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Graphical abstract 

 

Abstract 

A prospective study on the product distribution at chemical equilibrium for the 

simultaneous liquid-phase etherification of isobutene and isoamylenes with ethanol over 

AmberlystTM 35 is presented. Experiments were performed isothermally in a 200 cm3 stirred 

tank batch reactor operating at 2.0 MPa. Initial molar ratios of alcohol/olefins and 

isobutene/isoamylenes ranged both from 0.5 to 2, and temperature from 323 to 353 K. Reactants 

equilibrium conversion, selectivities and yields toward products were clearly affected by the 

experimental conditions. Experimental etherification yields have been modeled using the 

response surface methodology (RSM), combined with the stepwise regression method to 

include only the statistically significant variables into the model. The multiobjective 

optimization (MOO) of etherification yields has been carried out numerically, by means of the 

desirability functions approach, and graphically, by using the overlaid contour plots (OCP). 

Optimal conditions for the simultaneous production of ethyl tert-butyl ether (ETBE) and tert-

amyl ethyl ether (TAEE) have been found to be at low temperatures (323 to 337 K) and initial 

molar ratio alcohol/olefins close to 0.9 and isobutene/isoamylenes close to 0.5.  
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1. Introduction 

The development of new oil reserves and extraction technologies is changing the 

geopolitical trends and prospects of fossil fuels. Gasoline and diesel as fuels are still expected to 

play an important role in the present century and governments are therefore regulating fuels 

quality through more rigorous legislation to diminish the amount of pollutants emitted to the 

atmosphere from fuel combustion. The European Directive 2009/28/EC promotes the usage of 

combustibles from renewable resources, such as bioethanol, and the Directive 2009/30/EC 

itemizes the guidelines with respect to fuel reformulation. For instance, it limits the gasoline 

maximum content of olefins, ethanol (EtOH), tert-butyl alcohol (TBA) and ethers with five or 

more carbon atoms to 18, 10, 15 and 22 vol.%, respectively. Moreover, it limits the minimum 

RON (Research Octane Number) of a gasoline to 95, the maximum oxygen content to 3.7 wt.% 

and the maximum Reid vapor pressure (RVP) to 60 kPa (8.70 psi).  

The efficiency of a gasoline fueled engine is highly influenced by the fuels antiknock 

characteristics, which depend essentially on the chemical composition. The adequate 

performance of a vehicle depends on a minimal volatility of the fuel, which can be expressed by 

several characteristics such as distillation curves, vapor pressure, vaporization enthalpy and the 

vapor/liquid ratio [1,2]. The vapor pressure of gasoline is directly related to the emission of 

volatile compounds from gasoline and the ensuing combustion processes, especially in starting 

the engine on cold days and in continuous operation in hot days.  

The main pollutants emitted from gasoline are carbon monoxide (CO), carbon dioxide 

(CO2), particulate matter (PM), nitrogen oxides (NOx’s) and volatile organic compounds 

(VOC’s) [3]. NOx’s and VOC’s emissions react in the presence of sunlight by means of a series 

of photochemical reactions involving hydroxyl-, peroxy-, and alkoxy radicals, to form ozone, a 

secondary and hazardous pollutant in the troposphere [4]. It is noteworthy that the main 

compounds responsible for the potential of tropospheric ozone formation of a gasoline (above 

90%) are the C5 isoolefins or isoamylenes (IA). These are also the olefins with the highest 

volatility of a gasoline, thus their reduction or substitution is environmentally advisable [5]. 

Several alternatives coexist to reduce the C5 olefins content such as etherification, 

oligomerization and/or alkylation. Based on studies involving vehicles, it has been demonstrated 

that the addition of oxygenates, particularly fuel ethers such as methyl tert-butyl ether (MTBE), 

ethyl tert-butyl ether (ETBE), tert-amyl methyl ether (TAME) and tert-amyl ethyl ether 

(TAEE), reduces the emissions of CO, PM, COV’s, ozone and CO2 [6–11].  
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Oxygenates increase the octane index and incorporate oxygen in their composition, 

what contributes to a more complete combustion in the engine and thus they can be considered 

as substitutes for aromatics in high performance gasolines [12]. Among the main two types of 

oxygenates, ethers and alcohols, the former are preferred owing to their blending characteristics 

(Table 1) [13,14]. In general, ethylic ethers (namely ETBE and TAEE) are preferred to methylic 

ones due to their properties and because they are considered bioethers, since they can be 

manufactured from bioethanol, a renewable energy source. Gasoline oxygenated with such 

ethers presents a low volatility that is certainly appropriate to be used in summer time or in 

tropical zones. Even in the cold season, C4 hydrocarbons can be blended with such oxy-gasoline 

to get an easy startup of the engine. This flexibility offers a top position in any choice of a 

gasoline producer, particularly compared to direct blending of alcohols [15,16].  

Besides ethers and primary alcohols, tertiary alcohols such as TBA and tert-amyl 

alcohol (TAA) are also considered suitable additives due to their low volatility and their 

potential to reduce aldehyde formation from the combustion of gasoline-ether mixtures [17]. 

Despite not being oxygenates, hydrogenated dimers of isobutene (IB) and isoamylenes (IA) are 

also interesting chances as fuel additives because of their high octane rating and low water 

solubility [18,19]. For instance, 2,4,4-trimethyl-1-pentene (TMP-1) and 2,4,4-trimethyl-2-

pentene (TMP-2), could be used as a feedstock to produce other high-octane gasoline 

components such as isooctane (2,2,4-trimethyl pentane) by means of the dimer hydrogenation or 

ethers like 2-methoxy-2,4,4-trimethyl pentane and 2-ethoxy-2,4,4-trimethyl pentane. In 

addition, dimers of IA can be used in the perfumery and flavor industry, what makes these side 

products valuable [20]. 

Table 1  [19,21–26] 

Tertiary alkyl ethers are usually manufactured in equilibrium reactors. Depending on 

experimental conditions, a wide variety of compounds can be formed as products of reversible 

and irreversible reactions. To know the product distribution under different experimental 

conditions and at chemical equilibrium is of utmost importance for designing reaction units, 

such as industrial fixed-bed catalytic reactors or reactive distillation units. This is crucial not 

only to determine whether further separation units are required, but also to predict composition, 

properties and possible emissions from final blended gasoline. Several studies have been 

focused on the performance of isolated production of ETBE and TAEE in both absence and 

presence of water [25,27–30]. But there is scarce information about the simultaneous production 

of bioethers and, more specifically, concerning equilibrium conversion and selectivity 

[13,14,31–34]. Besides reducing the C5 olefins content and using EtOH as raw material, the 

simultaneous production of ETBE and TAEE is a versatile and flexible process, whose 



4 
 

integration and intensification can provide several advantages. Furthermore, MTBE and ETBE 

existing plants could be easily readapted toward a new production target by revamping. Another 

potential resides in the possibility of using ETBE, TAEE and EtOH (in lower extent than ethers) 

together for direct blending with gasoline. Moreover, it has been stated that ETBE and TAEE 

are also useful as cosolvents to make EtOH compatible with diesel, what extends the range of 

application of ethylic ethers [12].  

The aim of the present work is to study the feasibility of the simultaneous liquid-phase 

etherification of IB and IA with EtOH catalyzed by AmberlystTM 35. Modeling and optimization 

of etherification yield under the studied experimental conditions is a main goal, since it provides 

interesting information for direct application at industrial scale.  

 

2. Experimental 

2.1. Experimental Setup 

Experiments were carried out in a 200 cm3 stainless steel isothermal tank reactor 

equipped with a six-blade magnetic stirrer operated in batch mode. The stirring speed was set to 

500 rpm. Assayed temperature ranged from 323 to 353 K, controlled within  0.1 K by a 

thermostatic bath mixture (33 vol.% of 1,2-propanediol, 67% of water) fed to the reactor jacket. 

The pressure was set to 2.0 MPa by means of N2 to maintain the reacting mixture in the liquid 

phase. One reactor outlet was directly connected to a gas chromatograph (GC) for sampling. 

More detailed information about the experimental setup can be found elsewhere [31]. 

2.2. Chemicals 

A mixture of IA containing 2M2B (96% G.C.) and 2M1B (4% G.C.) (TCI Europe, 

Belgium), isobutene (>99.9% G.C., Air Liquide, Spain), absolute EtOH (max. 0.02 wt.% of 

water, Panreac, Spain) and deionized water were used as the initial reaction mixture in all 

experimental runs.  

The following chemical standards were used for the calibration of the system: TMP-1 

(>98.0% G.C., Fluka, Buchs, Switzerland) and TMP-2 (>98% G.C., Fluka, Buchs, Switzerland), 

TAA (>98.0% G.C., TCI Europe, Belgium), TBA (>99.7% G.C.,  TCI Europe, Belgium), ETBE 

(>99.0% G.C., TCI Europe, Belgium), 2M1B (>99.0% G.C., TCI Europe, Belgium) and 2M2B 

(>99% G.C., Sigma Aldrich, Germany). TAEE was obtained in our laboratory by distillation 

with a minimum purity of 98.5% G.C. Dimers C5 were also synthetized and purified in our 

laboratory (>99% G.C.). Due to the difficulty of purifying C4-5 codimers, their chromatographic 

response was estimated as an intermediate response factor between C4 and C5 dimers.  
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2.3. Catalyst 

AmberlystTM 35 (A-35, Rohm & Haas, Chauny, France) was used as the catalyst. It is a 

macroreticular acidic ion-exchange resin, widely used in etherification processes, for which 

excellent results in the isolated synthesis of ETBE and TAEE have been reported [28,35]. In the 

pretreatment, the catalyst was dried for 2.5 h in an atmospheric oven at 383 K and subsequently 

15 h in a vacuum oven at 373 K. The residual amount of water in the catalyst was measured by 

Karl Fisher titration method (Orion AF8 volumetric Karl Fisher titrator, Thermo Electron 

Corporation, Massachusetts, US) for different samples of A-35 with a result of less than 3.5 

wt.% of water. In systems catalyzed by ion-exchange resins, internal mass transfer resistances 

may appear when using commercial bead size distributions. As a result, reaction rate decreases 

in the progress toward equilibrium. This hindrance usually increases with temperature and 

particle size. For instance, for the isolated synthesis of ETBE from pure IB feed at 363 K, the 

effectiveness factors for A-35 particles ranging 0.63-0.8 mm and 0.4-0.63 mm have been 

reported to be 0.54 and 0.73, respectively [28]. In the present work, catalyst was used as 

commercially shipped, with the following cumulative bead size distribution, relative to the 

measured number of particles: 422 μm (<10%), 466 μm (<25%), 531 μm (<50%), 619 μm 

(<75%), and 716 μm (<90%) [14]. In this work, possible internal mass transfer limitations were 

not considered as a drawback, since it is focused on products selectivities and yields at chemical 

equilibrium, and the commercial size distribution is of industrial interest. The relevant physical 

and structural properties of A-35 are acid capacity (5.32 eq H+/kg), BET surface area (34.0 m2·g-

1), mean BET pore volume (0.21 cm3·g-1), and maximum operating temperature (423 K). 

2.4. Analytical Method 

Samples were taken inline from the reaction medium through a liquid sampling valve 

(Valco A2CI4WE.2, VIVI AG International, Schenkon, Switzerland), which injected 0.2 μL 

into a gas-liquid chromatograph (Agilent 6890GC, Madrid, Spain) equipped with a capillary 

column (HP-PONA 19091S-001, Hewlett Packard, Palo Alto, USA.; 100% 

dimethylpolysiloxane, 50.0 m x 0.2 mm x 0.5 μm nominal). A mass selective detector (HP 

5973N MS) coupled to the GC was used to identify and quantify the reaction system 

components. The oven temperature was programmed with a 10 min hold at 304 K, followed by 

a 20 K·min-1 ramp, from 304 to 353 K, a subsequent second hold of 5 min followed by a second 

temperature ramp of 60 K·min-1 from 353 to 493 K. The final temperature was held for 10 min. 

Helium (99.998% Abelló-Linde, Barcelona, Spain) was used as carrier gas. Since several C4-5 

and C5 dimers were formed, C4-5 codimers on one side and C5 dimers on another were 

respectively lumped together. Neither trimers nor higher oligomers were detected under the 

conditions of this study.  
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2.5 Procedure 

The initial molar ratio of alcohol/olefins (RA/O) and isobutene/isoamylenes (RC4/C5) were 

both varied between 0.5 and 2. A fixed water amount of 1 wt.% of the total reactant mixture was 

initially added to every experiment to monitor TBA and TAA formation and to approach 

industrial conditions in which the alcohol stream would contain small amounts of water. 

Assayed reaction temperatures were in the range of 323 to 353 K. These particular conditions 

were chosen because they are similar to those of industrial interest in etherification processes. 

The catalyst load varied between 4 and 8 g in order to reach chemical equilibrium during the 

experimental runs. The possible effect of the catalyst load was studied in a previous work [31], 

where it was concluded that it can be neglected for the used range of loads. 

Firstly, EtOH, water and the catalyst were placed into the reactor and the stirrer was 

turned on. Then, the reactor was heated up by the thermostatic bath until the system reached the 

desired temperature. Known amounts of IA and IB were introduced in a calibrated burette and 

pressurized to 1.5 MPa with nitrogen. Once the temperature was reached inside the reactor, the 

mixture of olefins was shifted from the burette into the reactor. Then the reactor pressure was 

set to 2.0 MPa with nitrogen to ensure the liquid phase, and the reactor was heated up until it 

reached the desired temperature again. During the experimental runs the reactor operated 

isothermally. For the measurement of the reaction mixture composition, samples were taken and 

analyzed periodically until pseudo-equilibrium state was reached (typically after 6-8 h of 

running). A total of 44 experimental runs were carried out. 

2.6 Theory and Calculations 

Reactants conversion, selectivity and yield toward products were calculated at each instant 

for each run by means of the following expressions: 

j

mole of j reacted
X

initial mole of j
      (1) 

k
j

mole of k produced
S

mole of j reacted
    (2) 

·k k
j j jY X S     (3) 

where j refers to the reactant and k to the considered product or byproduct. 

In order to estimate the experimental error, the experiments at RA/O = RC4/C5 = 1 were 

replicated. In general, the 95% confidence interval for the means of conversion, selectivity and 

yield was found to be less than 6%. Due to the low selectivity values toward tertiary alcohols, a 

larger uncertainty was observed for TBA
IBS  and TAA

IAS  (14 and 16%, respectively). Mass balance 
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was fulfilled in all the runs within ±6%. Globally, experiments have been considered 

reproducible and the results as reliable. 

The response surface methodology (RSM) is a useful technique in the solution of many 

problems of the chemical industry. For instance, one important application is the modeling and 

optimization of industrial processes [36,37]. It is a valuable tool to determine the experimental 

conditions for which the throughput toward a desirable chemical product is the maximum 

attainable. A second order polynomial expression with interaction terms was used for the 

modeling of the experimental etherification yields: 

2
0

1 1 2

( )
n n n

n m m mm m lm l m
m m l m

y z z z z z   
   

               n=1,2.3…r   (4) 

where z1, z2, …, zk are the coded variables that refer to the experimental conditions, and β0, βm, 

βmm and βlm are fitting parameters. A confidence level of 95% was used to assess the statistical 

significance of fitted polynomial models. The number of variables of Eq.4 was reduced to the 

minimum statistically significant by means of the stepwise regression procedure [38] using the 

software Design-Expert v9. The significance level for each parameter to be either included or 

rejected from the final equation was set to 0.05. This technique has been demonstrated to be 

effective when selecting a predictive equation that comprises the fewest possible variables to 

determine reliable process values.   

Since four different responses are obtained in the modeling of etherification yields, the 

simultaneous optimization of all of them results in a multi-objective optimization (MOO) 

problem. The conditions for which the yield to ETBE is maximum may differ from those for 

which the yield to TAEE is maximum. The overall objective is to find out the conditions that 

globally maximize the yield toward both ethers. A relatively straightforward approach in MOO 

is to overlay the contour plots (OCP) for each target response [37], where a region near 

“optimal” is obtained rather than a unique optimum point [39]. On the other hand, the 

desirability function approach is a useful numerical technique for the analysis of experiments in 

which several responses have to be optimized simultaneously. Originally developed by 

Harrington (1965) [40] and modified by Derringer and Suich (1980) [41], the main concept of 

the desirability function is to transform a multiresponse problem into a single response problem. 

Once all the responses Yn(z) have been fitted to polynomials by RSM, an individual desirability 

function dn(Yn(z)), ranging between 0 and 1, is assigned for each response Yn(z). For the two 

sided case and considering the maximization of Yn(z), the individual desirability function is 

expressed as follows: 



8 
 

0 ( )

( )
( ( )) ( )

1 ( )

n n

s

n n
n n n n n

n n

n n

if y z L

y z L
d Y z if L y z T

T L

if y z T



     
 

        (5) 

where z are the factors, Ln is the lower acceptable value of Yn(z), and Tn is the target value. The 

parameter s is user specific weight factor that determines the shape of the desirability function:  

it takes values either higher or lower than unity, depending on the higher or lower relative 

importance assigned to the response. The parameter s can be set equal to unity for all responses 

when equal importance is assigned to each. An overall objective function, the total desirability 

D(z), can be defined as the geometric mean of the individual desirabilities obtained for the r 

responses of interest, as follows: 

1

( ) ( ( ))
r

r
n n

n

D z d Y z


            (6) 

3. Results and Discussion 

3.1 Description of the reaction system 

The simultaneous etherification of IB and IA with EtOH is a complex reaction system in 

which several chemical reactions can take place simultaneously depending on the experimental 

conditions (Figure 1). The main reactions are the etherification of EtOH with IB (R1) and IA 

(R2 and R3), and the double bond isomerization reaction (R4) between both IA (2M1B and 

2M2B). Equilibrium constants of reactions R1 to R4, and related thermodynamical properties, 

have been already estimated and discussed in a previous work [31]. Since water is present in the 

initial reactant mixture (1 wt.%), hydration of IB and IA (R5, R6 and R7) could also take place 

to form tertiary alcohols, namely TBA and TAA. Diethyl ether (DEE) could be formed by 

dehydration of two EtOH molecules (R8). Since DEE formation was detected only at 353K and 

RA/O=2 and in very small amount (less than 0.06% G.C.), DEE was not included neither in the 

system calibration nor in further calculations. IB (C4) and IA (C5) dimers and codimers thereof 

(C4-5) can be formed by reactions R9, R11 and R12. This products were detected only under 

initial olefin stoichiometric excess (RA/O=0.5) at the higher explored temperatures. As C4 

dimers, only TMP-1 and TMP-2 were detected, whereas a wide variety of compounds were 

identified as C4-5 codimers and C5 dimers. Double bond isomerization reaction between TMP-1 

and TMP-2 is also expected to take place (R10).  

Figure 1 
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In the experimental runs, ETBE and TAEE were always formed. ETBE was the main 

reaction product in terms of mole, followed by TAEE. The main side products were tertiary 

alcohols (TBA and TAA) and dimerization products. Dimerization proceeded so slowly that the 

molar fractions of the involved compounds in a relatively short time period can be considered to 

be almost constant, what constitutes a pseudo stationary state.  

3.2 Effect of temperature  

Since the main etherification reactions involved in this study are exothermic (R1-R3) 

[31], reactants equilibrium conversion, Xj, is expected to decrease on increasing temperature. 

Although reaction equilibrium constants depend only on temperature, reactants conversion at 

equilibrium situation is given by initial composition and operating temperature. As depicted in 

Figure 2, the higher the temperature, the lower the reactants equilibrium conversion. Compared 

to XIB, a significantly lower XIA (about a half) was reached, what indicates that ETBE synthesis 

from IB and EtOH is thermodynamically favored compared to that of TAEE from IA and EtOH. 

Under stoichiometric conditions between alcohols and olefins (RA/O=1), XEtOH values at 

equilibrium were between XIB and XIA. This is consistent with the equilibrium constants values of 

these etherification reactions estimated in a previous work [31]: equilibrium constants of ETBE 

formation (R1) are higher than those of TAEE formation (R2 and R3) at every temperature. A 

steeper decrease of XIA on increasing temperature was observed at RA/O=2 (Figure 2c and d) and 

it suggests that TAEE formation is more affected by temperature changes than that of ETBE. 

Globally, XIB, XIA and XEtOH values ranged between 69.8% and 97.9%, between 17% and 65.6% 

and between 32.3% and 97.0%, respectively. The effect of temperature on XIA was in good 

agreement with that reported for the isolated etherification of IA with EtOH under similar 

conditions [42]. 

Figure 2 

The effect of temperature on reactants selectivity toward products is shown in Figure 3. 

Remarkably high values of ETBE
IBS  and TAEE

IAS  (always >90%) were obtained, which did not 

depend significantly on temperature. This is undoubtedly a desirable industrial performance to 

obtain both ethers. Both ETBE
IBS  and TAEE

IAS  decreased smoothly at increasing temperature, 

whereas TBA
IBS  and TAA

IAS  followed an opposite trend. ETBE
IBS values were always slightly higher 

than those of TAEE
IAS , what is related to the fact that TAA

IAS  values were slightly higher than TBA
IBS

values. Regarding products from EtOH, the reaction system was generally more selective 

toward ETBE than toward TAEE. This difference is consistent with a larger equilibrium 

constant of ETBE formation compared to TAEE formation [31], and it is even more noticeable 

at higher temperature.  
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Figure 3 

3.3 Effect of RA/O  

The effect of RA/O on reactants equilibrium conversion is illustrated in Figure 4. The 

highest XEtOH was obtained at RA/O=0.5 and the highest olefins equilibrium conversion were 

reached at stoichiometric excess of EtOH (RA/O=2), but at the expense of lower XEtOH. XIA was 

more sensitive to temperature changes than XIB.  

Figure 4 

The effect of RA/O on reactants selectivity toward products at equilibrium is shown in 

Figure 5. ETBE
IBS and TAEE

IAS were high and increased slightly on increasing RA/O. On the contrary, 

TBA
IBS  and TAA

IAS  were low and followed an opposite trend with RA/O. The highest value of ETBE
EtOHS  

was obtained at RA/O=0.5 and the highest value of TAEE
EtOHS  was reached at RA/O=2. As seen in 

Figure 5a and b, the shape of selectivity profile vs. RA/O was very similar at 343 and 353K, the 

main difference being the extent in which dimerization products were formed. The selectivity 

profiles obtained at 323 and 333K were similar to those plotted in Figure 5, but without 

noticeable formation of dimers. The effect of RA/O on byproducts formation will be further 

discussed in the side products section. 

Figure 5 

3.4 Effect of RC4/C5  

Figure 6 depicts the dependence of reactants conversion on RC4/C5. As the initial IB 

concentration increased, lower values of XIB and XIA were obtained whereas XEtOH was slightly 

higher. The effect of RC4/C5 on reactants equilibrium conversion was more noticeable at RA/O=1 

(see Figure 6c). The overall effect of RC4/C5 on reactants equilibrium conversion was less 

pronounced than those of temperature and RA/O. 

Figure 6 

The effect of RC4/C5 on reactants selectivity is shown in Figure 7. ETBE
IBS  and TAEE

IAS values at 

equilibrium were high, and decreased smoothly on increasing RC4/C5. Concerning EtOH, ETBE
EtOHS  

increased with RC4/C5 and accordingly TAEE
EtOHS  followed the opposite trend. Thus, it can be 

concluded that increasing RC4/C5 chiefly favors ETBE formation.  Similar values of ETBE
EtOHS  and 

TAEE
EtOHS were obtained at RC4/C5=0.5 and RA/O=2, see Figure 7a. The effect of RC4/C5 on olefins 
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selectivity toward dimerization products was enhanced at high temperatures and RA/O=0.5 

(Figure 7b). 

Figure 7 

3.5 Side reactions 

3.5.1 Tertiary alcohols formation 

The initial water present in the reaction medium (1 wt.%) reduced obviously the olefins 

selectivity to ethers.  TAA
IAS  and TBA

IBS  values at equilibrium were always lower than 13 and 9%, 

respectively. As can be observed in Figure 8, TAA
IAS  was always higher than TBA

IBS . Nevertheless, 

at RC4/C5=1 and at equilibrium, a larger amount of mole of TBA was formed compared to TAA, 

what indicates that TBA formation is thermodynamically favored in front of TAA formation. 

These results are in concordance with the larger equilibrium constants values for TBA synthesis 

(R5) [43] compared to TAA synthesis from 2M1B and 2M2B (R6 and R7) [27, 43]. 

The effect of the reaction temperature on tertiary alcohols formation is presented in 

Figure 8a. Both TBA
IBS  and TAA

IAS  increased smoothly with temperature. This fact is in good 

agreement with published results, where an increase of TBA
IBS  with temperature was observed in 

the synthesis of ETBE [25] and in the synthesis of isopropyl tert-butyl ether [44]. The 

selectivity obtained at equilibrium is a result of the temperature, the initial composition and all 

reactions taking place. Despite the known exothermicity of olefins hydration, etherification of 

olefins are known to present a value of the thermodynamic equilibrium constant higher than the 

corresponding olefin hydration [27,43, 45], that can explain the enhancing effect of temperature 

on TBA
IBS  and TAA

IAS . 

Figure 8 

Figure 8b plots the effect of RA/O on the formation of tertiary alcohols. Both TBA
IBS  and 

TAA
IAS decreased on increasing RA/O. This is because as RA/O increases, lower amount of olefins is 

initially present in the reaction media and therefore lower amount of tertiary alcohols is formed 

by olefins hydration. The effect of RC4/C5 on tertiary alcohols formation is depicted in Figure 8c. 

TBA
IBS increased slightly on increasing RC4/C5 whereas TAA

IAS followed an opposite trend. The 

explanation of this fact arises from the initial IB concentration, as it increased, water was 

preferably consumed to form TBA rather than TAA.  
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3.5.2 Dimers and codimers formation 

Irreversible formation of dimerization products was detected only at initial olefin 

stoichiometric excess (RA/O=0.5) and high temperature (343 and 353 K), as a result of the higher 

sensitivity of this side reactions to temperature (Figure 5). This is consistent with previous 

studies focused on the IB and IA dimerization that concluded that polar conditions (induced, 

namely, by water and alcohol presence in the present study) inhibit oligomerization reactions 

[14,44,46]. Both TMP-1 and TMP-2 were formed through isobutene dimerization (R9). In 

addition, isomerization between both diisobutenes (R10) also took place, the formation of TMP-

1 being favored, since TMP-1 is a more stable molecule than TMP-2  due to the internal 

repulsions caused by the large size of the tert-butyl group in the TMP-2 molecule [47,48]. As 

observed in Figure 9a, when C4 dimers were forms, the TMP-1/TMP-2 molar ratio was around 

4 at the end of runs, consistent with published results [47] and with the thermodynamic 

equilibrium constant for trimethylpentenes isomerization (R10), which are in the range from 

0.26 to 0.29 for the assayed temperatures [31]. From IA dimerization (R12 in Figure 1), a wide 

variety of diisoamylenes can be formed [49]. Additionally, codimerization between IB and IA 

(R11 in Figure 1) also occurred. As observed in a previous work [14], dimers formation took 

place almost linearly with time and the formed mole of C8 dimers and C9 codimers was very 

similar at RC4/C5=1, which suggests competitive adsorption between IB and IA. The largest 

amount of dimers was detected at RA/O= 0.5, RC4/C5=2 and 353 K. 

Figure 9 

The effect of RC4/C5 on dimers formation is illustrated in Figure 9b. The total values of 

IB and IA selectivities toward dimerization products (dimers and codimers) were always lower 

than 8% and 10%, respectively. However, IB always yielded larger amounts of dimers than IA 

in terms of mole, as seen in Figure 9a. As RC4/C5 increased, the amount of C4 and C4-5 dimers 

detected at the end of the runs did it as well. It is explained by the larger amount of IB available 

in the bulk phase. So it can be stated that IB concentration is a determinant factor for 

dimerization in the present system. The effect of initial IA concentration on dimers formation 

was less noticeable.  

3.6 Modeling and optimization of etherification yields 

The reaction yield is a suitable parameter to measure the industrial feasibility, which 

considers simultaneously reactants conversion and selectivity (Eq. 3). Experimental 

etherification yield data were modeled using RSM to fit such responses with respect to reaction 

temperature and initial composition. A second order polynomial form (Eq. 4) was fitted to 

experimental yield data by means of the stepwise regression procedure. In order to center the 
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variables of the experimental design, both initial molar ratios of RA/O and RC4/C5 were translated 

into initial molar fractions of alcohol in the initial reactant mixture (xA) and of IB in the initial 

olefins mixture (xC4). The experimental yield data modeled are gathered in Appendix 1 from 

Supplementary Material section. Tables 2 and 3 show the analysis results in terms of coded 

variables for the regression coefficients and the models obtained. As it can be seen, the analysis 

of variance (ANOVA) revealed that the proposed empirical models were adequate to express 

the actual relation between the responses and significant variables, with high values of adjusted 

R2. The significance level for each equation variable was evaluated by its p-value and the 

significance level of each empirical model by the test of Fisher (F-value). Residual plots 

confirmed the randomness of the residuals for each model (see Supplementary Material, 

Appendix 2). Experimental data vs. predicted value plots also confirmed the suitability of the 

fitted equations (see Figure 10). The largest deviations were found for the modeling of ETBE
IBY  at 

the highest temperatures, what is attributed to the higher amount of formed dimers.  

Table 2 

Table 3 

The empirical equations obtained for etherification yields in terms of non-coded 

variables (Eqs. 7-10), refer to the expressions with the minimum number of terms in which all 

parameters and the regression itself are statistically significant at a confidence level of 95%. T is 

expressed in K in these equations. With respect to the effects for each model, the linear terms T, 

xA and xC4, the quadratic effect xA
2 and the interaction effect of xA·xC4 showed the highest level of 

statistical significance for the fitted equations. The quadratic effect xC4
2 was only significant for 

TAEE
EtOHY . Finally, the interaction effect T·xA was only significant for the olefins yield toward ethers. 

Globally, increasing the temperature, decreased both ETBE
IBY  and TAEE

IAY . ETBE
EtOHY  resulted almost 

independent of temperature.  

   (7) 

      (8) 

     (9) 

ETBE
EtOH A C4 A C4Y 59.15 0.07· 54.665· 155.2· 160.88· ·T x x x x                 (10) 

Figure 10 

TAEE 2 2
IA A C4 A C4 A A C4Y 50.12 0.094· 663.21· 115.37· 225.36· 52.92· 1.15· · 95.11· ·T x x x x T x x x        

ETBE 2
IB A C4 A A A C4Y 235.77 0.559· 27.53· 95.68· 245.07· 0.588· · 147.62· ·T x x x T x x x      

TAEE 2 2
EtOH A C4 A C4 C4 A C4Y 235.91 0.512· 86.35· 354.02· 190.52· 33.93· 0.556· · 158.27· ·T x x x x T x x x       
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The ability of the empirical models to predict product yields has been confirmed by 

carrying out an additional run under slightly different conditions, but within the assayed 

experimental range. More specifically, the run was caried out at RA/O=1.5, RC4/C5=1.5 and 343 K. 

Experimental etherification yields obtained were compared to those predicted by the empirical 

models (Eqs. 7-10), the largest deviation being around 5% for TAEE
IAY . 

Using the obtained models, response surfaces and their contour plots were constructed 

for the pair of factors T and xA (the most influencing factors) while holding the third factor, xC4, 

constant. An example of the response surface profiles obtained and the corresponding contour 

plots are shown in Figure 11. As can be seen the proposed models fit experimental data in a 

reasonably good way. 

Figure 11 

The optimization of the experimental conditions that simultaneously maximize 

etherification yields was carried out graphically by the overlaid contour plots (OCP) holding 

constant xC4 at 0.333, 0.5 and 0.666. Figure 12 represents an example of the OCP obtained. The 

grey shadowed area highlights the optimal experimental region that simultaneously maximizes all 

etherification yields. It was observed that this area is shifted to higher values of xA when xC4 

increases, which should be due to IB dimers formation. In other words, a larger initial amount of 

polar component (EtOH) is required to avoid expected formation of diisobutenes on increasing 

the initial IB concentration. This methodology reported the best results for xC4=0.333, xA ranging 

from 0.4 to 0.55 and temperature ranging from 323 to 337 K. However, a large grade of 

inaccuracy arises from these plots since the optimal region limited between the contour levels is 

subjected to a deal of subjectivity. Furthermore, separated analysis is required for each value of 

xC4.  

Figure 12 

For the sake of contrasting results and obtaining more accurate data, numerical MOO 

was also made by solving the overall desirability D(x) function obtained from the individual 

desirability functions. After using RSM to fit appropriate polynomial models to the r responses 

Yn(z), Eqs. 7-10, individual desirability functions dn(Yn(z)) were defined for each response using 

Eq. 5. The value of s was set to the unity to assign equal weight to each response and the same 

priority has been therefore given to the production of ETBE and TAEE. Other criteria could be 

applied, such as giving priority to olefins yield toward ethers or depending on reactants price 

and availability. However, the present MOO has been focused from an academic standpoint and 

so raw materials price has not been considered. Eigenvalues analysis described in Khuri and 
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Cornell [39] was made prior to numerical optimization in order to evaluate the linear correlation 

between responses showing that responses were not linearly correlated. The constraints applied 

to the experimental variables for the optimization of overall D(x) were set to obtain results 

within the range of assayed experimental conditions: 0.333<xA<0.666, 0.333<xC4<0.666 and 

323<T<353. Obtained numerical results for each dn(Yn(z)) and D(x) are summarized in Table 4. 

Figure 13 plots the contour plot obtained for the overall desirability D(x) at xC4=0.333. As can 

be seen the shape of D(x) delimits as well an optimal region of xA and T in which the maximum 

values of etherification yields are attained. 

Table 4 

Figure 13 

From numerical optimization values of RA/O=0.86, RC4/C5=0.5 and T=323 K were 

estimated as the experimental conditions that maximize the simultaneous production of ETBE 

and TAEE. Perhaps, the obtained value of RA/O=0.86 is somewhat low compared to the RA/O 

value used in isolated production of tertiary alkyl ethers, typically 1.05 [50], because a slight 

excess of EtOH would prevent dimerization reactions and would enhance olefins conversion. 

Moreover, RA/O=1 represents the stoichiometric ratio of etherification reactions. Nevertheless, it 

is to be highlighted that an initial 1 wt.% of water was used in all the experiments of the present 

work, thus an additional amount of olefins were consumed in hydration reactions and that could 

explain the slight excess of olefins obtained by numerical MOO. Besides, the obtained values of 

T=323 K and RC4/C5=0.5 imply a reduction of olefins dimerization production, because, as seen 

before, IA concentration is not as critical factor for dimerization as IB concentration. Based on 

these reasons, obtained results from numerical MOO are considered plausible and unbiased. 

According to the optimal region determined by the OCP methodology at xC4=0.333, 

optimal range of temperature to produce simultaneously ETBE and TAEE ranges from 323 to 

337 K and RA/O from 0.64 to 1.22. These values are coherent with those determined numerically 

by the desirability function approach. Finally, the sensitiveness of D(x) on varying experimental 

conditions (Table 4), revealed that xC4 can be varied from 0.333 to 0.666 and the obtained values 

for D(x) are still higher than 0.67. Thus RC4/C5 could be set depending on both, the refinery 

necessities (preferred production of ETBE or TAEE) and the provisioning of C4 and C5 olefinic 

streams. 

The applied methodology can be particularly useful when modeling yields in units that 

produce several desired products simultaneously. In that case, numerical MOO using 

desirability functions can help to decide how much in the yield of a certain product is the 
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engineer willing to reduce for a gain in the yield of other products. Also to find out the 

experimental conditions that give priority to special production targets.  

4. Conclusions 

Experimental equilibrium data presented in this paper would represent the output 

composition of industrial equilibrium reactors and thus represent valuable information. 

Reactants equilibrium conversion decreases on increasing the temperature, as expected for 

exothermic reactions. Increasing RA/O, higher olefins equilibrium conversion can be achieved 

but at the expense of lower XEtOH. Increasing RC4/C5 slightly increases XEtOH and favors ETBE 

formation over TAEE one. As a whole, XIB, XIA and XEtOH ranged from 69.8 to 97.9%, from 17 

to 65.6% and from 32.3 to 97.0%, respectively, depending on initial composition and 

temperature. The simultaneous etherification performed is a feasible technique to convert up to 

65% of the environmentally troublesome C5 isoolefins and entails large EtOH use as raw 

material.  

High values of olefins selectivity toward target products are obtained which is certainty 

desirable from an industrial standpoint. A temperature increase promotes formation of both 

tertiary alcohols and dimerization products, whereas a RA/O increases shows an opposite effect 

on the formation of both side products. RA/O is, therefore, an important control variable to avoid 

side reactions. The effect of RC4/C5 on side products formation is less noticeable, but an increase 

in IB concentration is a critical factor toward dimers formation at high temperatures.  

The experimental yield data have been empirically modeled using the response surface 

methodology, which allows to obtain expressions able to predict etherification yields within the 

experimental conditions. Two different approaches have been applied to the multiobjective 

optimization of the overall ether yield. The obtained results from both methodologies are in 

reasonable agreement. Consequently, it has been concluded that the experimental conditions 

that maximize the simultaneous production of both ETBE and TAEE are at initial molar ratios 

RA/O=0.9, RC4/C5=0.5, and at temperature 323 K. 
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Notation 

2M1B 2-methyl-1-butene 

2M2B 2-methyl-2-butene 

A-35 macroporous ion exchange resin AmberlystTM 35 
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D(z) overall desirability function 

 dn(Yn(z)) individual desirability function for each response 

DEE diethyl-ether 

ETBE ethyl tert-butyl ether 

EtOH ethanol 

GC gas chromatograph 

IA isoamylenes 

IB isobutene 

MOO multi-objective optimization 

OCP overlaid contour plots 

RA/O initial molar ratio of alcohols to olefins (dimensionless) 

RC4/C5 initial molar ratio of isobutene to isoamylenes (dimensionless) 

RSM response surface methodology 

RVP Reid vapor pressure 

t reaction time [min] 

T temperature [K] 

Tb boiling point [K] 

TAEE tert-amyl ethyl ether 

TAA tert-amyl alcohol 

TBA tert-butyl alcohol 

TMP-1 2,4,4-trimethyl-1-pentene 

TMP-2 2,4,4-trimethyl-2-pentene 

Xj conversion of reactant j at chemical equilibrium 

Sj
k selectivity of reactant j toward product k at chemical equilibrium 

s user specific weight factor   

Yn(z) response n to be optimized 

Yj
k yield of reactant j toward product k at chemical equilibrium 

xA molar fraction of alcohol in the initial reactant mixture 

xC4 molar fraction of isobutene in the initial olefin mixture  

z set of variables of the experimental conditions 

Greek letters 

β regression coefficients 
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Table 1. Relevant properties of potential gasoline additives [19, 21-26]. 

Compound 
(RON+MON)/

2 

Solubility in 
water 

(g/L water) 

Oxygen 
Content 
(wt.%) 

bRVP 
(psi) 

Tb (K) Reactivitya 

MTBE 110 48.5 18.2 8 328 2.6 
ETBE 112 26.0 15.7 4 345 8.1 
TAME 105 20.0 15.7 2 361 7.9 
TAEE 100 4.0 13.8 2 375 - 
Methanol 116 ∞ 50 60 338 1 
Ethanol 115 ∞ 34.8 18 351.3 3.4 
IB Low 0.388 0 66 266 55 
2M2B 91 0.190 0 15 304.1 85 
2M1B 92 0.130 0 19 311.6 70 
TBA 101 ∞ 21.6 10 356 1.1 
TAA 97b 120.0 18.2 0.32c 375 - 
TMP-1 and 
TMP-2 

~100 0 0 1.56c 374.5 - 

Hydrogenated 
C5 dimer 

95 - 0 0.5 420 - 
aHydroxyl reaction rate coefficient: k· 1012  cm3·molecule-1·s-1 
bRON value, because (RON+MON)/2 was not available  
cVapor pressure value at 293 K, because blending Reid vapor pressure was not available 

 

 

Table 2. Fitted parameters of the significant coded variables for the response surface as the 
empirical model of TAEE and ETBE yield from IA and IB, respectively 

  TAEE
IAY  ETBE

IBY  

Terms Coefficient 
Standard 

error 
p-value Coefficients

Standard 
error 

p-value 

β0 41.598 0.486 3.48·10-43 87.612 0.573 1.94·10-53 
β1 (T) –7.228 0.384 3.10·10-20 –3.982 0.518 3.56·10-09 
β2 (xA) 16.011 0.387 5.99·10-32 9.160 0.523 1.69·10-19 
β3 (xC4) –2.484 0.387 1.93·10-07 –3.646 0.523 3.10·10-08 
β22 (xA

2) –6.260 0.596 1.62·10-12 –6.807 0.776 1.42·10-10 
β33 (xC4

2) 1.470 0.596 1.85·10-02 - - - 
β12 (T·xA) –2.880 0.519 2.82·10-06 1.470 0.702 4.31·10-02 
β23  (xA· xC4) 2.642 0.474 2.59·10-06 4.100 0.641 1.80·10-07 

Adjusted R2  98.14 92.51 

Model F-value 325.66 89.47 

Critical F-value 1.4·10-30 1.7·10-20 
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Table 3. Fitted parameters of the significant coded variables for the response surface as the 
empirical model of TAEE and ETBE yield from EtOH 

TAEE
EtOHY  ETBE

EtOHY  

Terms Coefficient 
Standard 

Error 
p-value Coefficients

Standard 
Error 

p-value 

β0 23.436 0.339 6.99·10-40 45.4741 0.382 1.38·10-51

β1 (T) –3.509 0.267 2.72·10-15 –1.053 0.512 0.047 
β2 (xA) –4.173 0.270 1.76·10-17 –22.517 0.517 1.08·10-34

β3 (xC4) –8.823 0.270 2.25·10-28 12.460 0.517 4.86·10-25

β22 (xA
2) –5.292 0.415 6.50·10-15 - - - 

β33 (xC4
2) 0.942 0.415 2.93·10-02 - - - 

β13 (T·xC4) 1.391 0.362 4.75·10-04 - - - 
β23  (xA·xC4) 4.396 0.330 1.81·10-15 –4.469 0.633 1.7710-8 

Adjusted R2 97.71 98.33 

Model F-value 262.53 633.45 

Critical F-value 6.33·10-29 6.73·10-35 
 

 

Table 4. Values of individual desirability functions dn(Yn(z)), overall desirability D(x) and 
predicted etherification yields for the optimal experimental conditions (first row) and other 
interesting experimental conditions (following rows). 

T [K] xA xC4  TAEE
EtOHd Y   TAEE

IAd Y   ETBE
IBd Y   ETBE

EtOHd Y  D(x) TAEE
EtOHY  TAEE

IAY  ETBE
IBY  ETBE

EtOHY  

323 0.462 0.333 0.92 0.79 1 0.45 0.76 39.8 49.0 94.2 38.2 
323 0.5 0.333 0.88 0.86 1 0.39 0.74 38.1 53.1 95.4 34.1 
323 0.5 0.5 0.62 0.8 0.98 0.54 0.72 26.9 49.1 91.7 46.5 
323 0.5 0.666 0.41 0.78 0.94 0.69 0.67 17.7 48.1 88.1 58.9 
323 0.55 0.333 0.81 0.93 1 0.34 0.71 35.1 57.4 95.9 28.6 
323 0.666 0.5 0.40 1 0.99 0.28 0.58 17.5 61.8 92.7 24.1 
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FIGURE CAPTIONS 

Figure 1. Full reaction network. Grey colored area stands out the main reactions that take place. 

Figure 2. Effect of the temperature on the reactants conversion at equilibrium under different 
initial compositions: (a) RA/O=RC4/C5=1; (b) RA/O=0.5, RC4/C5=1; (c) RA/O=2, RC4/C5=0.5; (d) 
RA/O=RC4/C5=2. Errors bars refer to the 95% confidence interval. 
 
Figure 3. Effect of the temperature on the reactants selectivity toward products at equilibrium 
under different initial compositions: (a) RA/O=RC4/C5=1; (b) RA/O=1, RC4/C5=0.5; (c) RA/O=1, 
RC4/C5=2; (d) RA/O=RC4/C5=2 

Figure 4. Effect of the initial RA/O on the reactants conversion at equilibrium at different 
temperatures and fixed initial RC4/C5=1: (a) IB; (b) EtOH; (c) IA 

Figure 5. Effect of the initial RA/O on the reactants selectivity at equilibrium at fixed initial 
RC4/C5=1: (a) 353 K; (b) 343 K 

Figure 6. Effect of the initial RC4/C5 on the reactants conversion at equilibrium obtained under 
different experimental conditions: (a) RA/O=0.5 and 333 K; (b) RA/O=2 and 343 K; (c) RA/O=1 
and 343 K; (d) RA/O=2 and 323 K 

Figure 7. Effect of the initial RC4/C5 on the reactants selectivities at equilibrium obtained under 
different experimental conditions: (a) 353 K and RA/O =2; (b) 353 K and RA/O =0.5 

Figure 8. Tertiary alcohols formation: (a) Effect of temperature at RA/O= RC4/C5=1; (b) Effect of 
RA/O at 353 K and RC4/C5=1; (c) Effect of RC4/C5 at 343 K and RA/O=2 

Figure 9. Dimers and codimers formation: (a) Mole evolution at RA/O=0.5, RC4/C5=1 and 353 K 
using 4g of Amberlyst 35; (b) Effect of RC4/C5 on olefins selectivity toward products at 353 K 
and RA/O=0.5  

Figure 10. Comparison of experimental with predicted yield values at equilibrium for all 

experimental conditions: (a) TAEE
IAY ; (b) ETBE

IBY ; (c) TAEE
EtOHY ; (d) ETBE

EtOHY  

Figure 11. Plot of some obtained response surfaces and experimental points: (a)  ETBE
IBY vs. xA 

and T at xC4=0.5; (b)  TAEE
IAY  vs. xA and T at xC4=0.5. Symbols (○) refer to the experimental yield 

data.  

Figure 12. Overlaid Contour Plot (OCP) for etherification yields at (a) xC4=0.333 and (b) 
xC4=0.666. Grey shadowed area gathers the optimal conditions for the simultaneous production 

of ETBE and TAEE. (▬) TAEE
EtOHY ;(▪▪▪) TAEE

IAY ;(---) ETBE
IBY ;(−·−) ETBE

EtOHY  

Figure 13. Contour plot for the obtained overall desirability D(x) at xC4=0.333.  
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Supplementary Material 

Appendix 1. Experimental yield data empirically modeled. Errors refer to a 95% probability 
level for the replicated experiments. 

RC4/C5 RA/O T (K) TAEE
IAY  ETB E

IBY  TAEE
EtOHY  ETBE

EtO HY  

0.5 0.5 323 31.06 85.47 43.47 49.40 

0.5 0.5 333 29.15 84.62 41.14 49.97 

0.5 0.5 343 23.91 80.00 33.48 50.22 
0.5 0.5 353 21.91 74.46 32.27 50.78 
0.5 1 323 51.94 93.78 37.24 37.69 
0.5 1 333 47.17 91.90 33.91 36.83 
0.5 1 343 42.42 89.09 30.59 28.38 

0.5 1 353 36.75 84.91 26.99 29.67 

0.5 2 323 60.87 90.65 22.21 15.71 

0.5 2 333 55.60 89.96 20.51 15.30 

0.5 2 343 49.17 90.25 17.89 15.00 

0.5 2 353 46.60 91.92 16.38 15.93 

1 0.5 323 22.50 76.72 23.65 72.77 

1 0.5 333 20.94 74.40 22.17 72.47 

1 0.5 343 18.37 70.03 19.71 72.04 
1 0.5 353 16.81 61.61 18.33 71.11 
1 1 323 49.74±3.84 91.30±1.55 27.85±0.62 45.69±2.26 
1 1 333 44.82±3.21 89.28±1.63 25.26±0.36 44.99±1.73 
1 1 343 39.46±2.22 86.02±1.22 22.20±0.44 42.10±2.60 
1 1 353 32.34±0.73 80.66±0.39 19.49±0.91 42.00±2.4 
1 2 323 61.70 93.06 17.26 24.05 
1 2 333 55.83 91.87 15.91 23.88 

1 2 343 49.21 89.24 13.12 22.66 

1 2 353 39.44 86.35 12.78 25.75 

2 0.5 323 16.70 63.50 11.44 85.45 

2 0.5 333 15.96 62.80 10.35 85.60 

2 0.5 343 14.95 62.01 10.48 83.87 

2 0.5 353 13.43 60.13 9.86 80.28 

2 1 323 50.18 91.35 19.02 58.27 
2 1 333 45.21 88.92 17.14 55.81 
2 1 343 37.44 87.94 14.61 62.08 
2 1 353 33.53 82.57 12.32 57.29 
2 2 323 61.08 91.49 11.62 31.94 

2 2 333 56.58 90.20 10.47 30.47 

2 2 343 47.70 87.97 9.15 31.67 

2 2 353 44.16 86.64 7.87 31.19 
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Appendix 2. Residuals plots obtained for the modeled yield data at all assayed temperature and 
initial composition. 
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