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Abstract: We develop a method for obtaining 3D polarimetric integral 
images from elemental images recorded in low light illumination 
conditions. Since photon-counting images are very sparse, calculation of the 
Stokes parameters and the degree of polarization should be handled 
carefully. In our approach, polarimetric 3D integral images are generated 
using the Maximum Likelihood Estimation and subsequently reconstructed 
by means of a Total Variation Denoising filter. In this way, polarimetric 
results are comparable to those obtained in conventional illumination 
conditions. We also show that polarimetric information retrieved from 
photon starved images can be used in 3D object recognition problems. To 
the best of our knowledge, this is the first report on 3D polarimetric photon 
counting integral imaging. 
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1. Introduction 

The vector nature of the electromagnetic fields can be utilized to provide useful information 
for explaining a large variety of problems involving interaction of light with matter [1,2]. 
Analysis performed using polarization properties of light make available data that remain 
hidden to conventional devices able to record only scalar parameters such as irradiance or 
wavelength. In particular, polarimetric imaging systems provide extra information that can be 
used for classification, segmentation, or pattern recognition among many other applications 
[3, 4]. The Stokes parameters and the Degree of Polarization (DoP) are a conventional mean 
to display polarization information in a scene [5]. The experimental procedure for obtaining 
the Stokes distributions is straightforward but requires recording six different images, which 
may require modifying the polarization setup each time. This fact does not pose practical 
difficulties provided the scene is still and properly illuminated; but this approach is not valid 
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in dynamic or low light conditions. Since the information contained in the six polarimetric 
images is redundant, Azzam demonstrated that only four measures are required for obtaining 
full polarimetric data [6,7]. Recently, many authors have concentrated their efforts on 
developing one-shot polarimeters. These devices generate the four polarimetric distributions 
using birefringent components or specially designed camera sensors [8–11]. This technology 
is becoming commercial and nowadays different companies are developing real-time single-
shot polarimetric cameras. 

Much attention has been given to 3D imaging systems based on integral imaging [12–14]. 
In particular, some authors focused on developing solutions for different practical problems 
related to integral imaging implementation [15–22]. Integral imaging under extremely low 
light level scenes using photon-counting elemental images has been shown as a particularly 
interesting topic. Several papers have demonstrated the feasibility of 3D image visualization 
using a low number of photons [23–26]. Moreover, polarization and 3D data are closely 
related: for instance, 3D information can be derived from the analysis of the state of 
polarization of the light reflected by the analyzed object [4,27]. Integral imaging using 
polarized light was suggested in [28,29], and more recently some authors reported the use of a 
set of multiple perspective 2D polarimetric images to reconstruct the DoP of the 
corresponding 3D integral image [30]. 

In this paper, we propose 3D polarimetric integral imaging in low light illumination 
conditions. Since photon-counting images are very sparse, calculation of the Stokes 
parameters and the DoP using the conventional formulas becomes challenging. Polarimetric 
photon-counting 3D integral images are generated using the maximum likelihood estimation 
[23]. This approach is equivalent to calculating the average of the photon-counting elemental 
images but the 3D image reconstruction becomes noisy when there are few photons in the 
scene. In order to reduce the amount of noise, the 3D integral imaging distributions are 
subsequently reconstructed by means of total variation algorithms [31–34]. Finally, Stokes 
parameters and the DoP are calculated [5]. 

The paper is organized as following: in section 2, we describe the procedure for 
generating polarimetric 3D integral imaging in photon starved conditions using photon-
counting elemental images. In section 3, the experimental setup for acquiring polarimetric 
elemental images is introduced. A method for estimating the DoP in photon-counting 3D 
integral images scenes is proposed in section 4. Also, as an additional application of the 
proposed approach, we show how to take advantage of polarization information for pattern 
recognition purposes. Finally, the main conclusions are summarized in section 5. 

2. Photon-counting polarimetric 3d InI 

Let us first consider a quasi-monochromatic paraxial electromagnetic field propagating in the 
z-axis direction; therefore, the electric field is transverse to the direction z, i.e.: 

 ( ) ( )( ), , , ,0 .x yE t E t=E r r  (1) 

The associated Stokes parameters used to describe the polarization state of this beam at each 
point of the wave-front at r are defined as [1,5]: 
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where < > stands for temporal average over time interval T i.e.: 
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These parameters can be obtained experimentally by recording the beam in certain pre-
established conditions with the help of a linear polarizer and a quarter-wave plate in front of 
the light sensor. Similarly, polarimetric images are obtained if the light distribution is imaged 
on a CCD camera. 

A set of six polarimetric images (I0°,0, I90°,0, I45°,0, I135°,0, I45°,π/2 and I135°,π/2) have to be 
recorded to calculate the four Stokes distributions (S0, S1, S2, S3). I

α,0 stands for the recorded 
intensity when the linear polarizer is set at an angle α with respect to the x direction and Iα, π/2 
is the image recorded when a quarter wave-plate is used in addition to the polarizer. The 
Stokes parameters and the DoP are calculated by means of [1,5]: 

 

0 ,0 90 ,0
0

0 ,0 90 ,0
1

45 ,0 135 ,0
2

45 , /2 135 , /2
3

2 2 2
1 2 3

0

1
DoP ,

S I I

S I I

S I I

S I I

S S S
S

π π

° °

° °

° °

° °

= +

= −

= −

= −

= + +

  

   

   

 (4) 

where DoP≤1. 
An integral image is calculated as the average of shifted elemental images recorded 

obtained from different perspectives of a 3D scene using a single camera with an array of 
lenslets, or an array of cameras, or by moving a camera to different locations while the scene 
is in the field of view. Integral imaging can be extended to 3D polarimetric integral imaging 
by recording the polarimetric distributions 0º,0 90º,0 45º,0 135º,0 45º, /2 135º, /2

, , , , , ,, , , , , andk l k l k l k l k l k li i i i i iπ π      for each 

elemental image of the scene indexed by k,l. Then, these sets of polarimetric elemental 
images are used to calculate the corresponding polarimetric 3D integral distributions I α, β 
according to the following equation: 

 ( ), ,
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In Eq. (5), Nx and Ny are the number of elemental images in the x- and y- directions, cx x cy is 
the size of the CCD pixel, p is the relative displacement of the camera for recording each 
elemental images, f is the focal length of the objective lens and z is the pick-up distance 
between the scene and the camera. Finally, the 3D integral imaging Stokes parameters (S0, S1, 
S2, S3) are calculated using again Eq. (4). 

If a system works in very low light illumination conditions, irradiance is recorded 
according to the photon-counting model. In these conditions, it is assumed that the image is 
statistically modeled by the Poisson distribution [35]: 

 ( )
( ) ( )( ), ,

, ,, exp ,
; , ,

!

m

k l k ln x y n x y
P m x y

m

α β α β  − =  (6) 

where m is the number of photons detected at pixel (x, y), ( ),
, ,k ln x yα β is the normalized 

irradiance: 
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and NP is the predetermined number of photon counts in the entire scene. Using the maximum 
likelihood estimate for integral imaging as shown in [23], the irradiance of the 3D object is 

reconstructed by calculating the average of the photon-counting normalized irradiance ,
,k̂ li α β of 

the polarimetric elemental images ,
,k liα β , i.e. 
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Finally, the Stokes parameters and the DoP are calculated using Eq. (4). 

3. Polarimetric 3D InI 

A sketch of the integral imaging system used for recording the polarimetric elemental images 
is shown in Fig. 1. The information coming from the 3D scene is recorded using the synthetic 
aperture integral imaging approach [18]. A camera is assembled on a two-axis translation 
stage and the elemental images are recorded after shifting the camera at periodic positions. 
Stokes parameters can be measured provided a linear polarizer and a quarter wave plate are 
set in front of the camera, according to what was described in the previous section. 

 

Fig. 1. Sketch of the polarimetric 3D pick-up system. The 3D scene consists of two vehicles, 
occlusion, and background. 

The scene is composed of two toy cars located at z = 530 mm from the camera. One of the 
cars is partially occluded by a tree at z = 450 mm. The scene was illuminated using natural 
light but since the quarter wave plate was designed for a wavelength λ = 543 nm, only the 
green channel of the camera is taken into account. The camera recorded the 6 required 
polarimetric distributions at 6x6 different perspective positions. Full details of the pick-up 
process for this particular set of images can be found in [30]. Table 1 summarizes the values 
of the different variables required to perform integral imaging calculations. 

Table 1. Integral imaging variables 

# Elemental images Nx = 6, Ny = 6
Scene depth range 420 – 720 mm
Focal length f = 50 mm
Sensor size cx = 36 mm, cy = 24 mm

Resolution (# of pixels) r = 1000, c = 1500
Camera relative displacement p = 5 mm
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Figure 2 shows the results of a preliminary test without photon counting imaging. Figure 
2(a) displays the reconstruction of the 3D scene with integral imaging at z = 530 mm using 
conventional images, that is, those obtained without using the polarizer and the quarter wave 
plate. Figure 2(b) shows the polarimetric integral imaging results with the DoP corresponding 
to the image of Fig. 2(a) using the jet color map. The light reflected on the background and 
the trees is non-polarized (navy-blue pixels); the light coming from the car frames is partially 
polarized (cyan to yellow) whereas the windshield of the right car totally polarizes the wave-
front (red). 

 

Fig. 2. (a) 3D conventional integral imaging, that is, without photon counting and without 
polarization. The reconstructed image is at z = 530 mm for the green channel of the camera; (b) 
polarimetric integral imaging results with the DoP at z = 530 mm. 

4. DoP estimation in photon-counting 3D integral imaging 

The model of recording device used for generating polarimetric photon-counting images is a 
binary photon-counting camera. Despite the fact that gray level images can be produced with 
such cameras, the output is the result of averaging several frames [36]. In this paper, we take 
into account the distribution of photons corresponding to a single frame. 

As described in section 2, the six polarimetric photon-counting integral imaging 
distributions Îα,β are calculated using the maximum likelihood approach [Eq. (8)]. Then, the 
Stokes images (S0, S1, S2, S3) and the DoP could be estimated by means of Eq. (4). However, 
when the images are recorded with very few photons, the maximum likelihood estimate 
produces noisy reconstructed scenes with limited dynamic range. For illustrative purposes, 
Fig. 3 shows the integral imaging reconstruction using maximum likelihood estimation when 
few photons in each elemental image are used. 

 

Fig. 3. Photon-counting 3D integral imaging maximum likelihood estimation reconstruction at 
z = 530 mm: (a) 0.01 photons/pixel, and (b) 0.05 photons/pixel. 

Since the DoP is a nonlinear combination of the Stokes parameters, the noise present in 
integral imaging reconstruction due to the low number of photons is amplified, thus 
producing a wrong measure of the polarization state. Figure 4 shows the DoP obtained using 
the maximum likelihood estimation [Eq. (8) and (4)]. It is apparent that when the number of 
photons per pixel is set to 0.01 [see Fig. 4(a)], the entire scene seems to be completely 
polarized. For a larger number of photons [see Fig. 4(b)], the result improves. However, a 
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visual comparison between Figs. 2(b) and 4(b) indicates that the latter still displays high 
polarization values in the background areas. 

 

Fig. 4. DoP for photon-counting 3D integral imaging with maximum likelihood estimation 
reconstruction at z = 530 mm: (a) 0.01 photons/pixel, and (b) 0.05 photons/pixel. 

In order to provide a comparative measure of the quality of integral imaging 
reconstructions, the Mean Structural Similarity Index (MSSIM) is used [37]. MSSIM is 
designed to provide a consistent comparison between two images taking into account how 
human visual perception works. Moreover, it provides a better assessment when compared 
with other evaluation methods such as the peak signal-to-noise ratio or the mean square error. 
To compare two different images X and Y using MSSIM, the algorithm subdivides the images 
in a set of M 8x8 pixels windows {xj} and {yj}. The local structural similarity between two 
corresponding subimages xj and yj is calculated according to 

 ( ) ( )( )
( )( )

1 2

2 2 2 2
1 2

2 2
SSIM , ,

xj yj j xyj j

j j

xj yj j xj yj j
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x y

c c

μ μ σ

μ μ σ σ

+ +
=

+ + + +
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where μxj and μyj are the averages of subimages xj and yj, and σxj, σyj and σxyj are the variances 
of xj and yj and the covariance, respectively. c1 and c2 are two adjustable parameters related to 
the square of the dynamic range L defined as the ratio between the largest and smallest pixel 
values of subimage, i.e. c1 = (k1 L)2 and c2 = (k2 L)2. In [37] the authors suggested to use k1 = 
0.01 and k2 = 0.03. Then, MSSIM is calculated as the average of the SSIM values for the M 
local windows: 

 ( ) ( )
1

1
MSSIM , SSIM , .

M

j j
j

X Y x y
M =

=   (10) 

Note that this index is normalized, meaning that MSSIM(X,Y) = 1 only when both images are 
identical. Table 2 shows the MSSIM values for the integral imaging reconstruction shown in 
Fig. (3) and the estimation of the DoP using maximum likelihood shown in Fig. (4). 
Reference images are those presented in Fig. (2). Note that MSSIM values for DoP are 
extremely low. 

Table 2. MSSIM values for integral imaging reconstruction using maximum likelihood 
estimation and DoP in Fig. (3) and Fig. (4) 

 0.01 photons/pixel 0.05 photons/pixel 

Reconstructed 
3D image 

0.029 0.054

DoP 0.001 0.002

Different methods have been proposed for improving photon-count integral imaging 
reconstruction using statistical approaches [24–26]. In this paper, we use total variation 
denoising. These filters have been demonstrated to be very efficient in removing noise from 
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the image as long as they keep the information content of the signal [31,32]. Among the 
different algorithms for total variation in this paper we use the Chambolle approach [33] 
implemented in the scikit-image library [34]. Let u0 and u be the noisy and the reconstructed 
(target) images, respectively. Using the nomenclature introduced in [31], the total variation 
denoising problem consists in finding an image u that minimizes the following equation: 

 
2

0

22

min
u

u u

x y
u u dxdy dxdyγ +

∂ ∂
∂ ∂

    − +         
   (11) 

where γ is a regularization parameter. 
Figures 5 and 6 show the total variation-filtered photon-counting 3D images and the 

corresponding DoP, respectively. The DoP is evaluated by denoising the six photon-counting 
3D integral imaging scenes Î α, β [Eq. (8)] using total variation denoising. Then, the Stokes 
parameters and the DoP [see Eq. (4)] are calculated. Images presented in Figs. (5) and (6) 
look similar to those obtained in conventional illumination conditions. This subjective 
perception is corroborated by the values of the MSSIM index presented in Table 3. Note that 
when 0.05 photons/pixels are used, MSSIM is close to 1 for the 3D reconstructed image and 
MSSIM~0.7 for the evaluation of the DoP. 

 

Fig. 5. Photon-counting 3D integral imaging reconstruction at z = 530 mm. The resulting 
image is subsequently processed using total variation minimization with (a) 0.01 
photons/pixel, and (b) 0.05 photons/pixel. 

 

Fig. 6. DoP for photon-counting 3D integral imaging using maximum likelihood 
reconstruction at z = 530 mm. The resulting polarimetric images are subsequently processed 
using total variation minimization with (a) 0.01 photons/pixel, and (b) 0.05 photons/pixel. 

Table 3. MSSIM values for integral imaging reconstruction using maximum likelihood 
reconstruction and total variation minimization denosing 

0.01 photons/pixel 0.05 photons/pixel

Reconstructed 
3D image 

0.727 0.909

InI DoP 0.325 0.666

Polarimetric distributions provide additional information about the scene and the target 
that can be used in pattern recognition problems. To illustrate this concept, we calculate the 
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nonlinear correlation [38,39] for the two DoP photon-counting 3D integral imaging scenes 
presented in Fig. (4a) and in Fig. (6a). The target is the car obtained from the DoP of the 
reconstructed scene using conventional integral imaging in Fig. 2b. This reference image is 
presented in Fig. (7). Correlation is calculated according to the following formula: 

 
[ ] [ ]

[ ] [ ]

*

1
1 1

FT FT
FT .

FT FT
r d

R D
R D

R D

−
− −

 
 ⊗ =
 
 

 (12) 

In Eq. (12), R stands for the reference or target image and D stands for the polarimetric scene. 
Indices r and d are selected to provide a good discrimination capability with a high peak-to-
correlation energy (PCE) while maintaining robust noise performance. In this paper the 
following values are used: r = 0.7 and d = 0. 

 

Fig. 7. Reference R used in the correlation test 

Figures (8a) and (8c) show the correlation plane for the two cases considered. Note that in 
both cases the number of photons per pixel is set to 0.01. Correlations are normalized to their 
corresponding maximum value, and the area within the superimposed yellow rectangle is 
shown with a 3D plot. It is apparent that the amount of noise is very low when the DoP is 
reconstructed using the total variation filter. In particular, the peak to correlation energy 
(PCE) ratio obtained by total variation is three times higher when compared with the scene 
reconstructed using MLE. The PCE is defined as the ratio of the correlation peak to the total 
average of the correlation plane intensity. It should be pointed out that a variety of other 
pattern recognition approaches may be considered [39–41]. 

 

Fig. 8. Correlations results using DoP of the 3D integral imaging scenes in Fig. (6). The target 
is shown in Fig. (7). (a) Correlation output plane with 0.01 photons/pixel using MLE 
reconstruction, (b) 3D correlation plot of the area marked, (c) Correlation output plane with 
0.01 photons/pixel using maximum likelihood reconstruction and total variation denosing, and 
(d) 3D correlation plot of the area marked. 
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5. Concluding remarks 

A method for estimating the DoP in photon-counting 3D integral images has been developed. 
Since the information recorded in low light illumination condition is very sparse, calculation 
of the Stokes parameters and the DoP becomes a difficult task. The irradiance of the 3D 
object can be reconstructed by calculating the weighted average of photon-counting elemental 
images using maximum likelihood estimation. However, direct estimation of the polarimetric 
parameters produce erroneous results due to noise and limited dynamic range. This fact is 
corroborated by measuring the structural similarity index between the original and 3D photon 
counting reconstructed images. Filters based on total variation denoising algorithms have 
been demonstrated to be very efficient in removing noise from the image as long as they keep 
the information content of the signal. Polarimetric photon-counting 3D reconstructed scenes 
dramatically improve after being processed by such filters. Moreover, the DoP produces 
comparable results to those obtained in conventional illumination conditions. Finally, we 
have shown that polarimetric information retrieved from photon starved images can also be 
used for pattern recognition purposes. 
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