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16  Abstract
17 In this paper, 10-years of ozones{@ourly concentrations collected over the period 2@009 in the
18 Iberian Peninsula (IP) are analyzed using records from 11 lacidysites. All the selected monitoring
19 stations present an acquisition efficiency above 85%. The changes in tropospbadmver the Iberian
20  Peninsula are examined by means of quantile regression, which allewalyse the trends not only in
21 the mean but in the overall data distribution. In addition, the ozone hoamigentrations records are
22  clustered on the basis of their resulting distributions.
23  The analysis showed that high altitude stations (> 900 m) have Higbkground @concentrations (~80
24  pg.m®. The same magnitude of background, €oncentrations is found in stations near the
25  Mediterranean Sea. On the other hand, the rural stations near the Atlantjgresast lower background
26  values (~50-60 pg.M than those of Mediterranean influence. The two sub-urban stagimibit the
27  lowest background concentrations (~45 pd.nmrhe results of the quantile regression show a very
28  distinct behaviour of the data distribution, the slopes for a fixed quantil@ciréne same over IP,
29 reflecting the spatial dependence of ttends. Hence the rate of temporal change is not the same for alll
30 parts of the data distribution, as implicitly assumed in ordinary regresgieniower quantile (percentile
31 5) presents higher rates of change than the middle (percentile 50) amqmphiequantile (percentile 95).
32  The clustering procedure reveals what has been already detected inritie qegression. The station
33  with highest rates of decrease on theo@ncentrations (easternmost station of IP) is isolated and then
34  other clusters are formed among the moderately positive/negativer@s around the IP. The clustering
35  procedure highlighted that the largest trends are found for the lower @xomalues, with largest
36  negative trend at the easternmost station of IP, and also in northern anahdhsiiations, and an opposite
37  behaviour, with positive ©trends, is observed at the Atlantic coast stations.
38
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1. INTRODUCTION

Tropospheric ozone @is a key determinant of the atmospheric oxidation state and a major
constituent of photochemical smog which impacts air quality at urban andakgeale. The
production of elevated levels of;@t ground level is of particular concern because it is known

to have adverse effects on human health, vegetation, and a variety of materials (E), 2010
There is a high interest in quantifying surfaced®ncentrations and associated trends, as they
serve to indirectly quantify the impacts of the anthropogenic precursor reduction® and
evaluate the effects of emission control strategies (Tang et al., 2006; Sicard et al., 2009).

There have been a few studies on the analysis of surfacen@s in different regions of Europe
(Brébnnimann et al., 2002, Jenkin, 2008; Sicard et al., 2009). Over the lberian Peninsula (IP)
where high surface {roncentrations are monitored each year from April to September (EEA,
2010b), several analyses of surfacge dOncentrations have been carried out. However, they
were limited to a single location restricted to a region of the IP and adaptirgydinary
regression approach or based on the median/mean and high perceatilal\@is (Gimeno et

al., 1999; Millan et al., 2002; Ribas and Pefuelas, 2004; Adame et al., 2008).

Observations from background monitoring stations have revealed that baseline €yrface
concentrations in the northern hemisphere have been increasing over the past three decades
(Marenco et al., 1994), with average increases of approximatel2%.peryear at northern
mid-latitudes (Vingarzan, 2004). The observed increasing trend in basglown&@ntrations is
believed to be driven by emissions and processingsqir€ursors on a global scale (Jaffe et

al., 2003; Honrath et al., 2004; Derwent et al., 2006, 2007). Although this hemisphelicebas
influences @ concentrations throughout the IP, the observed concentrations can be further
modified by processes occurring on regional- and local-scales, which can betseéand
decrease ©levels. Therefore such processes occurring on local, regional, and global scales
have an influence on whetheg @r quality standards at a given location are achieved (Jenkin,
2008). Although the progressive control og @recursors emissions -like volatile organic
compounds (VOC) and nitrogen oxides ()Qwithin the European Community since the early
1990s (CEC, 1991) have influenced the magnitude of thee@lonal- and local- scale effects
(Derwent et al., 2003; Jonson et al., 2005; Vautard et al., 2006), the obsertezhd3 is
determined from the net trend of the global-, regional- and local-scale effectgldtiee
contributions of which can vary both spatially and temporally.

Anthropogenic emissions of the main air pollutants across Europe have decreased continuously
between 1990 and 2008 in Europe (EEA, 2010a). Reported European emissiong afdNO
NMVOC have both decreased by 39% and 51%, respectively, since 2000. Concerning Spain
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and Portugal, the {precursor emissions have also been reduced, namely fof88and 7%,
respectively) and NMVOC (21% and 34%, respectively).

The understanding of thes@udget and trends in the troposphere over the IP is required to (a)
properly identify the various mechanisms that contribute to the observed hourly eaverag
concentration distribution; and to (b) develop and test models capable of simulading an
predicting atmospheric chemical and physical processes (Lefohn et al., 2008). It is also
important to characterize the changes in the distribution of hourly &&sagoncentrations
which provide (a) quantitative feedback on the effects of emission reduction®;on
concentrations; (b) insights concerning the long-range transport otitSide IP and possible
impacts of climate change; and (c) important information on which processes dahiragea
specific time of the year and which processes are more likely to influencaufaarportions of

the distribution (Oltmans et al., 2006).

Robust statistical procedures can be applied to investigate the spatial and tewmglatadn of

the Q concentrations over a region from historical datasets. This study adoptsethed
introduced by Barbosa et al. (2011) which combines quantile regression and clustering
procedures in order to better assess the spatial and the temporal evolutienhotuirly Q
measurements over the IP. On the one hand, quantile regression (Koenker and Hallock, 2001)
provides the rate of change not only in the mean, as in ordinary regression, btz g@its

of the data distribution. In this sense, the quantile regression quaridigariability structure

of the hourly Q concentrations and assesses the changes in the data distribution. Onrthe othe
hand, cluster analysis is an adequate procedure to spatially characterizéotia xegiability

on the Q data and it has been widely used in different analysis of environmental processes
(Alonso et al., 2006; Scotto et al., 2009; Barbosa et al., 2011; Carvalho et al., 2011).

This work focuses on investigating the temporal and spatial trendse diaurly surface O
concentrations at background environment over the IP for the last decade (2000F2@09).
remainder of this paper is laid out as follows. Section 2 discusses tbad@ntrations acquired

at the background monitoring stations used in this study. Section 3 describes tetiappif

the quantile regression approach and the clustering procedure. Results are preSsdgonin

4. Finally, in Section 5 the results are discussed and main conclusions are summarized.

2. O3 DATA OVER THE IBERIAN PENINSULA

A total of 11 Q monitoring stations within the IP are selected taking into account their
background influence and the efficiency data collection (> 85%) during the i9-{yeaod
(2000-2009) as shown in Fig. 1 and Table 1. The spatial coverage is suitable ovemiite 1P

two stations located in Portugal and the remaining 9 stations located over Spain.

(Figure 1)
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(Table 1)

Ambient O; concentrations are reported on an hourly basis and were obtained from the

Portuguese Air Quality Database (www.qualar.org) and the EMEP monitoring network

(www.emep.int).

Fig. 2 shows the distribution of hourly O; concentrations by year. Different groups of stations

can be distinguished in terms of background values (median) and minimum/peak values.

(Figure 2)

High altitude stations (> 900 m) (CPB, VIZ and PEN) show high background concentration
(~80 pg.m™) due to higher O; levels in elevated terrains. The same range of background O
concentrations are found in stations near the Mediterranean Sea (CCR, ZAR, and TOR). O;
atmospheric dynamics in the Spanish Mediterranean areas is affected by mesoscale and local
meteorological processes but also regional factors, such as (Baldasano et al., 1994, Millédn et al.,
1997; Toll and Baldasano, 2000; Martin-Vide and Olcina, 2001; Soriano et al., 2001; Pérez et
al., 2004): (1) the influence of the Azores high-pressure system, (2) the costal ranges
surrounding the Mediterranean coast, (3) the influence of the Iberian and Saharan thermal lows
causing weak pressure gradients over the Mediterranean (4) the intense breeze action along the
Mediterranean coast favoured by the prevailing low advective conditions, (5) the scarce summer
precipitation, and (6) the intense seasonal contrast concerning temperature, humidity and
rainfall. All these facts favour the photochemical formation of O; and contribute to the
accumulation and recirculation of aged air masses which contain O;. The two rural stations
closest to Portugal and located under 506 m of altitude -BAR and SEV — register lower median
(~50-60 pg.m™) than those of Mediterranean influence, also presenting O; peaks (P95) less than
120 pg.m”. The NIB station, in the northern IP, also presents low median concentrations along
the decade (~50-60 ug.m”) due to the influence of large plumes coming from power plants
located in northeaster Spain (Pay et al., 2011) containing high NO, concentration that affects O;
chemistry in this region. Such episodes happen under the influence of westerly winds which are
relatively frequent (Jorba et al., 2004). The two suburban stations (CUS and PP) exhibit the
lowest median (~45 pg.m) and the minimum O; concentrations (P5) (~ 0 pg.m), explained by
the O; destruction by NO (emitted by road-traffic and shipping in the urban and suburban areas
of Oporto and Lisbon) mainly at nigh-time (Seinfeld and Pandis, 1998).

During the study period the most critical years in terms of O; peaks/episodes were 2005 and
2006 for the majority of the stations. The summer period of these two years was characterized

by meteorological conditions very favourable for photochemical activity (Monteiro et al., 2005,
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2007). The year 2003 was also a particular critical year in terms of photoahewctivity (and

high G; values) due to the occurrence of a strong heat wave over the IP (Ordonez et al., 2010).

3. STATISTICAL METHODS

Quantile regression is a well-defined statistical technique for regression dileguather than
regression on the mean. Although it was first introduced in econometrics by Koenker and Basset
(1978), quantile regression is being applied in various geoscience contexts (e.g. Koehker
Schorfheide, 1994; Cade and Noon, 2003; Baur et al., 2004; Elsner et al., 2008; Baabosa et
2011). We outline here the essential of the quantile regression apprbacstarting point is a
random variablé’ with cumulative continuous distribution function(f) (by definition: FY(y)

= P(Y<y)). The quantile t is defined as the value Qy(t) such that P(XX Qy(t)) = 1, for O<t<1.

The quantile function @) is defined from the cumulative distribution functiop(¥y as Q(t)

= R(y). Then considering the conditional distribution of Y given X=x, the conditional quantile
functionQ(Y[X)(t[x) verifies P(Y< Q(Y[X)(t]x)X=x) = t. Whereas ordinary regression is based
on the conditional mean function E(Y|X)=x and minimization of the respecés®luals,

guantile regression is based on the conditional quantile function and minimiabti@sum of

ZP(T)()’,-_Q(y|X)(T|X:X,-))
asymmetrically weighted absolute residuais , Wherep(.) represents

the tilted absolute value function. For further details see Koenker (2005).

The time series clustering procedure proposed to classify the time seri@s loburly
concentrations based on the corresponding distributions for quantile slopes atmmaér,and
upper quantiles is as follows: firstly, for a fixed (but arbitrary) quantile, the algorithra wfi#nt

the estimation of the distribution corresponding to quantile slope estimates; sewend, t
correspondingdissimilarity matrix is computed. To this extend, an adequate metric between
univariate distribution functions is required. In the present settingéighted L2-Wasserstein
distance between two quantile slope distributions is adopted. Finally, a dendrogram based on the
application of classical cluster techniques to the dissimilarity mattixils and that provides

the different clusters formed by the distributions of the quantile slopegatticular,
agglomerative hierarchical methods with nearest distance (single linkagbgstudistance
(complete linkage) and unweighted average distance (average linkage) are used iag group
criteria. In order to summarise those distributions, the average linkage protsedpmied to
obtain dendrograms of slopes for quantiles 0.05, 0.5 and 0.95. Similar conclusionsiags obta

using the single linkage and the complete linkage methods.

4. RESULTS
In this section, quantile regression is applied for the houglycd@hcentrations in order to

describe the temporal variability of different quantiles of thed@dtribution over IP. The
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quantile slopes and corresponding standard errors are derived using the algorithm of Koenker
and D’Orey (1987). The clustering procedure is also discussed.

The results for all the stations are shown in Fig. 3, along with the quantile slopes at quantiles
0.05, 0.5 and 0.95, corresponding respectively to the lowest 5%, 50% (median) and 95% of the

ordered observations.

(Figure 3)

Several O; trends over the last decade can be identified in this group of stations. A significant
negative trend is only exhibited by CCR station, especially for lowest quantiles (P5). The same
tendency was found by Ribas and Pefiuelas (2004) for a coastal station (Begur) in northeastern
Spain. CCR is a costal station located in the northeastern extreme of the IP. This site presents
strong north-westerly winds (tramontane and mistral) channelled by Pyrenees and Central
Massif throughout the Gulf of Lyon. The flow crosses the Carcasone gap into the Mediterranean
which can transport new pollutants into the area that are added to local emissions and re-
circulated within the coastal breezes at eastern Iberian (Gangoiti et al., 2001). CPB, PEN —
located in the northern Spanish plateau — and SEV show a slightly negative slope, mainly for the
lower quantiles. BAR and ZAR monitoring sites don’t show any significant trend for the three
quantiles.

By contrast, the NIB coastal station in the northern IP presents the largest positive trends, even
larger for lower concentration (P5). Similar trends are found in TOR and VIZ, sited under the
Mediterranean influence, and in a lesser extend at the two suburban stations at Oporto and
Lisbon cities (CUS and PP, respectively).

A more complete description of the quantile regression results is displayed in Fig. 4 which
displays the quantile slopes and the corresponding standard errors computed for quantiles 0.1 to

0.9 in steps of 0.02.

(Figure 4)

Fig. 4 clearly shows a distinct pattern for the different monitoring sites. However, there are
similarities between specific stations in terms of the sign and the distribution over the different
quantiles. CCR shows the highest negative slopes over all the analysed sites (from -28 to -19
ug.m*/decade), with a higher decrease observed for the lower quantiles. A negative slope over
the all ranges of concentrations is also registered for the north mainland stations - CPB, SEV
and PEN - with similar magnitudes (around -5 and -10 pg.m*/decade) of the quantile
distribution pattern. A slight negative slope (> -2.5 ug.m*/decade) is also verified for ZAR and
BAR, but only for the lower quantiles.
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On the opposite, the Atlantic coastal stations - NIB, CUS and PP - have psisitige over the
all concentrations range with the lower increasing at a much faster ratéh¢hamddle and
upper values. Besides a similar quantile distribution, the magnitude of the slopfisasitly
different, higher for NIB (> 18 pg.fidecade) and lower for CUS and PP (~ 5-15 fig.m
%/decade). Positive slopes are also found for the VIZ and TOR stations (4ri2/qdegade),
both presenting specific and unique quantile distribution.

For all cases the derived slopes vary with the quantiles and are distanbtaitine ordinary
least squares slope, indicating that the distribution of the ozone values is n@tggnand the
rate of change is not the same for all parts of the data distribution (lovdelierand upper
qguantiles behave differently).

In summary over the last decade a group of statidd€R, CPB, ZAR, BAR, SEV and PEN
registered a decrease mainly on the lower quantilessafat distribution which reflect the
minimum (nocturnal) values over these areas. On the opposite, the rest of ttegingpsites-
NIB, PP, CUS, TOR and VIZ exhibit a high positive slope on these lower quantiles, indicating
an increase over the background values of ozone.

Furthermore, the results of the clustering procedure, together with the spagakrgation of

the quantile slopes, are shown in Fig. 5.

(Figure 5)

The dendrogram for the lower quantile (P5) clearly discriminates three gsiafiens with
larger negative slopes; - 28 pg.ni/decade (CCR), slight negative slopes (BAR, SEV, CPB,
PEN and ZAR) and the remaining stations with positive slopes (NIB, PP, CUS, TI@R, V
These results corroborate the previous analysis, namely in what concerns teatdiféerd on
the background ozone values registered over lberian Peninsula. The second cluster, with
positive slopes, further distinguishes the station with the highest slope, > m&/qgarade
(NIB) from the other stations. The third cluster, with negative s|ofpether subdivides into
sites with moderate slopes and stations with very small or non-signifresmist (BAR). A
similar pattern is found in the dendrogram for the median quantile (P50), with tkegsaups
identified.

The dendrogram for the upper quantile (P95) continues to distinguish the &HoR wftith the
highest negative slopes, > -20 ugl/decade. Within the remaining stations, and differing from
the previous dendograms, the major subdivision clusters include (1) thestafiahs with
positive trend (TOR, NIB and VIZ) and (2) all the other stations with negatiopes and the
two suburban stations. This last cluster is then subdivided into two clusteightih®bderate
slopes (ZAR, CUS, BAR and PP) and a cluster of stations with high absolativaegjopes,
typically < - 4 pg.riv/decade (SEV, PEN and CPB).
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5. DISCUSSSION AND CONCLUSIONS

Quantile regression and clustering analysis are applied to study changes in hourly O; data over
the Iberian Peninsula on the last decade (2000-2009). Ozone data was collected from 11
background monitoring stations, spatially distributed along the IP, characterized by different
background values that goes from 30 pg.m” (suburban stations on the coast of Portugal) to 80
pg.m (stations located in centre and east of IP).

Quantile regression allows computing trends at different quantiles of the O; data distribution
within a well-defined statistical framework. In addition, the classical clustering procedure
allows summarising the resulting distributions of sample quantile slopes. As in ordinary
regression, the slopes for a fixed quantile are not the same over IP, reflecting the spatial
dependence of O; trends. The results for all monitoring sites show different slopes for the 5%,
50% and 95% percentiles, indicating a different rate of temporal change for all parts of the data
distribution, as implicitly assumed in ordinary regression. Lower (P5), middle (P50) and upper
(P95) quantiles behave differently, with the lower quantiles of O; data distribution
increasing/decreasing at a much faster rate than the middle and higher quantiles.

For example, the CCR station located in the eastern extreme of IP, under influence of different
climatic patterns and topographic features, exhibit a very distinct behaviour, with a strong
negative trend (< -20 pg.m“/decade) over all the data distribution, with a higher decrease
observed for the lower quantiles (background values) (~ -28 pg.m*/decade). CPB, SEV and
PEN - located in the interior north part of IP — show a slight negative slope mainly for the lower
quantiles (-10 pg.m?/decade). On the other hand, a positive slope (8-18 ug.m~/decade) can be
identified for the stations — NIB, CUS and PP - sited over the Atlantic Ocean coast and also
TOR and VIZ (4-12 pg.m*/decade), sited over the Mediterranean influence, and mainly on the
lower quantiles of O; data distribution (background values). This larger trend in the lower
quantiles than in the central and upper part of the data distribution was not found in studies
conducted over North America where higher hourly average O, concentrations decrease faster
than the mid- and lower-values (Lefohn et al., 2008).

The analysis of the clusters for different quantiles reflects the differences existent mainly
between the lower/middle and the upper quantile. The dendrograms for the lower and median
clearly discriminate three groups: stations with larger negative slopes (CCR), slight negative
slopes (BAR, SEV, CPB, PEN and ZAR) and the remaining stations with positive slopes (NIB,
PP, CUS, TOR, VIZ). The dendrogram for the upper quantile displays a distinct picture:
continues to distinguish the CCR station with the highest negative slopes, but the remaining
stations are classified in several sub-clusters with minor significance. In fact, the minor gradient
of spatial variability occurs at the 95% quantile, with slopes ranging from -8 pg.m*/decade to 8

ng.m-/ decade.
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In summary, this complementary analysis pointed out that the largest trends aréofotined

lower G; values, with the largest negative trend at the easternmost stationlBf((b€R), and

also in northern and mainland stations (BAR, SEV, CPB and PEN), and an opposite behaviour
is detected at the Atlantic coastal stations (NIB, CUS and PP) with positiven0s.
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Table captions

Table 1. Selected {hackground monitoring stations over the IP.

Figure captions

Figure 1. Map of the IP showing the locations of the background monitoring stations considered
in the present analysis (Table 1). The bullet size indicates the altitude and the rouad/squar

shape the type of the background station (rural/suburban).

Figure 2. Whisker plots of the hourly; @oncentrations, measured at the selected sites over the
IP, depicting the median (P50), the P5-P95 range and the non-outliers range.

Figure 3. Time series of hourlys@oncentrations changes per decade ([ffjdacade) (solid

grey line) and trends for quantiles 0.05 (dashed line), 0.5 (solid line) and 0.95 (dotted line).

Figure 4. Quantile slopes {@oncentration [pg.i/decade) and corresponding standard errors
for the selected group of stations. The horizontal dashed line represents the usual eabhary |

squares slope.

Figure 5. Dendrogram for 5%, 50% and 95% quantile slopes (right) and the spatial

representation of the quantile slopes (left).
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Tablel

Click here to download Table: Table 1.doc

Code | Station name | Country Lat Lon Type Data collection (%) | Altitude (m)
CUS | Custéias Portugal 41.21| -8.65 | Suburban 89.2% 100
PP Paio Pires Portugal 38.63| -9.08 | Suburban 89.3% 46
VIZ | Viznar Spain 37.23| -3.53 | Rural 97.2% 1265
NIB Niembro Spain 43.44| -4.85 | Rural 97.6% 134
CPB | Campisébalos | Spain 41.28| -3.14 | Rural 95.5% 1360
CCR | Cabo de Creus| Spain 42.32| 3.32 | Rural 96.6% 23
BAR | Barcarrota Spain 38.48| -6.92 | Rural 97.0% 393
ZAR | Zarra Spain 39.08| -1.10 | Rural 96.8% 885
PEN | Pefiausende | Spain 41.28| -5.87 | Rural 91.9% 985
TOR | Els Torms Spain 41.40| 0.72 | Rural 89.7% 470
SEV | O Savifiao Spain 42.64| -7.71 | Rural 85.0% 506




