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Abstract

In genetic association studies, tests for Hardy-Weinberg proportions are often employed as a quality control checking
procedure. Missing genotypes are typically discarded prior to testing. In this paper we show that inference for Hardy-
Weinberg proportions can be biased when missing values are discarded. We propose to use multiple imputation of missing
values in order to improve inference for Hardy-Weinberg proportions. For imputation we employ a multinomial logit model
that uses information from allele intensities and/or neighbouring markers. Analysis of an empirical data set of single
nucleotide polymorphisms possibly related to colon cancer reveals that missing genotypes are not missing completely at
random. Deviation from Hardy-Weinberg proportions is mostly due to a lack of heterozygotes. Inbreeding coefficients
estimated by multiple imputation of the missings are typically lowered with respect to inbreeding coefficients estimated by
discarding the missings. Accounting for missings by multiple imputation qualitatively changed the results of 10 to 17% of
the statistical tests performed. Estimates of inbreeding coefficients obtained by multiple imputation showed high
correlation with estimates obtained by single imputation using an external reference panel. Our conclusion is that
imputation of missing data leads to improved statistical inference for Hardy-Weinberg proportions.
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Introduction

The Hardy-Weinberg principle [1,2] states that the genotypes

AA, AB and BB at a diallelic locus with alleles A and B will occur

with relative frequencies p2, 2pq and q2 respectively, where p is the

allele frequency of A and q~1{p. In the absence of disturbing

forces (drift, mutation, selection, migration, etc.) the Hardy-

Weinberg proportions (HWP) are achieved in one generation of

random mating. If disturbing forces remain absent then allele and

genotype frequencies will no longer change, a condition referred to

as Hardy-Weinberg equilibrium (HWE). Several statistical proce-

dures are available to test if observed genotype counts are

compatible with the theoretical HWP. These tests are often called

‘‘tests for HWE’’, though strictly speaking they do not test

equilibrium (stable allele and genotype frequencies) but test if

sample genotype counts are in agreement with HWP. For this

reason, we refer to these tests as tests for HWP in the remainder.

Till recently, the classical x2 test was the most popular way to test

for HWP [3], though nowadays the exact test is more popular [4]

and other alternatives have been proposed [5]. Statistical tests for

HWP play an important role in genetic association studies. HWP

tests are helpful for the detection of genotyping errors [6–8] and

can also be indicative of marker-disease associations when

disequilibrium is detected among affected individuals [9–12]. For

these reasons, databases of genetic markers are usually tested for

HWP before or after their use in association studies.

The occurrence of missing data is a common problem in

genotyping studies. Genotype calling algorithms assign the

genotype (AA, AB or BB in a generic notation) of an individual

on the basis of the A and B allele intensities by means of a

clustering/classification algorithm. The latter algorithm assigns a

missing outcome to an individual if it is unable to find an

appropriate genotype given the observed allele intensities. Often

missing outcomes (NA) occur at the frontiers of the clouds of

homozygotes and heterozygotes in a plot of allele intensities as

shown in Figure 1.

It is not uncommon to have 10% or more missing genotype

information in a genomic database. However, the percentage of

missing values may strongly vary from one marker to another. For

a particular marker, 0 through 100% of the information may be

missing. When markers are tested for HWP, the missing genotype

information is often discarded. Discarding missing values brings

about two problems. First of all, due to a reduced sample size,

power for detecting disequilibrium will decrease. Second, if the
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genotype information is not missing completely at random, then

the statistical inference regarding HWP may be biased.

In this paper we focus on the potential bias in statistical

inference about HWP. We do this by comparing the inference

made by discarding missing values with the inference made by

imputing missing values, thereby using Rubin’s multiple imputa-

tion approach [13]. For the imputation of missing values we

propose to use statistical models that use information from both

allele intensities and/or neighbouring markers. The structure of

the remainder of this paper is as follows. In the section Methods

we outline how principles of missing data analysis apply in the

context of diallelic genetic markers. In the Results section we show

examples of statistical inference for HWP of single nucleotide

polymorphisms (SNPs) with missing data, and compare multiple

imputation with single imputation based on a reference panel. We

finish with a Discussion section and supply software that can

perform statistical tests for HWP in the presence of missing

genotype data.

Materials and Methods

In this section we discuss basic principles of missing data

analysis in the context of diallelic genetic markers, and consider

the missing data mechanism and missing data imputation.

Missing data mechanism
The statistical theory on missing data distinguishes three types

of missing data mechanisms [13]. We briefly outline these

embedded in the genetic context. Genotype data for a particular

SNP may be missing completely at random (MCAR). In this case,

the observed genotypes constitute a random sample of a

(hypothetical) data set of completely observed individuals. If the

data is MCAR, then testing for HWP by simply discarding the

missing observations is not too problematic. It only entails a loss of

power for detecting deviations from HWP because the sample size

is smaller. Alternatively, genotype data for a SNP may be missing

at random (MAR). Under a MAR mechanism, the probability that

a genotyping result is missing for a particular SNP may depend on

the observed data (e.g. allele intensities or other SNPs) but,

conditional on the observed data, may not depend on the values of

the SNP itself. Finally, the data may be missing not at random

(MNAR), meaning that the probability of a missing genotype

result does depend on the values of the SNP under consideration,

even after controlling for the relationships of this SNP with allele

intensities and other SNPs. Whether genotype data can be

considered MCAR can be investigated to some extent. Under

MCAR, the allele intensities are expected to be, on average, the

same for individuals with a missing genotype as for individuals

with observed genotypes. This can be assessed by comparing

average allele intensities with a Student t test. Two t tests can be

performed for each marker, one for each allele intensity (A and B).

The two allele intensities (A and B) can also be compared jointly

for missings and non-missings by testing equality of mean intensity

vectors with Hotelling’s T2 statistic. Examples are given in the

Results section. Statistical testing can discard the MCAR

hypothesis, though this does not necessarily imply that the MAR

assumption will hold. The MAR hypothesis is often assumed, and

considered reasonable if important predictors of the SNP with

missings are included in the imputation model [13]. Besides allele

intensities, genotyping results of (correlated) neighbouring markers

are often available. Under the MCAR assumption, the distribution

of the genotypes at such neighbouring markers is supposed to be

Figure 1. Intensity plot of a G/T polymorphism for 146 individuals. Missing values (NA, 33% of the data) indicated by black crosses occur
mainly at the boundaries of homozygotes and heterozygotes.
doi:10.1371/journal.pone.0083316.g001
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the same for missing and non-missing observations for the SNP

under consideration. In this context, the MCAR assumption can

be tested by chi-square or exact tests on contingency tables of

genotype counts.

Missing data imputation
A statistical test for HWP can be viewed as a hypothesis test for

a disequilibrium parameter. In this paper we use the classical

inbreeding coefficient (f ) as a measure for disequilibrium. The

term inbreeding coefficient may be regarded as a misnomer, since

in our work we imagine observed disequilibrium to arise from

genotyping error or by chance, and not from inbreeding.

However, we maintain the term ‘‘inbreeding coefficient’’ for

historical reasons and because of its widespread use in population

genetics. The degree of disequilibrium can be parametrized by

using the inbreeding coefficient f [14], and under this parame-

terization, the population genotype frequencies are given by

PAA~p2
AzpApBf ,

PAB~2pApB(1{f ),

PBB~p2
BzpApBf ,

ð1Þ

with
{pm

1{pm

ƒf ƒ1, where pm is the minor allele frequency

min(pA,pB). If f ~0 then the genotype frequencies correspond to

the Hardy-Weinberg proportions. For f w0 there is heterozygote

dearth, and for f v0 there is heterozygote excess. Parameter f can

be estimated by maximum likelihood (ML) using the multinomial

distribution. The ML estimator and its variance [15] are given by

f̂f ~
4nAAnBB{n2

AB

nAnB

and

V f̂f
� �

~
(1{f )2(1{2f )

n
z

f (1{f )(2{f )

2npA(1{pA)
,

ð2Þ

where nAA, nAB, nBB and nA, nB are the respective absolute

genotype and allele counts, and n is the total sample size. To

compute the variance of f̂f , f and pA are substituted by their

sample estimates. We note that the ML estimator is related to the

classical chi-square statistic for HWP by X 2~nf̂f 2. The genotyping

results obtained for a particular SNP depend in the first place on

the allele intensities, as the latter form the basis of the classification

(see Figure 1). In order to impute missing data, we used

multinomial logit models with different sets of predictors. We

fitted the multinomial logit model [1]

log
pj

pJ

� �
~ajzb0jx, ð3Þ

where pj=pJ represents the ratio of the genotype frequency of the j

th genotype (with j~1,2) with respect to a reference genotype

frequency pJ . Usually the most frequent genotype is chosen as the

reference genotype. E.g. if pJ refers to the probability of a BB

genotype, then the log-ratios of AA and AB with respect to BB are

modeled as a function of a set of predictors x (here allele intensities

and/or genetic covariates). The coefficients aj constitute the

intercept terms of the model, and the coefficients bj represent the

change in log odds of being of a particular genotype for a one-unit

increase in one predictor, other predictors held constant. The

multinomial logit model, also known as polytomous logistic

regression, is a particular case of a generalized linear model

[16,17]. The multinomial logit model generalizes logistic regres-

sion for a response variable with more than two outcomes. For

many SNPs three genotypes are observed and therefore the

multinomial logit model is the indicated model. For some SNPs

only two genotypes are observed. With only two outcomes, the

model is equivalent to logistic regression. The multinomial logit

model was used in combination with multiple imputation by

chained equations [18], the MICE algorithm. MICE allows one to

specify an imputation model for each variable in the data set. The

algorithm obtains the posterior distribution of the parameter of

interest (inbreeding coefficient f in this study) by iteratively

sampling conditional distributions with a Gibbs sampler. MICE is

apt for data sets that have a non-monotone pattern of missings, as

is the case for SNP data, where missings of covariates are imputed

as well. For more details on the MICE algorithm we refer to Van

Buuren [19] and Van Buuren and Groothuis-Oudshoorn [18].

Multiple imputation yields a set of m complete data matrices of

genotype information. To finally be able to perform statistical

inference for HWP, inbreeding coefficients and their variances are

estimated for all imputed data sets, and these estimates are

combined according to Rubin’s pooling rules [13,20]. In short, for

m imputations the parameter estimates f̂f and their variances are

combined by computing their means

f ~
1

m

Xm

i~1

f̂fi, W~
1

m

Xm

i~1

V f̂fi

� �
, ð4Þ

where W is called the average within-imputation variance. Next,

the between-imputation variance (B) and the total variance (T ) are

then computed as

B~
1

m{1

Xm

i~1

f̂fi{f
� �

, T~Wz(1z1=m)B: ð5Þ

A test statistic for HWP (H0 : f ~0) is then given by Q~ f {fffiffiffi
T
p .

Under the null, this statistic has a tn distribution with n degrees of

freedom, n given by

n~(m{1) 1z
mW

(mz1)B

� �2

: ð6Þ

After imputation, a 95% confidence interval for f is given by

f̂f+tn,1{a=2

ffiffiffiffi
T
p� �

and a p-value for a two-sided test for HWP is

given by 2:P tn§jQjð Þ. The sample inbreeding coefficient f̂f is an

intraclass correlation coefficient. The normality of this coefficient

can be improved by using Fisher’s z-transformation
1

2
log

1zf̂f

1{f̂f

 !
,

and this is recommended in general when combining correlation

coefficients from multiple imputations into a single estimate [21].

Dataset used as a practical application
To test the proposed methods in a real dataset, we have

analyzed the data from 146 individuals (99 cases with colon cancer

and 47 controls) that participated in a clinical study that aimed to

identify cancer biomarkers. Written informed consent was

obtained from all participants and the study protocol and consent

forms were approved by the Bellvitge Hospital Ethics Committee.

Hardy-Weinberg Equilibrium and Missing Data
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These subjects were genotyped with the Affymetrix Human SNP

Array 6.0. For the analysis performed in this study, a 6 Mb

genome region was selected. Data was anonymized and derefer-

enced while maintaining the correlation structure. All analyses

were performed on secured servers under the supervision of the

investigators to avoid accidental disclosure of the genetic data.

Results

In this section we first describe the data set we will use for our

study on HWP and missing genotype data. Secondly, we

investigate whether the MCAR assumption is tenable for the

genotype data. Next, we will give a detailed example of the use of

multiple imputation for inference for HWP of a single SNP.

Thereafter, we evaluate the consequences of using multiple

imputation for the inference regarding HWP for the whole

database. Finally, we compare our multiple imputation approach

with results obtained by single-shot imputation using a reference

panel.

Description of the data
The database included 1685 SNPs selected from a 6 Mb

genomic region with a median spacing of 1932 bp. Overall the

data contained 3.5% missing data, though the degree of

missingness per SNP varied from 0 to 100%. On a by-individual

basis, the percentage of missings did not exceed 12% per

individual, indicating good quality of the biological samples. 545

SNPs were completely observed. Allele intensities for A and B

were always completely observed. We first tested completely

observed SNPs and SNPs with 10 to 50% missings separately for

HWP, using a chi-square test without continuity correction, and

simply discarding missing genotypes. We did this graphically [22]

by representing the SNPs in ternary plots and Q-Q plots, as is

shown in Figure 2.

Figure 2 shows that the completely observed SNPs are in

general in accordance with HWP, with 6% of the SNPs significant

at the 5% level. The bottom row of Figure 2 shows SNPs with 10–

50% missing data. Too many SNPs show statistically significant

deviations from HWP (27%). The ternary plot shows that

deviation from HWP is mainly due to a lack of heterozygotes.

The p-value distribution of HWP tests is known to be non-uniform

under the null hypothesis [23]. We note that the Q-Q plots shown

in Figure 2 are made with respect to the truly null distribution of

the p-values for the data set under study.

The MCAR assumption
We first assessed whether the MCAR assumption is reasonable

for the data. Testing the null hypothesis of equal mean allele

intensities for missing and non-missing genotypes is possible only if

a SNP has a sufficient number of missing observations. We

therefore restricted this analysis to SNPs with 10–50% missing

values, and this guaranteed a sample size of at least 15

observations for the missing observations. We tested the null

hypothesis of equal mean intensities H0 : mm~mc versus
H1 : mm=mc for missing and non-missings genotypes for both

intensities of each SNP separately, using univariate Student t tests.

We also used multivariate Hotelling T2 tests, both with and

without assuming homocedasticity to compare the two mean

vectors of intensities jointly (H0 : mm~mc versus H1 : mm=mc).

The number and percentage of significant results are reported in

Table 1.

Table 1 shows that the MCAR hypothesis is clearly not tenable

for the data. If MCAR would hold, we expect to obtain, by chance

alone, about 5% significant results, whereas we find 70–90%

significant tests. Allele intensities are apparently different for

observed and non-observed genotyping results.

We imputed missing genotype data using the statistical model

described in the Methods section. We used the MICE package

[18] to create imputed data sets. We first discuss the results for the

one G/T polymorphism displayed in Figure 1 in the Introduction,

and next consider the results obtained for the whole set of 140

SNPs with 10–50% missings.

Multiple imputation of a single polymorphism
The counts for the G/T polymorphism displayed in Figure 1

are given by (46,32,20,48) for GG, GT, TT and missings

respectively. When missings are ignored a chi-square test (without

continuity correction) for HWP gives X 2~8:673 (p~0:0032),

leading us to reject the null hypothesis of HWP. The estimate of

the inbreeding coefficient is f̂f ~0:2975. A two-sided exact test for

HWP leads to the same conclusion (p~0:0043). We performed

multiple imputation using the models and pooling rules described

in the Methods section. The effect of multiple imputation on HWP

is illustrated for this SNP with 50 imputed data sets and two

models in Figure 3. Imputation with the multinomial logit model

and intensities as covariates leads to imputed data sets with slightly

higher T allele frequencies and an increased number of

heterozygotes (left panel). Most imputed data sets fall within the

acceptance region of a test for HWP. Inclusion of a correlated

covariate SNP further increases the imputation of heterozygotes,

leading to imputed data sets that do no longer deviate from HWP

(right panel). We considered several multinomial logit models for

the imputation of the missings. Results for the estimation of the

inbreeding coefficient with these models are shown in Table 2.

Table 2 shows the different estimates of the inbreeding

coefficient, together with their confidence intervals and p-values

for a HWP test. Missing data statistics are also shown. Statistic r is

the relative increase in the variance of the inbreeding coefficient

due to missings. The lowest values of f̂f are obtained for models

using SNPs as covariates. Statistic l is termed the fraction of

missing information about the inbreeding coefficient. These

standard missing-data statistics quantify to what extent the

standard errors of the inbreeding coefficient are affected by

missing data. The fraction of missing information quantifies how

much of the sampling variance of the inbreeding coefficient can be

ascribed to missing data. The first ‘‘model’’ in Table 2 consisted of

just discarding missings and gave a significant chi-square statistic

in a test for HWP (p~0:003). Model 2 used imputation by taking a

random sample of the observed data, and corresponds to assuming

MCAR. This yields, as expected, an inbreeding coefficient that is

close to the one with missings discarded, but has the advantage of

providing an estimate of the fraction of missing information,

showing that 22% of the sampling variance of f̂f is due to missing

data. For models with covariate SNPs only 3 through 4% of the

sampling variance of f̂f is attributable to missing data, and this is

five times less than a model using intensities only. This suggests

covariate SNPs should be included in the imputation model, as

they mitigate the effect of missing data on the estimation of f .

Table 2 shows that imputation of the missings with the aid of the

intensities (model 3) renders the deviation from HWP insignificant

(p~0:23). When a correlated flanking marker, a C/T polymor-

phism (model 5) is included in the model, the inbreeding

coefficient drops down to 0.060, and becomes even less significant

(p~0:49). Figure 4 shows the same intensity plot of the G/T

polymorphism as represented in Figure 1, but now symbols

indicate the genotype of the correlated covariate. The plot shows

that genetic covariates can be helpful in classifying the missing

Hardy-Weinberg Equilibrium and Missing Data
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values. Most missings on top of the heterozygote cloud are

apparently heterozygotes with respect to the response, based on

their correlated covariate value of CT, which tends to correspond

to GT heterozygotes in the observed data. Most missings on top of

the GG cloud are seen to be GG genotypes, based on their

correlated covariate value of TT, which tends to correspond to

GG in the observed data. This inference is possible thanks to the

correlation between response and covariate SNPs (linkage

disequilibrium). Additional covariates, whether intensities or SNPs

may be helpful to classify the remaining ‘‘double missings’’ (cases

with missings for the GT and the TC polymorphism) or to

improve the classification of the ‘‘single missings’’ of the GT

polymorphism. The distribution of the genotypes for this

correlated marker differed for missings and non-missings of the

SNP to be imputed (X 2~16:93; p~0:0002) indicating the MCAR

assumption does not hold w.r.t. this correlated SNP. The inclusion

of 9 additional correlated SNPs (models 6 and 7 in Table 2 does

not substantially alter the conclusion, and provided approximately

the same estimate and confidence intervals for f . All computations

in Table 2 were repeated using Fisher’s z-transformation for the

inbreeding coefficient. Results with Fisher’s transformation were

almost identical to those given in Table 2. All models based on

allele intensities and correlated markers in Table 2 show lower

estimates of the inbreeding coefficient, and clearly indicate that

there is no evidence for rejecting HWP for this SNP. The results of

multiple imputation shown in Figure 3 reveal that the multinomial

logit models basically impute heterozygotes for the missing values.

We assessed the convergence of the MICE algorithm by making

plots of the inbreeding coefficient against the iteration number (see

Figure S1). These plots showed good mixing and no trends,

suggesting that the algorithm had converged.

Multiple imputation for a set of SNPs
The procedure outlined above was repeated for the set of 140

SNPs with 10–50% missing values where we imputed SNPs with

missings in a one-by-one manner, using five models with different

predictors. The first model (A) used only allele intensities for

imputation. The second model (B) used allele intensities and

completely observed SNPs that were in linkage disequilibrium

(LD) with the SNP with missings. The third model (C) used

completely observed SNPs in LD only. The fourth model (D) used

intensities and SNPs (like model B), but allowed the explanatory

Figure 2. Ternary plots and Q-Q plots for Hardy-Weinberg proportions. Curves in the ternary plots indicate the HW parabola, and the limits
of the 95% acceptance region of a x2 test for HWP. Top row plots are for 545 fully observed SNPs. Bottom row plots are for 140 SNPs with 10 to 50%
missings (missings were discarded in these plots). The Q-Q plots show two lines, a solid y~x reference line and an estimate of the linear tendency in
the cloud of points (dashed).
doi:10.1371/journal.pone.0083316.g002

Hardy-Weinberg Equilibrium and Missing Data
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SNPs to have missing observations as well. The fifth model (E) uses

only SNPs, which can be complete or incomplete. This last model

is probably the most useful in practice, since intensities are not

always available, and correlated flanking SNPs typically have

missings as well. Covariate SNPs were included in the model as a

predictor when their R2 statistic for LD with the response SNP was

above 0.5. This criterion implied that there were on average 1 or 2

covariate SNPs in the models B and C, and more in models D and

E. If no SNPs satisfied the R2 criterion in models B and D, then

imputation was carried out with allele intensities only. Figure 5

shows the relationship between the inbreeding coefficients

obtained by discarding missings and by imputing missings for

two of the five models, models A and D with the largest and

smallest median fractions of missing information.

Each SNP was tested twice for HWP (H0 : f ~0 against

H1 : f=0). The first test discarded missings and the second test

used multiple imputation of missings. The vast majority of the

SNPs has a positive inbreeding coefficient (lack of heterozygotes)

that drops when missings are imputed, as most SNPs in Figure 5

fall below the y~x line. This means that missings are relatively

more often imputed as heterozygotes. Most SNPs are jointly non-

significant in both tests. Two sets of boundary SNPs were found.

One set with a positive inbreeding coefficient (upward triangles in

Figure 5 that appears significant in a chi-square test with omission

of missings, but non-significant after imputation of the missings,

and a second set with the reverse condition (downward triangles,

significant deviation from HWP under imputation, non-significant

deviation under discarding of missings). Table 3 summarizes test

results and fractions of missing information for the five models

considered. From a qualitative point of view multiple imputation

changed the inference about HWP considerably: for 10 to 17%

(depending on the model) the test result was reversed with respect

Table 1. Significance tests of equal mean intensities for missing and non-missing genotyping results.

Test H0 assumption # significant % significant

Student’s t Allele A mc~mm s2
c~s2

m
98 70.0

Student’s t Allele B mc~mm s2
c~s2

m
100 71.4

Student’s t Allele A mc~mm s2
c=s2

m
101 72.1

Student’s t Allele B mc~mm s2
c=s2

m
103 73.6

Hotelling’s T2 mc~mm

P
c ~

P
m 123 87.9

Hotelling’s T2 mc~mm

P
c =

P
m 128 91.4

Number and percentage of significance tests are given for 140 non-monomorphic SNPs with between 10 and 50% missing values (a~0:05). Results are given for tests

with and without homocedasticity assumption (s2
c is the intensity variance of the completely observed genotypes, s2

m is the intensity variance of the missing

genotypes).
doi:10.1371/journal.pone.0083316.t001

Figure 3. Ternary plots of m = 50 imputed data set for the G/T polymorphism of Figure 1. Curves in the ternary plots indicate the HW
parabola, and the limits of the 95% acceptance region of a x2 test for HWP. Left panel: imputed data sets with allele intensities as covariates (model
3). Right panel: imputed data sets with allele intensities and 1 covariate SNP (model 5).
doi:10.1371/journal.pone.0083316.g003

Table 2. Inbreeding coefficients, confidence intervals, p-
values and missing data statistics (relative increase in variance
(r), and fraction of missing information (l)) for multiple
imputation with different multinomial logit models, and for
single imputation with IMPUTE2.

Model f̂f 95% CI p-value r l

1. discarding NAs 0.298 (0.138,0.457) 0.003 - -

2. random
imputation

0.301 (0.117,0.485) 0.001 0.283 0.222

3. intensities 0.110 (20.069,0.288) 0.229 0.200 0.167

4. 1 correlated SNP 0.059 (20.107,0.225) 0.487 0.039 0.038

5. intensities + 1
SNP

0.060 (20.109,0.228) 0.488 0.065 0.062

6. 10 correlated
SNPs

0.060 (20.106,0.225) 0.479 0.028 0.027

7. intensities + 10
SNPs

0.055 (20.111,0.222) 0.516 0.044 0.042

8. IMPUTE2 0.023 (20.140,0.185) 0.786 - -

doi:10.1371/journal.pone.0083316.t002
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to a test that discarded missings. The models that impute with only

SNPs as covariates (C,E) showed less evidence for deviation from

HWP. The overall percentage of significant SNPs as judged by a

chi-square test without imputation was 27%.

Comparison with imputation using a reference panel
When GWAS or fine-mapping genotype data is available,

missing genotype information is often imputed using an external

reference panel, and this exploits known LD structure. The

programs IMPUTE [24] and MaCH [25] are, among others,

Figure 4. Intensity plot of a G/T polymorphism for 146 individuals. Colours indicate the genotype of the G/T polymorphism to be imputed,
symbols indicate the genotype of the G/T and a covariate C/T polymorphism.
doi:10.1371/journal.pone.0083316.g004

Figure 5. Estimation of inbreeding coefficients by multiple imputation and by omitting missings. Left panel: using allele intensities only.
Right panel: using allele intensities and covariate SNPs in LD (complete and incomplete) with R2

w0:5. Symbols indicate the result of two significance
tests: a test for HWP discarding missings and a test for HWP with imputation of missings. Circles: SNPs with both tests non-significant; Diamonds:
SNPs with both tests significant; Upward triangles: SNPs with a significant chi-square test when missings are omitted, but an insignificant test when
missings are imputed. Downward triangles: SNPs with a non-significant chi-square test when missings are omitted, but a significant test when
missings are imputed.
doi:10.1371/journal.pone.0083316.g005
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based on this principle. We used IMPUTE2 as a single-imputation

method, after prephasing the data with the program SHAPEIT

[26]. Inbreeding coefficients were calculated after the genotype

data had been completed this way. A plot of the inbreeding

coefficients obtained by multiple imputation with MICE against

the inbreeding coefficients obtained after imputation by IM-

PUTE2 is shown for the set of 1070 non-monomorphic SNPs with

missings in Figure 6. The multinomial logit model in MICE used

allele intensities and 4 flanking SNPs as covariates. Both estimates

correlate well (r~0:87). Note that for some outlying markers

multiple imputation with MICE yielded an estimate of 1, whereas

the corresponding IMPUTE2 estimates were much lower. For a

few markers MICE gave considerably lower inbreeding coeffi-

cients (See the discussion for these issues.)

We have carried out a simulation study in order to further

compare single imputation by IMPUTE2 and multiple imputation

by MICE. For this purpose we selected the 504 SNPs of the

database that had no missing genotypes and that were not

monomorphic. From this complete database we deleted genotypes

according to two different missing data mechanisms, MCAR and

MNAR. We then imputed missings using multiple imputation by

chained equations with MICE and using a multinomial logit

model that used the two allele intensities and 4 flanking SNPs as

covariates. Missings were also imputed using IMPUTE2. We

computed the root mean squared error in the inbreeding

coefficient f for both the multiple and single imputation method,

as well as for the computation of f with missings discarded.

Genotypes were deleted by randomly selecting markers, and

selectively deleting genotypes according to a given vector of

probabilities shown in Table 4. When the three probabilities are

equal for the three genotypes, the missing data mechanism is

MCAR, if not, it is MNAR. Table 4 shows that for IMPUTE2 the

RMSE is always zero. IMPUTE2 apparently infers the missing

genotype data without error from the reference panel, and thus the

estimated inbreeding coefficient after imputation by IMPUTE2 is

the same as the inbreeding coefficient for the complete data. For

multiple imputation with MICE, the RMSE is generally small, but

increases if there is severe disequilibrium (PAB~0:75). If the data

is MNAR, then discarding the missings gives the worst estimates of

f .

Discussion

Testing genetic markers for HWP is a standard aspect of the

statistical analysis of polymorphisms involved in genetic association

studies. Missing values are typically ignored in tests for HWP, and

this can lead to biased inference about HWP as shown by the

example in the Results section. For the data studied in this paper,

extracted from a real genotyping study similar to most GWAS

performed to date, missing genotypes can definitely not be

considered missing completely at random. Imputation of missing

genotype information can then improve the inference for HWP.

We propose to use a general multiple imputation procedure based

on a multinomial logit model that can incorporate information

from allele intensities and neighbouring SNPs, if available. This

approach does not require dense SNP genotyping typical of a

GWAS study. For the latter, imputation based on reference panels

can be even more efficient to recover missing genotypes and avoid

biased estimates of HWP.

The allele intensities and correlated flanking markers are strong

predictors for imputing a polymorphism with missing values. The

proposed multinomial logit model used often showed perfect

separation (in that case the genotypes of a marker can be predicted

without error from intensities or correlated markers). This

phenomenon is described in the context of logistic regression by

Agresti [16]. Estimated standard errors of the predictors tend to be

very large in models with perfect separation, leading them to be

‘‘insignificant’’. This is a numerical problem, and by no means

implies the predictors are useless for imputations.

This paper shows how to perform inference for HWP in the

presence of missing data by multiple imputation, using the

inbreeding coefficient. This approach is closely related to the use

of the classical chi-square test as a tool for testing for HWP. Over

the last decade, the exact test for HWP has become more popular.

In ongoing research we evaluate inference for HWP in the

presence of missings by combining exact test results of imputed

data sets. The EM algorithm could be used as an alternative way

for estimation of the inbreeding coefficient in the presence of

missings. This does however, not readily provide standard errors

for the estimates.

The two imputation methods used in this paper both have their

pros and cons, which we briefly discuss. The MICE algorithm is

versatile tool allowing us to test for HWE in the presence of

missing data. The algorithm is not limited to genetic marker

information but can use all kind of covariates that may be

available for imputation (allele intensities, metabolites, physiolog-

ical variables, etc.). Only a few informative covariates are needed

in order to improve inference for HWE and correct the bias that

would be caused by discarding the missings. The method

implemented in IMPUTE2 relies on reference panels of extensive

genetic information, and so requires and uses much more

information than MICE. In this respect it is no surprise that

Table 3. Number of imputed SNPs, number and percentage of significant SNPs with missings imputed, mean, median and
maximum of the fraction of missing information (l) for multinomial logit models with five different sets of predictors.

Model # SNPs # sign. % sign. l Me(l) max(l) % reversal

A. Intensities 140 36 25.7 0.166 0.111 0.770 11.4

B. Intensities and
complete SNPs

140 34 24.3 0.132 0.058 0.553 12.9

C. Complete SNPs 69 11 15.9 0.071 0.044 0.436 10.1

D. Intensities and SNPs 126 30 23.8 0.122 0.040 0.582 12.7

E. SNPs 78 11 14.1 0.079 0.043 0.436 16.7

IMPUTE2 140 24 17.1 - - - 17.1

The last column (% reversal) indicates the percentage of SNPs whose test results changed status (from significant to non-significant or the reverse) in comparison with a
test omitting missings.
doi:10.1371/journal.pone.0083316.t003
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IMPUTE2 outperforms MICE in the simulations. Most likely, the

RMSE for the MICE estimates could be decreased by including

more genetic covariates, though this would slow down the

computations. On the other hand, a limitation of the MICE

program is that it cannot impute categories that are not present in

the sample data. This means that markers with a low MAF for

which no heterozygotes are observed in the data, missings will

never be imputed as heterozygotes. In these circumstances the

program will basically impute the most common homozygote,

leading to an estimated inbreeding coefficient of 1. This is the

explanation for the appearance of some MICE estimates that have

f̂fMICE~1 whereas the corresponding estimates obtained by

Figure 6. Scatter plot of inbreeding coefficients for 1070 non-monomorphic SNPs with missings obtained by multiple imputation
(MICE) and single imputation (IMPUTE2).
doi:10.1371/journal.pone.0083316.g006

Table 4. Simulation results.

P Genotype missingð Þ RMSE

Regime % missing % SNPs AA AB BB DISCARDING MICE IMPUTE2

MCAR 6 25 0.25 0.25 0.25 0.01 0.03 0.00

12 50 0.25 0.25 0.25 0.01 0.03 0.00

19 75 0.25 0.25 0.25 0.01 0.04 0.00

MNAR 3 25 0.05 0.25 0.05 0.08 0.03 0.00

4 25 0.05 0.50 0.05 0.21 0.07 0.00

6 25 0.05 0.75 0.05 0.42 0.17 0.00

5 50 0.05 0.25 0.05 0.08 0.03 0.00

9 50 0.05 0.50 0.05 0.21 0.08 0.00

13 50 0.05 0.75 0.05 0.43 0.17 0.00

8 75 0.05 0.25 0.05 0.08 0.04 0.00

14 75 0.05 0.50 0.05 0.21 0.10 0.00

19 75 0.05 0.75 0.05 0.43 0.23 0.00

Overall percentage of missing data, percentage of SNPs with missings, probabilities of missingness for the three genotypes and the root mean squared error (RSME) for
the inbreeding coefficient (f ) when missings are discarded, imputed by MICE or imputed by IMPUTE2, under MCAR and MNAR.
doi:10.1371/journal.pone.0083316.t004
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IMPUTE2 are much lower. Likewise, the markers for which

MICE gave considerably lower inbreeding coefficients in com-

parison with IMPUTE2 correspond to SNPs for which one of the

homozygote counts is zero. This gives a negative inbreeding

coefficient.

Table 3 shows that models C, D and E had a lower number of

imputable SNPs. This was due to the fact that the MICE

algorithm was not always able to create imputed data sets. This

occurred when the predictor was perfectly related to the response

(a diagonal contingency table) or when there was strong

collinearity between predictor SNPs. Imputation for models C

and E was neither possible when there were no predictor SNPs in

LD with R2 below 0.5. These problems typically occurred with

SNPs with a low minor allele frequency that lead to sparse

contingency tables.

In this paper we have made no distinction between cases and

controls. In principle one would expect more disequilibrium for

cases, due to possibly different survival rates of affected genotypes.

However, the sample sizes needed to detect disease association

effects are very large [11]. The data set in this study is probably too

small to detect deviations from HWP due to disease association.

The excess of significant SNPs found in the Results section is most

likely explained by some genotyping error. We note in this respect

that the 140 SNPs studied in the Results section had very similar

rates of significant SNPs for cases and controls (21% versus 17%

respectively, with a~0:05), even though the sample size of the

cases doubled that of the controls.

Population genetic textbooks [27,28] typically point out that

Hardy-Weinberg equilibrium will be observed if a long list of

assumptions is met (random mating, no selection, no mutation,

etc.). The interpretation of HWP test results often varies

depending on the context of the study. Rejection of HWP is often

explained as follows: 1) a chance effect (especially if many markers

are tested), 2) evidence for the existence of genotyping error, 3)

evidence for the existence of marker-disease association, 4)

evidence for selection, 5) existence of population substructure

(the sample is a non-homogeneous population [29]) or 6) violation

of one (or more) other assumptions underlying HWP. The results

in this paper show that the latter list should be extended with an

additional consideration: rejection occurred because a consider-

able part of the observations were missing (possibly related to

genotyping error or wrong genotype calling), and these observa-

tions were discarded prior to testing for HWP. This phenomenon

may have been relevant since the earliest tests for HWP with

genetic markers up till the massive use of these tests in genome-

wide association studies today.

Availability of Software and Data

A function for performing tests for HWP that takes missing data

into account by multiple imputation is available in the R-package

HardyWeinberg [30]. The function takes a SNP with missing

values as its main argument, and covariates that can be used for

imputation (intensities, flanking or correlated markers) can be

supplied. The multiple imputation part is done by the R-package

MICE [18].

The genetic data used in this study can be made available upon

request, but will be subject to a written guarantee of confidenti-

ality.

Supporting Information

Figure S1 Convergence plots of the inbreeding coeffi-
cients for five models using MICE from Table 2.

(TIF)
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