 2.546 1.785 0.000
Ptolemaic 3.595 2.934 2.244 0.000

Roman 3.636 2.155 2.261 2.642 0.000

Table 6: RFD Dissimilarities matrix for the five populations of Egyptian skulls.

5.2 Academic achievement data

The data were collected from N = 382 university students on the number of GCE
A-levels taken and the students’ average grades (Mardia et al., 1979, p. 294).
The students were grouped according to their final degree classification into seven
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Figure 2: MDS based on RFD dissimilarity (a) and CDA (b) of the five populations
of Egyptian skulls

groups: 1-I (students with degree class I), 2-II(i) (students with degree class II(i)),
3-II(ii) (students with degree class II(ii)), 4-III (students with degree class III), 5-
Pass (students who obtained a ’Pass’), 6-3(4) (students who took four years over
a three-year course) and 7-→ (students who left without completing the course).
The average A-level grade obtained is a continuous variable (X1) and the number
of A-levels taken is categorized in two variables: X2 (1 if two A-levels take, 0
otherwise) and X3 (1 if four A-levels taken, 0 otherwise).

We have considered as statistics the mean and standard deviation of X1 and
the relative frequencies for X2 and X3. After obtaining the dissimilarity matrix the
two-dimensional plot obtained through a classical MDS is shown in Figure 3. The
minimum spanning tree of the dissimilarity matrix has been computed making use
of the function mst from package ape developed in R by Paradis et al. (2009) and
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the tree has been plotted on the two-dimensional scaling solution. The plot shows
no distorsion in the muldimensional scaling solution, so the MDS solution reflects
accurately the dissimilarity.

Mardia’s first canonical correlation solution gives the following scores to each
of the degree results:

1 2 3 4 5 6 7
0 0.488 1.877 2.401 2.971 2.527 3.310

with r = 0.4 as first canonical correlation coefficient.

Mardia interpreted the scores as follows: ”The scores for I, II(i), II(ii), III and
Pass come out in the natural order, but they are not equally spaced. Moreover the
3(4) group comes between III and Pass, while→ scores higher than Pass. Note the
large gap between II(i) and II(ii)”.

All conclusions are endorsed by our analysis as shown in Figure 3, so we think
we have obtained a good representation of the seven populations based on the four
chosen statistics.
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17



6 Conclusions

The proposed dissimilarity index has a reasonable behavior in all the studied cases,
regardless of whether or not an adequate parametric statistical model is available
for the data. The index is flexible enough to allow a wide applicability and, at
the same time, maintaining a reasonable simplicity from a computational point of
view.
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Oller J.M. and Corcuera J.M. (1995), Intrinsic Analysis of the Statistical Estima-
tion, The Annals of Statistics 23(2), 1562–1581.

Paradis, E., Strimmer, K., Claude J., Jobb, G., Opgen-Rhein, R., Dutheil, J., Noel,
Y. and Bolker, B. (2009), ape: Analyses of Phylogenetics and Evolution,
URL http://CRAN.R-project.org/package=ape, R package version 2.3

Rao, C.R. (1945). Information and accuracy attainable in the estimation of statis-
tical parameters. Bull. Calcutta Math. Soc., 37, 81–91.

Thomson, A. and Randall-Maciver, R. (1905) Ancient Races of the Thebaid, Ox-
ford University Press, Oxford.

19


