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1.0 Aim of the document

1 Aim of the document

The current document is intended to be a complement to the readings and in-class sessions of the Research tech-
niques course (Técnicas de investigación). The focus is put specifically on the second part of the course, dealing
with probability models and descriptive statistics. We offer examples that can be used exercises, accompanied
by solutions in graphical and numerical form. This document contains all major topics of the course, but it does
not substitute the textbooks recommended, attending sessions, or discussing with the teacher. Specifically, as
a reading in English, we recommend consulting Gravetter and Wallnau (2009); in Spanish, Solanas, Salafranca,
Fauquet, and Núñez (2005).

The examples used for working with the probability are either fictitious (but plausible) or stem from empiri-
cal data, if so specified. The univariate and bivariate analysis of categorical data refers to the answers gathered
by students of Research techniques during the academic courses 2012-2013 and 2013-2014 via an interview to
smokers. This data collection was part of the activities used to learn the methodological content of the course.
The univariate and bivariate analysis of quantitative data refers to the partial grades obtained by the students
during the academic course 2015-2016, maintaining the anonymity. The control in which the grades were ob-
tained consisted of two parts: a multiple-choice test and open-ended questions, with the maximal score in both
of them being 1.5 points.

For obtaining the output, R (R Core Team, 2013) code is used. More information about R in En-
glish is given by John Verzani (http://cran.r-project.org/doc/contrib/Verzani-SimpleR.pdf) and about
R-Commander by John Fox and Milan Bouchet-Valat (http://socserv.socsci.mcmaster.ca/jfox/Misc/
Rcmdr/Getting-Started-with-the-Rcmdr.pdf). In Spanish, we recommend the textbook by Peró, Leiva,
Guàrdia, & Solanas (2012), in which it is explained how statistical content is implemented in R and R-
Commander.

If any part of the content remains unclear, we encourage students to discuss it with their teachers in the
course in order to achieve full understanding of the content.
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2.0 Random variables

2 Random variables

2.1 Moments of a distribution of a discrete random variable

E(X) ≡ µ =

k∑
j=1

(
xj × Prob(xj)

)
=

∑n
i=1 yi
n

units

V ar(X) ≡ σ2 =

k∑
j=1

(
(xj − µ)2 × Prob(xj)

)
=

∑n
i=1(yi − µ)2

n
units2

CV =
σ

µ

Skewness(X) ≡ γ1 =

∑k
j=1

(
(xj − µ)3 × Prob(xj)

)(√∑k
j=1

(
(xj − µ)2 × Prob(xj)

))3

=

∑n
i=1(yi−µ)3

n

σ3

Kurtosis(X) ≡ γ2 =

∑k
j=1

(
(xj − µ)4 × Prob(xj)

)(√∑k
j=1

(
(xj − µ)2 × Prob(xj)

))4 − 3

=

∑n
i=1(yi−µ)4

n

σ4
− 3

where k denotes the number of different possible values of the random variable (e.g., k = 6 possible results
for ”number of heads” when tossing a coin 5 times: x1 = 0, x2 = 1, x3 = 2, x4 = 3, x5 = 4, x6 = 5). Note
that we here define the random experience as tossing the coin five times, that is, there are five Bernoulli trials.
Such a random experience can be repeated several times. Specifically, we here used n to denote the number
of repetitions of the random experience. That is, the number of repetitions of the five Bernoulli trials. Each
of these n repetitions of the random experience can lead to a different value of the random variable number of
heads in 5 tosses of coin. The admissible values of the random variable are between 0 and 5. Therefore, in
several repetitions (e.g., n = 10), some values of the random variable can appear more than once. For instance,
for repetitions y3 and y10 only one head is obtained, which would correspond to one of the six possible results
of the random variable, x2 = 1).
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2.2 Mathematical expectancy: example

2.2 Mathematical expectancy: example

Example: 5 tosses of a fair coin. Binomial distribution: mass probability function

2.2.1 Plot of the mass probability function
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2.2.2 Obtaining the probabilities

dbinom(c(0,1,2,3,4,5), size=5, prob=0.5)

## 0.03125 0.15625 0.3125 0.3125 0.15625 0.03125
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2.2.3 Simulation of empirical distributions

Formula referring to discrete probability models for which there is a finite number k of possible values

E(X) ≡ µ =

k∑
j=1

(
xj × Prob(xj)

)
= (0× 0.03125) + (1× 0.15625) + (2× 0.3125) + (3× 0.3125) + (4× 0.15625) + (5× 0.03125)

= 0 + 0.15625 + 0.625 + 0.9375 + 0.625 + 0.15625

= 2.5

The previous calculations can be performed in R with a few lines of code:

values <- 0:5

massprobs <- dbinom(values, size=5, prob=0.5)

sum(values*massprobs)

## 2.5

2.2.3 Simulation of empirical distributions

Computing the mean for several repetitions of the random experiment, that is, for several sample size (n = 10,
n = 100, and n = 1000), where the samples represent realizations of a binomial process.

It can be seen that this second expression for mathematical expectancy, referring to samples, leads to the same
result as the first expression as sample size increases, technically when n→∞.

In the following we show the R code that can be used to draw samples of different sizes from a binomial

distribution (i.e., the population) and to apply the formula µ̂ =
∑n
i=1 yi
n via the R function mean().

ten <- rbinom(size=5, prob=0.5, n=10)

mean(ten)

## 3.1

onehundred <- rbinom(size=5, prob=0.5, n=100)

mean(onehundred)

## 2.36

onethousand <- rbinom(size=5, prob=0.5, n=1000)

mean(onethousand)

## 2.489
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2.2.4 Specific formula for the Binomial distribution

To construct graphical representations of the relative frequency of appearance of each of the 6 possible results.

par(mfrow=c(3,1))

barplot(table(ten)/length(ten),main="n=10")

barplot(table(onehundred)/length(onehundred),main="n=100")

barplot(table(onethousand)/length(onethousand),main="n=1000")
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2.2.4 Specific formula for the Binomial distribution

The mathematical expectancy for a random variable following the binomial distribution can be computed using
a simpler formula than the one presented previously:

E(X) = π × n
= 0.5× 5

= 2.5
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3.0 Discrete probability models

3 Discrete probability models

3.1 Binomial model

# Parameters of the model

n <- 10

pi <- 0.4

1. Mass probability function of 2:

Prob(X = k) =

(
n

k

)
× πk × (1− π)n−k

=
n!

k!× (n− k)!
× πk × (1− π)n−k

k <- 2

# 1st element

factorial(n)/(factorial(k)*factorial(n-k))

## [1] 45

# 2nd element

pi^k

## [1] 0.16

# 3rd element

(1-pi)^(n-k)

## [1] 0.01679616

# Find the product

(factorial(10)/(factorial(2)*factorial(8)))*0.4^2*0.6^8

## [1] 0.1209324

# Mass probability function

dbinom(c(2), size=10, prob=0.4)

## [1] 0.1209324
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3.1 Binomial model

0 2 4 6 8 10

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

Trials=10, Probability of success=0.4

Number of Successes

P
ro

ba
bi

lit
y 

M
as

s

0.120.120.120.120.120.12

Page 8



Fo
r t
ea
ch
in
g
on
ly

Applications of models & descriptive statistics
3.1 Binomial model

2. Distribution function of 5
F (5) =

∑5
i=0

(
Prob(X = i)

)
k <- 5

# Initiate sum to 0

distr.f.k <- 0

# Go on adding mass probability backwards

for (i in 0:k)

distr.f.k <- distr.f.k +

(factorial(n)/(factorial(i)*factorial(n-i)))*(pi^i)*((1-pi)^(n-i))

distr.f.k

## [1] 0.8337614

# Distribution function

pbinom(c(5), size=10, prob=0.4, lower.tail=TRUE)

## [1] 0.8337614
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3.1 Binomial model

3. Survival function of 7
S(7) =

∑10
i=7+1

(
Prob(X = i)

)
k <- 7

# Initiate sum to 0

surv.f.k <- 0

# Go on adding mass probabilities forwards

for (i in (k+1):10)

surv.f.k <- surv.f.k +

(factorial(n)/(factorial(i)*factorial(n-i)))*(pi^i)*((1-pi)^(n-i))

surv.f.k

## [1] 0.01229455
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3.1 Binomial model

# Survival function

pbinom(c(7), size=10, prob=0.4, lower.tail=FALSE)

## [1] 0.01229455

# Complementary to distribution function

1 - pbinom(c(7), size=10, prob=0.4, lower.tail=TRUE)

## [1] 0.01229455
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3.1 Binomial model

4. Mode of this binomial distribution: M
It is an integer that satisfies (n+ 1)× π − 1 ≤M < (n+ 1)× π

(n+ 1)× π − 1 = (10 + 1)× 0.4− 1

= 11× 0.4− 1

= 4.4− 1

= 3.4

(n+ 1)× π = (10 + 1)× 0.4

= 11× 0.4

= 4.4

The integer between 3.4 and 4.4 is 4. It is the most probable value. In this example it also coincides with
the mathematical expectancy E(X) = n× π = 10× 0.4 = 4, given that the mathematical expectancy is a
value that can actually be obtained. However, this is not necessarily the case for all n and π.
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3.1 Binomial model

5. Median of this binomial distribution: Md
It is the smallest possible value (i.e., integer) for the probability that it or a smaller value occurs is at
least 0.5. That is, Md(X) = min(k ∈ X|F (k) ≥ 0.5).

n <- 10

for (i in 0:n)

if ((pbinom(i, size=10, prob=0.4)) >= 0.5) {md <- i; break}
paste("Median is ", md)

## [1] "Median is 4"
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3.2 Poisson model: Example 1

3.2 Poisson model: Example 1

This model is useful for modelling counts (averages) per time interval (e.g., hour, day, year) or per space in-
terval (e.g., meter, kilometer), assuming that the probability that the event of interest takes place is constant
throughout the whole interval and that whatever happens in a given interval does not affect (and is not affected)
by whatever happens in the other intervals.

Imagine that in a village of 6000 individuals, the statistical records for the last 20 years suggest that there
are, on average 6 cases of burnout detected each year (some years more, some years less). On January 1st,
it was determined that there were 10 cases of burnout during the last year. What is the probability of that
many cases if on average 6 are expected? (Note that there is no reason to suspect burnout is more likely in any
specific period of the year, as could be the case for depression and its relation to Christmas holidays, for which
the one of the assumptions of the Poisson model is questionable).
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3.2 Poisson model: Example 1

What is the probability of 10 or more cases if on average 6 are expected? (mind that we want the value of
10 to be included in the interval)

ppois(9, lambda = 6, lower.tail=FALSE)

## [1] 0.08392402

How many such years, with 10 or more cases, are expected to happen in a period of 25 years only due to
random fluctuations, if the average of 6 per year is still correct?

25*ppois(9, lambda = 6, lower.tail=FALSE)

## [1] 2.0981

In this case, we used the Poisson model to approximate the Binomial distribution when there is a large
number of trials (n = 6000) and the probability of success (here, burnout) is small: π = 6/6000 = 0.001. Using
the Binomial distribution, we should obtain approximately the same results as before.

Mass probability function: Prob(X = 10)

dbinom(10, size=6000, prob=0.001)

## [1] 0.04128241

Survival function: Prob((X − 1) > 10)

pbinom(9, size=6000, prob=0.001, lower.tail=FALSE)

## [1] 0.08382071
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3.3 Poisson model: Example 2

3.3 Poisson model: Example 2

Imagine that in a given work place a worker has to serve 10 clients per hour, on average, and that it is not
necessary to serve exactly 10 clients each specific hour, as long as the average criterion is met. The boss of this
worker decides to observe the worker on a randomly chosen hour and in this specific hour only 4 clients are
served. What is the probability of this happening in case the worker actually serves 10 clients on average?
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What is the probability of serving 4 or less clients?
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How many such hours, with 4 or less clients served, are expected to happen in a week with 5×8 = 40 hours,
if the boss has to continue believing that the average of 10 clients per hour is actually met?

40*ppois(4, lambda=10, lower.tail=TRUE)

## [1] 1.170108
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3.4 Negative binomial model

3.4 Negative binomial model

This model is useful when the probability of success is constant in each trial and we are looking for the probability
of a number of repetitions before a specific amount of successes takes place. If the train is on time 90% of the
trips (i.e., π = 0.9), what is the probability of 3 delays (k = 3), before reaching 10 journeys on time (r = 10)?
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What is the probability of 3 or 4 or 5 delays, before reaching 10 journeys on time (r = 10)?
Adding mass probability function values:

dnbinom(3:5, size = 10 , prob = 0.9)

## [1] 0.076709257 0.024930508 0.006980542

sum(dnbinom(3:5, size = 10 , prob = 0.9))

## [1] 0.1086203

Subtracting distribution function values (mind the fact that we are interested in the value of 3 and the
interval should include it):

pnbinom(5, size = 10 , prob = 0.9, lower.tail=TRUE) -

pnbinom(2, size = 10 , prob = 0.9, lower.tail=TRUE)

## [1] 0.1086203

Subtracting survival function values (mind the fact that we are interested in the value of 3 and the interval
should include it):

pnbinom(2, size = 10 , prob = 0.9, lower.tail=FALSE) -

pnbinom(5, size = 10 , prob = 0.9, lower.tail=FALSE)

## [1] 0.1086203
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3.5 Geometric model

3.5 Geometric model

This model is useful when the probability of success is constant in each trial and we are looking for the probability
of a number of repetitions before the first success takes place. If the train has delays in 10% of the journeys
(delay is a success here, π = 0.1), what is the probability of the first delay being already at journey 5 (i.e., after
4 repetitions)?
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What is the probability of 10 or more trains without delay before the first delay takes place?
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1 −  0.69 = 0.31

pgeom(c(10), prob=0.1, lower.tail=FALSE)

## [1] 0.3138106
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3.6 Hypergeometric model

This model is useful when the probability of success is not constant in each extraction, given that sampling
without replacement is performed. Imagine that there are 75 (m + n = 75) students in a class and 5 of them
are fond of the Research techniques course (i.e., the ”likers”: m = 5). If 10 students are selected at random
from this population (k = 10), what is the probability of two of them being ”likers”?
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If 10 students are selected at random from this population (k = 10), what is the probability of two or fewer
than two of them being ”likers”?
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4 Continuous probability models: Normal distribution

4.1 Example 1: Birthweight

According to the evidence available (Janssen et al., 2007; Wilcox, 2001) the weight of girls born after 41 weeks of
gestation can be modelled via a normal distribution with a location parameter µ = 3696.8 and a scale parameter
σ = 448, both expressed in grams, that is N(µ = 3696.8, σ = 448) or N(3696.8, 448). The density function of
the model looks as shown below:
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4.1.1 Density

The density for the value of interest (4500g) can be found in R and R-Commander using the following code:

dnorm(c(4500), mean=3696.8, sd=448)

## [1] 0.0001785039

Densities inform concentration of values; they do not quantify probabilities. However, a greater density
indicates a greater probability. This can be illustrated looking at the density for a value close to the mean, e.g.,
3700:

dnorm(c(3700), mean=3696.8, sd=448)

## [1] 0.0008904734

4.1.2 Probability

In order to illustrate that density is related to probability, we will show how a weight of approximately 4500g
(between 4400g and 4600g) is less likely than a weight of approximately 3700g (between 3600g and 3800g).
Note that in both cases, the interval of values has the same length: 200g. We will use the subtraction between
distribution functions (i.e., the lower tail) to obtain the probabilities.

print("Probability of a weight between 4400 and 4600 grams = ")

## [1] "Probability of a weight between 4400 and 4600 grams = "

pnorm(c(4600), mean=3696.8, sd=448, lower.tail=TRUE) -

pnorm(c(4400), mean=3696.8, sd=448, lower.tail=TRUE)

## [1] 0.03635286

print("Probability of a weight between 3500 and 3700 grams = ")

## [1] "Probability of a weight between 3500 and 3700 grams = "

pnorm(c(3700), mean=3696.8, sd=448, lower.tail=TRUE) -

pnorm(c(3500), mean=3696.8, sd=448, lower.tail=TRUE)

## [1] 0.1726223

The values closer to the mean have greater density and the intervals around this values have greater proba-
bility. This is straightforward, given that the area under the curve (which represents probability) is larger near µ.
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Another important fact about continuous random variables is that the probability of any specific value is
practically zero. This is true even for the values with greater density. For instance the probability of an interval
that includes the mean (between 3695g and 3700g) is as small as:

pnorm(c(3700), mean=3696.8, sd=448, lower.tail=TRUE) -

pnorm(c(3696), mean=3696.8, sd=448, lower.tail=TRUE)

## [1] 0.00356196

In this example, we are still talking about intervals. In case we were interested in a specific value, we could
define it as some value between 3696 and 3697. The probability is practically zero and is usually treated as if
it were actually zero.

pnorm(c(3697), mean=3696.8, sd=448, lower.tail=TRUE) -

pnorm(c(3696), mean=3696.8, sd=448, lower.tail=TRUE)

## [1] 0.0008904958

For all other values, farther away from µ the probabilities of such small intervals would be even smaller.
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4.1.3 Standardizing

In the past, statistical tables were the source for probabilities and it is not feasible to have as many different
tables, as there are possible values for the location and scale parameters of a normal distribution. This is
why standardizing is used: so that all normal variables whose distribution has its own µ and σ values can be
converted to the same normal distribution: the unitary one, denoted by Z or N(0, 1). This notation makes
clear that the new normal variable has a mean of zero (a change in location) and a standard deviation of one
(a change in scale). Standardizing for the running example, with the mean and standard deviation as speficied
above and for x = 4500 is performed as shown below:

Z =
xi − µ
σ

=
4500− 3696.8

448

=
4500− 3696.8

448

=
803.2

448
= 1.792857

It can be shown that the probability of having a baby girl, born after 41 weeks of gestation, as large as or
larger than 4500g is the same, within rounding error, regardless of whether we use the original variable or the
standardized one:

pnorm(c(4500), mean=3696.8, sd=448, lower.tail=FALSE)

## [1] 0.03649788

pnorm(c(1.792857), lower.tail=FALSE)

## [1] 0.0364979

In the previous piece of R code, it should be noted that we did not specify the values for the location and
the scale parameters. This is so, given that by default, R uses µ = 0 and σ = 1.
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Finally, in the next table, we illustrate how statistical tables were used to obtain probabilities. We first
look at the row containing 1.7 as the first two digits of the Z value. Second, we look for the column containing
the 0.09 value, as the nonzero digit is the third digit of our Z value. Third, the probability that the statistical
table provides is the distribution function F (1.79) = Prob(Z ≤ 1.79). However, we are looking for the survival
function S(1.79) = Prob(Z > 1.79).

S(1.79) ≡ Prob(Z > 1.79) = 1− F (1.79)

= 1− 0.9633

= 0.0367

The difference with respect to the previously obtained probabilities is due to the fact that with R we were
more precise, looking for S(1.792857) rather than for S(1.79).
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Is it probable? Is what probable? What is probable?

cases, it is not only interesting to know whether such a large weight (or larger) is likely, but whether such an
extreme weight is likely. “Extreme” means “so far away from the mean”. Therefore, we would be interested in
the probability of a weight as large as or larger than 4500g and the probability of a weight as small as or smaller
than a weight, which is at the same distance from the mean (3696.8) as 4500 is, but below it. In order to find this
equally distant value from the mean, we perform the following calculation: first, the distance between 4500 and
the mean is 4500− 3696.8 = 803.2; second, the value that is 803.2g below the mean is 33696.8− 803.2 = 2893.6.
In summary, when we talk about “extreme” results, we do not distinguish “small” from “large”; we deal with
bilateral (two-tailed) probabilities. Otherwise, in case we wanted to know the probability of such a large or
larger value, we would be dealing with unilateral (one-tailed) probabilities. We focus on the two-tailed case in
this page.

pnorm(c(2893.6), mean=3696.8, sd=448, lower.tail=TRUE)

## [1] 0.03649788

This calculus was not necessary, given that the Normal distribution is symmetric and Prob
(
X < (3696.8 −

803.2)
)

= Prob
(
X > (3696.8 + 803.2)

)
, which is true for any equidistance from the mean, not only for 803.2.

Therefore, the probability of ”as extreme” weight is double the probability of an ”as large” weight and double
the probability of an ”as small” weight.

But is that probable? It is possible! Beyond this obvious answer, it is difficult to give a more precise and sound
response. In case-control designs, used in Neuropsychology, it is common to use probability models to assess
how unfrequent or rare a result of an individual would be in the normative population (i.e., the one that, in
the Neuropsychological context, presents no cognitive deficit). We could use the normal probability model here,
because we have evidence that the population birthweight could be normally distributed.

pnorm(c(2893.6), mean=3696.8, sd=448, lower.tail=TRUE) +

pnorm(c(4500), mean=3696.8, sd=448, lower.tail=FALSE)

## [1] 0.07299577

The result presented above suggests that a value as extreme as 4500g (i.e., a value as far away from the
mean as 4500g) is expected to happen in approximately 7 out of 100 normative cases. It is still the researcher’s
decision to state whether this is very unfrequent (very rare) or not. In case we do not want to assume that
the population is normal, the t distribution can be used, on the basis of the modification of the t statistic
described by Crawford and colleagues (Crawford & Garthwaite, 2012; Crawford, Garthwaite, & Porter, 2010;
Crawford & Howell, 1998; see also the following website http://homepages.abdn.ac.uk/j.crawford/pages/

dept/SingleCaseMethodsComputerPrograms.HTM).

Another option is to emulate what is being done when making statistical decisions (i.e., to reject the null
hypothesis or not), which are explained in the Estad́ıstica course. Specifically, when making statistical decisions
it is common to treat probability values (p values) equal to or lower than 0.05 as an indicator that the null
hypothesis can be rejected, as the probability of committing a mistake when rejecting it is low (0.05 or less).
Thus, if our null hypothesis was that the girl with a weight of that is 803.2g away from the mean is part of the
normative population with mean equal to 3696.8g and standard deviation equal to 448g, we would not reject
the null hypothesis, as the probability of obtaining such a large difference from the mean or larger difference
is approximately 0.07, that is, more than the risk we are willing to assume. In substantive terms, it could be
stated that a baby girl born 4500g is not that different from the normative (typical) population of baby girls.

However, it should be noted that, in this last example, we are not using a one-sample test (i.e., we are not
comparing a sample mean with a populational parameter). Therefore, we only ”borrowed” the 0.05 convention
for illustrative purposes. Actually, it depends on the topic, which probability should be considered small and
which large risk for committing a Type I error.
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Another option for assessing the degree to which a specific values is within the expected limits is the statistical
process control rule according to which any value outside the interval µ± 3×σ is considered unlikely (see Pfadt
& Wheeler, 1995, for statistical process control rules regading the number of values outside of the µ ± σ or
the µ ± 2 × σ intervals). Actually, according to the property of the normal distribution, within the interval
µ± 3× σ there is the 99.7% of the area or 99.7% of the values are expected to be included; the values that are
not included are the 0.15% most extreme small values and the 0.15% most extreme high values.

For the current example:

µ± 3× σ = 3696.8± 3× 448

= 3696.8± 1344

= [2352.8; 5040.8]

Therefore, it can be seen that 4500 is within these limits and, according to this rule, is not considered as a value
that is out of control.
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4.2 Example 2: Intelligence quotient

Intelligence quotient: µ = 100 and σ = 15

# Parameters of the model

mu <- 100

sigma <- 15

1. Find the probability that a randomly selected individual from the population has an IQ score lower than
80 or greater than 120.
Prob(X ≤ 80) = F (80) or Prob(X > 120) = S(120)

# Mass probability function

pnorm(c(80), mean=100, sd=15, lower.tail=TRUE)

## [1] 0.09121122

pnorm(c(120), mean=100, sd=15, lower.tail=FALSE)

## [1] 0.09121122

Both probabilities are equal given that they represent equidistant values from the mean (20 points below
or above). Given that either result meets the condition, the answer is

# Probability of two events that do not intersect

pnorm(c(80), mean=100, sd=15, lower.tail=TRUE) +

pnorm(c(120), mean=100, sd=15, lower.tail=FALSE)

## [1] 0.1824224

60 80 100 120 140

0.
00

0
0.

01
0

0.
02

0

Mean=100, Standard deviation=15

x

D
en

si
ty

Page 27



Fo
r t
ea
ch
in
g
on
ly

Applications of models & descriptive statistics
4.2 Example 2: Intelligence quotient

2. Between which IQ scores are the central 50% of the individuals located (i.e., what is the interval of most
representative values that includes 50% of the population).

In this case we have the cumulative probabilities (0.25 and 0.75, between which the central 50% of the
individualsare located) and we are looking for the values. Thus, we are working with the inverse of the
cumulative distribution function.

# Quantiles

qnorm(c(0.25,0.75), mean=100, sd=15, lower.tail=TRUE)

## [1] 89.88265 110.11735
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Without computing the quantiles and due to the property of the Normal distribution, an approximate
answer could have been given. Specifically, we know that the central 68.27% of the individuals has IQ
values between µ±σ = 100± 15 = [85, 115]. That is, the lower limit of this interval is value one for which
the distribution function is equal to (1− 0.6827)/2 = 0.1587, so Q0.1587 = 85. Given that we are looking
for Q0.25 this value should be greater than 85. Analogously, the upper limit of this interval is value one
for which the distribution function is equal to 0.6827 + (1−0.6827)/2 = 0.6827 + 0.8414, so Q0.8414 = 115.
Given that we are looking for Q0.75, this value should be smaller than 115.
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3. A sample of 250 individuals (n = 250) is extracted at random from the population N(µ = 100, σ = 15).
How many of them are expected to have IQ values between 95 and 105?

First we need to find the area under the curve with limits 95 and 105.
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This can be done in two ways. One option is to use the distribution function (i.e., lower tail of the density
function).

# Subtracting the distribution function of the higher value

# from the distribution function of the lower value

pnorm(c(105), mean=100, sd=15, lower.tail=TRUE) -

pnorm(c(95), mean=100, sd=15, lower.tail=TRUE)

## [1] 0.2611173

The white area is not part of the calculation. The lighter color is the area that is subtracted. The darker
color is the area that remains after the subtraction (i.e., the area of interest) - it is the intersection between
the two distribution functions.
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Another option is to use the survival function (i.e. upper tail of the density function).

# Subtracting the survival function of the lower value

# from the survival function of the lower value

pnorm(c(95), mean=100, sd=15, lower.tail=FALSE) -

pnorm(c(105), mean=100, sd=15, lower.tail=FALSE)

## [1] 0.2611173

The white area is not part of the calculation. The lighter color is the area that is subtracted. The darker
color is the area that remains after the subtraction (i.e., the area of itnerest) - it is the intersection between
the two survival functions.
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Second, we need to multiply this probability by the sample size in order to know how many individuals
are expected to have IQ values between 95 and 105: Expected[n(95 < X < 105)] = Prob(95 < X <
105) × n = 0.2611173 × 250 ' 65.28. Therefore, approximately 65 people are expected to have an IQ in
the range in a random sample of 250.

Page 31



Fo
r t
ea
ch
in
g
on
ly

Applications of models & descriptive statistics
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Actually, we could use R as a calculator. The signs for summation and subtraction are the classical ones
(+ and −, repsectively), as is also the case for division (/). Multiplication is done using the asterisk sign
(*), whereas elevating a number to a given power is achieved using the circumflex or hat sign (ˆ). Out of
this operations, only multiplication is needed here.

# Specific value

0.2611173*250

## [1] 65.27933

# Rounding to the nearest integer

round(0.2611173*250,0)

## [1] 65

# Rounding downwards

floor(0.2611173*250)

## [1] 65

# Rounding upwards

ceiling(0.2611173*250)

## [1] 66
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4. We have previously mentioned that approximately 68% of the area is included in the interval µ±σ. What
proportion of the area (i.e., what proportion of the the individuals in the population) is included in the
intervals µ± 2× σ and µ± 3× σ. Note that this property is general for all values of µ and σ of a normal
distribution.

We first need to obtain the values that correspond to µ−2×σ and µ+2×σ. The lower limit of this interval
is marked by µ− 2× σ = 100− 2× 15 = 70, whereas the upper limit is µ+ 2× σ = 100 + 2× 15 = 130.
The area within this limits can be found subtracting two distribution functions.

# Subtracting the distribution function of the higher value

# from the distribution function of the lower value

pnorm(c(130), mean=100, sd=15, lower.tail=TRUE) -

pnorm(c(70), mean=100, sd=15, lower.tail=TRUE)

## [1] 0.9544997

We then need to obtain the values that correspond to µ − 3 × σ and µ + 3 × σ. The lower limit of this
interval is marked by µ−2×σ = 100−3×15 = 55, whereas the upper limit is µ+2×σ = 100+3×15 = 145.
The area within this limits can be found subtracting two distribution functions.

# Subtracting the distribution function of the higher value

# from the distribution function of the lower value

pnorm(c(145), mean=100, sd=15, lower.tail=TRUE) -

pnorm(c(55), mean=100, sd=15, lower.tail=TRUE)

## [1] 0.9973002

These proportions are all reflected in the following figure:
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5. Find the probability that a randomly selected individual from the population has an IQ score in the
interval [95; 105] or in the interval[100; 110].

In this case, a value in either of the intervals would meet the condition. Therefore, we can add the
probabilities of the two intervals to obtain the probability that the value is contained in either of them.
However, the two intervals intersect. Specifically, they share the values in the interval [100; 105]: the
darkest area in the density plot below.
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There are three ways to obtain the probability. First, to obtain Prob(95 < X < 105) + Prob(100 < X <
110)− Prob(100 < X < 105) via distribution functions.

# Subtracting the distribution function of the higher value

# from the distribution function of the lower value

P.95.105 <- pnorm(c(105), mean=100, sd=15, lower.tail=TRUE) -

pnorm(c(95), mean=100, sd=15, lower.tail=TRUE)

P.100.110 <- pnorm(c(110), mean=100, sd=15, lower.tail=TRUE) -

pnorm(c(100), mean=100, sd=15, lower.tail=TRUE)

P.100.105 <- pnorm(c(105), mean=100, sd=15, lower.tail=TRUE) -

pnorm(c(100), mean=100, sd=15, lower.tail=TRUE)

P.95.105 + P.100.110 - P.100.105

## [1] 0.3780661

Second, the same result can be obtained using the survival functions.

# Subtracting the distribution function of the higher value

# from the distribution function of the lower value

P.95.105 <- pnorm(c(95), mean=100, sd=15, lower.tail=FALSE) -

pnorm(c(105), mean=100, sd=15, lower.tail=FALSE)

P.100.110 <- pnorm(c(100), mean=100, sd=15, lower.tail=FALSE) -

pnorm(c(110), mean=100, sd=15, lower.tail=FALSE)

SP.100.105 <- pnorm(c(100), mean=100, sd=15, lower.tail=FALSE) -

pnorm(c(105), mean=100, sd=15, lower.tail=FALSE)

P.95.105 + P.100.110 - P.100.105

## [1] 0.3780661

Finally, the result can be obtained computing the probability of the area that is colored and not white,
given it represents the union of the two events that intersect:

Prob
(
(95 < X < 105) ∪ (100 < X < 110)

)
= Prob(95 < X < 105) + Prob(100 < X < 110)− Prob

(
(95 < X < 105) ∩ (100 < X < 110)

)
= Prob(95 < X < 105) + Prob(100 < X < 110)− Prob(100 < X < 105)

= Prob(95 < X < 110).

The probability of obtaining an IQ score in that interval can be obtained via the distribution function.

# Subtracting the distribution function of the higher value

# from the distribution function of the lower value

pnorm(c(110), mean=100, sd=15, lower.tail=TRUE) -

pnorm(c(95), mean=100, sd=15, lower.tail=TRUE)

## [1] 0.3780661
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6. Find the probability that an individual extracted at random from the population has an IQ above 120, if
it is known that her IQ is above 110.

In this case we are dealing with a conditional probability: finding the probability of an event conditional
on the fact that there is already some knowdlege about this event. The general formula for the conditional
probability is

Prob(A|B) =
Prob(A ∩B)

Prob(B)

In the current question, this formula can be translated into:

Prob(X > 120|X > 110) =
Prob(X > 120 ∩X > 110)

Prob(X > 110)

Therefore, in the numerator, we need to find the probability of the intersection of the two events. It is
the area they share, the one with the darker color in the density function below.
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It can be seen that the intersection of Prob(X > 120) and Prob(X > 110) is Prob(X > 120). This
probability can be found using the survival function.
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# Survival function

pnorm(c(120), mean=100, sd=15, lower.tail=FALSE)

## [1] 0.09121122

In the denominator, we need to find Prob(X > 110), which can also be obtained using teh survival
function.

# Survival function

pnorm(c(110), mean=100, sd=15, lower.tail=FALSE)

## [1] 0.2524925

With the values obtained, we apply the formula for the conditional probability:

Prob(X > 120|X > 110) =
Prob(X > 120 ∩X > 110)

Prob(X > 110)

=
Prob(X > 120)

Prob(X > 110)

' 0.09

0.25
= 0.36
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7. Two individuals are extracted at random from the population. Find the probability that one of them has
IQ below 70 and the other one has an IQ greater than 130.

In this question we are dealing with two independent events, given that the IQ scores of the both individuals
sampled at random do not have any dependence among themselves. Thus, we will have to multiply
the Prob(X < 70) by Prob(X > 130). Using the property of the normal distribution, we know that
approximately 95.4% of the individuals have scores in the interval [70; 130], given that µ± 2× σ = 100±
2 × 15 = [70; 130]. Therefore we know that Prob(X < 70) = Prob(X > 130) ' 1−0.954

2 = 0.046
2 = 0.023.

In order to obtain the exact probabilities, we will use the distribution function of 70 and the survival
function of 130.

# Distribution funtion of 70

pnorm(c(70), mean=100, sd=15, lower.tail=TRUE)

## [1] 0.02275013

# Survival function of 130

pnorm(c(130), mean=100, sd=15, lower.tail=FALSE)

## [1] 0.02275013

The probability that we are looking for is apparently 0.02275013× 0.02275013 = 0.0005175684. However,
either of the two individuals can have the below 70 score or the above 130 score. Therefore, there
are two different ways in which the condition can be met. Thus, the probability we are looking for is
0.0005175684× 2 = 0.001035137. That is, such a result is expected to happen in approximately 1 of every
1000 random extractions of two individuals.
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5 Categorical data

The data presented below correspond to the answers of smokers (most of the participants) regarding the reason
which could make them quit smoking:

Id Gender Reason.quit Id Gender Reason.quit
1 female health 35 female physical activity
2 female not smoking 36 female health
3 female health 37 male money
4 male not smoking 38 female health
5 female not smoking 39 female health
6 female health 40 female health
7 female health 41 male physical activity
8 male health 42 male physical activity
9 female health 43 female bad example
10 female health 44 male physical activity
11 male quality of life 45 male pregnancy.child
12 male health 46 female health
13 female health 47 male health
14 female health 48 male health
15 female bad experience 49 female health
16 female health 50 female health
17 female health 51 female health
18 female health 52 male health
19 female health 53 male physical activity
20 female money 54 female money
21 female health 55 female health
22 female health 56 female money
23 male health 57 female health
24 male health 58 female money
25 female health 59 female health
26 male health 60 female money
27 male health 61 female health
28 female pregnancy.child 62 female health
29 male health 63 male pregnancy.child
30 female physical activity 64 female health
31 female health 65 female health
32 female pregnancy.child 66 female health
33 female health 67 female health
34 male money
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5.1 Univariate analysis

5.1.1 Graphical description

Sorting the categories in descending order according to their frequency:

Datos <- read.table(file.choose(),header=TRUE,fill=TRUE)

require(RcmdrPlugin.EACSPIR)

.tabla <- table(Datos$Reason.quit)

.tabla <- .tabla[order(-.tabla)]

par(mar=c(5,4,4,4))

.x <- barplot(.tabla, main='Pareto diagram: Reason.quit',

ylab='Absolute frequency',ylim=c(0,sum(.tabla)*1.05),

col=heat.colors(length(.tabla)))

lines(.x[1:length(.tabla)],cumsum(.tabla),type='b')

box()

axis(4,at=seq(0,max(cumsum(.tabla)),length=5),

labels=paste(seq(0,1,length=5)*100,'%',sep=''))

mtext('Cumulative percentage', 4, line=2.5, las=3)

health physical_activity bad_example quality_life

Pareto diagram: Reason.quit
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Alphabetical order of categories:

par(mar=c(10, 3, 3, 3))

barplot(table(Datos$Reason.quit), xlab=" ", ylab="Frequency",

main="Barplot for Reason to quit",las=2)
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library(colorspace)

pie(table(Datos$Reason.quit), labels=levels(Datos$Reason.quit),

main="Pie chart: Reason.quit",

col=rainbow_hcl(length(levels(Datos$Reason.quit))))

bad_example
bad_experience

health

money
not_smoking

physical_activity

pregnancy.child

quality_life

Pie chart: Reason.quit

The most frequent category is clear in all of the graphical representations, as also is the fact that there is
variability in the sense that several categories are present, but this variability is not that marked, given the
relative frequency of the modal category.
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5.1.2 Numerical description

# Absolute frequencies

table(Datos$Reason.quit)

##

## bad_example bad_experience health money

## 1 1 44 7

## not_smoking physical_activity pregnancy.child quality_life

## 3 6 4 1

#Relative frequencies

round(table(Datos$Reason.quit)/sum(table(Datos$Reason.quit)),2)

##

## bad_example bad_experience health money

## 0.01 0.01 0.66 0.10

## not_smoking physical_activity pregnancy.child quality_life

## 0.04 0.09 0.06 0.01

# Mode: A central tendency measure

names(table(Datos$Reason.quit))[which(table(Datos$Reason.quit)==max(table(Datos$Reason.quit)))]

## [1] "health"

The odds of the modal category health can be found via the following formula:

Oddshealth =
nhealth

ntotal − nhealth

=
44

67− 44

=
44

23
' 1.91

This value means that for every person stating some other reason there are approximately 2 individuals
mentioning health as the reason that would make them quit smoking. In R this value is found as follows:

freq <- 0

for (i in 1:length(Datos$Reason.quit)) if (Datos$Reason.quit[i]=="health") freq <- freq + 1

freq/(sum(table(Datos$Reason.quit))-freq)

## [1] 1.913043

In the following we illustrate the calculation of two indices of dispersion (scatter, variability). For both of
them 0 would mean minimal variability (all individuals are in the same category). The maximal value for the
variation ratio approaches 1 as the modal category becomes less relatively frequent, whereas the maximal value
for the index of qualitative variation is 1 when all categories are equally represented. First, the variation ratio.

V R = 1− nhealth
ntotal

= 1− 44

67
' 1− 0.66

= 0.34

In R this value is found as follows:

freq <- 0

for (i in 1:length(Datos$Reason.quit)) if (Datos$Reason.quit[i]=="health") freq <- freq + 1

1 - freq/sum(table(Datos$Reason.quit))

## [1] 0.3432836
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Second, we obtain the value of the index of qualitative variation (the term k in the expression below denotes
the number of categories, pi is the proportion of each category, and B denotes Blau’s index):

IQV =
B × k
k − 1

=
(1−

∑k
i=1 p

2
i )× k

k − 1

=
(1− (0.012 + 0.012 + 0.662 + 0.102 + 0.042 + 0.092 + 0.062 + 0.012))× 8

8− 1

=
(1− (0.0001 + 0.0001 + 0.4356 + 0.01 + 0.0016 + 0.0081 + 0.0036 + 0.001))× 8

8− 1

=
(1− 0.46)× 8

7

=
0.54× 8

7

=
4.32

7
' 0.62

In R this value is found as follows:

((1-sum(prop.table(table(Datos$Reason.quit))^2))*length(table(Datos$Reason.quit)))/

(length(table(Datos$Reason.quit))-1)

## [1] 0.621201
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5.2 Bivariate analysis

5.2.1 Graphical description

Clustered barplot (on the basis of absolute or relative frequencies per gender). Using relative frequencies is
expected to make the interpretation easier, as the hights of bars for the different genders become comparable:

par(mfrow=c(1,2),mar=c(2, 4, 2, 1))

.Tabla <- xtabs(~Reason.quit+Gender, data=Datos)

barplot(.Tabla,beside=TRUE,main='Clustered barplot',

ylab='Absolute Frequency',xlab='Gender',ylim=c(0,max(.Tabla)*2),

col=heat.colors(length(levels(Datos$Reason.quit))),legend.text=TRUE,

args.legend=list(x='topright',title='Reason to quit'))

box()

.Tabla2 <- xtabs(~Reason.quit+Gender, data=Datos)/sum(xtabs(~Reason.quit+Gender, data=Datos))

.Tabla2[1:8] <- .Tabla[1:8]/sum(.Tabla[1:8])

.Tabla2[9:16] <- .Tabla[9:16]/sum(.Tabla[9:16])

barplot(.Tabla2,beside=TRUE,main='Clustered barplot',

ylab='Relative Frequency per gender',xlab='Gender',ylim=c(0,max(.Tabla2)*2),

col=heat.colors(length(levels(Datos$Reason.quit))),legend.text=TRUE,

args.legend=list(x='topright',title='Reason to quit'))

box()
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Mosaic diagram using absolute frequencies or relative frequencies for the two categorical variables. Although
the names of the Reason.quit categories are not easily read, the visual inspection of the data suggest that there
is some association between the two variables:

par(mfrow=c(2,1),mar=c(2, 2, 2, 2))

.Tabla <- xtabs(~Reason.quit+Gender, data=Datos)

mosaicplot(.Tabla,main='Mosaic for Gender and Reason.quit',

xlab="Reason to quit (absolute frequency)",

ylab= "Gender (absolute frequency)", col=dim(.Tabla))

.Tabla3 <- xtabs(~Reason.quit+Gender, data=Datos)/sum(xtabs(~Reason.quit+Gender, data=Datos))

for (i in 1:8)

.Tabla3[i] <- .Tabla2[i]/sum(.Tabla2[i],.Tabla2[i+8])

for (i in 9:16)

.Tabla3[i] <- .Tabla2[i]/sum(.Tabla2[i],.Tabla2[i-8])

mosaicplot(.Tabla3,main='Mosaic for Gender and Reason.quit',

xlab="Reason to quit (relative frequency)",

ylab= "Gender (relative frequency)",col=dim(.Tabla))
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5.2.2 Numerical description

We begin the bivariate analysis of Reason.quit and Gender (i.e., the exploration of whether these two variables
are related and to what degree) with the contingency table:

obs.freq <- xtabs(~Reason.quit+Gender, data=Datos)

obs.freq

## Gender

## Reason.quit female male

## bad_example 1 0

## bad_experience 1 0

## health 34 10

## money 5 2

## not_smoking 2 1

## physical_activity 2 4

## pregnancy.child 2 2

## quality_life 0 1

We compare this table to the one that would have been obtained (for the same number of male and female,
and for the same number of individuals pointing health, money, etc. as the main reason for quitting):

exp.freq <- chisq.test(obs.freq, correct=FALSE)$expected

The values obtained are similar, but not exactly the same. In order not to compare the observed frequencies
fo.ij and the expected frequencies fe.ij only visually, we use the chi-square statistic for all I = 2 columns and
J = 8 rows:

χ2 =

I∑
i=1

J∑
j=1

(fo.ij − fe.ij)2

fe.ij

=
(1− 0.07)2

0.07
+

(1− 0.07)2

0.07
+

(34− 30.9)2

30.9
+

(5− 4.9)2

4.9
+ . . .+

(1− 0.3)2

0.3
= 8.95

In R this is achieved via:

# Using the information from the statistical test

chisq.test(obs.freq, correct=FALSE)$statistic

## X-squared

## 8.949378

# Applying the formula on the basis of the two tables

sum(((obs.freq-exp.freq)^2)/exp.freq)

## [1] 8.949378

Given that χ2 6= 0 there is some association between the two variables (i.e., they are not indepedent). In
order to assess the magnitude of association, we will compute Cramér’s V index, taking into account the fact
that q denotes the number of categories in the variable that has fewer categories: q = min I, J
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V =

√
χ2

n

q − 1

=

√
8.95
67

2− 1

=

√
0.13

1

=
√

0.13

' 0.37

Finally, we can compute the odds ratio for the health reason, comparing men and women. First, we compute
the odds for health in men:

Oddshealth:men =
nhealth:men

ntotal:men − nhealth:men

=
10

20− 10

=
10

10
= 1

Second, we compute the odds for health in women:

Oddshealth:women =
nhealth:women

ntotal:women − nhealth:women

=
34

47− 34

=
34

13
' 2.62

Third, we compute the odds ratio as

OR =
Oddshealth:women

Oddshealth:men
= 2.62

That is, it is approximataley 2 and a half times more likely to state health as a reason for quitting smoking
if the person as a woman compared to being a man. It is another way of stating that the two variables are
related and another way of quantifying the strength of association.

In R this is achieved via:

# Using the information from the statistical test

freq_m <- 0

for (i in 1:length(Datos$Reason.quit))

if ((Datos$Reason.quit[i]=="health") && (Datos$Gender[i]=="male"))

freq_m <- freq_m + 1

freq_f <- 0

for (i in 1:length(Datos$Reason.quit))

if ((Datos$Reason.quit[i]=="health") && (Datos$Gender[i]=="female"))

freq_f <- freq_f + 1

(freq_f/(sum(obs.freq[,1])-freq_f))/(freq_m/(sum(obs.freq[,2])-freq_m))

## [1] 2.615385
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6 Quantitative data

6.1 Univariate analysis

6.1.1 Example 1: Multiple-choice questions

1. Numerical analysis

quantile(results_mc) # quantiles

## 0% 25% 50% 75% 100%

## 0.1300 0.4925 0.6000 0.9000 1.1000

mean(results_mc) # Mean

## [1] 0.65

median(results_mc) # Median

## [1] 0.6

# Mode for a numeric variable

frecu <- as.data.frame(table(results_mc))

frecu2 <- as.matrix(frecu)

as.numeric(frecu2[which(frecu$Freq == max(frecu$Freq)),1])

## [1] 0.9

(quantile(results_mc,probs=0.75)[[1]] +

quantile(results_mc,probs=0.25)[[1]]) /2 # Midhinge

## [1] 0.69625

require(e1071) # Package necessary for computing skewness

skewness(results_mc)

## [1] -0.283752

max(results_mc)-min(results_mc) # Range

## [1] 0.97

IQR(results_mc) # Interquartile range

## [1] 0.4075

sqrt(mean((results_mc-mean(results_mc))^2)) # Std dev not equal to sd(results_mc)

## [1] 0.2510229

median(abs(results_mc-median(results_mc))) # MAD not equal to mad(results_mc)

## [1] 0.215

# Coefficient of variation

sqrt(mean((results_mc-mean(results_mc))^2)) / abs(mean(results_mc))
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## [1] 0.3861891

# Quartile coefficient of variation

(quantile(results_mc,probs=0.75)[[1]] - quantile(results_mc,probs=0.25)[[1]]) /

(quantile(results_mc,probs=0.75)[[1]] + quantile(results_mc,probs=0.25)[[1]])

## [1] 0.2926391

2. Graphical analysis

# Graphical representation

par(mfrow=c(1,2))

boxplot(results_mc, main="Boxplot", ylab="grades", xlab="Multiple-choice")

hist(results_mc,col="lightblue",freq=FALSE) # histogram

curve(dnorm(x, mean=mean(results_mc), sd=sd(results_mc)),

col="red", lwd=2, add=TRUE, yaxt="n")
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stem(results_mc)

##

## The decimal point is 1 digit(s) to the left of the |

##

## 1 | 33

## 2 | 7

## 3 | 0

## 4 | 0377

## 5 | 000777

## 6 | 0003

## 7 | 7

## 8 | 033

## 9 | 000000337

## 10 |

## 11 | 0
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6.1.2 Example 2: Open-ended questions

1. Numerical analysis

quantile(results_open) # quantiles

## 0% 25% 50% 75% 100%

## 0.60 0.85 1.05 1.15 1.45

mean(results_open) # Mean

## [1] 1.001562

median(results_open) # Median

## [1] 1.05

# Mode for a numeric variable

frecu <- as.data.frame(table(results_open))

frecu2 <- as.matrix(frecu)

as.numeric(frecu2[which(frecu$Freq == max(frecu$Freq)),1])

## [1] 1.05

(quantile(results_open,probs=0.75)[[1]] +

quantile(results_open,probs=0.25)[[1]]) /2 # Midhinge

## [1] 1

require(e1071) # Package necessary for computing skewness

skewness(results_open)

## [1] 0.008236599

max(results_open)-min(results_open) # Range

## [1] 0.85

IQR(results_open) # Interquartile range

## [1] 0.3

sqrt(mean((results_open-mean(results_open))^2)) # St dev not equal to sd(results_mc)

## [1] 0.2017441

median(abs(results_open-median(results_open))) # MAD not equal to mad(results_mc)

## [1] 0.15

# Coefficient of variation

sqrt(mean((results_open-mean(results_open))^2)) / mean(results_open)

## [1] 0.2014294

# Quartile coefficient of variation

(quantile(results_open,probs=0.75)[[1]] - quantile(results_open,probs=0.25)[[1]]) /

(quantile(results_open,probs=0.75)[[1]] + quantile(results_open,probs=0.25)[[1]])

## [1] 0.15
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2. Graphical analysis

# Graphical representation

par(mfrow=c(1,2))

boxplot(results_open, main="Boxplot", ylab="grades", xlab="Open Qs")

hist(results_open,col="lightblue",freq=FALSE) # histogram

curve(dnorm(x, mean=mean(results_open), sd=sd(results_open)),

col="red", lwd=2, add=TRUE, yaxt="n")
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stem(results_open)

##

## The decimal point is 1 digit(s) to the left of the |

##

## 6 | 05

## 7 | 5555

## 8 | 055

## 9 | 00055

## 10 | 05555555

## 11 | 555

## 12 | 0005

## 13 | 00

## 14 | 5
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6.1.3 Summary: Indices

Central tendency

Index Formula Basis Resistant? Dimension

Mean x̄ =
∑n
i=1 xi
n

Moments No Units (e.g., m, kg)

Median
Md = x(n−1

2 ) for odd n Position Yes Units (e.g., m, kg)

Md =
x(n

2
)+x(n+1

2
)

2 for even n
where the x values are sorted from small-
est, 1, to largest, n

Mode
The most frequent value Frequency Yes Units (e.g., m, kg)
xi for which max(fj), with n measure-

ments (i = 1, 2..., n) and k different values
(j = 1, 2, ..., k; k ≤ n)

Midhinge Q̄ = Q1+Q3

2
Position Yes Units (e.g., m, kg)

Dispersion = Scatter = Variability = Heterogeneity

Index Formula Basis Resistant? Dimension

Variance V ar ≡ s2 =
∑n
i=1(xi−x̄)2

n
Moments No Units2 (e.g., m2, kg2)

Standard
deviation SD ≡ s =

√∑n
i=1(xi−x̄)2

n
Moments No Units (e.g., m, kg)

MAD MAD = Md|xi −Md(xi)| Position Yes Units (e.g., m, kg)

Range Range = max(xi)−min(xi) Position No Units (e.g., m, kg)

Interquartile
range

IQR = Q3 −Q1 Position Yes Units (e.g., m, kg)

Coefficient of
variation

CV = s
abs(x̄) Moments No None (pure number)

Quartile
coefficient of
variation

CVQ = Q3−Q1

Q3+Q1
Position Yes None (pure number)

Shape = Skewness & Kurtosis

Index Formula Basis Resistant? Dimension

Skewness γ1 =

∑n
i=1(yi−µ)

3

n

σ3
Moments No None (pure number)

Yule’s index H1 = Q3+Q1−2×Md
2×Md

Position Yes None (pure number)

Kelly’s index H1 = P10+P90−2×Md
2×Md Position Yes None (pure number)

Kurtosis γ2 =

∑n
i=1(yi−µ)

4

n

σ4 − 3 Moments No None (pure number)

K2 K2 = P90−P10

1.9×(P75−P25) Position Yes None (pure number)

K3 K3 = P87.5−P12.5

1.7×(P90−P10) Position Yes None (pure number)
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6.2 Bivariate analysis

6.2.1 Bivariate analysis: Comparing grades according to type of question

1. Graphical representation: Based on position

# Boxplot: Based on position indices

boxplot(as.numeric(alldata[,1])~alldata[,2],

main="Boxplot", ylab="grades", xlab="type of questions")

points(jitter(as.numeric(rep(2,length(results_open)),factor=0.1)),

as.numeric(alldata[(alldata[,2]=="open"),1]),col="blue",pch=17,cex=0.8)

points(2,mean(results_open),pch="*",col="red",cex=3)

points(jitter(as.numeric(rep(1,length(results_mc)),factor=0.1)),

as.numeric(alldata[(alldata[,2]=="multiple-choice"),1]),col="green",pch=20,cex=0.8)

points(1,mean(results_mc),pch="*",col="red",cex=3)

multiple−choice open

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

Boxplot

type of questions

gr
ad

es

*
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# Compare numerically: Position indices

require(Rcmdr)

numSummary(as.numeric(alldata[,1]), groups=alldata[,2],

statistics=c("quantiles", "IQR"), quantiles=c(0,.25,.5,.75,1))

## IQR 0% 25% 50% 75% 100% data:n

## multiple-choice 0.4075 0.13 0.4925 0.60 0.90 1.10 32

## open 0.3000 0.60 0.8500 1.05 1.15 1.45 32
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2. Graphical representation: Based on moments

# Plot of within-group means (points) and standard deviations (bars)

require(Rcmdr)

plotMeans(as.numeric(alldata[,1]), as.factor(alldata[,2]),

error.bars="sd", ylab="grades",

xlab="type of questions",

ylim=c(min(as.numeric(alldata[,1])),max(as.numeric(alldata[,1]))))

points(jitter(as.numeric(rep(2,length(results_open)),factor=0.1)),

as.numeric(alldata[(alldata[,2]=="open"),1]),col="blue",pch="*")

points(jitter(as.numeric(rep(1,length(results_open)),factor=0.1)),

as.numeric(alldata[(alldata[,2]=="multiple-choice"),1]),col="green",pch=20,cex=0.8)

abline(h=mean(as.numeric(alldata[,1])),col="red",lwd=2)

text(1.33,(mean(as.numeric(alldata[,1]))+0.05),"Overall mean",col="red")
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3. Eta-squared An index based on moments, for comparing two or more groups via quantifying the amount
of variability of the quantitative variable explained by the grouping variable.

η2 =
SCfactor
SCtotal

=

∑a
j=1 nj × (x̄j − x̄)2∑a
j=1

∑nj
i=1 (xij − x̄)2

=
SCfactor

SCfactor + SCerror
=

∑a
j=1 nj × (x̄j − x̄)2∑a

j=1 nj × (x̄j − x̄)2 +
∑a
j=1

∑nj
i=1 (xij − x̄j)2

where xij is each value i(i = 1, 2, ..., nj), nj is the number of measurements in group j, and a is the
number of groups j(j = 1, 2, ..., a).

# Install package can be done via the following line of code

#install.packages("BaylorEdPsych")

#Load package

require(BaylorEdPsych)

# Obtain eta-squared

analysis <- aov(as.numeric(alldata[,1])~alldata[,2])

EtaSq(analysis)

## Eta^2 Partial Eta^2

## alldata[, 2] 0.3733769 0.3733769

# (Not squared) Between groups variability: explained by "type of question"

mean(as.numeric(alldata[(alldata[,2]=="open"),1])) -

mean(as.numeric(alldata[,1]))

## [1] 0.1757812

mean(as.numeric(alldata[(alldata[,2]=="multiple-choice"),1])) -

mean(as.numeric(alldata[,1]))

## [1] -0.1757812

# Not squared) Intra-group variability: unexplained

as.numeric(alldata[(alldata[,2]=="open"),1]) -

mean(as.numeric(alldata[(alldata[,2]=="open"),1]))

## [1] 0.1984375 0.2984375 0.0484375 -0.1015625 0.2984375 -0.1015625

## [7] -0.4015625 -0.0515625 0.0484375 -0.2515625 0.0484375 0.4484375

## [13] -0.2515625 0.1484375 0.0484375 -0.1015625 -0.0015625 0.1984375

## [19] -0.2515625 0.0484375 -0.0515625 -0.2515625 0.0484375 0.1484375

## [25] -0.3515625 0.1984375 -0.1515625 -0.1515625 0.2484375 0.1484375

## [31] -0.2015625 0.0484375

as.numeric(alldata[(alldata[,2]=="multiple-choice"),1]) -

mean(as.numeric(alldata[(alldata[,2]=="multiple-choice"),1]))

## [1] 0.15 0.18 -0.02 -0.52 0.45 -0.08 0.25 0.18 -0.25 -0.15 -0.15

## [12] -0.15 -0.22 0.28 0.25 -0.38 -0.05 0.25 0.25 0.28 -0.18 -0.35

## [23] -0.52 0.25 -0.18 0.25 -0.05 -0.05 0.12 -0.08 -0.08 0.32
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4. Cohen’s d An index based on moments, for comparing two groups in terms of a standardized mean
difference.

Shorter version of the formula for groups of the same size

d =
x̄group1 − x̄group2

spooled

=
x̄group1 − x̄group2√

s2group1+s2group2
2

# Numerator: difference in means

num <- mean(results_open) - mean(results_mc)

num

## [1] 0.3515625

# Denominator: pooled estimation of within-group variability

denom <- sqrt( (mean((results_mc-mean(results_mc))^2)+

mean((results_open-mean(results_open))^2)) /2 )

denom

## [1] 0.2277204

# Cohen's d

num/denom

## [1] 1.543834

Version of the formula for groups of different size

d =
x̄group1 − x̄group2

Spooled

=
x̄group1 − x̄group2√

(ngroup1−1)×S2
group1+(ngroup2−1)×S2

group2

ngroup1+ngroup2−2

# Numerator: difference in means

num <- mean(results_open) - mean(results_mc)

num

## [1] 0.3515625

# Denominator: pooled estimation of within-group variability

denom <- sqrt( ((length(results_open)-1)*mean((results_open-mean(results_open))^2) +

(length(results_mc)-1)*mean((results_mc-mean(results_mc))^2) ) /

(length(results_open) + length(results_mc) - 2) )

denom

## [1] 0.2277204

# Cohen's d

num/denom

## [1] 1.543834
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6.2.2 Bivariate analysis: Correlation between grades

1. Numerical results

# Pearson's product moment correlation coefficient

cor(results_mc,results_open)

## [1] 0.3418579

# Spearman's rank correlation coefficient

cor(results_mc,results_open,method="spearman")

## [1] 0.3938791

# Kendall's tau-a

cor(results_mc,results_open,method="kendall")

## [1] 0.2789386

2. Graphical results

# Graphical representation: Scatterplot

plot(results_mc,results_open,asp=1)

abline(lm(results_open~results_mc))
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6.2.3 Summary: Correlation indices

Index Formula Data Resistant? Quantifies

Pearson’s rxy =
∑n
i=1(xi−x̄)×(yi−ȳ)√∑n

i=1(xi−x̄)2×
∑n
i=1(yi−ȳ)2

Interval
scale

No Linear relation

Spearman’s rs =
∑n
i=1(ri−r̄)×(si−s̄)√∑n

i=1(ri−r̄)2×
∑n
i=1(si−s̄)2

Few tied
ranks

Yes Monotonic relation

Kendall’s τa = Concordances−Discordances
n×(n−1)

2

Ordinal
scale

Yes
Degree of
concordance
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