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Chapter 1

Introduction

Nowadays digital images and videos are used in many fields of our live. From the
simpler digital camera to the nets of servers in Internet, all of them work with this
kind of objects. Since images are stored in these devices, we need to reduce the size
of the pictures in order to accumulate as many images as possible in the minimum
storage space without losing quality. This necessity has derived in the appearance
of several algorithms dedicated to compress images with or without loss of data
[2, 5, 11, 17].

A simple image is a matrix of points (pixels) each one indicating a level of tone or
color at its spatial position. Therefore, an image can be represented mathematically
as a matrix with numbers indicating the value of the pixels at each position. There
exist several types of representations for images, but we are going to consider gray
scale images where each pixel can take a value between 0 and 255, where the 0
value represents the black color and the 255 value represents the white color. More
complex images may have several components, for instance in colored images often
each pixel value is given by three components R, G, and B corresponding to its
tone of red color, green color, and blue color, respectively. Before processing them,
the components are decorrelated transforming them into other three components
more suitable to be treated. They are also usually normalized into a symmetric
range of values, normally between -1 and 1, to exploit better the capabilities of the
ulterior operations. These tasks are performed by the block named Pre-Processing
in Figure 1.1, where we can observe the general scheme of an image compression
system.

Each image is stored in a device as a vector of bits (elements that only can take
the values 0 or 1) known as bit-stream and hence each pixel value is converted into a
binary code using a certain number of bits. In general, images can have pixels with
higher values at any position, so if we want to reduce the stored size of the image we
have to compact the information contained in all the pixels into a reduced number
of samples. To accomplish this task most of the algorithms apply a transform to
the image that concentrates its energy in a few number of samples.

The DT block (Discrete Transform) in Figure 1.1 performs this operation. In
Chapter 2 we introduce several of the transforms used in image processing start-
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Figure 1.1: Diagram of an image compression system.

ing by the well-known Fourier transform and continuing with the Discrete Cosine
Transform [1, 4, 15], used in the JPEG algorithm for image compression, and ending
with various types of Discrete Wavelet Transforms [3, 6, 9], including the Haar and
Daubechies’ D6 wavelets. In this chapter we also develop some interesting properties
of these transforms and justify the preference of some of them above the others. We
also present several examples of signals transformed using the explained methods.

The ISO/IEC JTC1/SC29/WG1 body, which stands for Working Group 1 of
Study Committee 1 of ISO/IEC, more popularly known as Joint Photographic Ex-
pert Group (JPEG), developed an image compression standard named JPEG [5]
that has become one of the image format most used in the world. In Chapter 3, we
explore the basis of this compression format that uses the DCT as discrete trans-
form and we also implement a simple version of the algorithm using Matlab. We
also apply this JPEG version to images to study its compression capabilities and
the quality of the recovered images after compression. The function of the quantizer
block in Figure 1.1 used by the JPEG algorithm to reduce the number of significant
samples in order to compress the image is also explained in this chapter. Finally, we
close Chapter 3 explaining the entropy encoder which plays the role of generating
a compressed bit-stream from the coefficients created by the quantizer block. In
particular two techniques of coding are developed, the run length encoding (RLE)
and the Huffmann code [10, 16], enriched with an illustrative example.

The Joint Photographic Expert Group created, in 2000, a new still image com-
pression standard, the JPEG 2000 [17], designated to replace the old JPEG. This
new format was designed to fulfill several characteristics to improve the older for-
mat and satisfy new necessities that appeared later in time. Some of the innovating
features of the new format are a better compression efficiency, the ability to enhance
the quality associated to selected spatial regions in the image, the ability to work
with enormous images without breaking them into smaller tiles, and the progressive
lossy to lossless performance within a single data stream. Hence, one of main charac-
teristics of the new format is scalability. This property is due to the combination of
two facts: the use of Discrete Wavelet Transforms and the application of an entropy
coder, named MQ-coder, to the samples coming from the wavelet transform, that
constructs an embedded bit-stream that can be truncated at several selected points
in order to obtain an image with less quality. Chapter 4 is devoted to explain the
JPEG 2000 standard and a simple implementation is also constructed using Mat-
lab. The key aspects of JPEG 2000 studied in this chapter are the standard wavelet
transform used by the algorithm (Bi-orthogonal 9-7 wavelet) and the entropy coder.
The Bi-orthogonal 9-7 wavelet is analyzed from the filtering view point and a fast
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implementation known as lifting scheme [7] is presented. Before the entropy coder
is explained, we introduce some theory about arithmetic coding (Elias code), its
finite precision implementation and the context labeling used by the JPEG 2000
in order to compute the probabilities of the samples needed by any entropy coder.
Next, we explain the coding order followed by the algorithm to exploit the context
labels and feed the MQ-coder [12, 13] in an efficient manner. We finish Chapter 4
with the construction of the bit-stream in a layer fashion way, so that each layer in
the bit-stream contains information of the image that permit its reconstruction at
increasing resolution levels, each layer decoded provide more information letting us
to obtain a higher resolution version of the image.

Finally, in Chapter 5 we show a comparative between JPEG and JPEG 2000
standards using the algorithms that we have implemented using Matlab that can be
found in Appendix A. We apply the two compression methods to four test images
presenting the recovered images after compression at different bit-rates. We analyze
and compare the obtained results from a subjective view point and using a distortion
measure.






Chapter 2

Preliminaries

In Science and Engineering people work with signals coming from sensors to monitor
and control some processes in order to ensure good product quality. These signals
usually are time dependent or can depend on several variables, space variables for
example, as in the case of images. For mathematicians these signals are just one
or several variables real or complex functions. The goal of signal processing is to
extract information, which is not directly available, and reveal the underlying dy-
namics from a given signal using transformations to see the signal in another way.
Mathematically, this can be achieved by representing the time-domain signal as a
series of coefficients, based on a comparison between the signal and a set of tem-
plate functions which will be a basis for the space of the signal. Signals obtained
experimentally are usually sampled at discrete time intervals, instead of continu-
ously, along a total measurement time 7', so they can be represented by a vector
containing these samples.

Through history, several basis have been used in order to achieve this goal.
In this chapter we will introduce three of the most popular basis: the discrete
Fourier transform, the discrete cosine transform and the wavelets. Most of the
results presented in this chapter can be found in [9].

2.1 The Discrete Fourier Transform

The Fourier transform is probably one of the most widely used instruments in signal
processing. This tool reveals the frequency composition of a time series signal by
transforming it from the time domain to the frequency domain. This technique was
originally used by the French mathematician Joseph Fourier in 1807, when he found
that any periodically function could be expressed as a weighted sum of sinus and
cosines functions. This section presents the discrete Fourier transform and states
some of its properties.

2.1.1 Definition and properties
Definition 2.1.1. Define Zy = {0,1,..., N — 1}.
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Definition 2.1.2. Define the vector space over C
C(Zyn) = {z=(2(0),2(1),...,2(N—=1)) | 2(j) € C, 0< j < N — 1},

endowed with the scalar product

N—

[y

2(n)v(n)

n=0

This inner product induces the ¢2-norm given by

1[I = V{2, 2) = 2(n)2(n) = Z_ |2(n)[%, (2.1)

Definition 2.1.3. Define E,,(n) = %ezmmn/}v € (*(Zy), for 0 <m,n < N — 1.

Lemma 2.1.4. The set {E,, : 0 < m < N — 1} is an orthonormal basis for (*(Zy).

Proof. If we compute the inner product of E,, and F,,, 0 < m,n < N—1and n # m,
in 52(21\7)

=

727rikn/N€27rimk/N _ 1 —2mik(n—m)/N

N £© N
0

1— —QﬂiN(n—m)/N

(Em, E,) = e

1
N 1 — e—2mi(n—m)/N

M7

£
Il

1-1
N 1 — e—2mi(n—m)/N

1
N
1

=0,

since e 2mN(=m)/N — =2mi(n=m) — 1 apd e=2m(=m)/N £ () because n # m. Now, if

n = m we have

=

1 1
—N'1=—-N=1.
N N

N—
<En7 E _ % Z 727rikn/Ne27rikn/N _
k=0 0

e
Il

]

Definition 2.1.5. Let z = (2(0),...,2(N — 1)) € (*(Zy). For 0 <m < N — 1, we
define the Discrete Fourier Transform (DFT) of z as the map

(Zy) — (A(Zy)
2 (30), ..., 4(N — 1)),

where

)6—i27rnm/N‘
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Observe that we can extend this definition to all m € Z. Since

N-1 N-1
2<m + N) _ Z(n)67i2wn(m+N)/N _ Z Z<n)67i27mm/N67i27rn
n=0 n=0
N-1
— Z(n)efiQﬂ-nm/N — 2(777,),
n=0

we have that the DFT is periodic of period N.
The DFT has multiple applications in signal and image processing. In fact, it
maps the a time domain signal into its frequency domain.

Theorem 2.1.6. Let z,v € (*(Zy). Then,

1. (Inversion Formula). For alln € {0,...,N — 1}

N—
. 1 2 i2wkn/N
z(n) = N kg z(k)e : (2.2)
2. (Parseval’s identity)
N-1 L N 1
() = 3 2(R)o0E) = - 3 (K)OTR) = 142, 9)
k=0 k=0

3. (Plancherel’s formula)

N-1 1 N-1 1
Iz* =) Jz(k)]? = ¥ > ak))? = NHéHz-
k=0 k=0

Proof. 1. Since {Ej, ..., Ex_1} is an orthonormal basis we can write z € (*(Zy)
as
N-1
z(n) = > (2, Ex)Ex(n).
k=0
But, (z, Ey) = Zg;é z(m)Ex(m) = \/Lﬁé(k) and hence
N-1 -1 N-1 1
z(n) = z, B EL(n) = ——2(k)Ei(n) = ——3(k)——=¢2kn/N
(1) = e B Bulo) = 32 s 0E) = 3 i)
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2. Using the fact that {Ey,..., Ex_1} is an orthonormal basis we have that

<Z,’U> = < - <Z,En>En, Z<U7Ek>Ek> = - - <U,Ek><Z,En> <En>Ek>

3. The last property can be proved from Parseval’s identity imposing v = z:

(2, 2) = 2l = ijvfjlé(n)z(m = Ly
’ N ~ N

[]

Definition 2.1.7. The Fourier basis for /*(Zy) is theset F' = {F,, : 0 <m < N—1}
where F,, € (*(Zy) is given by

1

, 1
Fm(n) _ Nefﬁfrnm/N _ anm’

where we have defined w = e~ #27/N,

Observe that, since F;,, = \/LNEm, F is an orthogonal basis of ¢*(Zy) and we

: N-1, . . : :
can write z = )"0 2(m)F,, = FZz, where F' is a matrix which columns are the

vectors F,, with m = 0,..., N — 1. We say that the DFT components Z(m) are the
components of z in the Fourier basis.

From the inversion formula we know that the the map ": (*(Zy) — (*(Zy) is a
one to one map, i.e., if Z = 0, then z = v. Hence, we can define the inverse of the
DFT.

Definition 2.1.8. Let 2 € (*(Zy), we define the Inverse Discrete Fourier Transform
of z as the vector # € (*(Zy), where

1

i(n) = i 2(k)e?™ N for n € {0,...,N —1}.

—_

Now, since the DFT is an invertible linear transformation, we have that z =
F~12. We can determine the elements of F~! using the previous definition.

N-1 N-1

< _ 1 i2rkn/N __ 1 —kn _
Z(n) = z(/{)ﬁe = Z z(k)ﬁw = Fz.
k=0 k=0
Therefore, the elements of the inverse matrix £~ are (F '), = ~w ™ = Lwkn

and we get
F'=_F.
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Definition 2.1.9. Given a vector z € (*(Zy) and k € Z. We define the translate
of z by k as
Riz(n) = z(n—k), ne€Z.

Lemma 2.1.10. Let z € (*(Zy) and k € N. Then,

—

(Rpz)(n) = 2(n)e” 2™ /N for alln € Z.
Proof.
- N-1 A
(Rz)(n) = Z z(m — k)e~2mmn/N.
m=0
We change variables, | = m — k and we get

N-1-k N-1-k

(Rpz)(n) = Z Z(l)e—i27r(l+k)n/N:e—iQWkn/N Z Z(l)e—iQWln/N‘

l=—k l=—k

i27ln/N

Now, since z(l) and e~ are both periodic functions of period N we claim that

N—-1-k N-1

D (e N =3 " (l)e N = 5(n)

|=— =0

and

—

N—-1
(sz)(n) _ €—i27rkn/N Z Z(l)e—iQWln/N _ 6_i27rkn/N2(n).
1=0
If £ =0, the result is trivial. Let 0 < £k < N — 1, then

N—-1-k -1 N—-1-k
Z z(l)e—iQWZn/N _ Z Z(l)e—iZWln/N+ Z Z(l)e—iZTrln/N
l=—k l=—k =0
-1 N—-1-k
_ Z Z(l_|_N)e—i27r(l+N)n/N+ Z Z(l)e—iQﬂln/N
l=—k =0
N-1 N—-1-k
Z Z<m)6—i27rmn/N + Z z(m)e—i%rmn/N
m=N—-k m=0
N-1
= z(m)e
0

Now, if k € Z, then there is some r € Z such that ¥’ = k+rN € {0,..., N —1}.
If we change the summation variable I’ =1 —r N, then

—i2rmn/N

m

N—-1-k N—-1-k—rN N—-1-F

Z z(l)e—iQTdN/N — Z Z(l/ +TN)6—i27r(l’+rN)n/N — Z Z(l,)e_iQﬂ_l/n/N7

I=—k lV'=—k—rN U=—k'

and we are in the case ¥’ € {0,..., N — 1} considered above. O
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Definition 2.1.11. Let u,v € (*(Zy). The convolution of u and v is the vector
u* v € (*(Zy) with components given by

for all n.

Lemma 2.1.12. Let u,v € (*(Zy), then for all k

—

(u  0) (k) = a(k)o (k). (2.3)

Proof. From the definition of convolution

N1 ~1N-1
(wxv)(k) = > (u*v)(n)e 2N = Z S u(m )2k

n=0 n=0 m=0
N—1N-1

= u(m)v(n — m)e 2rn=mk/N g=i2mmk/N
n=0 m=0
N-1 N—1

=3 u(m)e 2NN (= m)em 2N — Gi(k)i (k).
m=0

]

We have defined the DF'T in one dimension. This tool let us analyze one dimen-
sional signals, for instance signals which depend on time such as audio signals. If
we want to deal with images we can also use this tool in image processing, but since
images are bi-dimensional, we have to define the 2-dimensional Fourier transform.

Definition 2.1.13. Let z € ¢*(Zy X Zy). The Discrete Fourier Transform of z is
defined as

-1M-1

Z Z z(m, n —i27( km/M+ln/N)

n=0 m=0

for k€ {0,...,M —1} and [ € {0,..., N — 1}.

2.1.2 The Fast Fourier Transform

In signal processing we need to process signals fast and the DFT requires a large
amount of operations and time. For instance, if 2z € (*(Zy) and we want to compute
its DFT, 2 € (*(Zy), we have to multiply a N x N matrix F with a vector z € (*(Zy):
2 = Fz. This requires N? complex multiplications. A priori one can think that
multiplying two complex numbers requires four real multiplications, but in fact,
using a little trick, we can perform this product with only three real multiplications.
If 2y =ay +ib; € C and 25 = ay + iby € C and we compute the product

Z1%9 = (achg — blbg) + i(albg + agbl),
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we do 4 operations, but if we define
m = ai(az +bs), n="by(ay+b1), and p=0bi(az—bs),

then z12zo = (m —n) 4+ i(n + p). This technique enlarges the number of additions,
but since the computational cost of multiplications is much larger than the cost of
additions we do not consider them. One of the main advantages of the DF'T is that
there exists a fast algorithm, called the Fast Fourier Transform (FFT), to compute
it. This algorithm is specially suitable when N is a power of 2.

We start with a simpler case considering that our vectors have even dimension.

Lemma 2.1.14. Suppose M € N and N = 2M. Let z € (*(Zy). Define u,v €
*(Znr) by
u(k) = z(2k), fork=0,...,M —1,

and

v(k)=2(2k+1), fork=0,...,M —1.

Let Z be the DFT of z on N points, i.e., 2 = Fyz, and 4, v the DFT of u and
v, respectively, on M = N/2 points, that is, & = Fyu and 0 = Fyv. Then, for
m=0,...,M—1,

zZ(m) = a(m) + @(m)e_n”m/N, (2.4)

and form=M, M+ 1,...,N —1, letl=m — M. Then
2(m) = (1 4+ M) = a(l) — o(1)e~ 2™/, (2.5)
Proof. Form=0,...,N —1,

=

-1 M-1 M-1
Z(n)e—i27rnm/N — Z (2]{7 —z27r2km/N Z > 2k_ +1 —7,27r(2k+1)m/N
k=0 k=0

zZ(m)

=i
L

M-1
u(k)e=i2mkm/(N/2) | g=i2mm/N Z v(k)e2mkm/(N/2)

0 k=0

ST
<

u(k)efi%rkm/M + €7i27rm/N v(k)efi%rkm/M’

e
Il

0 k=0

and for m = 0,..., M — 1 this expression coincides with @(m)+e~>"/No(m). Now,
itm=M,M + 1 , N — 1 we make the variable change m = [+ M and we get

M-l M-1
2(m) _ Z u<k)e—i27rk(l+M)/M + e—i2m(I+M)/N Z U(k)e—izwk(HM)/M
k=0 k=0
M-1 _
— u<k)€fi27rkl/M _ e—i2ml/N Z U(k)efi%rkl/M _ ﬁ(l) B efiZWI/Nﬁ(l)’
k=0

2wkl /M 2rM/N

because the function e~ is periodic of period M and e~ = —1, when
M = N/2. [
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Given z € (*(Zy) the procedure to compute the FFT consists on compute the
FFT for v and v which requires M? multiplications for each one. After that, we
compute Z2(m) form = 0,..., M —1 using (2.4), which requires M multiplications of
the terms o(m)e~2"™/N | Finally, using (2.5), we compute 2(m) form = M,..., N—1
from the previous values of Z(m), for m = 0,..., M — 1. This last part requires only
additions, because we already know all the terms of the equation. Hence, we can
compute the FFT with a total of 2M?+ M = I(N?+ N) = §(N +1) products. For
N large this number of multiplications is approximately equal to NTQ Hence, we can
reduce in half the amount of operations to compute the DFT. In fact, if M = 4N
we can apply the same technique to compute the DFT of v and v and we will need
M? operations for both terms instead of 2M/2. The method can be extended to the
limit if N is a power of two. In this case we can see that the number of complex
multiplications to compute will be of the order of %N log, N.

Lemma 2.1.15. Let N = 2", for some n € N. Then, the number of complex
multiplications #n to compute the FFT of a vector of length N satisfies

1
#n < §N10g2 N.

Proof. We proceed by induction. For n = 1 we have a vector z = (a, b) of length 2.
The FFT will be 2 = (a + b,a — b) and we do not need any multiplication. It holds
that

1
#2 :OS 5210g22: 1.

Suppose, by induction, that the result holds for n = k — 1. Then, for n = k we have
that

1
H#n < 24N+ NJ2 = 241 + 271 < 252’6—1 log, (2F71) 4- 2871

1 1
= (k—1)2F 1 g2kt = okt = 5/@’“ = 5N log, N.

O

The FFT has many applications in signal processing, but one of the most im-
portant consequences of this algorithm is given by equation (2.3) which implies that
we can compute a complex operation, as convolution, much faster using the FFT.

2.2 The Discrete Cosine Transform

As the Discrete Fourier Transform, the Discrete Cosine Transform (DCT) uses an
orthogonal basis constructed from cosine functions which elements are real valued.
This transform was originally introduced in 1974 by N. Ahmed, T. Natarajan and
K. R. Rao, see [1]. There are several DCT basis that can be derived from the
eigenvectors of symmetric second-difference matrices, see [15], yielding to DCT-1,
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DCT-2, DCT-3 and DCT-4 types, but we are going to focus on the DCT-2 basis,
which we call DCT, because it is the one used in the standard JPEG for image
compression.

Definition 2.2.1. Given M € N, the Discrete Cosine basis for £%(Z,;) is defined as

{{%}U{cosj(k—ké)%}: 0§j§M—1,0<k§M—1}.

Definition 2.2.2. Given z € (*(Zyy), the Discrete Cosine Transform (DCT) of z is
defined as

G.(0) = 2 Y 2(m)

G.(k)=Z S M 2(m)cosk(m+ D&, k=1,...,M—1,
where G, (k) is the kth DCT coefficient.
Definition 2.2.3. The Inverse Discrete Cosine Transform (IDCT) is defined as

M—1
| 1
Z(k)IEGZ(O)JrE Gz(m)cosm<k’—|—§>%, k=0, M—1,
m=1

where G, (k) is the kth DCT coefficient.
Proposition 2.2.4. Let z € (*(Zy;) and N = 2M, then

N-1
Gz(k):%%{eik”/NZz(m)wkm},k:1,...,M—1, (2.6)
m=0

where w = e 2N and z(m) =0, form =M, M +1,...,N — 1.

Equation (2.6) shows us that there is a relation between the DCT and the DFT.
This is an important fact because it let us to compute the DCT and the IDCT very
fast using the FFT algorithm.

The DCT is used in the JPEG algorithm for image compression. The image is
decomposed into blocks of 8 x 8 pixels and a DCT is applied to each block. Hence,
we need to define the bi-dimensional DCT in order to study, in the next chapter,
the JPEG algorithm.

Definition 2.2.5. Let A € (*(Zy; x Zy). The Discrete Cosine Transform (DCT)
of A is given by

AC) (m)Ca(n) o= = 1\ 7 1\

Ga(m,n) = —————~= E A(j,k)cosm (j+ =) —cosn|k+ =] —=
MN 2) M 2) N

(

2.7)
where C1 (M —1) = Cy(N —1) = LQ, Ci(m)=1,for 0 <m < M—1and Cy(n) =1,
for0<n< N —1.
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Figure 2.1: Discrete cosine for m = 1, n = 8. Discrete cosine basis for N = M = 8.
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Definition 2.2.6. Let G4 € (?(Zy; x Zy). The Inverse Discrete Cosine Transform
(IDCT) of G4 is given by

A(m,n) = MZ_WZ_I C1(5)Ca(k)G a(4, k) cosm (j + %) % cosn (k + %) %

where Cy (M —1) = Cy(N —1) = L27 Ci(m) =1,for 0 <m < M —1 and Cy(n) =1,
for0<n< N —1.

The left image of Figure 2.1 shows the discrete cosine function for m = 1 and
n =38, when N = M = 8. On the right hand side we show the Discrete Cosine basis
used in JPEG compression.

2.2.1 Comparison between DFT and DCT

The reason why the DCT is preferred to DFT in JPEG is that the DCT requires
fewer coefficients than DFT to get a good approximation to a typical signal [4]. The
goal of compression is to reduce the size of a signal or an image minimizing the
loss of quality, hence we expect that after a suitable transformation of our signal we
get smaller coefficients corresponding to the higher frequencies that can be rejected,
keeping only some coefficients from the low frequencies.

Suppose we have the ramp signal in Figure 2.2 (above) and we apply a DCT and
a DF'T to this signal. After that, we truncate both transformed signals keeping only
the two first coefficients and we apply the corresponding inverse transform to recon-
struct an approximation of the original signal. Figure 2.2 shows the reconstructed
signal using both the DCT (middle) and the FFT (below). We can observe how
the DCT approximates better than the DF'T to the original signal only keeping the
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Original ramp

Figure 2.2: Comparison of accuracy of truncated DCT and DFT.

two first coefficients. Table 2.1 shows the eight values of the ramp signal with the
corresponding coefficients of the DCT and the DFT (since the DFT has complex
values we show the absolute value of the coefficients) and it can be observed how the
DCT keeps the most part of the energy of the signal in the low-frequency coefficients
while the DF'T has larger coefficients corresponding to high frequencies.

x DCT FFT
0 | 356.3818 | 1008.0
36 | -231.9236 | 376.3

72 0 203.6
108 | -24.2444 | 155.9
144 0 144.0
180 | -7.2325 155.9
216 0 203.6

252 | -1.8253 | 376.3

Table 2.1: DCT and DFT coefficients for the ramp signal.

The explanation to this fact is easy: the DFT approximation is trying to repro-
duce a periodic ramp signal, i.e. a sawtooth wave, while the DCT reproduces a tri-
angle wave, i.e. a symmetric ramp. Therefore, the DFT has greater high-frequency
coefficients to reproduce the spurious discontinuity at the end of the ramp in the
sawtooth wave, while the DCT has no high-frequency coefficients because the trian-
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gle wave has no discontinuity. The DCT is thus better modeling finite-length signals
that have fairly different values on their right and left sides.

To finish this section it is worth to present another point of view about the
process that the DCT develops over images. If we consider an 8 x 8 block of an
image, we can see each row of 8 pixels as a point in the eight-dimensional space; the
eight-dimensional points of a typical image will form a cluster of points in this space
not uniformly dispersed, on the contrary it is squashed fairly flat in some directions.
The DCT rotates this cluster to line up this directions along some of the coordinate
axes. Then we can represent the points of the cluster in a lower dimensional space.
The idea behind this is called the Karhunen-Loeve transform (KLT) [1] and DCT
approximates it pretty close.

Definition 2.2.7. Given a random vector z = (2(1),...,2(N))T € (*(Zy), we
define its covariance matrix as

C. = E[(z =m)(z —m)],
where E(+) denotes the expectation operator and m = E(z) is the mean of the vector.

We define now the Karhunen-Loéve transform.

Definition 2.2.8. Given a random vector z = (2(1),...,2(N))? € (?(Zy), with
covariance matrix C,, its Karhunen-Loeve transform is given by

y=Wgz,

where W is an orthonormal matrix such that the covariance C, of the vector y is a
diagonal matrix.

The idea behind this transform is the following: the pixels of an image are cor-
related with their neighbors and hence there is redundant information in the image.
If we decorrelate the pixels we can compress the image without losing information.
Let us see an example: Figure 2.3 shows the scatter plot of the gray values of the
pixels for Lenna’s gray image. The z component shows the gray level of a pixel
and the component y is the gray level of its right neighbor. We can observe the
strong correlation along the line x = y. If we rotate the figure 45° we obtain the
decorrelated version of the distribution as we can see in Figure 2.4. Now the y
components are uncorrelated from the x ones and we can encode these components
using a smaller number of bits.

Now suppose that the mean of the z vector is zero. Hence, the problem consists
on finding an orthogonal transformation represented by the matrix W (WW = I)
such that

C, = E(yy) = EW2W2) = E(W2zW) = W E(22)W = WC.W.
In other words, since WW = I,

C,W =WC..
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Figure 2.3: Scatter plot of adjacent pixel value pairs for Lenna’s image.
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Figure 2.4: Scatter plot of adjacent pixel value pairs for Lenna’s decorrelated image.
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Now, if we impose that C, is diagonal with elements );, for i = 1,..., N, we have
that

/\zwz:Ozww iE{l,...,N},

where w; is the i-th column of the matrix W. Therefore, the columns of the matrix
transform W are the eigenvectors of the covariance matrix of z. This transformation
defined by the eigenvectors of the covariance matrix of the original data is the
Karhunen-Loeve transform (see [8]).

Since we consider an image as a vector sample of a random variable which dis-
tribution we do not know, we have to estimate its covariance matrix from the data.
We can compute such estimate from n data samples, for z, € (?(Zy), k=1,...,n,
as

N

k=1

C, =

S|

This fact makes the KLT content dependent and it lacks fasts computation algo-
rithm, therefore it is not suitable for compression purposes.

2.3 The Discrete Wavelet Transform

We have seen in previous sections that the FFT is very fast to compute and can
approximate fairly well periodic signals. On the other hand the DCT can be com-
puted using the FFT algorithm and is well equipped to model finite-length pieces
of functions that have fairly different values on their left and right sides. The main
problem of these transforms is that their basis elements are not well localized in
space in the sense that they have many elements different from, or not close to,
ZEero.

Definition 2.3.1. Given a vector z € (*(Zy) we will say that it is localized near
no € N if most of the components z(n) of z are zero or at least relatively small,
except for a few values of n near ng.

A Fourier basis element F,,(n) = +e¢
its elements have the same magnitude % # 0.

2rmn/N s not localized in space because all

Having a spatially localized basis is very useful because it provides a local anal-
ysis of a signal. For example in medical image processing we can study better a
tumour if we focus on the region where it is localized. But the application we are
interested in is image compression, for instance, if we have a localized basis in fre-
quency, we can remove high-frequency coefficients which are small or that are not
humanly perceptible. Thus, the goal is to produce a basis both localized in space
and frequency, because a vector expansion’s in this basis will make available both
spatial and frequency information. Wavelets will be such a basis.
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2.3.1 Wavelets on Zy

Another feature we will want for our basis is a fast change between the standard one
and ours. In order to find this fast algorithm, since we can use the FFT to compute
convolutions, we are going to relate the convolution with the inner product to use
the FFT for the change of basis.

Definition 2.3.2. Given a vector z € (*(Zy). We define z € (*(Zy) by

Z(n) = z(—n) = z2(N —n), for all n.
We call z the conjugate reflection of z.

Definition 2.3.3. Let N be an even integer, N = 2M for some M € N. An
orthonormal basis for (?(Zy) of the form

{Roru}ply" U{Rauv} 15"

for some u,v € (*(Zy), is called a first-stage wavelet basis for ¢*(Zy). We call u
and v the generators of this basis.

Lemma 2.3.4. Let u,v € (*(Zy). For any k € Z,

ux0(k) = (u, Ryv)
and
uxv(k) = (u, R0).

Proof. Applying the definition of inner product

=z

(u, Rpv) = u(n)v(n — k) = Z_: u(n)v(k —n) =ux*xov(k).

n=

=

3
Il
=)

For the second part we only have to apply the same proof changing v by v and
noting that v = v. [l

Lemma 2.3.5. Letu € (>(Zy). Then {Ryu}y ' is an orthonormal basis for (*(Zy)
if and only if |a(n)| =1 for alln € Zy.

Proof. Using the Dirac 6 € (?(Zy) function

1, ifn=0
Sny=4¢ "
0, ifn=1...,N—-1,

we know that §(n) = 1, for all n. We also know that {Rru}Y=' is an orthonormal
basis for ¢*(Zy) if and only if (u, Ryu) = (k). We have in Lemma 2.3.4 that

(u, Rpu) = u (k).
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Hence,
u*xuU=90.

—

By (2.2) and the fact that (2)(n) = @(n), we have that

L — o~ -

1=6(n) = (uxa)(n) = a(n)(@)(n) = a(n)i(n) = la(n)|*,
for all n. n

This lemma states that we cannot have a frequency localized orthonormal basis
of the form {Ryu}; ', because @(n) will have magnitude 1, for all n and, since
|(Rru)(n)| = |a(n)|, every element of the basis will share the same property.

Lemma 2.3.6. Let M € N, N = 2M and z € (*(Zy). Define z* € (*(Zy) by

2*(n) = (=1)"z(n),  for all n.

Then,
(/Z*\)(k?):é(k‘i‘M), for all k.
Proof.
— N-1 N-1
() (k) = 3 (=1)"z(n)e 2mmk/N — Z 2(n)e~ e izmk/N
n=0 n=0
N-1
= > z(n)e B EN = 2 (k4 M),
n=0

Observe that if z € (?(Zy), N even, then

2z(n), if n is even,

(2427 = {0, if n is odd.

Lemma 2.3.7. Let M € N, N = 2M and v € (*(Zy). Then {ngv}i‘gl s an
orthonormal set with M elements if and only if

o(n)|? + [o(n+ M)? =2, forn=0,...,M —1.

Proof. From Lemma 2.3.4 we already know that { Rypv}i,! is an orthonormal set
with M elements if and only if

1, ifk=0,

. (2.8)
0, ifk=1,2...,M-1,

v 0(2k) = {
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and,
2(v*0), ifniseven,

(U*ﬁ+(v*ﬁ)*>(n>: {O if n is odd.

Hence, for n even, say n = 2k, equation (2.8) holds if and only if

2, ifk=0,

w*6+%v*®300:2@*6x%ﬂ:{0 if k=1,...,M— 1.

For odd values of n, (v* 0+ (v*0)*)(n) = 0. Therefore, equation (2.8) holds if and
only if

(vx0+ (v*0)") =26
Applying (2.2) and the fact that 0(n) = 1, for all n, we get that equation (2.8) holds
if and only if

(vx0)*)(n)+ (v*0)(n) =2, foralln=0,...,N—1.

We also know that

which implies that
(0% 0)*)(n) = ((v*0))(n+ M) = [o(n + M)|*.
Hence,

(v*0)*)(n) + (v*D)(n) = |o(n)|* + [o(n + M) =2, foralln=0,...,N —1,

because |0(n)|> + |0(n + M)|? = |9(n + M)|? + |6(n + M + M)|?, since © has period
N =2M. O]

Definition 2.3.8. Let N be an even integer, N = 2M for some M € N, and
u,v € (*(Zy). For n € N we define A(n), the system matrix of u and v, by

_ 1 () (n)
A(m_E(ﬁ(n—i—M) (n+M)> (2.9)

Theorem 2.3.9. Let N be an even integer, N = 2M for some M € N, and u,v €
*(Zy). Then

S S

B = {Ryeu} ;" U{Ryv iy

is an orthonormal basis for (*(Zy) if and only if the system matriz A(n) of u and v
is unitary for each n = 0,..., M — 1. FEquivalently, B is a first-stage wavelet basis
for (*(Zy) if and only if

i(n)* + |a(n 4+ M)|* =2,
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[6(n)[* + [0(n + M)|* = 2,

and

u(n)o(n) +a(n + M)o(n+ M) =0,
foralln=0,...,M —1.
Proof. Since a 2 x 2 matrix is unitary if and only if its columns are orthonormal in
C?, we get that {Roru}i’,! is orthonormal if and only if |@(n)|? + |a(n + M)|? = 2,
for n =0,..., M — 1. Similarly, {Ropv}?’,! is orthonormal if and only if |o(n)|? +
|o(n+ M)|*> =2, forn=0,..., M — 1. Finally, let us prove that
<R2ku, RQjU> = 07 for all j, k= 0, ce ,M — 1, (2].0)

if and only if

u(n)o(n) +a(n + M)o(n+ M) =0,
for all n = 0,..., M — 1. If this claim were true, then the columns of A(n) would
be orthogonal and B would be an orthogonal set and, hence, it would be a basis for
(*(Zy). Since (2.10) is equivalent to
ux0(2k) = (u, Royv) =0, forallk=0,...,M —1,
then it is also equivalent to
ux0+ (ux0)" =0,
because the values at odd indices are automatically zero. If we apply the DFT to

this equation, then

and by (2.3),
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2.3.2 Examples

We are going to discuss three examples of wavelets, starting by the simplest one, the
Haar wavelet, we will continue with an intermediate one, the Shannon wavelet and
finally we will present the Daubechies wavelet, used in the JPEG2000 compression
algorithm.

Example 2.3.10. The Haar wavelet transform.

Let us motivate this example in a different way. Suppose we want to transmit a
data vector of size N (even) and we want to dispatch only N/2 numbers. One way
to do it would be to send pairwise averages of the numbers. That is, if z € Zy, N
even, we can write z = {z,...,2y_1}, then we send a vector a € Zy/, such that

2
ak:%, forall k=0,...,N/2—1.
It is clear that it is impossible to recover the original information from the averaged

transmitted set, but now, suppose that we also send another vector d of length N/2
containing the averaged pairwise differences, i.e.

dk:w, forall k=0,...,N/2—1,

then the receiver could recover the original information. The advantage of using this
method is that, if the data vector is largely homogeneous, then a lot of elements of
the vector d will be small and could be quantized to zero in order to compress the
data with a small loss of quality.

The technique explained before is what the Haar wavelet is based on. Let u,v €
Zy, N even, such that

1 1 1 1
- _7_707"'70 and — _,__70,...,0 ,
! {\/5 NG } e {\/5 V2 }

then the Haar wavelet basis is given by By = {Roru}il, U { Ragv}il,, where M =
N/2. Hence, if 2 € (*(Zy), its Haar transform will be given by

a' = ((Rou, 2), ..., (Rn_au, 2)),
dl = ((Rov, 2), ..., (RN_2v, 2)),

where the vector a' (tendency) keeps most of the information contained in the

original vector and the vector d' (details) gives the details.
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This transformation can be written in matrix form

1 1

OV ? ? 0 0

0 0 &K 5 0 0

0 0 0 () L L
We=1 1 _1 ¢ o {)i{)i ’

Vi TVE :

0 0 & -5 0 0

1 1
0 0 0 0 .. & -

and then, the Haar transform of a vector z can be expressed by
Haar(z) = Wiy z.

Observe that the rows of the matrix Wy correspond to the vectors v and v shifted,
and hence the product Wy z can be implemented as convolutions, which will be
constructed via the FFT algorithm.

Since the matrix Wiy is unitary, we can recover the original vector applying the
inverse transform just by multiplying by the transposed matrix W1

z = W3 Haar(z).

We can give an interpretation to the vectors u and v if we compute their Fourier
transforms [3],

a(n) = —=(1+¢ ™) and i(n) = —=(1 — ¢2™)

V2 V2 '

Figure 2.5 shows the absolute value of their DFT for N = 256. We can see how |4
attenuates the high frequencies, corresponding to the values closed to N/2 = 128.
On the other hand, |0| does the contrary, it allows high-frequency signals to pass,
but attenuates the amplitudes of low-frequency data. Hence, u is a lowpass filter
and v is a highpass filter. In general, every wavelet transform has a vector v who
acts as a lowpass filter and a vector v who behaves as a highpass filter.

If N =27 pe N, we can iterate the process obtaining the kth-Haar transform
of z applying the transformation to the tendency vector that we obtained in the
previous operation and keeping the details. Hence, in the 2nd-transform we will
obtain (a?,d?,d') and in the kth-transform we will have (a*,d*,. .. db).

Figure 2.6 shows a time signal z € Zy5¢ (above) and its Haar transform (middle),
the first 256 coefficients correspond to the tendency and the next 256 correspond
to the details. A quantization has been applied to the transform keeping the 40%
larger coefficients and after implementing the inverse transform we recover an ap-
proximation to the original signal (below).

To perform a Haar transform on images, i.e. a 2D-Haar transform, we apply the
transform to each row of the image and after that to each column.
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IFFT(u)n)l IFET)n)l
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Figure 2.5: Lowpass filter |a(n)| (left) and highpass filter |0(n)| of the Haar wavelet
for N = 256.

Original signal x

|
0 50 100 150 200 250 300 350 400 450 500

Haar transform
& T

| | | | | | | |
0 50 100 150 200 250 300 350 400 450 500

Inverse Haar transform with 40% of the largest coefficients
I I I

|
0 50 100 150 200 250 300 350 400 450 500

Figure 2.6: Original signal (above), Haar transform (middle) and recovered signal
keeping 40% of the largest coefficients (below).
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Figure 2.7: Image of Lenna (left) and its Haar transform (right).

Figure 2.7 shows the image of Lenna (right) with its Haar transform (left). We
can see that the Haar transform is composed by four different blocks, the first block
(left upper corner) shows the details, second block (right upper corner) contains
the averaged differences in horizontal direction, the third block (left down corner)
represents the averaged differences in vertical direction and, finally, the fourth block
contains the averaged differences in diagonal direction.

In Figure 2.8 we show the 2nd Haar transform on Lenna’s image (right).

Example 2.3.11. The real Shannon wavelet transform.
If N is divisible by 4 we define the real Shannon basis by

2 e N _ 3N
\/;, ifn=0,1,....,7 —lorn=="-+1,...,N—1,
i e N
ﬂ(n): \/—N, lf’fl—z,
\;—%, ifn:%,
; _ N 3N
O, lfn—z+1, ’T_]"
and
0, ifn=0,1,...,8—lorn=334+1... N-1,
. L fp=N 3N
U(?’L): VN’ = 44>
2 i _ N 3N
\/;, lfn—z—f—l, ,T—]_

Observe that we have defined the basis in the frequency domain and, since u and
v are symmetric, u and v are real-valued vectors. To compute the values of these
vectors we should use the IFFT algorithm. Figure 2.9 shows these vectors for N =
256, observe that they are relatively well localized around their center points, N/2.
It is easy to check that, with this definition, the vectors u and v satisfy the conditions
of Theorem 2.3.9 to construct a first-stage wavelet basis.
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Figure 2.8: Second Haar iterate on Lenna (left) and its zoom (right).

vector u of size 256 vector v of size 256
06+ - 06+ B
04r - 0.4~ 1
02r - 0.2- 1

|
|
|

04 — 04k i

0 50 100 150 200 250 0 50 100 150 200 250

Figure 2.9: Vectors u (left) and v (right) of the real Shannon basis for N = 256.
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Original signal x
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Inverse Real Shannon transform with 40% of the largest coefficients
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Figure 2.10: Original signal (above), Shannon transform (middle) and recovered
signal keeping 40% of the largest coefficients (below).

As in the previous example, we show in Figure 2.10 how the Shannon wavelet
transform operates on a time signal of size N = 512. Again we see the original signal
(above), its Shannon transform (middle) and the approximation to the original signal
(compressed signal) after quantizing to zero the 60% of the smaller coefficients in
the Shannon transform and applying the inverse Shannon transform.

Finally, we apply this transform to the image of Lenna. The results are shown
in Figure 2.11 for the first iteration and in Figure 2.12 for the second iteration.

Example 2.3.12. Daubechies’ D6 wavelet transform.
The real Shannon wavelets have well localized DF'Ts by definition. Ingrid Daubechies
obtained families of wavelets very well localized in space rather than in frequency,
in Z and R, but they can be adapted to Zy. Let N be divisible by 27, for some
p € N, and N/2P > 6. The Daubechies’ D6 wavelet is generated by the vectors

u = {u(0),u(l),u(2),u(3),u(4),u5),0,...,0}

V2

:3—2{b+c72a+3b+30,6a+4b+2c76a—1—4b—20,2a+3b—3c,b—c,0,...,O},

where
a=1—-+v10, b=1+4++v10, and c=1/5+2v10.

Using this vector we can construct the vector v applying Lemma 2.3.13.
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Figure 2.11: Image of Lenna (left) and its Shannon transform (right).

Figure 2.12: Second Shannon iterate on Lenna (left) and its zoom (right).
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Daubechies D6 transform
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Inverse Daubechies D6 transform with 40% of the largest coefficients
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Figure 2.13: Original signal (above), Daubechies’ D6 transform (middle) and recov-
ered signal keeping the 40% of the largest coefficients (below).

Lemma 2.3.13. Let M € N, N = 2M and u € (*(Zy) such that { Ry, u}’,! is an
orthogonal set with M elements. Define v € (*(Zy) by

v(k) = (=) u(l—k), for all k.
Then, {Ro,u}rtyt U{Ro,v iyt is a first-stage wavelet basis for (*(Zy).
Applying Lemma 2.3.13 we obtain
v =(—u(l),u(0),0,...,0,—u(5),u(4), —u(3),u(2)).

Observe that the vectors u and v have only 6 non-zero elements. In Figure 2.13 we
show again the effect of the Daubechies’ D6 transform on a signal in one dimension
and the recovered signal after apply the same quantization of the previous examples.

Finally, we apply this transform to the image of Lenna. The results are shown
in Figure 2.14 for the first iteration and in Figure 2.15 for the second iteration.

In order to compare the properties of localization of the presented wavelets Fig-
ure 2.16 shows the histograms of the matrices Wy and Wy, for N = 64, for each
basis: standard, Haar, Shannon, and Daubechies’ D6. In each histogram we repre-
sent, in the x-axis, the value of the signal coefficients in a given basis and, in the
y-axis, the number of coefficients that have each of these values.

We can observe that the standard basis has a very good localization in space,
all coefficients are zero except one, but it is very bad localized in frequency, since
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Figure 2.14: Image of Lenna (left) and its Daubechies’ D6 transform (right).

Figure 2.15: Second Daubechies’ wavelet D6 iterate on Lenna (left) and its zoom
(right).
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Figure 2.16: Histograms for the transformation matrices and their DFTs. Standard
(first), Haar (second), Shannon (third), and Daubechies’ D6 (fourth).
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Criginal signal

~o 50 100 150 200 250 300 350 400 450 500
Standard approximation with 38 % of the largest coefficients

~o 50 100 150 200 250 300 350 400 450 500
Haar approximation with 38 % of the largest coefficients
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Daubechies’ D6 approximation with 38 % of the largest coefficients

Figure 2.17: Original signal z; (above), approximations keeping 38% of the largest
coefficients in standard, Haar, Shannon, and Daubechies’ D6 basis.

all coefficients have value 1/N = 0.125. The Haar basis is also well localized in
space, but is not very well localized in frequency, although it is better localized than
the standard one. Finally, the Shannon and the Daubechies basis are well localized
in space and have a lot of zero coefficients in frequency, both have relatively good
localization in frequency, but we see that the D6 wavelets are much more sharply
localized in space than the real Shannon wavelets. On the other hand, the D6
wavelets are not as precisely localized in frequency.
Finally, Figures 2.17, 2.18, and 2.19 show three original signals,

z1(n) = 2sin(0.27n) + 2sin(0.97n), z9(n) = sin(107(n'?)/64),

and
0, if 0 <n <127,
sin(|n — 128|%7/128), if 128 < n < 255,
z3(n) =14 0, if 256 < n < 383,
sin(|n — 128[2/128),  if 384 < n < 447,
0, if 448 < n <511,

respectively, and the approximations obtained using the standard, the Haar, the
Shannon and the Daubechies’ D6 wavelets when we compress the signal keeping the
38% of the largest coefficients in each transformation.

For all these signals we can appreciate that the standard basis behaves very bad
when we quantize the lower coefficients; the Haar approximation is neither very good,
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Figure 2.18: Original signal z, (above), approximations keeping 38% of the largest
coefficients in standard, Haar, Shannon, and Daubechies’ D6 basis.
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Figure 2.19: Original signal z3 (above), approximations keeping 38% of the largest
coefficients in standard, Haar, Shannon, and Daubechies’ D6 basis.
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but the Shannon and Daubechies wavelet provide an approximation to the original
signal that seems pretty similar to it. To confirm this point, for each one of the three
original signals, Figures 2.20, 2.21, and 2.22 show the energy ratio (quotient between
the (2-norms defined in (2.1)) between the approximated (compressed) signal and the
original one, for each basis, as a function of the kept coefficients in the compressed
signal. Omne can confirm that the Shannon and Daubechies wavelets maintain a
better energy relation than the Haar wavelet, but it is not clear which one is the
best. For signal 2 both wavelets seem to behave similar with respect to the energy
ratio, but for signal 3 it looks like the Shannon approximation has a better energy
relation if we keep less than 15% of the coefficients, but from 15% coefficients kept
on, Daubechies’ D6 approximation beats Shannon’s one.



Chapter 3

The JPEG standard image format

3.1 Introduction

An image is a collection of N x M pixels, where N is the width and M is the height
of the image. Each pixel is represented by a number between 0 and 255 (gray scale),
if the image is black and white, or by three numbers R, G, and B between 0 and
255 indicating the intensity of colors red, green, and blue of the pixel, respectively.
For example, Figure 3.1 shows the color version of the image of Lenna (left) and
the black an white version (right). These images have 512 x 512 pixels and, since
each pixel is encoded with 1 byte (8 bits), we may expect that the black and white
version of Lenna has a size of 262144 bytes, but surprisingly, the size of the image in
the computer is only 32768 bytes. The reason for this discrepancy comes from the
use of a compression algorithm to store the image named JPEG, developed by the
Joint Photographic Experts Group (JPEG) [5] and established as an international
standard in 1992. This format remains one of most popular for photographic-type
images.

For color images, rather than work with the red, green, and blue components
of a color, it is better to use three different quantities: luminance Y, which is
closely related to the brightness of the color, and blue and red chrominances C}, and
C,, which determine the hue. The relation between this quantities is given by the
following affine transformation [2]

Y 0.299 0.587 0.114 R 0
Cy = —0.1687 —-0.3313 0.5 G | + | 128
C, 0.5 —0.4187 —0.0813 B 128
and the inverse transformation
R 1.0 0.0 1.40210 Y
G | = 1.0 —0.34414 —-0.71414 C,—128 |. (3.1)
B 1.0 1.771R0 0.0 C, —128

We can observe how the luminance Y contributes with the same weight to all the
three color components red, green, and blue. Figure 3.2 shows the components RGB

37
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Figure 3.1: Lenna in color JPEG format (left) and gray scale JPEG format (right).

Figure 3.2: Components RGB for Lenna’s color image.

for the color image of Lenna. If we add the values of each pixel of the three images
we will recover the original image of Figure 3.1 (left). In Figure 3.3 we can observe
the values (Y, C,., Cy) for Lenna’s color image, where the lighter pixels correspond
to larger values of the component. We notice how the luminance produces a gray
scale version of the image.

In this chapter we are going to develop the mathematics describing the JPEG
algorithm and we will implement the algorithm to use it in an example.

3.2 The JPEG algorithm

In the JPEG algorithm, the encoder is shown in Figure 3.4, the image is divided
into blocks of 8 x 8 pixels in order to apply the DCT (Discrete Cosine Transform),
since this transform is bad localized. Each block is processed independently from
the others and, since the values of most blocks do not change rapidly, and the human
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Figure 3.3: Luminance (left) and chrominances C, (middle) and C, (right) for
Lenna’s color image.

Discrete
Original _ | Pre Cosine Quantizer |— RfIF‘E' |, Compressed
Image Processing Transform e Al am Image
(DCT) Encoder

Figure 3.4: Diagram of the JPEG encoder.

eye is not particularly sensitive to these changes, the DCT components of the higher
frequencies will be small and may be ignored without affecting our perception of the
image. Therefore, the coefficients obtained by the DCT transform are quantized
using an 8 X 8 matrix (), in order to store them as integers. Moreover, to compress
the data we use a parameter k that will determine the amount of compression and
the quality of the image: larger values of k£ will lead to high compressed but lower
quality images. If A is our 8 x 8 block matrix and G4 is its DCT, given by (2.7),
then the quantized matrix F' = (F(m,n)) is given by

If we work with a color image, we have to apply this process to each of the
8 x 8 block matrices obtained from the luminance and the chrominances C, and Cj.
Since the human eye is more sensitive to the luminance values, the quantize matrix
Qum used for the luminance is not the same that the quantize matrix Qu,, used
for the chrominances. These matrices come from empirically results obtained from
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Figure 3.5: Lenna luminance (left) and 8 x 8 pixels block (right).

psycho-visual experiments and are given by [16]

16 11 10 16 24 40 51 61
12 12 14 19 26 538 60 55
14 13 16 24 40 57 69 56
| 14 17 22 29 51 87 80 62
@ = 18 22 37 56 68 109 103 77 |’
24 35 55 64 81 104 113 92
49 64 78 87 103 121 120 101
7292 95 98 112 100 103 99

for the luminance quantization and

17 18 24 47 99 99 99 99
18 21 26 66 99 99 99 99
24 26 56 99 99 99 99 99
] 47 66 99 99 99 99 99 99
Qene = 99 99 99 99 99 99 99 99 |~
99 99 99 99 99 99 99 99
99 99 99 99 99 99 99 99
99 99 99 99 99 99 99 99

for the chrominances quantization. Let us see how it works with an example. Con-
sider the 8 x 8 pixels block showed in Figure 3.5 (right), that corresponds to the
white square in the luminance of Lenna’s image in Figure 3.5 (left).

After applying the DCT to the block we get the result showed in Figure 3.6 (left)
and when we quantize this DCT with k = 1, we can observe the result in Figure 3.6
(right).
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Figure 3.6: DCT of the 8 x 8 block (left) and quantized block with & = 1 (right).

Observe that in the quantized image the smaller coefficients correspond to dark
colors and they are concentrated in the higher frequencies. The matrix after quan-
tization obtained is

68 13 2 1 100 0
22 6 —4 -1 00 0 0
2 =6 -5 0 00 0 0
o1 22 20000
0 0 0 0 0000 [
0 0 0 0 0000
0 0 0 0 0000
0 0 0 0 0000

where many coefficients have been turn into zero.

Continuing with the algorithm, the next step consists in ordering the coefficients
in such a way that the low-frequency components appear first. The scheme to
organize them is given in Figure 3.7 and the following matrix shows the new position
in the order for each coefficient.

11516 [1415]27|28
4 17 |13]116(26 |29 |42
8 [12 1725|3041 |43
11118124 1314044153
10119123 (3239|4552 |54
2012233 |38|46|51|55]|60
21134 |37 47|50 |56 |59 |61
353648 |49 |57 |58 |62 |63

—_
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Figure 3.7: Zigzag ordering.

Therefore, in our example we will have the following vector of coefficients after
ordering them

39 zeroes

——
(68,13,23,-2,6,2,1, -4, —6,1,0, -2, -5, —1,1,0,0,0,2,0,0,0,0,0,2,0,...,0).

The first element in the sequence of coefficients is called the DC component and the
others are called the AC components. They are treated separately in the entropy
coding process. Obviously, the last 39 zeroes will not be stored or transmitted,
instead we will just record the number of them and it will reduce the storage re-
quirement significantly. Now, we apply a zero run length encoding (RLE) to the
63 AC components which consists on saving, for each coefficient a; different from
zero, a pair of numbers (N,,,a;), where N, is the number of zeros preceding the
coefficient a; in the sequence. For instance, in our vector we will record (0, 13),
(07 23)7 (07 _2)7 (07 6)7 (Ov 2>’ (O’ 1)7 (07 _4)7 (07 _6)7 (07 1)? (17 _2)7 (07 _5)7 (07 _1)7
(0,1), (3,2), (5,2), and (0,0), where the pair (0,0) indicates that the remainder
coefficients are all zero. Now, in order to give a quantification of the compression
for the system, we will suppose that each number in these pairs is encoded using
eight bits and hence, if there are m pairs, we will need 2m bytes to encode them.
We define the bit compression ratio.

Definition 3.2.1. Given a Run Length Encoding with m pairs of the previous type
used to encode N pixels, the bit compression ratio is given by

N
Cp= —.
b 2m
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Observe that we have encoded the number of zeroes preceding each coefficient
using eight bits, but it is clear that the number of zeroes cannot be greater than 64,
since there are only 64 coefficients in each 8 x 8 block. Hence, it suffices 6 bits to
encode one of the numbers of each pair. In fact, it would be reasonable to suppose
that there will not be more than 16 zeroes between coefficients different from zero
and therefore we could use only 4 bits. Using this definition in our example and
supposing that we also encode the DC component using RLE we would obtain a bit
compression ratio for our 8 x 8 block equal to

64

= —— = 1.88.
217 58

b

If we apply the JPEG algorithm to the same block with a compression level £k = 5
we get the matrix

4 3 0 00000

5 1 -1 00000

0 -1 =100 000

" 0 0 0 00000
"1 o 0o 0 000O0O0O}|"

0 0 0 00O0O0O

0 0 0 000O0O0

0 0 0 00000

53 zeroes

——
and the vector (14,3,5,0,1,0,0,—1,—1,0,0,0,—1,0,...,0), which produces a bit
compression ratio of

64

Increasing the compression with a factor £ = 10 gives us the DCT quantized matrix

71 0 0O0O0O0O0

21 0 0O0O0O0O

0O -1 -1 00 00O
Fio = 0O 0 0 0O0O0O0O

0O 0 0 00O0O0O0 |’

0 0 0 0O0O0O0O

0 0 0 0O0O0O0O

0 0 0 0O0O0O0O

obtaining a bit compression not much greater, Cy(k = 10) = 2% = 4.57.

The DC components are stored considering the DC components of other blocks
using differential encoding. We expect the DC components of neighboring blocks
to be similar, and hence we go over the DC components of the blocks row-by-row,
left-to-right manner, recording the difference with the previous DC’s, except for the
first one, which remains the same. Finally, in order to obtain further compression,
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Figure 3.8: Diagram of the JPEG decoder.

a Huffman code (entropy code) [10, 16] is used to save the difference sequence of
DC’s coefficients.

The process to recover the image is implemented by the decoder shown in Fig-
ure 3.8 and goes through reversing the previous algorithm. From the compressed
coefficients we recover the DCT blocks and apply an inverse discrete cosine trans-
form to them in order to obtain the matrices (Y, C,, Cp) of each block. From these
matrices we apply the inverse transformation defined in (3.1) to get the RGB com-
ponents. Finally, we only have to concatenate the resulting 8 x 8 pixels blocks to
compose the reconstructed image.

Figure 3.9 shows the recovered images of Lenna after JPEG compression with
compression levels k = 1 (above, left), k = 2 (above, right), £k = 10 (below, left),
and k = 20 (below, right). We can see how, for k = 1 the image almost remains the
same. In Figure 3.10 we can see the quantized blocks of the image for the above
values of the compression ratio k.

Now, we present the same example but with the color image of Lenna. Fig-
ure 3.11 shows the luminance, blue chrominance, and red chrominance recovered
after compression using the ratio k = 5.

In Figure 3.12 we see the compressed color images of Lenna using the JPEG
algorithm for compression ratios & = 1, 5, 10, and 20. We notice that for large
compression ratios we can observe the appearance of block artifacts in the recovered
image coming from the original 8 x 8 pixels blocks that we have extracted from
the original image and processed independently. Since the information contained in
one block is not used to process the others, when the compression is high discon-
tinuities at the edges of the blocks become more apparent. Figure 3.13 shows the
error (difference) between the original image and the recovered one for the previous
compression ratios. We observe the negative of the difference images, i.e., dark pix-
els correspond to higher values of the difference. In Figure 3.14 we plot the mean
square error between the original Lenna’s image and the compressed one, using the
JPEG algorithm, as a function of the compression ratio k.

The algorithms to compute the JPEG standard have been developed using MAT-
LAB and can be found in Appendix A.

3.3 Entropy Code (Huffman)

We have seen that an image is an N x M matrix of pixels, each one codified with a
byte (8 bits). Thus, another way to interpret an image is as a bit stream (sequence of
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Figure 3.9: Recovered images after JPEG compression with ratios k£ = 1,5, 10, 20.
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Figure 3.10: Quantized DCT coefficients with compression ratios k = 1,5, 10, 20.

Figure 3.11: Recovered luminance (left) and chrominances C, (middle) and Cj
(right) for Lenna’s color image using a level compression k = 5.
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Figure 3.12: Recovered images after JPEG compression with ratios & = 1,5, 10, 20.
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Figure 3.13: Error after JPEG compression with ratios k£ = 1, 5, 10, 20.
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Figure 3.14: Mean square error as a function of compression ratio k& for Lenna’s
image.

bits). We can view this sequence of bits as a random variable that takes the values
0 and 1 with certain probabilities p and 1 — p. Now, since an image has certain
redundancies, we can exploit them to reduce the number of bits needed to store it.
Suppose that X is a discrete random variable that can take values {x1,...,z,} with
probabilities pr, = P(X = xy), for all k € {1,...,n} representing the values of the
DC components of the blocks in the DCT. Then, we can assume

pk:%, for all k € {1,...,n},

where ny is the number of times that the value x; appears in the DC sequence and
N =377 _, ng. Hence, if [ is the number of bits used to represent the value xy, then
the average length of the DC sequence will be

Now, if we choose to encode all DC values with the same number of bits m, then
I, =m, for all k € {1,...,n} and the average length will be

n
Lovg =m E Pr = m.
k=1

But in this case we are not exploiting the redundancies in the image that will be
translated on redundancies in the DC sequence. As a consequence of them, the
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probabilities p; are not uniformly distributed and, therefore, there will be privileged
values of the variable X that will appear more frequently. If somehow we could
encode the more frequent values with a smaller number of bits, then we would
obtain a smaller average length for our DC sequence. Let us see this with a simple
example. Suppose that the random variable X can take 4 values that can be encoded
with 2 bits with probabilities shown in Table 3.1. The table also shows two possible
codes for the values of the variable, the first code consists on using the same number
of bits, in this case 2 bits, to encode each value. In the second code we choose to
use only 1 bit for the value with greater probability, 2 bits for the second value with
greater probability and 3 bits for the other 2 values. If we compute the average
length of the sequence for each code we obtain, for the first code L; = 2 and for the
second one

1 1 1 1
Lo=—--14+--2+—-" —-3=1.75.
27 3 + 1 + 3 3+ 3 3 75
X | pr | Code 1 |li(zg) | Code 2 | l5(xy)
x| 1/8 00 2 010 13
xo | 1/2 01 2 1 1
x3 | 1/8 10 2 011 3
xy | 1/4 11 2 00 2

Table 3.1: Random variable with 2 possible codes.

In order to compare the two codes we define the bit compression ratio.

Definition 3.3.1. Let X be a random variable taking values {z1, ..., x;} that can
be encoded using a maximum of m bits, 2™ = k, for each value and let L,, be the
average length for an alternative code for the values of the variable. We define the
bit compression ratio of the alternative code by

m
Cy, = I
In our example we obtain a bit compression ratio equal to
m 2
Cp=—=—=1.1428.
T L, 17

But now we could ask ourselves, how many bits do we need to encode these values?
There exists an answer to this question given by Information Theory. Its fundamen-
tal premise is that the generation of information can be modeled as a probabilistic
process that can be measured by the Shannon entropy.

Definition 3.3.2. Let X be a random variable that represents a source of ran-
dom information that can take values {xi,...,z;} with probabilities py, for all
k € {1,...,n}. The average information per source output, called the entropy of
the source, is given by

n 1 n
H =Y pilogy— == plog,p.
k=1 Pk k=1
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Observe that if the random variable takes one value with probability 1, then the
entropy value is H = 0, which means that no information is attributed to it because
there is no uncertainty associated to the source. Now, if we compute the entropy
for our example we get

1 1 1

1
H = —510g2§ — Zlog2

1 élog2 é — élogQ% = 1.75,

which coincides with the average length of the 2nd code in Table 3.1 we have used.
This means that we cannot compress more the sequence than we have already done.
Thus, in order to use this method we can approximate the probabilities p, for
k € {1,...,n} using the histogram of the DC sequence. To apply the Huffman
code to our sequence we have to rearrange the sequence of values (we call them
symbols) of the variable in descending order of probability. Now we add the last
two probabilities to obtain a new list of symbols in which the two last symbols of
the previous list become a new symbol in the new list with probability equal to the
sum of probabilities of the original symbols it comes from. We iterate the process
until we obtain a final list with only two symbols and we assign the code 1 to the
greater probability symbol and 0 to the other. Now, we step back to the previous
list, where there will be two symbols that lead to one of the symbols of the last
list with the code s. We assign to these symbols the codes 1s, to the symbol with
greater probability, and Os to the other. The process is iterated until we reach the
first list. For example, the code 2 shown in Table 3.1 is constructed in the following
way: firstly we rearrange the symbols for X as in Table 3.2, secondly we combine the
two last symbols x; and x3 into the symbol z;3 adding their probabilities to obtain
the list for the variable X;. Since the list for X, is already descending ordered by
probability we do not have to rearrange the symbols. Thirdly we combine the two
last symbols, x13 and x4 in list for X7, into the symbol xz4;3 in the list for the variable
X5, adding their probabilities. Finally, we have a list with only two symbols, x5 and
x413, with the same probability equal to 1/2, thus we do not need to change the
order of the symbols. Now we should choose the greatest probability symbol and
assign the code 0 to it and the code 1 to the other one. We choose x5 to codify with
the code 1 and w413 with 0 as it is shown in the seventh column (codel) of Table 3.2.

X | pr | Xi| p | Xo | pe | Codel | Code2 | Code3
o | 1/2 | xo | 1/2| xo | 1/2 1 1 1
g | /4] x4 | 1/4 | xg13 | 1/2 0 00 00
T ]_/8 13 ]_/4 - - - 01 010
g [ 1/8 ] - - - - - - 011

Table 3.2: Random variable with 2 possible codes.

Now, we look at the previous list, for variable X7, and we see that the symbol
413 came from the variables x4 and 13 both with the same probability equal to
1/4. Thus, we choose z4 to assign a 0 and 13 to assign a 1, therefore the codes for
x4 and z13 will be 00 and 01, respectively, where the first zero in each code comes
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Figure 3.15: Histogram of the quantized coefficients DC components of the DCT
blocks for gray scale Lenna’s image.

from the zero of the symbol x413. The results can be observed in column Code2 of
Table 3.2. In the last step, we jump back from column X; to column X and we see
that the variable x5 came from the variables z; and z3, again both with the same
probability, so we can choose any of them to assign the 1. We assign 0 to x; and
1 to x3, and therefore, the codes for z; and x3 will be 010 and 011, respectively.
The resulting code corresponds to the one shown in the last column in Table 3.2.
The original symbol sequence can be uniquely recovered from the coded bit stream
sequence.

Figure 3.15 shows the histogram of the quantized DCT coefficients for all the
blocks (left) and the histogram of the DC components (right) for Lenna’s gray image
that would be used to approximate the probabilities for the values of DC sequence
to encode using the Huffman code.

But, since the JPEG uses differential Huffman encoding, Figure 3.16 shows the
histogram (left) and the probability approximation obtained from this histogram
for the difference between the DC components where only the first one remains the
same. We notice that the high probabilities are around the zero value and the farther
the coefficient is from zero the smaller its probability is.

Now in Figure 3.17 we can see the length of the bit string assigned to each value
of the differential DC coefficients; we notice that coefficients with small probability
have greater lengths. We have not deleted the coefficients with zero probability
because they will not intervene in the computation of the average length of the
bit stream, since they will be multiplied by their probability and it is zero. In
Figure 3.17 (left) we observe averaged length of the bit sequence assigned to each
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Figure 3.16: Histogram of the differential DC coefficients (left) and their probabili-
ties (right).

Tl HHW "L;MWMwmﬁﬂwﬂ” Mmm

Figure 3.17: Number of bits assigned to each differential DC coefficient (left) and
their averaged lengths (right).

coefficient; if we add all these lengths then we will obtain the total number of bits
used in the compressed bit stream to encode the DC coefficients. This computation
gives us a total averaged length of 5.4705. Hence, we obtain a bit compression ratio
for the DC coefficients equal to

m 8

= ——— = 1.4624.
L., 54705 0

Cy =

Now, computing the experimental entropy for this sequence we get

u 1
Hpc =Y pilog, = 5.4373,

=1

which is very close to the average length L,, = 5.4705 we have obtained.

Finally, Figure 3.18 shows the total number of AC coefficients different from zero
for each one of the 4094 quantized DCT blocks of Lenna’s luminance. Hence, the
number of bits needed to encode each block using RLE will be doubled. Observe
that there are less than 30 coefficients different from zero in each block and hence
we will need less than 2 x 30 x 8 = 480 bits to encode each block, number to be
compared with the 64 x 8 = 252 bits for the standard codification. Figure 3.19
shows the bit compression ratio obtained using RLE to encode the AC coefficients
of each 8 x 8 pixels DCT block of Lenna’s image.
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Figure 3.20: Bit compression ratio for gray version of Lenna (left) and the mean
square error for the compressed image (right) as a function of the compression
parameter k.

Combining the compression obtained with the Huffman code for the DC compo-
nents and the one achieved using RLE for the AC coefficients we can compute the
total amount of compression for the whole image using the JPEG algorithm. The
total number of bits NV, needed to store the compressed image will be the sum of the
number of bits Npc used to encode the DC coefficients and the number Nyc used
for the AC coefficients

Ny, = Npc + Nac = 22407 4- 570304 = 592711,

obtaining in that way a bit compression ratio for Lenna’s image equal to

_ NyNy8 512x512x8

C
b N, 592711

= 3.5382,

where Ny = 512 and Ny, = 512 are the height and the width in pixels of the image,
respectively.

Figure 3.20 (left) shows the bit compression ratio obtained for the gray version of
Lenna’s image using JPEG compression with values of the compression parameter
from 1 to 20. We observe, as it was expected, that the compression increases for
larger values of k. In the right side of Figure 3.20 we can see the mean square error
for the compressed images as a function of the parameter k.

3.4 Conclusion

The JPEG standard for still image compression uses the DCT basis to describe the
image; this basis has the advantage to adapt well to images, but the disadvantage of
complete non-locality. To compensate this, JPEG uses partitions of 8 x8 blocks from
the image and encodes them separately. This procedure induces the appearance
of block artifacts in the compressed image that become more apparent when the
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compression parameter k£ increases. A lot of literature has appeared in order to
reduce this phenomenon when using JPEG compression, see for instance [14].

In order to achieve greater compression the algorithm uses the Run Length En-
coding for the AC coefficients of the DCT blocks and the Huffman entropy code for
the differential DC coefficients, but it is important to remark that the JPEG stan-
dard stores information data about the compression, such as the Huffman code used
for each symbol, in the headers of the file and therefore, the compressions computed
in the previous section will slightly diverge from the real ones because of this fact.
On the other hand the JPEG standard sometimes uses encoding Huffman tables
from statistics obtained using many images in order to avoid larger headings in the
files, but this implies that the compression for our image is not as nicely adapted as
it would be using our own Huffman codification.



Chapter 4

The JPEG 2000 standard image
format

4.1 Introduction

We have seen in the previous chapter how breaking an image into 8 x 8 blocks and
applying the DCT transform to each one independently produced artifacts in the
reconstructed image. This is one of the reasons the JPEG 2000 has been developed.
We will introduce now a second, but not less important argument. Suppose we are
on holidays and have our digital camera to take a lot of pictures that we save on our
memory card using the JPEG format. Since we are not very cautious we save the
pictures with high quality and when there are many days left to finish our travel we
have filled our memory card up. And we cannot buy another one! Therefore we have
to erase some pictures or sacrifice the future ones. Imagine how amazing it will be if
we could select some pictures and save them changing their quality in order to make
room for new images. This property, the possibility of changing the compression
ratio after compression, is known as scalability and it is one of the features provided
by the JPEG 2000 standard. Another application of scalability can be found in the
Internet. The pictures that we examine in a web browser are stored in a server and
they are downloaded from this server to our computer. When the picture has high
resolution, it has great size in the computer, the download speed cannot be enough
and it produces long delays in the visualization. In order to avoid that problem,
the web page owners usually save the images in the server with different resolutions
to deliver them through the net as the user requires more quality. This problem
can be solved using scalable image formats as JPEG 2000: since we can reconstruct
the image at different resolution/quality ratios from the compressed bit stream, we
do not need to store several copies of one image at different compression ratios, it
suffices to store one image with high quality and deliver parts of the bit stream
as the request for quality increases. Moreover, during the browsing the user can
specify a spatial region of interest in the image and only the part of the bit stream
corresponding to this region is downloaded in a progressive fashion so that a coarse
version of this region is firstly delivered very quickly and then refined by sending

o7
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Original Pre- Wavelet Quantizer Bit-plane Bitstream Compressed
— ] and Par- [— — >
Image Processing Transform oo Encoder Assembly Image

Figure 4.1: Diagram of the JPEG 2000 encoder.

more parts of its bit stream.

The development of JPEG 2000 was initiated in 1996, after the emerging of some
compression algorithms early in 1990 with better compression performance and new
features unseen before. After some technical contributions and the creation of some
verification models, the JPEG 2000 became an international standard in December
2000.

In order to avoid the appearance of artifacts JPEG 2000 uses a wavelet transform
with lifting implementation, as we will see in the next section, which has good
localization properties, to process greater blocks than JPEG’s. The wavelet also
provides the resolution scalability property. Another characteristic is that the blocks
processed in JPEG 2000 come from the wavelet domain instead of the space domain
and the Run Length Encoding used in JPEG is substituted by bit-plane codification,
which ensures the reconstruction of the image with graceful degradation from any
truncated point of the bit stream formed after the bit-plane encoding. Finally, the
compression is not produced by the quantification module, whose function is only
to convert float coefficients into integer coefficients, instead it is generated by the
bitstream assembly module and for that reason, only by reassembling the bitstream,
the JPEG 2000 compressed bitstream can be converted to a higher compressed one
without entropy coding and transform.

Figure 4.1 shows the operation flow for the JPEG 2000 algorithm that we will
describe in detail in the next sections.

4.2 Wavelet transform by lifting

We have seen in Lemma 2.3.4 that we can write the coefficients of any vector z €
(*(Zy) in a wavelet basis B = {Ropu} U { Roxv} as a convolution, given by

(2)p = (2% 0(0),z%0(2),..., 2% 0(N —2),zx0(0),z x u(2),...,zxu(N — 2)),

where (z)p is the vector in the wavelet basis B. Therefore, we can compute the
wavelet transform as two convolutions of the vector z with the vectors v and @
keeping only the coefficients with even indexes. This last operation is known as
decimating.

Definition 4.2.1. Let z € (*(Zy), N = 2M, M € Z. We define the downsampling
or decimation operator D : (*(Zy) — (?(Zy;) by

Dz(n) =2(2n), forn=0,1,...,M — 1.
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0 —| 2 ——D(zx*x0) —f 12 (— &«

Figure 4.2: Diagram of the wavelet transform using a filtering bank.

We will represent this operation in diagrams by | 2.

Definition 4.2.2. Let z € (*(Zy), N = 2M, M € Z. We define the upsampling
operator U : (%(Zyr) — (*(Zy) by

Uz(n) = z(n/2), if n is even,
B 0, if n is odd.

We will represent this operation in diagrams by 71 2.

Figure 4.2 shows the diagram for the wavelet transform of a vector z based
on filter banks. The first blocks represent the filtering using FIR (Finite Impulse
Response) filters with impulsive responses © and @, respectively. The output of these
filters is computed by convolution of the input vector with the impulse response of
the filter. The second blocks compute the downsampled vectors. Therefore, we
obtain the wavelet transform via filter banks,

(2)p = (D(z%0),D(z x@)).

z, but in general UoD(z) # z. Recall

Remark 4.2.3. Observe that Do U(z) =
= (—1)"2(n) and we have that

that in Lemma 2.3.6 we defined z*(n)
1 *
UoD(z) = §(Z+z ).

To reconstruct the original vector z we use the recovering filters ¢, s € (*(Zy)
which we need to find. The following lemma states the conditions for the filter bank
to have a perfect reconstruction of our vector.

Lemma 4.2.4. Let M € N, N = 2M and u,v,s,t € (*(Zy). Let A(n) be the system
matriz given by equation (2.9) for u and v. For all 2 € (*(Zy), we have a perfect
reconstruction in the filter bank of Figure 4.2 if and only if

s(n) Y _ (V2
a0 (G ) = (1)
Moreover, if A(n) is unitary, then t(n) = d(n) and §(n) = a(n). If A(n) is unitary
for alln, i.e., B = {Rogu} U{Roxv} is an orthonormal basis, then t = 0 and s = a.
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Proof. We have that Uo D(z%0) = £ (2%0-+(2x0)*) and U o D(z*a) = 3 (zxt+(z%a)*).
On the other hand,

USD(z » i)(n) = 5 (2(n)a(n) + 2(n + M)aln + 31))
and - 1 L -
UoD(zx0)(n) = 5(2(71)@(71) + Z2(n+ M)o(n+ M)).
Combining both expressions we get
(% U(D(z % 9)) + 5 % UD(z * ) [(n) = %f(n) (200)30m) + 2(n -+ MY3(n + 2
+ %§(n) (z(ma(n) + 5(n+ M)a(n + M))

By the Fourier inverse theorem (see Equation (2.2)) this expression has to be equal
to 2(n), for all n and for all z € (*(Zy), if we want to recover this vector. Therefore,

5(n) = n)( ()(n) + 2(n + M)i(n + M) (4.1)

Ja(n) + 2(n + M)a(n + M))
n) ( (m)i(n) + 3(m)a(n) )

2(n+ M) ( (n)a(n + M) + t(n)o(n + M)) .

\/
/N
N>
—
3

_|_
»>

1
2
_l’_
1
2

1
+_

M

This equation holds if and only if

~

t(n)o(n) + $(n)a(n) =2

and
3(n)a(n + M) +t(n)o(n+ M) = 0.

It is obvious that if the last two equations hold, then we recover z in equation (4.1).
Now, suppose that the equation (4.1) holds for all n and for all z € £?>(Zy). Suppose
that we fix n and choose z such that 2(n) = 1 and Z(n + M) = 0 then, substituting
these values in equation (4.1) we obtain that

i(n)i(n) + s(n)i(n) = 2.

If we consider now another vector z such that Z2(n) = 0 and 2(n + M) = 1, then we
obtain the second condition

s(n)a(n + M) +t(n)o(n + M) = 0.

If we divide by /2 and write these two conditions in matrix form we get

%(uﬁ(f)m 17(7?(47:)]\4) ) ( i§§§ ) :A(”)( <(Z>> ) - ( ?>

> >
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Now, if A(n) is unitary, A(n)A(n) = I, then
e () =7 ()
(i) 7@ () - i n ) (6)

Therefore, $(n) = 4(n) and £(n) = 9(n), and if A(n) is unitary for all n, applying
again the Fourier inverse theorem (Equation (2.2)) we obtain s =4 and t = v. [

and

S S

Remark 4.2.5. Observe that to reconstruct the original vector z using the filter
bank in Figure 4.2 we do not need to impose the matrix A(n) to be unitary, i.e. the
basis does not need to be orthogonal, so we are in a more general case that generalizes
the orthogonal wavelets, that we will deal with below, called bi-orthogonal wavelets.

We have shown how to implement a first-stage wavelet transform using a bank
of filters, where the vector u carries information about the low frequencies and the
vector v about the high frequencies. Now we can apply the technique of bank of
filters to obtain more refined scales of frequencies by iterating this process. If N is
divisible by 4 we can apply the same type of filter to y; = D(z* @) and x1 = D(z*70)
to obtain a more refined scale in frequency domain, resulting in yo = D(y; * 4 ) and
xo = D(z1 % v1), where the filters uy, vy € (*(Zyy2). If N is divisible by 27 we can
repeat this process up to p times. Usually the iteration process is only applied to
the vector resulting from the lowpass filter.

Definition 4.2.6. Let N € N be divisible by 27, p € N. A p-th stage wavelet filter
is a sequence {uy, vy, us, va, ..., Uy, vy} such that, for each [ = 1,2,...,p, w,v €
(*(Zy/p-1) and the system matrix

_ y(n) tu(n)
Ailn) = ( a(n+N/2D) By(n+ N/2D)
is unitary, for all n = 0,1,..., N/2! — 1. If 2 € (*(Zy), the output of the p-th filter

bank is the set of vectors {x1,xs, ..., %y, Yy} given by

r = D(Z * ’51),

y1 = D(z % qy),

X = D(xl_l * IN)Z),

= D(yi—1 * @),

forall 1 =2,3,...,p.

Figure 4.3 shows a diagram of this construction for a second stage wavelet trans-
form. The output of the low-pass filter y; is filtered again to produce the low
frequency version, s, of the input data and a high frequency output .
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Figure 4.3: Diagram of 2 stage wavelet transform using a filtering bank.

Figure 4.4: Ramp signal and its Daubechies D6 wavelet transform.

4.2.1 Bi-orthogonal scaling filters

We have seen, in JPEG compression standard, that given an image we transform
it using some change of basis and then we apply a quantization scheme. This
procedure is typical in image processing. When the transformation is orthogonal,
it can be shown that the error in the quantized of the transformed coefficients is
the same as the error between the original image and the compressed one. But
orthogonal transformation also have disadvantages. In lossless image compression
the quantization step is omitted and we need to use a transform that maps integers to
integers. Although it is possible to modify an orthogonal transform to do such task,
it is easier to use another class of wavelets, bi-orthogonal wavelets, that sacrifices the
orthogonality but are much easier to adapt to map integers to integers. A second
problem is similar to the explained when we talked about the DCT transform. Recall
that the wavelet transform is a change of basis and it can be expressed as a product
of a matrix Wy, the change of basis matrix, by our image. Since the matrix is
formed by the basis vectors v and v shifted, we produce wrappings in the rows of
the matrix which induce problems in many applications. Let us see it in the same
example we used for the DCT. We consider the ramp vector z = (z(k)), C (*(Zy),
where z(k) = k, and we compute its wavelet transform using a Daubechies D6
wavelet. In Figure 4.4 we see the ramp vector (left) and the resulting transform
(right). We can observe how the wrapping rows have an undesirable effect on the
boundary of the signal.
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This result can also be improved by using bi-orthogonal wavelets. The main idea
is to renounce to the orthogonality of the basis, that gave us a way to produce a
fast inversion of the transform, and substitute it by bi-orthogonality, i.e., we will
look for two pair of filters (%, ?) and (3,t), instead of one, with matrices of change

of basis Wy and Wy, respectively, such that WJQI =Wl ie,
WyWh =1.

Historically, the research about wavelets using filter banks has been developed
using other techniques rather than Fourier transforms, in particular, the z-transform
is a frequently used tool. For this reason, we are going to continue this analysis from
this tool. We have already mentioned the concept of Finite Impulse Response Filter,
that is characterized by its finite impulse response. Now we are going to define its
z-transform.

Definition 4.2.7. A filter h is a linear time invariant operator completely defined
by its impulse response {k(n) : n € Z}. The filter has finite response if only a finite
number of the coefficients h(n) are different from zero, i.e., h € (*(Zy), for some
N € Z. Let p = min{n € Z : h(n) # 0} and ¢ = max{n € Z : h(n) # 0}, the
z-transform of the filter h is a Laurent polynomial given by

H(z)=> h(n)z"".

The degree of the Laurent polynomial is defined by |h| = ¢ — p. Hence, the length
of the filter h will be |h| + 1.

Remark 4.2.8. 1. The degree of the Laurent polynomial z? is zero.
2. We set the degree of the 0 polynomial as —oo.

3. The set of Laurent polynomials with the sum and the product has a ring struc-
ture. In this ring the division with remainder is possible, but not necessarily
unique.

Definition 4.2.9. The set of 2 x 2 matrices of Laurent polynomials is denoted by
M (2; Rz, z7Y]). This set has a ring structure. If the determinant is a monomial, then
the matrix is invertible. The set of invertible 2 x 2 matrices of Laurent polynomials is
denoted by GL(2;R[z, 27']). A matrix M € GL(2;R[z,27]) is unitary if M(z)~! =
M(z"hHT.

Proposition 4.2.10. Let @,9,5,t € (*(Zy) be the impulse responses of the FIR
filters of Figure 4.2 with real coefficients. If the z-transforms of the filters satisfy

T()V (2 )+ S(2)U(z) =2

and

S(z)U(—z_l) + T(z)f/(—z_l) =0,

then we will have a perfect reconstruction of the input vector.
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Proof. First observe that the discrete Fourier transform can be recovered from the
z-transform by substituting z = e2™"/N:

N-1 N-1
@(n> _ U(k)e—Qm'kn/N — Z U(l{:)z_k = V<Z>|Z:e2m'n/N .
k=0 k=0 z=e2min/N

It is enough to prove that the conditions in the proposition imply the conditions for
perfect reconstruction

t(n)o(n) + §(n)u(n) = 2
and

s(n)a(n + M) +t(n)o(n+ M) = 0.

Now, since the analysis filters have impulse responses u and v, we have to relate
their Fourier transforms with the Fourier transforms of v and v. Recall that o(n) =
v(—n) = v(N —n). Then, we claim that

In fact,
N-1 N—1 Nl
5(71) = Z f)(k:)e—QTFink/N _ Zme—Qﬂink/N _ Zme‘z”i”w—j)ﬂ\’
k=0 0 g
N-1 N1
= me%rinj/N = Z U(j)e—27rinj/N _ m
j=0 j=0

Therefore, 5(n) = 9(n). Now, since the filter coefficients are real, i.e., v(n) = v(n),
we have that

N-1 N-1 N-1 .
D(n) = (k) 2mkn/N =3 " 5(k)e* N =N " 5(k)e N = V(27| paminn
k=0 k=0 k=0

Therefore, if we substitute z = e?™/N in

we get
T(e27rin/N)f/<€727rin/N) + S(€Q7rin/N)[7(6727rin/N) _ 2,

which is the same as
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For the other condition we have

_ N-1 N-1
tn+M)=0(n+ M) = @(k,)627ri(n+M)k/N _ Z 6(k)e2m‘(n+N/2)k/N
k=0 k=0
N-1 N-1
— @(k)eQﬂlnk/N(—]_)k _ 7j(kj)(6—27rin/N)—k:(_1>lg
k=0 k=0
N—-1 B
— ﬁ(k)( 672mn/N)fk _ V(—Zﬁl)’ i
k=0

Similarly, we obtain an analogous result for @(n 4+ M) = U(—2"1)|,_ 2nin/~. There-

fore, substituting z = e*™/V in the equation
SU(—2z N+ T(2)V(-2"1) =0

we obtain the second condition for perfect reconstruction

~

t(n)o(n+ M)+ s(n)a(n + M) = 0.

Definition 4.2.11. The modulation matrix M(z) is given by

w-(38 53)

and the dual modulation matrix M (2) is

With this definition, now the conditions for perfect reconstruction can be written
in matrix form as

M(zHTM(z) = 2I,
where [ is the 2 x 2 identity matrix.

Remark 4.2.12. Observe that for FIR filters M, M € GL(2;R[z,z7Y), ie., they
are invertible.

Definition 4.2.13. Given a filter h, its polyphase representation is given by
H(z) = H(2%) + 2 H,(2?),

where
Ho(z) =) h(2k)z™" and Hy(z) =Y h(2k+1)z"".

keZ keZ
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Observe that H(z?) = Y., h(2k)z~?* corresponds to the z-transform of the
even coefficients of the filter and H,(2%) = >, ., h(2k + 1)272%F = 237, ., h(2k +
1)z~ @1 corresponds to the contribution of the odd coefficients. Therefore, we can
recover H.(z) and H,(z) from H(z)

H(z)+ H(—=) H(z)— H(—=2)
2 2271

Now we can write the outputs, after the subsampling operations, for the lowpass
filter and the highpass filter represented in Figure 4.2 as

H,(2%) = and  H,(2*) =

(2) + 27U, (2) Xo(2),
(2) + 27 Vo (2) X, (2),

Yi(z) = Ue(2)

U.(2) X,
Yi(x) = Ve(2) Xe

where x € (*(Zy) is the input vector, X (z) is its z-transform and Y;(z) and Y,(2)

are the low frequency and high frequency outputs, respectively. These expressions
can be written in matrix form as

Yi(z) _ [ZE(Z) (ZO(Z> Xe(2)
Ya(2) Ve(z) Vo(z) )\ 27 Xo(2) )
The output  of the synthesis filter (right part of Figure 4.2) can be computed by
%)\ _(Se) T ) ()
2X,(2) So(2) To(2) Yi(z) )
Definition 4.2.14. Given the bank of filters of Figure 4.2, its polyphase matrix is
given by

Observe that

and
~ 1~ 1 =z
T L
P(z*%) —2]\/_/(2)(1 —z)'
Now the perfect reconstruction conditions can be expressed in terms of the polyphase
matrices as
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$2 — Yi(2) — H2—
(n P(=Y)T P(2) ) #(n)
2 {42 — Yi(2)— S )

Figure 4.5: Polyphase representation of the wavelet transform.

P(z)P(z")" = 1.

This last condition implies that det P(z) and det P(z)~! are both Laurent polyno-
mials, and this is possible only if both are monomials, i.e., det P(z) = C;z! and
det P(2)7! = Cy2*. We can assume without loss of generality that det P(z) = 1, if
not, we always can rescale the filter T'(z) to obtain this result. So, we have trans-
formed the problem of finding the FIR wavelet transform into the problem of finding
a polyphase matrix P(z) with determinant one. Once we obtain P(z), the filters
can be found by the relation

P(2)P(z"HT =1,

which implies

(R (R ie)-(e )

Using that det P(z) = 1 and the Kramer’s rule we solve the system to obtain

U= | o 1) | =T T =] 51 =8
Oe) = || i) | =T T =| 519 1| =50
And finally, N N N
U(z) = Us(2?) + 27 1UL(2%) = =2 'T(—27h)
and

V(z) = Vo(2?) + 27 W, (%) = =z 18(=271).

Figure 4.5 shows the wavelet transform operations in terms of the polyphase
matrices. We first decimate the input vector and then compute the outputs of
the lowpass (Y;) and highpass (Y}) filters by multiplying by the polyphase matrix
If’(z*l)T, where the block with a z inside performs a product of the z-transform of
the entry by z, producing a shift to the right of one position in the input vector
in the space domain. So in the branch below, when we decimate the vector, we
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keep the values at odd indexes because of the shift. The block with the z=! label
produces tho opposite effect, it shifts the vector one position to the left, so at the
end we join the even and the odd samples of the vector. Observe that using this
scheme we perform the subsampling before filtering, i.e. we subsample and after we
convolve, this represents a great saving in computation if we compare it with the
previous method, where we first filtered (convolved) and after that we decimated.
So we were throwing away half of the coefficients after computing them.
Using the polyphase matrices we can factor the wavelet filter into lifting steps.

Definition 4.2.15. A filter pair (s,¢) is complementary if the polyphase matrix
P(z) has determinant one. If the filter pair (s,t) is complementary also it is the
filter (@, ).

Theorem 4.2.16. (Lifting theorem) Let (s,t) be a complementary pair filters. A
filter t"°V is complementary to s if and only if

TV (2) = T(2) + S(2) (),
where H(z) is a Laurent polynomial.

Proof. We prove only the if part that is what we need. We can compute the
polyphase components of S(z)H (z?):

(SIH(). = 5(SEH(EPP) +S(— ) H((—)?)
= S(SGEYH() + S(~2)H(2)) = S()H(2),
(SEH(E)), = 52 (SEH((M)?) — S(—2)H((—)?)
= S S H(E) — (-2 H(2)) = S,()H(z).

Then, the new polyphase matrix will be

new( y _ [ Se(z) TP(2) \ _ [ Se(z) Te(z)+ Se(2)H(z)
P (z) = ( S,(2) Thew(z) ) = ( S,(2) To(z)—i—SO(z)H(z)>

:P(z)(é ng) )

And det P*V(z) = det P = 1. O

The new dual polyphase matrix will be

Prv(z) = B(2) ( - H(lzl) ! ) .
We have that

=P()P(zH =1



69 Chapter 4. The JPEG 2000 standard image format

Hence with the lifting we have a new filter e given by
U™ (z) = U(z) — V(2)H(z72).

Theorem 4.2.17. (Dual Lifting theorem) Let (s,t) be a complementary pair filters.
A filter s™V is complementary to t if and only if

§"(2) = S(2) + T(2)G(2?),
where G(z) is a Laurent polynomial.

There is a whole family of wavelets constructed using a dual lifting step and
a normal lifting step (see [7]). Now, by iterating the process we can factorize the
polyphase matrix into a sequence of lifting steps and we can write the polyphase
matrix using this theorem

Theorem 4.2.18. Let (s,t) be a complementary filter pair. Then there ezist con-
stants K1, Ky # 0, an integer m > 0 and Laurent polynomials H; and G;, for
t=1,...,m, such that

ro= (5 G ™) (el 1)

=1

The lifting wavelet can be directly inversed by
o (1K, 0 . 10 1 —H(z)
P()™ = ( 0 1/K, 11 —Gy(z) 1 0 1 '

4.3 Bi-orthogonal 9-7 wavelet and Boundary Ex-
tensions

The JPEG 2000 standard uses, by default, the bi-orthogonal 9-7 wavelet. This
is a 4-stage lifting wavelet implemented with a 9-coefficient analysis filter and a
T-coefficient synthesis filter. Starting from the analysis filter we can obtain the
synthesis one and the apply the lifting scheme to perform the transform of the input
data. Let

u = (u(—4),u(=3),u(—2),u(—1),u(0),u(1),u(2), u(3),u(d)) € (*(Zy)

be the analysis filter, with u(n) = u(—n), for all n = 1,2,3,4. The coefficients for
this filter can be found in [6] and are given by

(0.602949018236,  if n =0,
0.266864118443,  if n = +1,

u(n) = { —0.078223266529, if n = +2,
—0.016864118443, if n = 43,

0.026748757411,  if n = %4,
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Then B
Ue(2) = u(0) +u(2)(z 4+ 271 + u(4)(z* + 272
and B

Up(2) = u(1)(z 4+ 1) +u3)(z* + 271).
Now, (76 and (76 have to be relatively prime because det P(z) = 1. Hence, we
can apply the Euclidean algorithm for Laurent Polynomials in order to obtain a
factorization. The algorithm goes as follows: first we set ag(z) = Ue(z) and by(z) =
U,(z). Observe that |ag| > |bo(z)|. Next we divide to obtain ag(z) = bo(2)qo(2) +
ro(z), where |ro(z)| < |bo(2)|, and we set a1(z) = by(z) and by (2) = ro(2z). We iterate
the process and in the i-th step we obtain

ai41(2) = bi41(2)i1(2) + 1i1(2),  [riga(2)] < |biga(2)]-

The process ends at the step n+ 1, when we obtain |r,(z)| = 0. Then, a,(z) will be
the greatest common divisor of ag(z) and by(z). Finally, we can write

()10 ()

where a,(z) is a monomial due to the fact that [76 and (76 have to be relatively
prime. After applying the algorithm to our filter, we get

ap(2) = w(4)2* + u(2)z +u(0) +u(2)z7* +u(4)z 7",

bo(2) = u(3)2* + u(1)z + u(l) + u(3)z7 1,
qo(z) = a(l+27Y),
ro(2) = w1z + wo + wy,
where )
= w3 wo = u(0) — 2au(l), w; = u(2) —u(4) —au(1).

In the second iterate we have

ai(2) = u(3)2” + u(1)z +u(l) + u(3):"",

where 5
b= w, do = u(1) — u(3) — bwy.
w1
In the third iterate we get
as(z) = w1z + wy + wy,
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where

And in the last step

ag(Z) = doZ + do,
bg(Z) = Wqo — 2?1)1,
q3(z) = d(1+ z2),
r3(z) =0,
where J
d= EO, K= Wy — 211)1

Now, we can write

=[5 Lk 2[4 94

'[d(liz) ?][Io( 1/0K}’

and therefore
Hi(z)=az'+a, Gi(z)=bzt+b Hyz)=cz'+c, Goz)=dz"+d,

where a,b,c,d € R are lifting parameters at each stage. Hence, using these filters
we could obtain the complementary filter of U(z), V(z), and the pair of filters S(z)
and T (z). Now we are going to show how to implement this transform via the lifting
scheme. In order to simplify let us suppose first that our input vector has an infinite
length o = (..., 2o, 21,...,28,...).

Figure 4.6 shows the scheme to implement the lifting. First we separate the
input vector into two vectors, the first one containing the values for even indexes,
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Figure 4.7: Inverse bi-orthogonal 9-7 wavelet.

z(2n), and the second one with the values for the odd indexes, z(2n + 1), for all
n € Z. At each lifting step we will update only one of this sequences, for instance
at the first stage only the odd indexes vector is modified in order to obtain

' (2n+1) = 2(2n + 1) + a(z(2n) + 2(2n + 2)), (4.2)

which corresponds to the filter H;(z). In the second stage we update the vector
with even indexes using the output of the first stage

23(2n) = z(2n) + b(z'(2n + 1) + 2'(2n — 1)), (4.3)

where the superscripts stand for the number of the stage. For the third and fourth
stages we obtain

P2n+1) =21 (2n + 1) + c(2*(2n) + 2°(2n + 2)),
z*(2n) = 2%(2n) +d(2*(2n — 1) + 23(2n + 1)).

The coefficients y;(n) = 24(2n) correspond to the lowpass filter and the coefficients
yn(n) = 23(2n+1) to the highpass filter. The parameters of the lifting stage wavelet

are
a=—1.586, b= —0.052, c¢=0.883, d=0.444.

So, we can write
yi(n) = 2*(2n) = 22(2n) +d(@*(2n—1) + 2 (2n+1)) = 2°(2n) +d(yn(n— 1) +yu(n)),
and we can find z%(2n) from the outputs
2*(2n) = yi(n) — d(yn(n — 1) + ya(n)).

Therefore, we can inverse the lifting wavelet transform just using the scheme shown
in Figure 4.7.
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Figure 4.8: Symmetrical boundary extension for the bi-orthogonal 9-7 wavelet on 4
data points.

Now we will approach the boundary problem. Images are represented by finite
matrices, so we have to deal with the boundary of the vectors in a special way. For
instance, if the vector has infinite length, we have that

22(2n) = z(2n) + b(z'(2n + 1) + 2'(2n — 1)),

and for n = 0,
2%(0) = 2(0) + b(z' (1) + z'(~1)),

with
vt (—1) = z(—1) + a(x(—2) + 2(0)).

But if the vector is finite in length, x € (*(Zy), x(n) is not defined for n < 0 or
n > N. So we have to extend it in order to apply equations (4.2) and (4.3). Since
the bi-orthogonal 9-7 wavelet is symmetrical and has an odd number of coefficients,
we can apply a symmetrical extension to the data. Then, we define

z(—n) =z(n), z(n+ N)=1z(N —n),

form=1,...,N.

We can observe in Figure 4.8 how the symmetrical extension affects to the co-
efficients lying in the boundary, doubling the contribution of certain weights. For
instance,

2%(0) = z(0) + 2bx'(1).

Hence, due to the symmetry we do not need to extend the data, we just only need
to double the weights for the points that are in the boundary.

This method is computationally faster than the fast matrix multiplication using
the FFT, which has N log N complexity, while from Figure 4.8 we see that the lifting
scheme uses % products in each column of the scheme and, since there are only 4
columns, the number of products is 4- % = 2N, resulting in a linear complexity. The
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Figure 4.9: 9-7 lifting wavelet transform for Lenna’s gray image: transforms on
columns (left) and final result (right).

lifting scheme also has the advantage of being easy to modify in order to construct
an integer to integer map used in the lossless compression.

In order to apply this scheme to an image we proceed in the same fashion as in
Chapter 2, we first apply the wavelet in the vertical direction and, after that, we
apply it separately in the horizontal direction. This is called a 2D separable wavelet
transform. Although it is possible to produce a 2D non-separable wavelet transform,
its benefits are not worth comparing with its computational cost. Figure 4.9 shows
the results of applying this wavelet to Lenna’s gray image. We first transform the
horizontal components to obtain a version of the image filtered in two subbands (left
side of Figure 4.9), a horizontal low and a horizontal high frequencies subbands. Next
we filter again the resulting image in the vertical direction to get four subbands (right
side of Figure 4.9), the low horizontal and low vertical frequency subband (LL), the
the low horizontal and high vertical frequency subband (LH), the high horizontal
and low vertical frequency subband (HL) and the high horizontal and high vertical
frequency subband (HH).

In Table 4.1 we can observe the computation times used by the bi-orthogonal
9-7 wavelet implemented via the lifting scheme and the Daubechies’ D6 using the
fast FFT to compute the convolutions for images of different sizes. Notice that for
large images the improvement of the lifting scheme is considerable.

4.4 Quantization and partitioning

After applying the wavelet transform the coefficients obtained are quantized in a
similar way as in the JPEG.
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Height | Width | Time (DWT Bi-orthogonal 9-7) | Time (Daubechies D6)
128 128 0.410736 0.228973
256 256 0.411890 0.326355
480 400 0.446673 0.553753
512 512 0.528403 0.696883
1024 1024 0.844290 1.662423

Table 4.1: Comparison between the computation times (in seconds) of the lifting
scheme and the fast matrix product for different images with different sizes.

Definition 4.4.1. Let y € ¢*(Zy) be the vector of transformed coefficients. Then
the quantized coefficients are given by

q(k) = sign(y(k)) {Lﬁ)w , forall k=1,... N,

where |z| represents the largest integer that is less than or equal to x and § is a
scale parameter called the step size of the quantizer.

Recall that in the JPEG algorithm the quantization operation introduces a com-
pression in the image via the parameter § because many coefficients become zero
and they are neglected. In JPEG 2000, the parameter ¢ does not determine the
compression ratio, instead it is given by the subsequent bitstream assembler. The
default scale parameter in JPEG 2000 is 6 = 1/128. Hence, the main function of
the quantization module is to map the float coefficients into integers in order to be
efficiently processed by the entropy encoder.

After quantization the image is partitioned, the subbands HL, LH and HH are
divided into non-overlapping rectangles of the same size. The rectangles from the
same spatial region in each subband form a packet.

Definition 4.4.2. Let ¢ € (*(Zyxn) be the quantized coefficients after wavelet
transform of an image at a certain stage [ > 1 and let m,n € N be integers such
that m divides M and n divides N. Suppose that we partition each subband HL,
LH and HH into p = & rectangles, Ry, R}, and R}, for 0 < j < p, such that
Ry, MR, =0, R, ,NRE, =0and R}, NRY, =0, for all j # k. Then the j-th
packet is given by

P;=R,, UR, UR,,, forall 0<j<p.

Observe that each packet provides spatial locality information because it contains
information needed for decoding the image at a certain spatial region at a certain
resolution level.

Definition 4.4.3. Let P = Ry, U Ry U Ry be a packet at a certain resolution
level with Ryr, Rrg, Rgn € (?(Zap <) and let m,n € N be integers such that m
divides M’ and n divides N’. Then we can partition the packet into rectangles of
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Figure 4.10: Lenna packet for the first resolution level and its 12 code-blocks.

equal size by dividing each rectangle Ry, Rig, Rppy into p = 24 . N# rectangles of

size 2= x X204, C y, Clyyy, for 0 < j < p, such that

n

Ryp = \Clhy, ChpNChp=0, forallk#j, jk=1,...p,
Rig =U_Cly, CipnCiyp=0, forallk#j, jk=1,..p,
Ryy = uﬁ-’:lCi,H, CﬂH NCYy =0, forallk#34, 4 k=1,...p.

Each one of these rectangles is called a code-block.

The code-blocks are the fundamental objects for the entropy encoder, in JPEG
2000 the standard size for the code-blocks is 64 x 64. In Figure 4.10 we can observe
the wavelet transform for Lenna’s image and one packet, draw with thick black line,
of the first level resolution. We can see that the packet is formed by three rectangles,
one in each subband HL, LH and HH. Each rectangle of the packet is further divided
into four rectangles, the code-blocks of the packet, numbered from 0 to 11.

Observe that since the image has dimension 512 x 512, this packet contains the
coefficients in the transform domain located in the zone (0,127) x (255,255) that
corresponds to the spatial region given by the coordinates in the image (0,255) X
(511, 511).

4.5 Entropy coding
After obtaining all the code-blocks, each one is encoded separately. The coefficients

of a code-block are transform into binary code. Hence, if we need n + 1 bits to
represent the range of the quantized coefficients, then a quantized coefficient ¢ will
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be represented by a sequence of n bits b = {bj}?:_& C {0, 1}™, where by will be the
most significant bit and b,,_; the least significant bit, indicating the magnitude or
the modulus of the coefficient, plus a bit b, for the sign of the coefficient.

104 |75 |11] 5 | =3
2| =116 |-5]—-4| 3 | -1
-5 4 |-3]0|-2|-2] -3
3 1 -3 0 1 | -3 —-12
8 2 | —-1]-1|1 0 | 14
-7113|-6] 0 |—-4] 0 0
6| 8 | -3|—-2|-4,-1] O
-9 4 2 | —-6|-1]|-5| 3

Table 4.2: 8 coefficient array.

Table 4.2 shows the coefficients of an 8 x 8 code-block and in Table 4.3 we see
the binary representation for the coefficients of the first column of the block.

w || by | by | ba | b3 | by | b5 | bg | Sign
10[oJofof1[[o]1]0] +
—2JofJofofojo]|1]]0] —
—5JojoJofof1[]Jo]1] —
3JojJojoJofJof1][1] +
g JojojJof1[]JoJOo]O] +
—7oJoJofJof1][1]1] —
—6/0Jo]ofJo[1][1]O0] -
—9JojoJof1[JoJo]1] —

Table 4.3: Binary representation of coefficients.

Repeating the process with the coefficients of the other columns of the code-block
we will obtain similar tables to Table 4.3, concatenating these tables with Table 4.3
in the third dimension we will get a cube. If we fix p € {0,...,n — 1} and we
take in the cube a plane containing all the bits with significance level p for all the
coefficients, then we will have constructed a bit-plane of significance level p.

Definition 4.5.1. Given a quantized coefficient vector ¢ € (?(Zy;xn) we will rep-
resent the sign of the coefficients as X = sign(q) and their magnitudes as v = |q|,
ie., X(i,j) =sign(q(i, 7)) and v(i, j) = |q(i,7)|, forall 0 <i < M and 0 < 7 < N.

Definition 4.5.2. Given a quantized coefficient vector ¢ € ¢*(Zy;xn) Wwith magni-
tude v € %(Zyrxn), we will denote by

o = L%J € (Znrn)

the vector of values formed by dropping p least significance bits from each component
of the vector v = v°, and v, will denote the vector of least significant bits of v?,
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ie., v,(7,5) € {0,1} is the least significant bit of v*(7, ), for all 0 < i < M and
0<j<N.

Definition 4.5.3. Let q € (*(Zy«n) be the coefficients of a code-block of size
M x N and v € (*(Zyrxn) as defined above. The bit-plane of significance level p
for this code-block is given by the set

SP = {uv,(i,j) € {0,1}, 0<i<M—1, 0<j<N-—1}.

Definition 4.5.4. Let b, € {0,1} be the p least significant bit of a coefficient
w € R to be encoded. If b; = 0, for all 0 < j < p, we say that the coefficient
w is insignificant (if the bitstream is terminated at this point or before, then the
coefficient will be reconstructed to zero) and we say that the bit b, will be encoded
in mode of significance identification. Otherwise, the coefficient w is said to be
significant and the bit b, is encoded in the mode of refinement.

The distinction of modes for encoding is useful for the entropy encoder. Recall
that entropy encoders work with distributions of probability and observe that the
bits laying in the mode of significance identification have greater probability to be
zero than to be one. On the other hand, the bits on the refinement mode will
take the values 0 and 1 with the same probability. We can observe in Table 4.3
the boundary, vertical line, that determines if a bit will belong to the significance
identification mode or to the refinement mode. For instance, for the coefficient
w = 10 the significance mode bits are the set {bg, b1, b2, b3} and the refinement mode
is formed by the bits {b4, b5, bg}. Hence, the quantized coefficients of the code-block
are encoded one bit at a time starting with the most significant bit and proceeding to
the least significant bit. In this way, we will encode the bits of the same significance
level for all the coefficients of the code-block at the same time, i.e., we process all the
bit-plane corresponding to the significance level of the bits. When the coefficient we
are encoding becomes significant, i.e. we get the first non-zero bit, the sign must be
encoded. As it happens with the DCT transform, the Discrete Wavelet Transform
packs most of the energy in the LL subband, hence it is reasonable to expect the
coefficients of the other subbands to be small and, therefore, there will be many
zeroes in the significance identification mode when we encode these coefficients. So,
the earlier bit-planes will be formed by many zeroes, and therefore they will contain
little information. In order to exploit this redundancy in the bit-planes, the JPEG
2000 uses an efficient coding called context-based adaptive binary arithmetic coding.

4.5.1 Context labeling

It turns out that the probability distribution of a bit in a quantized coefficient is
not independent from all the previous bits in the same coefficient as well as the
value of its immediate neighbors. In order to exploit this redundancy, JPEG 2000
uses a context to estimate the probability of a bit in a coefficient. This context is
constructed from the current significance of the bit as well as the significance state
of its vertical, horizontal and diagonal neighbors.
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Definition 4.5.5. Let ¢(i,j) € R, 0 < i < M and 0 < j < N, be a quantized
coefficient and let v(i, 7) € R be its value after dropping the p least significant bits.
Then, the significance of the coefficient is given by

iy {1 T P>
0- /I/’ - . .
J 0, if wP(i,j) =0,

forall0 <i< M and 0 < j < N.

In order to simplify we will use the notion of binary significance state o (i, j) that
will assume the value of o?(i, 7), where p is the most recent least significant bit for
which information of the sample ¢(4,7) has been coded up to that point. At the
beginning, we will set o(i,7) = 0 for all coefficients in the code-block and we will
change the state to o(i,j) = 1 after finding the first bit different from zero in the
coefficient. Immediately after that we will code the sign of the coefficient. Hence we
will identify the modes of coding by the value of o (i, j), if o(i,j) = 0 we will code
v, (7, j) in the significance mode, the sign will be coded in the sign mode and when
o(i,j) =1, v,(i, 7) will be coded in the refinement mode.

Definition 4.5.6. Let ¢(i,7) € R be a quantized coefficient of a code-block and let
o(i,7) be its binary significance state. We define the quantities

K'(i,j) = o(i,j— 1) +o(i,j + 1),
K(i, ) = (i — 1,5) + (i + 1, ),

ki, 5) Z Zal+k1,j+/€2)7

=41 ko==1

as the number of horizontal, vertical and diagonal coefficient neighbors of the coef-
ficient, respectively, that have a binary significance state equal 1.

The coefficients which lie beyond the boundaries of the code-block are considered
as insignificant for the purpose of constructing these quantities.

Definition 4.5.7. Let v,(4,j) € {0,1} be the p least significant bit in a quantized
coefficient of a code-block of one of the subbands LL, HL, LH or HH, belonging
to the significance mode. Let s, k¥ and x? be its number of neighbors in the
horizontal, vertical, and diagonal directions, respectively, defined above. Then, the
context label £*9(i, j) € {0,1,...,8} is given by the values in Table 4.4.

Although the values in Table 4.4 come from empirically studies and the need
for simple and efficient implementations using both software and hardware, we can
present a qualitative interpretation for them.

In Figure 4.11 we can observe a test pattern image (left) and its bi-orthogonal 9-7
wavelet transform (left), with its subbands LL (top, left), HL (top, right), LH (bot-
tom, left) and HH (bottom, right). If we are coding a coefficient in the LH (vertically
high-pass) subband, then the rapid variations in the horizontal direction are killed
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LH and LL subband HL subband HH subband
th KV lid Hsig Iih KV :‘id Ksig :‘ih 4+ K Iid Hsig
2 X X 8 X 2 X 8 >3 X 8
1 1 >1] x 7 >111 X 7 2 >1| 7
1 0O |>1| 6 0 1 [>1| 6 2 0 6
1 0 0 5 0 1 0 5 1 >2| 5
1 2 X 4 2 0 X 4 1 1 4
0 1 X 3 1 0 X 3 1 0 3
0 0 [>2| 2 0 0| >2] 2 0 >2| 2
0 0 1 1 0 0 1 1 0 1 1
0 0 0 0 0 0 0 0 0 0 0

Table 4.4: Context for significance identification encoding.

by the filter, as we can observe in Figure 4.11 (right), and the significant coefficients
will mostly derive from the horizontally oriented features in the image. Accordingly,
horizontal neighbors are considered most indicative of the current coefficient sig-
nificance. After the horizontal neighbors, the vertical neighbors are considered the
most important indicators of significance and the diagonal neighbors are considered
if at most one of the four diagonal neighbors is already significant. If the code-block
belongs to the HL. subband the argument is the same interchanging the roles of the
horizontal and vertical neighbors. For a code-block in the HH subband we expect
to encounter diagonal features emphasized, as we can observe in Figure 4.11 (right),
and therefore we consider more relevant the significances of the diagonal neighbors
and in a second plane the sum of significances in vertical and horizontal neighbors.

Notice that the significance information of the eight neighbors used to compute
the context label depends on the order of codification of the bits. It may well happen
that if we are coding the bit v,(, j) of a coeflicient, four of the neighbors have been
coded until the p 4 1 least significant coefficient and we have no information about
the p-th least bits for these coefficients. Hence, we must use the binary significance
at the bit-plane p 4 1 for these neighbors.

We also must point out that sometimes a run length mode is also used to encode
multiple insignificant coefficients using just a single binary symbol, see [17].

After the coefficient becomes significant, the sign is coded used a context since
it turns out that the signs of neighbor coefficients present statistical redundancy.
JPEG2000 employs 5 different contexts for the sign.

Definition 4.5.8. Given a coefficient ¢(i, j) € R in a code-block of size M x N with
sign X (i,7), for all 0 <i < M and 0 < j < N, we define the quantities

XMi,5) =X(i,5 — Do(i,j— 1)+ X, + Do(i,j + 1),
X(i,j)=X(G@—1,5)o(i—1,7)+X(GE+1,7)o(i+1,5),

representing the net sign bias of the horizontal and vertical neighbors, respectively.
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Figure 4.11: Test pattern image (left) and its 9-7 bi-orthogonal wavelet transform
(right).

These quantities take values between -2 and 2, resulting in 25 neighbor configura-
tions. But it is reasonable to assume that the conditional distribution of X' (4, j) given
a determined neighborhood is identical to the conditional distribution of —X'(i, )
given a determined neighborhood in which the signs of all neighbors are flipped. In
this way, the 25 different configurations become 13 different configurations, which
can be reduced to 5 by truncating the horizontal and vertical biases to the range -1
through 1.

Definition 4.5.9. Given a coefficient ¢(i, j) € R in a code-block of size M x N with
sign X (7,j), for all 0 <i < M and 0 < j < N, we define the quantities

X"(i,j) = sign(X"(i, ) min(1, | X" (i, j)]),
X' (i, ) = sign(X"(i, 7)) min(1, [X"(i, 1)),

representing the truncated sign bias of the horizontal and vertical neighbors, respec-
tively.

Definition 4.5.10. Given a quantized coefficient ¢(7,j) in a code-block, its sign
context label, x%8* € {10,11, 12, 13,14}, and the sign-flipping factor, X € {—1,1},
are given in Table 4.5. The single binary symbol coded with respect to context x8%
is given by

0, if X(i,j)Xhr =1,
SR X (i, )X = —1.

Y

Finally, we attempt to explain the codification in the refinement mode. This
mode is applied to code the bit v,(7, j) when the coefficient has become significant,
i.e., oP™1(i, j) = 1. Here we refine the coarser approximation ¢”*' (i, j) to a finer one
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?h > sign | yflip
1 1 14 1
1 0 13 1
1 -1 12 1
0 1 11 1
0 0 10 1
0 -1 11 -1
-1 1 12 -1

-1 0 13 -1

-1 ] -1 14 -1

Table 4.5: Context for sign mode encoding.

¢ (i,7). It turns out that the conditional probability distribution of the bits in the
refinement mode given a a coarser representation of the coefficient, fy,|gr+1 (v,lgPth),
is independent of the sign of the coefficient, fy, g+ (v,1|gP™) > 1/2 for all ¢P*!,
and fy,qr+1(vp|¢Pt!) & 1/2, for large |¢”™!|. Therefore, it is convenient to condition
the coding of v,(i, j) upon the value of vP*!(7, j) when vP*1(4, j) is small.

Definition 4.5.11. Given an approximation v?(, j) of a quantized coefficient ¢(3, j)
in a code-block. If o(i,j) = oP(i,7), we define the delayed significance state
7 (i) = o (i, 5).

When the coefficient becomes significant, (i, j) is changed to 1, but ?(i, J)
remains 0 until the first magnitude refinement bit has been coded. After that,
% (i,7) is toggled to 1. In fact, 7 (i,7) = 1 is an indicator that informs us that
VP17, 7) > 2, we already know that vP1(z, j) > 0, because we are in the refinement
mode for v,(i, j).

Definition 4.5.12. Given a the p-th least significant bit v, (4, j) in a quantized co-
efficient ¢(, j) in a code-block, which belongs to the refinement mode, its refinement
context label, k™ € {15,16, 17} is given in Table 4.6.

G (i) | - [ e
0 [0 [ 15
0 [>0] 16
1 X 17

Table 4.6: Context for refinement mode encoding.

Remark 4.5.13. The 18 different contexts described above define 18 probability
models that are few enough to be maintained in the high speed registers of a ma-
chine for a hardware implementation. These are the standard JPEG2000 contexts,
but the algorithm permits several mode variations in order to adapt to different
implementation requirements as parallelism of high bit-rates (see [17]).
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4.5.2 Arithmetic coding and the Elias coder

After assigning a context label to each bit we obtain a bit vector accompanied by a
context label vector indicating that the bits within the same context are independent
and identically distributed. The entropy coder has the task to convert this bit-
context pair sequence in a bit-stream with a length as close to the Shannon’s limit as
possible. There are a great variety of coders to perform this task and the selected for
the JPEG2000 standard is the MQ-coder. In order to explain its operation, we start
by the Elias coder. Although this coder is not practical as it needs infinite arithmetic
precision, it is very useful in order to demonstrate how easily it approximates to the
entropy rate of a random source.

Let y € (*(Zy) be a random vector, with y(n) € {0,1}, for all n = 1,..., N.
Suppose that the probabilities p, = P(y(n) = 0) are known for all n = 1,..., N.
This last assumption is, in general, false and here the context labeling explained
above plays its role.

Definition 4.5.14. We define the n-th interval of probability [c,, ¢, + a,) € [0, 1)
associated to the bit sequence y € (*(Zy) as co = 0 and ag = 1, if n = 0, and for
n >0

c _{ Cn—1, if y(n)
" Cn—1 + Qp—1 * (1 - pn)7 if y(n>

. — an—l(l - pn)a if y(n) = 07
" (p—1Pn, if y(n) = 1.

0,
1

Y

This definition shows how, for each bit y(n) in the sequence, the previous prob-
ability interval [c,_1,¢n,_1 + a,_1) is divided into two disjoint intervals [c, 1, ¢, 1 +
an-1- (1 —p,)) and [c,—1 + an_1 - (1 — pn), 1 + an_1), choosing the first one, if
y(n) = 0, and the second one whenever y(n) = 1.

Proposition 4.5.15. Let y; € (*(Zy) and yo € (*(Zy) be two different sequences
of bits of the same length N. Let [c,,cn, +ay) and [c), ¢, +al), foralln=1,... N,

n’n

be their n-th probability interval, respectively. Then

L [enyen+an)Nc,c,+a,) =10, forallm=1,...,N,

n’-n

2. UN_len,en+ay) =UN_ [, c +a)=[0,1),

n’-n

3. Ap = P(y(1)> o ay(n)) - H?:l(pi]l{y(i)z()} + (1 - pz)]l{y(z)zl})

From the first claim of the proposition we see that any vector y € ¢*(Zy) of bits
can be uniquely identified by any number in the interval [cy,cn + ay). From the
third part we see that the length of the n-th probability interval gives the probability
of the subsequence y(1),...,y(n). Let us see how it woks with an example.

Example 4.5.16. Consider the sequence y = {0,1,1,0,1, ...} with the same prob-
ability for each bit p, = P(y(n) = 0) = 1, for all n. We start with the interval
[0,1) and, since p; = 1/4, we divide it into two intervals [0,1) = [0,1/4) U [1/4,1).
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Since y(1) = 0, we select the first subinterval, [c1,¢; + a1) = [0,1/4). Hence,
¢ =cy=0anda; =ag-p; =1-1/4 =1/4. Now, we again divide the actual interval
[0,1/4) = [0,1/4%) U [1/42,1/4), choosing the second subinterval because y(2) = 1.
Hence, [co,co + ao) = [1/4%,1/4), obtaining ay = 1/4 — 1/4*> = 3/4%. Observe
that ap = P(y(1) = 0,y(1) =1) = - 3 = 2. For the next bit we get [1/4%,1/4) =
[1/4%7/4%)U[7/4%,1/4), and since y(3) = 1 we chose [c3, c3+az) = [7/43,1/4), where
az = 1/4-3/4-3/4 = 9/43. Finally, [7/43,1/4) = [7/43,37/4*)U[37 /4%, 1/4), and since
y(4) = 0, we select [cy4, cq+ayq) = [7/43,37/4%), with ag = 1/4-3/4-3/4-1/4 = 9/4%.

Suppose that we apply this coding to a sequence of N bits. Then, as we said
before, the vector y € ¢*(Zy) can be recovered from any number in the interval
[en, ey + an). Since the interval has length ay, it must contain at least one Ly bit
fraction of the form

0. bbbbbbbb,
—_—
Ly
where Ly is any integer such that 27X¥ < a. Therefore, the number of bits needed
to represent the vector is

Ly =~ —logy(ay),

which is very close to the entropy of the source associated to the vector. Recall that
ay is the probability of occurrence of the sequence y = (y(1),...,y(N)), ay = P(y),
and its entropy is given by

=— > Py, y(N)}ogy(P{(y(1). ..., y(N)}).

There is a problem in the method explained above since we do not know a priori the
length Ly needed to encode the sequence. Thus we need to provide a mechanism
to signal this length and take into account the number of bits used by this method
for the final bit count in compression. Usually a large number N of bits is coded
in order to neglect the signaling cost. Nevertheless there is a termination policy in
Elias coding that avoids the need for signaling. If N is the number of bits of the
sequence we can code it with

Ly = [—logy(an)] + 1,

where [x] indicates the smallest integer which is larger than =. Thus, we have

2_LN S ay.

DO | —

Let ¢y be the quantity formed by taking only the first Ly bits of ¢y and adding 1
to the least significant bit position

cN = 2_LN \_2LNCN + 1J > CN-
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Then observe that éy +275V < ey +2-271% < ¢y +ay. Thus, if a decoder receives
a sequence of bits which agrees with ¢y in the first Ly bit positions, then processing
this sequence as a binary fraction with value r we obtain

ey < ey <r<éy+27I <en+oan.

So, since r € [cn,cn + ay), it uniquely identifies the original sequence of N bits
(VRS 62 (ZN)

Suppose now that we encode sequences of N bits to form a bit-stream concate-
nating several of these sequences. Let L% represent the length of the k-th coded

sequence, for k = 0,1,... Then the decoder receives a fraction bit sequence () of
the form
O = 0. bbbbbbbh ccccccce . . .
—_—
LY Ly

The decoder first estimates the probability interval [¢%;, ¢} +a%;) and determines the
length LY, after that it computes the new bit fraction sequence, r"), by eliminating
the first LY, bits, i.e.,

(N = 0. pbbbbbbh cecccecc . . .
—_—— ——

Ly Ly
and it finds the next probability interval [ck;, ck, +a};) and the length L}, and so on.
In this way, the lengths L% do not need to be transmitted and the average bit-rate

L] = B~ logy(ax) + 11] = H(y) + 5

We see that as IV goes to infinity the bit-rate approaches to the ideal limit.

It turns out that the Elias coding is impractical because it involves arithmetic
operations whose precision is comparable to the number of code bits. Nevertheless,
applying several modifications we can derive an algorithm which approaches to the
ideal bit-rate limit and involves fixed, finite arithmetic precision for arbitrarily large
values of N. On the other hand, the Elias code has the important property of being
“Incrementally decodable”, i.e., given r € [en, cy + ay) we can decode the prefixes
(y(0),...,y(n)), forn=1,2,..., N, one by one because r € [¢,, ¢, +a,). This leads
to a recursive algorithm for incrementally decoding the source outputs.

4.5.3 Arithmetic coding and the MQ-coder

Although the Elias coder requires infinite arithmetic precision operations and it
cannot be practically implemented, it can be modified to obtain a finite arithmetic
precision coder. This requires to make a choice about the fixed-precision repre-
sentation of the interval and devise a renormalization rule for the interval in order
to maintain it within the bounds allowed by the fixed-precision representation (see
[13]). We observe that the amplitude interval A becomes very small at each itera-
tion and it allows us to normalize the coding interval parameters C' and A in the
following way
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where L is a normalization factor which determines the magnitude of the interval
A, C, and A, are fixed-point integers representing magnitudes in (0.0, 1.5) and
(0.75,1.5), respectively. The bit sequence kiks ...k are the output bits that are
already determined. In this way it is possible to use a fixed-point arithmetic and
normalization operations for the probability interval subdivision task. Since the
value of A, is close to 1.0, we can approximate the value A - P; with P; and then the
interval sub-division operation in Definition 4.5.14 can be reduced to

Ca(n) = ca(n—1),  az(n) = az(n — 1) —p(n), if y(n) =0,
{ Cm<n_ 1)+ax<n_ 1) —p(n), az(n> :p(n), if y(n) L.

These operations can be computed quickly without any multiplication. This
method requires that the interval length A and the code string (pointer to the
interval to decode the sequence) are periodically normalized in order to maintain A
within its range (0.75,1.5). Since we are making approximations the compression
performance may be affected a little bit because of the use of the fixed-point integer
coding interval instead of the real one, and the change of a; - p; by p;. However,
experimental studies show that the degradation in compression performance is less
than 3% and it is well worth the saving in computational complexity (see [11]).

4.5.4 Probability estimation

As we have seen the arithmetic coder uses the probability of zero (or one) of each bit.
So, we need to estimate these probabilities because we do not know the statistics of
the source (image). In context technique we suppose that each the symbols in the
same context are independent and identically distributed (i.i.d.), so we can estimate
the probability p(i) of the bit y(i) to be one from the number of bits, n, in the same
context of the bit y(i) and the number of bits with value one, ny, in this context,
using the Bayesian rule
N T+ 1
p(i) = n+2°
The MQ-coder uses state transition machines to estimate the probability of the con-
text more efficiently by taking into consideration the non-stationary characteristics
of the symbol sequence.

4.5.5 Coding order: Sub-bitplane entropy coder

In JPEG2000 the embedded bit-stream may be truncated at any point, thus the
coding order of the bit-planes and inside each bit-plane is very important in order
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to achieve little distortion. A non-optimal coding order leads to miss important
information and produces great levels of distortion at the moment of truncating the
bit-stream at some critical points. It turns out [12] that the optimal encoding order
is to encode those bits with the steepest rate-distortion slope, i.e., the largest coding
distortion decrease per bit spent.

Suppose that we have n bit-planes and that we are processing the ¢-th most
significant one. Let us consider a bit b; € {0, 1} in this bit-plane in the refinement
mode. Then, supposing that the bit takes the value 1 with probability 1/2, before
coding the bit the uncertainty interval of the coefficient will be [c, c+2"") and after
the the codification the coefficient will lie either in [c,c +2"7"1) or [c + 2" L ¢ +
2"~=1) Since the bit has the same probability to be 0 than to be 1, the entropy of
the refinement bit will be

R, = 1 bit.

Now, if we assume that the value of the coefficient is uniformly distributed in the
intervals, then the expected distortion before and after coding will be given by

1 cH2n—t . g
Dref,before = %/C (ZL‘ —C— 2n_z_1)2d5[‘ = T7

1 c2n—i—1 e gn—i-1
Dt pfter = m/c (x —c—2 )dr = T

and the slope for the rate-distortion curve will be given by

Spef = Dref,before - Dref,after _ 471—2' _ 4n—i—1
e Ryet 12 12
If the bit b; in the ¢-th bit-plane is in the significance mode, before the coding of the
bit the uncertainty interval for the coefficient will be [-2"~¢ 2"~%) and after codifica-
tion, if the bit becomes significant, the coefficient will lie either on [—27~¢ —2n=¢"1)
or [2n~~1 2n~1) depending on its sign. If the bit continues being insignificant, then
after codification the coefficient will lie on the interval [—2"~¢~1 27~=1) and it will
not affect to the distortion because the coefficient will still be zero. If we assume
that the probability that the coefficient becomes significant is p, then the average

number of bits to encode the significant identification can calculated as

_ 4n—i—2

Rgg = —plogyp — (1 —p)logy(1 —p) +p-1= H(p) + p,

where H(p) = —plogyp — (1 — p)logy(1 — p) and the last term p is due to the
codification of the sign bit when the coefficient becomes significant. Assuming again
a uniform distribution for the coefficient in the uncertainty intervals we can compute
the distortion before and after encoding the bit that becomes significant as

Dsig,before - Dsig,after =p- 2.25 - 4n—i’
and the rate-distortion slope is

Dsig,before - Dsig,after b 2.25- 4 9- gn—i-l
Ssig = = - .
¢ Ry H(p)+p  1+H(p)/p
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As it was expected we have that sge > Syef and therefore the conclusion is that we
must encode the significant bits in the bit-plane before the refinement bits of the
same bit-plane.

Remark 4.5.17. Within the same coding category (significance identification/ re-
finement), one more significance bit-plane translates into 4 times more contribution
in distortion decrease per coding bit spent. Therefore, the code-block should be
coded bit-plane by bit-plane, starting by the most significant ones.

Remark 4.5.18. Within the same bit-plane, we should encode the significance
identification bits with a higher probability to become significant.

Remark 4.5.19. Within the same bit-plane, the significance identification bits with
a probability of becoming significant higher than 0.01 should be encoded earlier than
the refinement bits. It has been observed that the insignificant coefficients with no
significant coefficients in its neighborhood have a probability of becoming significant
below 0.01, while insignificant coefficients with at least one significant coefficient
neighbor usually have greater significance probabilities.

As a consequence, the JPEG 2000 entropy coder encodes a code-block bit-plane
by bit-plane from the most significant bit-plane to the least significant one. Within
each bit-plane the bit array is subdivided into three sub-bitplanes: the predicted
significance (PS), the refinement (REF) | and the predicted insignificance (PN).
The next example illustrates the block-coding process in JPEG 2000.

Example 4.5.20. Suppose that we have the coefficients shown in Table 4.7. The
coder starts by the most significant bit-plane b;. At first all the coefficients are
insignificant and they belong to the PN sub-bitplane. Whenever a bit ‘1’ is found
the sign of the coefficient is immediately encoded after the coding of the bit. The
information about the already coded bits and the sign of the significant coefficients
allow us to determine an interval within each coefficient lies and we can approximate
the value of these coefficients by the middle value of their respective intervals. In
Table 4.8 we can observe how we have coded the most significant bit-plane b; and
the sign of the coefficient w;, we can also find the range within the coefficient lies
and its approximated value at this moment. As we proceed with the coding the
uncertainty ranges shrink and the reconstruction values of the coefficients become
more precise.

After coding the most significant bit-plane we proceed with the PS sub-bitplane
of the second most significant bit-plane, b,. The PS sub-bitplane consists on the bits
of the coefficients that are not significant but has at least one significant neighbor.
In our case these bits will correspond to the coefficients wg and w,. Since the bit of
the coefficient wy = 45 has value ‘1" we proceed to encode its sign. Figure 4.9 shows
the results with the range for each coefficient and its predicted value.

In the next step the refinement (REF) sub-bitplane of the bit-plane bs is encoded,
so we code the bits of the coefficients that are already significant; in our example
the unique coefficient of this characteristics is wy, so we code the bit of w; in the
bit-plane b,. We can observe the results in Table 4.10.
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w b1 bg b3 b4 b5 b6 b7 Slgn
Bwy) [0[1]0 |1 [1][0]1]| +
4w [1]0]O0[1]0]1]0] —
2M(ws) |O| O] L][O[1[0]1]| +
Uws) O[O0 [1 [T |1]0]
—Awy) OJO]O]O[LT[0]O0] —
—WBws)J0]0[1]0o]0o]L]0] =
Aws) O[O0 JO[1][0]0] +
1wy JoJo[o[o]0ol0]| 1] -

Table 4.7: Binary representation of coefficients.

w b1 | by | bg | by | bs | be | by | Sign Range | Value
45 0 [-64,63) 0
-74 11 — | [-128,-64) | -96
21 0 [-64,63) 0
14 || 0 [-64,63) 0
—4 {0 [-64,63) 0
—18 | 0 [-64,63) 0
4 0 [-64,63) 0
-1 10 [-64,63) 0

Table 4.8: Bit plane b; coding.

To finish with the bit-plane by, the PN sub-bitplane is processed. The rest of bits
from the bit-plane b,, bits of the coefficients which are not significant, are coded and
have no significant neighbors. The sign is also coded when a bit with value ‘17 is
found. In Table 4.11 we can observe the results; now all bits in by are encoded and
their ranges have changed.

To finish the process we repeat the previous steps in the next bit-planes. We start
coding ordered the PS, REF and PN sub-bitplanes for each bit-plane and coding the
sign of the coefficients when we find a ‘1’ for the first time in a coefficient, which will
become significant. The entropy coder continues until all the bit-planes are coded
or until certain criteria is satisfied, e.g., we have reached the desired coding rate
or quality. The output bit-stream has the embedded property, so if the bit-stream
is truncated the more significant bits will be recovered and an estimate for each
coefficient can be obtained within the uncertainty ranges.

4.5.6 Bitstream assembler

Let i be the index of a code-block. When the entropy coder constructs the code-
block bitstream it also computes the coding rate Rf and distortion D at the end
of each sub-bitplane, where k is the index of the sub-bitplane in the bit-plane 1.
The bitstream assembler module determines the truncation points n;, i =0,..., M,
in the bit-stream of each code-block 7 in order to achieve a minimum distortion in
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w by | by | bg | by | bs | bg | by | Sign Range | Value
45 011 + (32,63) 48
—74 | 1 — | [-128,-64) | -96
21 01]0 [-32,31) 0

14 | 0 [-64,63) 0
—4 |0 [-64,63) 0
—18 | 0 [-64,63) 0

4 0 [-64,63) 0
-1 10 [-64,63) 0

Table 4.9: Bit plane by coding PS.

w bl bg b3 b4 b5 b6 b7 Slgl’l Range Value
501 T | [3263) | 48
7410 — | [-96,-64) | -80
21 [ 00 [32,31) | 0
4 |0 [64.63) | O
40 [64.63) | 0
—18 | 0 [64,63) | 0
1[0 [64,63) | 0
10 [64,63) | 0

Table 4.10: Bit plane by coding (REF).

the image provided a rate compression constrain B. Thus, the bitstream assembler
solves the minimization problem

{min Y. DM, (4.4)

SR <B.

In order to solve this problem we can proceed by distributing bits first to the code-
blocks with the steepest distortion-rate spend.

Definition 4.5.21. Let i be the index of a code-block which has m; sub-bitplanes.
Let n; > 0 be the actual truncation point for this code-block (n; = 0 indicates that
the corresponding bit-stream is truncated at the beginning and therefore, it has its
maximal distortion). The maximum possible gain of distortion decrease per rate
spent is called rate-distortion slope for this code-block and is given by

DY — DF
S; = max ———.
k>n; R;Ll — R,lf

If this code-block is truncated at this moment, the new truncation point is given by

new DZLZ B Df



91 Chapter 4. The JPEG 2000 standard image format

g
o~
S
o
V]

bs | by | bs | bg | by | Sign | Range | Value

5 o1 T | [3263) | 48
7410 — | -96,-64) | -80
21 [[0 0 [32,31) | 0
14 [0]o0 [32,31) | 0
—4 0o [32,31) | 0
—18]0 o0 [32,31) | 0
4 oo [32,31) | 0
“10ofo0 [32,31) | 0

Table 4.11: Bit plane by coding (PN).

Proposition 4.5.22. Let n; and n*" be the previous truncation point and the new
truncation point of the bitstream of the code-block i, respectively. If we add R;" —

R?;ww bits to the final bitstream, then we obtain a distortion decrease of D} — D;"

Moreover, if i is a code-block with the mazimum rate-distortion slope, i.e., S; > 5;,
for all j # 1, then

new

D} — D;"
is the mazimum distortion decrease achievable by spending R — R??w bits.

Hence, the algorithm consists on initialize the truncating points n; = 0, for
all code-blocks, and compute their rate-distortion slope, S;, for each code-block,
choosing the one with the maximum slope and actualizing its new truncating point
to nj*V. The bits in this code-block until the truncating point are send to the
bitstream assembler and we repeat the process until we obtain the desired rate B.

Figure 4.12 (left) shows the Rate-distortion curve for the bit-plane in Exam-
ple 4.5.20 where each point in the graph corresponds to a truncating point for the
bit-plane bitstream and coincides with the end coding of a sub-bitplane. The dis-
tortion has been computed as the mean square error between the coefficients w and
the approximated coefficients @* at the truncating point %,

1 .
D* = k= 4]
where w, W% € (?(Zy).

This algorithm is highly time-consuming and the process is speeded up by using
an alternative method that starts by computing the convex hull of the R-D slope
for each code-block 7 as follows:

1. Determine the set S = {k € N : k truncating point},
2. Set p =0,
3. For k=1,23,... If k€ S, then compute

DI Dt
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25r

Figure 4.12: Rate-distortion curve for bit-plane in Example 4.5.20 (blue) and the
same curve with its convex hull (red).

If p > 0and SF > S? then set S = S\{p} and go to step 2. Otherwise, set
p = k and repeat step 3.

In Figure 4.12 we can see the convex hull computed for the bit-plane in Exam-
ple 4.5.20. We can observe how the use of the convex hull permits to avoid several
truncating points. Once we have computed the convex hull for each code-block, the
optimization is performed by searching a global slope A, such that the rate constrain
B is satisfied, and determine the truncating point n; for each code-block i as

n; = arg ml?x{Sf > A}

Finally, putting all bitstreams of all code-blocks together we obtain an optimal
compressed bitstream satisfying the restriction given by equation (4.4).

It is possible to construct a compressed image bitstream with progressive qual-
ity improvement property, so that we may gradually improve the quality of the
received image just by sending more bitstreams. We just set different rate points
By, Bs, ..., B, and determine the different slopes Ai, Ag, ..., \, associated to each
rate point and their corresponding code-block bitstreams. A typical sample rate
point set is given by {0.0625,0.125,0.5,1.0,2.0} bpp (bits per pixel), that for an im-
age of size 512 x 512 corresponds to compressed bitstreams of sizes 2k, 4k, 8k, 16k,
32k and 64k bytes, respectively. Thus, the process begins by calculating the first
global slope \; associated to the first rate point B; and obtaining the truncating
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point n] for the bitstream of each code-block ¢ using this slope. The bitstreams of
these code-blocks of one resolution level at one spatial location are grouped into a
packet. All packets containing the first bitstreams of some code-blocks determine
the first layer representing the first quality increment of the entire image at full
resolution. After that, the second global slope Ay related to the rate point B, is
computed, the second truncating points n? are determined for all code-blocks and
the second resolution level bitstreams are formed by the bits compressed between
the points n} and n? of the bitstream of each code-block i. We again assemble these
bitstreams of the code-blocks into packets. The process is iterated until we obtain

n layers of bitstreams, giving the full resolution image.






Chapter 5

Comparison between JPEG and
JPEG 2000

In this chapter we present a comparison between the two compression algorithms,
JPEG and JPEG 2000, we have introduced in chapters 3 and 4. We have applied
both algorithms to four gray scale images shown in Figure 5.1 with different com-
pression ratios obtaining images with rates of 0.0615, 0.125, 0.25, 0.5, 1, and 2 bpp
(bits per pixel).

We have used a simple JPEG 2000 algorithm implemented using Matlab to obtain
the compressed images. The algorithm applies a bi-orthogonal 9-7 wavelet transform
to the images and uses an MQ-coder to compress the bit-stream coming from each
processed code-block of size 64 x 64 samples. The discrete wavelet transform has
been applied up to three scale levels in order to obtain the lower bit-rate of 0.0625
bpp. Figure 5.2 shows the result obtained applying both algorithms to Lenna’s
image for requesting rates of 0.0625, 0.125, and 0.25. The JPEG 2000 images at
different rates have been obtained from the same bit-stream truncating each code
block at different points depending on the bit-rate required. This is an example of
the scalability feature of the JPEG 2000 standard. In the JPEG case, the different
bit-rates have been produced applying the algorithm each time to the image varying
the compression parameter k. Note that at a low bit-rate, 0.0625 bpp for instance,
the artifacts appear in the JPEG format, while the JPEG 2000 image is free of them.
We can also observe the improvement in the quality of the image while the bit-rate
increases.

Figure 5.3 shows the recovered images from JPEG 2000 at bit-rates 0.5, 1, and
2 bpp. We cannot appreciate any difference between the images and, in fact, there
are no differences, they are equal. We do not show the results for the JPEG because
in our simple version of the algorithm it is difficult to control the bit-rate because
the compression is determined by the value of the compression parameter k used in
the quantization stage. In fact, the bit-rates for the JPEG images in all figures are
a little bigger than those of the JPEG 2000.

In Figure 5.4 we can observe the results for the chronometer image. Again the
results using the JPEG 2000 algorithm are better than JPEG’s ones, at least for

95
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Figure 5.1: Images used for comparison: Lenna, Bike, Chronometer and Pattern.
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Figure 5.2: Lenna’s image compressed using JPEG 2000 (left) and JPEG (right) at
rates 0.0625 (up), 0.125 (middle), and 0.25 (down).
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Figure 5.3: Lenna’s image compressed using JPEG 2000 at rates 0.5 (left), 1 (mid-
dle), and 2 (right).

q'b/<>/> .j

Figure 5.4: Chronometer image compressed using JPEG 2000 (up) and JPEG
(down) at rates 0.0625 (left), 0.125 (middle), and 0.5 (right).



99 Chapter 5. Comparison between JPEG and JPEG 2000

Figure 5.5: Difference between the above first and third images in Figure 5.4.

low bit-rates. Observe that in the JPEG 2000 results we cannot distinguish any
difference between the images, but in Figure 5.5 we can see the difference between
the first (0.0625 bpp) and the third (0.5 bpp) images.

Figure 5.6 shows the results for the Bike image. This image forms part of the
test imagery used in the evaluation of the JPEG 2000 standard. We can see how for
the 0.0626 bpp and 0.125 bpp bit-rates the JPEG 2000 shows better results than
the JPEG. At 0.25 bpp the results seem to be very similar.

For the last image we can see the results in Figure 5.7. This image contains text
and bars and the results, in this case, are very similar, but in Figure 5.8 we can
observe the distortion measured for both standards as a function of the bit-rate and
the results are better in JPEG 2000.

Finally, we compute the distortion between the original images and the recovered
images using both algorithms for different bit-rates. The error d between the original
image x and the reconstructed image & is computed as

i = ﬁ ;;@:(z‘,j) — (i, ),

where M and N are the dimensions of the image. Figures 5.9 and 5.10 show the
results for the images of Lenna and the Bike, respectively. In blue we can observe
the distortion between the JPEG 2000 reconstructed image while the red curve
represents the error using the JPEG standard. Notice how JPEG 2000 improves the
results of JPEG.
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Figure 5.6: Bike image compressed using JPEG 2000 (left) and JPEG (right) at

rates 0.0625 (up), 0.125 (middle), and 0.25 (down).
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Figure 5.7: Pattern image compressed using JPEG 2000 (left) and JPEG (right) at
rates 0.125 (up), 0.25 (middle), and 0.5 (down).
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Figure 5.8: Error between the original test pattern image and the reconstructed
image using JPEG (red) and JPEG2000 (blue) as a function of the bit-rate.
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Figure 5.9: Error between the original Lenna image and the reconstructed image
using JPEG (red) and JPEG2000 (blue) as a function of the bit-rate.

Figure 5.10: Error between the original Bike image and the reconstructed image
using JPEG (red) and JPEG2000 (blue) as a function of the bit-rate.
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We have shown how the JPEG 2000 standard improves the results of the JPEG
algorithm and that it enriches the standard with several very useful characteristics
as scalability. We have implemented a simple version of the JPEG 2000 algorithm
using Matlab such that it constructs an embedding bit-stream. Hence, from this
unique bit-stream we can extract versions of the original image at different bit-rates
with different resolutions and qualities improving gradually their quality just by
extracting more bits from the last truncation point of the suitable code-blocks in
the bit-stream. In this way we obtain images with the least quality degradation
given a fixed bit-rate.






Appendix A

Matlab Algorithms

A.1 JPEG implementation

function [recImg, error]=jpegColor(imgName, k)
img2=imread (imgName) ;
img=im2double (img2)*255;

s=size(img);
s2=size(s);

recImg = img;

if (s2(2)==3)
% RGB Components

R=img(:,:,1);
G=img(:,:,2);
B=img(:,:,3);

% Compute luminance Y and chrominances Cr and Cb
Y=0.299%R + 0.587+G + 0.114%B;

Cb = -0.1687*R-0.3313*G+0.5%¥B+128;

Cr = 0.5%R-0.4187*G-0.0813*B+128;

% JPEG Compression for luminance
[recImgLum,qMat]=jpegl (Y,k,0);

figure;

subplot(1,2,1);imshow(Y/255) ;title(’Original Luminance’);
subplot(1,2,2);imshow(recImglum/255) ;title(’Compressed Lum’);
% JPEG Compression for red chrominance
[recImgCr,qMat]=jpegl(Cr,k,1);

figure;
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subplot(1,2,1);imshow(Cr/255) ;
title(’0Original red Chrom’);
subplot(1,2,2) ;imshow(recImgCr/255) ;
title(’Compressed red Chrom’);

% JPEG Compression for blue chrominance
[recImgCb,gMat]=jpegl(Cb,k,1);
figure;
subplot(1,2,1);imshow(Cb/255) ;
title(’Original blue Chrominance’);
subplot(1,2,2);imshow(recImgCb/255) ;
title(’Compressed blue Chrominance’);

% Recover the compressed values for RGB
Rl=recImgLum+1.40210* (recImgCr-128) ;

Gl=recImgLum-0.34414*(recImgCb-128)-0.71414* (recImgCr-128);

Bl=recImglum + 1.77180%(recImgCb-128);

figure;

subplot(1,3,1);imshow(R1/255);title(’Compressed Red’);
subplot(1,3,2);imshow(G1/255) ;title(’Compressed Green’);
subplot(1,3,3);imshow(B1/255) ;title(’Compressed Blue’);

recImg(:,:,1) = R1;

recImg(:,:,2) = Gi;
recImg(:,:,3) = Bi;

else
[recImg,qMat]=jpegl(img,k,0);

end

figure;

subplot(1,2,1);imshow(img/255) ;
subplot(1,2,2);imshow(recImg/255, [0,1]);

% Mean quadratic error
error = sum(sum((img-recImg)."2))/(s(1)*s(2));

% Example
% [jpegImg,error]=jpegColor(’lenna.jpg’,1);

function [recImg,qMat]=jpegl(img,k,color)

s=size(img);
M=s(1);
N=s(2);

nRowBk = M/8;
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nColBk = N/8;
gMat=zeros(M,N) ;
recImg=zeros(M,N);

for j=1:nRowBk
for r=1:nColBk
block = img((j-1)*8+1:j*8, (r-1)*8+1:r*8);
[B,gB,dctB]=jpegBlock(block,k,color);
gqMat ((j-1)*8+1:j*8, (r-1)*8+1:r*8)=qB;
hrecImg((j-1)*8+1:j*8, (r-1)*8+1:r*8)=B/255;
recImg((j-1)*8+1:j*8, (r-1)*8+1:r*8)=B,;
%imshow(B) ;
end
end
hfigure;
%hsubplot(1,2,1);imshow(gMat);
%hsubplot(1,2,2);imshow(recImg) ;

hlrecImg,qMat]=jpegl(y,1.0);
oo 1o 6 1o s ToTo o o o To o To o o To o o o ToToTo o o To o o o Jo To T o o JoJo o o o To T o o o To o o o ToFo o o o

% Performs the jpeg compression on a 8x8 image block
b

Yoo oo oo o To o ToToTo o ToToToTo oo o 1o oo oo o o o o o o o o o o o o T o T oo oo o oo oo
function [B,gB,dctB]=jpegBlock(B,k,color)

% Quantization matrix for luminance
Ql= [16 11 10 16 24 40 51 61;

12 12 14 19 26 58 60 55;

14 13 16 24 40 57 69 56;

14 17 22 29 51 87 80 62;

18 22 37 56 68 109 103 77,

24 35 55 64 81 104 113 92;

49 64 78 87 103 121 120 101;

72 92 95 98 112 100 103 99];

% Quantization matrix for chrominances
Qc= [17 18 24 47 99 99 99 99;

18 21 26 66 99 99 99 99;

24 26 56 99 99 99 99 99;

47 66 99 99 99 99 99 99;

99 99 99 99 99 99 99 99;

99 99 99 99 99 99 99 99;

99 99 99 99 99 99 99 99;

99 99 99 99 99 99 99 99];
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if (color == 1)
Q = Qc;
else
Q = Q1;

end

dctB = dct2(B);

gB = round(dctB./(k*Q));
B = (k*Q) .*qgB;

B = round(idct2(B));

A.2 Bi-orthogonal wavelet 9-7 using lifting scheme

Tololololotololololololotolotototo oo oo o oo o o o o o o o o o o o oo totototo oo o o e
% Bi-orthogonal wavelet using the lifting scheme

Yoo ToToToTo 1o o o o ToToTo o To o o o Jo ToTo oo o o o o To T o oo o o o To T o oo o o o To T o
function y=BiOrthogonalWavelet79Rows (x,col)

% Determine the type of signal (vector or image)
s=size(x);

M=s(1);

N=s(2);

y=0;

% Compute coefficients for the lifting scheme of the wavelet
a =-1.586134;

b=-0.05298011;

c=0.882911;

d=0.4435068;

K=1.149604398;

if (col)
% Process columns first
img.Even = x(:,1:2:N); % Even samples of columns
img.0dd = x(:,2:2:N); % 0dd samples of columns

% First stage
y.sl=zeros(M,N/2);
y.sl=img.0dd+a* (img.Even+[img.Even(:,2:N/2) img.Even(:,N/2)]);

/» Second stage
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y.s2 = img.Even + b*(y.sl+[y.s1(:,1) y.s1(:,1:N/2-1)]1);

% Third stage
y.H = y.s1 + cx(y.s2+[y.s2(:,2:N/2) y.s2(:,N/2)]);

% Second stage
y.L = y.s2 + d*x(y.H+[y.H(:,1) y.H(:,1:N/2-1)1);

y.L=Kxy.L;
y.H=y.H/K;
y.comp = [y.L y.H];
else
% Process columns first
img.Even = x(1:2:M,:); % Even samples of columns
img.0dd = x(2:2:M,:); % 0dd samples of columns

% First stage
.sl=zeros(M/2,N);
y.sl=img.0dd+a*(img.Even+[img.Even(2:M/2,:) ;img.Even(M/2,:)]1);

<

% Second stage
y.s2 = img.Even + b*x(y.sl+[y.s1(1,:);y.s1(1:M/2-1,:)]1);

% Third stage
y.H = y.s1 + cx(y.s2+[y.s2(2:M/2,:);y.s2(M/2,:)]);

% Second stage
y.L = y.s2 + d*x(y.H+[y.H(1,:);y.H(1:M/2-1,:)]1);

.L=Kxy.L;
y.H=y.H/K;
y.comp = [y.L;y.H];
end
% y=BiOrthogonalWavelet79Rows(x,0); %For Rows
% y=BiOrthogonalWavelet79Rows(x,1); %For Columns

Tololololotololololololotototoloto oo oo oo o o o o o o o o o o o o o otototototo o oo o o o o o o o o o o o o To To o To oo oo

% Bi-orthogonal wavelet using the lifting scheme by rows or columns
Tolololotototolololololototototototo oo oo s oo o o o o o o oo oo o o ototototo oo oo o o o o o o o o o o o To o oo o o oto
function z=BiOrthogonalWavelet79(x,plotFlag)

<

y=BiOrthogonalWavelet79Rows (x,1);

if (plotFlag)
figure;
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imshow (y.comp) ;
imwrite(y.comp,’g:\wavelet97Vertical. jpg’,’jpg’);
end

z=BiOrthogonalWavelet79Rows (y.comp,0) ;

if (plotFlag)

figure;

imshow(z.comp) ;

imwrite(z.comp, ’g:\wavelet97.jpg’,’jpg’);
end

hx=imread(’lenna.jpg’); x=im2double(x);
hx=rgb2gray(x) ;z=BilrthogonalWavelet79(x,1);

A.3 JPEG 2000 implementation

To oo Yoo o oo To o To oo To o To oo To To o fo o Jo To To fo o Jo To To fo o Jo To To fo o fo To Fo fo o to Vo Fo o
function [y2,y3,datal=im2jpeg2k(x1l,res,bpp)

cb_size = 64; ¥ Code Bolck size
%x=im2double (x1)*255-128;
x=im2double(x1)-0.5;

[M N]=size(x);

maxRate = MxN*bpp;

data.size = size(x);
data.res = res;
data.bpp=bpp;

z1=x;

% Compute multiresolution res bi-orthogonal wavelet 7-9

z=BiOrthogonalWavelet79(z1,0);

y=z.comp;

for k=2:res
z1=z.comp(1l:size(z.comp,1)/2,1:size(z.comp,2)/2);
z=BiOrthogonalWavelet79(z1,0);
y(l:size(z.comp,1),1:size(z.comp,2))=z.comp;

end

%himshow(y, [1);

% Quantization process ()
y=y/max (abs(y(:)));
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y1=fix (127%y);
hfigure;imshow(yl, [1);

numBlocks=0;

y2 = [1;

slopes = ones(size(yl,1)/cb_sizexsize(yl,2)/cb_size,cb_size*cb_size);
indexSlopes = ones(1l,size(yl,1)/cb_sizexsize(yl,2)/cb_size);

s = 0;
slopesVect = [];
rateVect = [];
idBlockVect = [];
BitStream = [];

maxTruncPoint

for resol=res:-1:1
% Process LL subband of resoltion res
s_res = size(yl)/2"resol;
nBk = s_res/cb_size;
if (resol==res)
subband_start = 1;
% Only process subband ’LL’ for the lower resolution
else
subband_start = 2;
end

for subband=subband_start:4
if (subband==1)
xStart = 0;
yStart = 0;
sband = °LL’;
else
if (subband==2)
xStart = 0;
yStart = s_res(2);
sband = ’HL’;
else
if (subband==3)
xStart = s_res(1);

yStart = 0;
sband = °LH’;
else
xStart = s_res(1);
yStart = s_res(2);

sband = ’HH’;
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end
end
end

for j=1:nBk(1)

xc = xStart +(j-1)*cb_size+1;

for k=1:nBk(2)
yc = yStart + (k-1)*cb_size+1;
y3=Embedded_block_Encoder(yl(xc:xc+cb_size-1,

yc:yc+cb_size-1),sband);

y3.x = xc; % x init point
y3.y = yc; % y init point

y3.n = 1; % Actual truncating point
%y3.smax = Y Max slope from n
y2 = [y2 y3];

numBlocks = numBlocks + 1;

slopes(numBlocks,1:size(y3.slope,2)) = y3.slope;

rates(numBlocks,1:size(y3.R,2)) = y3.R;

slopesVect = [slopesVect y3.slopel;

rateVect = [rateVect 0
(y3.R(2:end)-y3.R(1:end-1))];

idBlockVect = [idBlockVect
numBlocks*ones(1,size(y3.R,2))];

BitStream = [BitStream y3.bs];

if (size(y3.R,2) > maxTruncPoints)

maxTruncPoints = size(y3.R,2);

end
end
end
end
end
slopes=slopes(:,l:maxTruncPoints);
tRate = 0;

%[1m2,p2,1m,prob,nelements]=huffmanEncoder (BitStream) ;
J=0;

%while (tRate < maxRate)
hj =3+ 1
%[C,I]=sort(slopes(:,j));
%hsumRate = cumsum(rates(I,j+1));
%indRate = max(find(sumRate<=maxRate));
%tRate = tRate + sumRate;
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%end

data.slopesVect = slopesVect;
data.rateVect = rateVect;
data.idBlockVect = idBlockVect;
data.cb_size = cb_size;

[7,I]=sort(slopesVect);

% Vector I indexes the numbers of blocks with least slopes
sumRate = cumsum(rateVect(I));

indRate = find(sumRate<=maxRate,1,’last’);

hlayerl=y2(1) .wRec
y3 = zeros(size(y1));
1x = size(yl,2)/cb_size;

nextPoint = ones(1,numBlocks);

for k=1:indRate

j=idBlockVect (I(k));

hq = rem(j-1,1x)+1;

hp = fix((j-1)/1x) + 1;

r = nextPoint(j);

y3(y2(j) .x:y2(j) .x+cb_size-1,y2(j) .y:y2(j) .y+cb_size-1)
= reshape(y2(j) .wRec(r,:), [cb_size cb_size]);

nextPoint(j) = nextPoint(j) + 1;
end

figure;imshow(y3, []);title([’DWT truncated at rate: ’,
num2str (bpp)]);

ol 1o 6 7o s ToTo o o o To o To o o To o o o JoTo o o o To oo o Jo To o o o ToTo o o o To oo o Jo To o o
function y=Embedded_block_Encoder (B, subband)
%» B is the M x N block

context = struct([]);
tp = [0]; % Truncating points in the bit-stream

% Initialize MQ Encoder
A=hex2dec(’8000’);

C=0;

tbar=12;

T=dec2hex(0) ;

L=-1;

To oo oo to o foto To oo o To o o fo o To fo o to o o
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% Initialize context states
for k=0:18
context (k+1) .Sigma = 0;

if (k==0)
context (k+1) .Sigma = 4;
else
if (k==9)
context (k+1) .Sigma = 3;
else
if (k==18)
context (k+1) .Sigma
end
end
end

context (k+1).s = 0;
end

Yoo oo oo ToToToToToToToTo oo To oo oo o o o o o o o o o o o Jo T T o o T o

[M N] = size(B);

v_tmp = O;

sigma = zeros(M,N);
sigma_ant = zeros(M,N);
ppi = zeros(M,N);

wmax = max(abs(B(:)));
if (wmax > 0)

K=fix(log2(wmax))+1; % Number of bit-planes

else
K=1;

bitStream=[];

% Encode bit-planes p form K-1 to O
Wup = ones(M,N)*(2°K-1);

%Wdown = -ones(M,N)*(2°K-1);

Wdown = zeros(M,N);

W_rec = zeros(1,Mx*N);

sgn = sign(B);
D=sum(sum(B."2))/(M*xN) ;

for p=K-1:-1:0
bp = mod(fix(abs(B)/2"(p)),2);
if (p<k-1)

[bs,context,sigma,ppi,A,C,T,L,tbar,coded]=

46;
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MQ_Ecoder_PassO(bp,sigma,sgn,ppi,context,A,C,
T,L,tbar,subband); % Encode pass 0
if (sum(coded(:)) > 0)
bitStream = [bitStream bs];
tp = [tp size(bitStream,2)];
index=find(coded) ;
Wdown (index)=Wdown (index) . * (1-bp(index))+
(2 p+Wdown(index)) . *bp(index) ;
Wup (index) =Wup (index) . *bp (index) +
(Wup (index)-2"p) . *(1-bp(index));
Wi=sigma.*sgn.*ceil ((Wup+Wdown)/2) ;
dist = sum(sum((W1-B)."2))/(N*xM);
D = [D dist];
W_rec = [W_rec;reshape(W1,[1 size(W1,1)*size(W1,2)]1)];
end
% Encode pass 1
[bs,context,A,C,T,L,tbar,coded]=MQ_Ecoder_Pass1 (bp,
sigma,sigma_ant,ppi,context,A,C,T,L,tbar,subband);
if (sum(coded(:)) > 0)
bitStream = [bitStream bs];
tp = [tp size(bitStream,2)];
index=find(coded) ;
Wdown (index)=Wdown (index)
.*(1-bp(index))+(2 p+Wdown(index)) . *bp(index) ;
Wup (index)=Wup (index) . *bp (index) +
(Wup (index)-2"p) . *(1-bp(index));
Wi=sigma.*sgn.*ceil ((Wup+Wdown)/2) ;
dist = sum(sum((W1-B)."2))/(N*xM);
D = [D dist];
W_rec = [W_rec;reshape(W1,[1 size(W1l,1)*size(W1,2)]1)];
end
end
[bs,context,sigma,A,C,T,L,tbar,coded]=MQ_Ecoder_Pass2(bp,
sigma,sgn,ppi,context,A,C,T,L,tbar,subband); % Encode pass 2

if (sum(coded(:)) > 0)

bitStream = [bitStream bs];
tp = [tp size(bitStream,2)];
index=find(coded) ;
Wdown (index)=Wdown (index) . * (1-bp(index) )+

(2 p+Wdown (index)) . *bp(index) ;
Wup (index)=Wup (index) . *bp (index)+

(Wup (index)-2"p) . *(1-bp(index));
Wl=sigma.*sgn.*ceil ((Wup+Wdown)/2) ;
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dist = sum(sum((W1-B)."2))/(N*M) ;
D = [D dist];
W_rec = [W_rec;reshape(Wi,[1 size(W1l,1)*size(W1,2)]1)];
end
end

tp=tp/2; % Each char has 4 bits

% Determine the convex hull
if (abs(D(1)) > 0)
if (size(D,2) > 2)
khull=convhull(tp,D)’;
cont=1;
while (khull(cont+1)>khull(cont))
cont = cont +1;
end
khull=khull(1:cont);
else
khull = [1 size(tp,2)];
end
else
khull = [1 size(tp,2)];
end

% Determine the slopes Rate-Distortion
slope = (D(khull(l:end-1)) - D(khull(2:end)))./(tp(khull(l:end-1))
- tp(khull(2:end)));

y.B=K;

y.bs = bs;

y.R = tp(khull);
y.D = D(khull);
y.K = khull;

y.slope = slope;
y.wRec=W_rec(khull,:);

Do oo o ToTo To oo fo o To o To o To Jo o To o To foJo Fo o To foJo Fo o To oo fo o Fo o o fo o Fo o To o Jo o
function [bst,context,sigma,ppi,A,C,T,L,tbar,coded]=MQ_Ecoder_PassO(bp,
sigma,sgn,ppi,context,A,C,T,L,tbar,subband)

M,N] = size(bp);
nStripes = ceil(M/4);
bst=[];

coded = zeros(M,N);
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for n=1:nStripes
str = bp(4x(n-1)+1:min(4*n,M),1:N);
M2 = size(str,1);
for j2=1:N
for j1=1:M2
j = 4x(n-1)+j1;
k=find_ksig(sigma, jl+4*(n-1),j2,subband);
if ((sigma(4*(n-1)+j1,j2)==0) && (k>0))
x=str(j1,j2);
[bs,context,A,C,T,L,tbar]=MQ_Encode(x,k,
context,A,C,T,L,tbar);
bst = [bst bs];
if (str(j1,j2)==1)
sigma(j1+4*x(n-1),j2)=1;
[bs,context,A,C,T,L,tbar]=Encode_Sign(bp,
sigma,sgn, jl+4*(n-1),j2,context,A,C,T,L,tbar);
bst = [bst bs];
end
ppi(ji1+4*(n-1),j2)=1;
coded (j1+4*(n-1),j2)=1;
else
ppi(j1+4*(n-1),3j2)=0;
end
end
end
end

ToTo oo To ToTo oo o fo o To o o foTo fo o o oo FoTo To o To foJo To o To oo fo o To o To foto o o o o Fo o

function [bst,context,A,C,T,L,tbar,coded]=MQ_Ecoder_Pass1(bp,
sigma,sigma_ant,ppi,context,A,C,T,L,tbar,subband)

% Magnitude refinement

[M,N] = size(bp);
nStripes = ceil(M/4);
bst=[];

coded = zeros(M,N);

for n=1:nStripes
str = bp(4*x(n-1)+1:min(4*n,M),1:N);
M2 = size(str,1);
for j2=1:N
for j1=1:M2
if ((sigma(4*x(n-1)+j1,j2)==1) &&
(ppi(4*(n-1)+j1,j2)==0))
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ksig=find_ksig(sigma, j1+4*(n-1),j2,subband);
if (sigma_ant(4*(n-1)+j1,j2)==0)
if (ksig > 0)

kmag = 16;
else
kmag = 15;
end
else
kmag = 17;
end

x=str(j1,j2);
coded(j1+4*(n-1),j2)=1;
[bs,context,A,C,T,L,tbar]=MQ_Encode (x,kmag,

context,A,C,T,L,tbar);
bst = [bst bs];

end
end
end
end

Yoo oo o oo To o ToToToTo oo oo o o o o o o o o o o oo To oo ToToTo oo oo oo o o o

function [bst,context,sigma,A,C,T,L,tbar,coded]=MQ_Ecoder_Pass2(bp,

sigma,sgn,ppi,context,A,C,T,L,tbar,subband)
% Magnitude refinement

% Define the context for k_run and kuni
krun = 9;

kuni = 18;

[M,N] = size(bp);
nStripes = ceil(M/4);
bst = [1;
coded=zeros (M,N) ;

for n=1:nStripes
str = bp(4x(n-1)+1:min(4*n,M),1:N);
M2 = size(str,1);
for j2=1:N
for j1=1:M2
r=-1;
if (j1==1 && M2==4) %, Entering a full stripe column
i=0;
ksig=find_ksig(sigma, jl+i+4*(n-1),j2,subband);
while (and(ksig == 0,i<3))
i = i+1;
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ksig=find_ksig(sigma, jl+i+4*(n-1),j2,subband);
end
if (and(i==3,ksig ==0)==1)

r=0;

%Find the first 1
r2=find(str(jl:j1+3,j2)==1,1,’first’);
if (r2<=4)

r=r2-1;
else
r=4;
end
if (r==4)
[bs,context,A,C,T,L,tbhar]=
MQ_Encode (0,krun,context,A,C,T,L,tbar);
bst = [bst bs];
else
[bs,context,A,C,T,L,tbar]=
MQ_Encode (1,krun,context,A,C,T,L,tbar);
bst = [bst bs];
[bs,context,A,C,T,L,tbar]=
MQ_Encode(fix(r/2) ,kuni,context,A,C,T,L,tbar);
bst = [bst bs];
[bs,context,A,C,T,L,tbar]=
MQ_Encode (mod(r,2) ,kuni,context,A,C,T,L,tbar);
bst = [bst bs];
end
end
end

if ((sigma(jil+4*(n-1),j2)==0) && ppi(ji+4*(n-1),j2)==0)
if (r >=0 )
r=r-1; % No need to code significance
coded(j1+4*(n-1):j1+4*(n-1)+3,j2)=1;
else
ksig=find_ksig(sigma, j1+4x(n-1),j2,subband);
x=str(j1,j2);
coded (j1+4*(n-1),j2)=1;
[bs,context,A,C,T,L,tbar]=
MQ_Encode(x,ksig,context,A,C,T,L,tbar);
bst = [bst bs];
if (x==1)
sigma(j1+4*(n-1),j2)=1;
[bs,context,A,C,T,L,tbar]=
Encode_Sign(bp,sigma,sgn, ji1+4*(n-1),j2,context,A,
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C,T,L,tbar);
bst = [bst bs];
end
end
end
end
end

end

ol 1o 6 7o s ToTo o oo To o To o Jo To o o o ToTo o o o To oo o o To T o o JoTo o o o To T o o o To o o
function ksig=find_ksig(sigma,jl,j2,subband)

[M,N]=size(sigma) ;
kh=0;
kv=0;
kd=0;
hil
hj2
kh
kv

kd = sum(sum(sigma(max(j1-1,1):min(ji+1,N),
max(j2-1,1) :min(j2+1,M))))-sigma(j1, j2)-kh-kv;

if (strcmp(subband, ’HL’)==1)
k_aux = kh;
kh = kv;
kv = k_aux;

end

if (strcmp(subband,’HL’)==1 || strcmp(subband,’LL’)==1 ||

strcmp (subband, ’LH’ )==1)

if (kh==2)
ksig = 8;
else
if (kh==1)
if (kv>=1)
ksig = 7;
else
if (kd >= 1)
ksig = 6;
else
ksig = b;
end

end

sum(sigma(jl,max(j2-1,1) :min(j2+1,M)))-sigma(j1,j2);
sum(sigma(max(j1-1,1) :min(j1+1,N),j2))-sigma(j1,j2);
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else
if (kv==2)
ksig = 4;
else
if (kv==1)
ksig = 3;
else
if (kd>=2)
ksig = 2;
else
ksig = kd;
end
end
end
end
end
end

if (strcmp(subband, ’HH’)==1)
khv = kh + kv;
if (kd >= 3)
ksig = 8;
else
if (kd == 2)
if (khv >= 1)
ksig = 7;
else
ksig
end
else
if (kd == 1)
if (khv >= 2)
ksig = b;
else
if (khv == 1)
ksig = 4;
else
ksig = 3;

I
(e}

end
end
else
if (khv >= 2)
ksig = 2;
else
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ksig = khv;
end
end
end
end
end

function [bst,context,A,C,T,L,tbar]=Encode_Sign(bp,signma,
sgn,jl,j2,context,A,C,T,L,tbar)

[M,N]=size(bp);

bst=[];
Xh = 0;
if (j2>1)
Xh = sgn(j1,j2-1)*sigma(j1,j2-1);
end
if (j2<I)
Xh=Xh+sgn(j1, j2+1)*sigma(j1,j2+1);
end
Xv = 0;
if (j1>1)
Xv = sgn(j1-1,j2)*sigma(j1-1,3j2);
end
if (G1<M)
Xh=Xh+sgn(j1+1,j2)*sigma(ji+1,j2);
end
Xh = sign(Xh)#*min(1,abs(Xh));
Xv = sign(Xv)#*min(1,abs(Xv));
if (Xh == 1)
k_sign = 13 + Xv;
X_flip = 1;
else
if (Xh == 0)
k_sign = 10 + abs(Xv);
if (Xv == -1)
X_flip = -1;
else
X_flip = O;

end
else
% Xh ==-1
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k_sign = 13 - Xv;

X_flip

I
|
[ENY

end
end

if (sgn(j1,j2)*X_flip==1)
[bs,context,A,C,T,L,tbar]=MQ_Encode(0,k_sign,context,A,
C,T,L,tbar);
bst = [bst bs];
else
[bs,context,A,C,T,L,tbar]=MQ_Encode(1,k_sign,context,A,
C,T,L,tbar);
bst = [bst bs];
end

function [bs,context,A,C,T,L,tbar]=
MQ_Encode(x,k,context,A,C,T,L,tbar)

% x is the symbol to encode
% context(k) is the context for the symbol x

k=k+1; % To acces the table the index must start at 1, not at zero

[Sigma,Sigma_mps,Sigma_lps,Xs,pb,pl=findProbStateTrans();
pbar = pb(k);

s = context(k).s;

A=A-pbar;

bs=[];

if (A<pbar)

s = 1-s; % Conditional exchange of MPS and LPS
end
if (x==s)
C = C + pbar; % Assign MPS the upper subinterval
else
A = pbar; % Assign LPS the lower subinterval
end

if (A<2°15)
if (x==context(k).s)
% The symbol was a real MPS
context (k) .Sigma=Sigma_mps (context (k) .Sigma+1);
else
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% The symbol was a real LPS
if (Xs(context(k).Sigma+1)==1)
context(k).s = 1-context(k).s; % Switch MPS/LPS
end
context (k) .Sigma=Sigma_lps(context (k) .Sigma+1);
end
end

while (A < 2715) % Perform a normalization shift
A=2%A;
C=2xC;
tbar= tbar-1;
if (tbar==0)

[bs,T,C,L,tbar]=MQ_Transfer_Byte(T,C,L,tbar);

end

end
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