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Chapter 1

Introduction

A game, in Game Theory, is a tool that can model any situation in which there are
people that interact - taking decisions, making moves, etc - in order to attain a certain
goal. This mathematical description of conflicts began in the twentieth century thanks
to the work of John Von Neumann, Oskar Morgenstern and John Nash and one of its
first motivations was to help military officers design optimal war strategies. Nowadays,
however, Game Theory is applied to a wide range of disciplines, like Biology or Political
Science, but above all, to Economy. Interestingly, eleven game-theorists have won the
Economics Nobel Prize up to date but never has a Fields Medal been awarded to an expert
in this field. This shows to what great extent Game Theory is important for Economy
and at the same time how mathematicians regard it as a secondary discipline compared
to other areas of Mathematics. This undergraduate thesis clearly falls under the category
of applied mathematics or mathematical modeling and therefore its goal is far from just
accurately proving a series of theorems. Instead, even if the foundations of Game Theory
will be laid, I will focus on showing how Game Theory can be applied to solve a great
number of different problems, like, for example, the emergence of cooperative dispositions
towards strangers.
Bearing this in mind, I will begin this undergraduate thesis by analyzing a military conflict
between two countries whose officials will have a symbolic name: Nash and Neumann.
To so do, I warn the reader that I will informally explain and use certain results that will
be accurately justified later in this thesis. Let’s begin!

1.1 Motivation: A First Example

Suppose that a country A and a country B are at war and that the generals of each army
are called, respectively, John Nash and John Von Neumann. Every single day, Nash will
send a heavily armed bomber and a smaller support plane to attack B. To do so, he
will put a bomb in one of the two aircrafts. At the same time, Neumann knows Nash’s
intentions and decides to embark on military action but judges unnecessary to attack the
two planes, mainly for economic reasons. The bomber will survive 60% of the times it
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CHAPTER 1. INTRODUCTION 5

suffers an attack and, if it manages to live through the raid, it will always hit the target.
The lighter plane, which is not as precise, hits the target 70% of the times and plus only
survives Neumann’s attack half of the times. There are clearly only four possible results,
which come from the combination of Nash choice to put the bomb either in the bomber or
in the support plane, and Neumann’s call to attack one or the other aircraft. Nash feels
that he gains when he hits the target and he does not care about suffering an attack on
one of his planes. At the same time, Neumann desperately wants to protect his citizens
and therefore he will lose utility when an attack is carried out. Nash’s gain for every
possible combination of strategies is:

Bomber attacked Support attacked
Bomb in bomber 0.6× 1 = 0.6 1

Bomb in support 0.7 0, 5× 0.7 = 0.35

Table 1.1. Nash’s Payoff

where we have assumed an increase in a unit of his utility comes from a successful attack.
In an isolated realization of the game, the target can only either be or not be hit, so what
do the numbers in the matrix represent? Clearly, the expected values of the outcome of
the game when those strategies are employed. Given that this game is repeated every
day, the Law of Large Numbers guarantees that the average outcome of the confrontation
of two strategies (let’s say for example "Bomb in bomber" against "Bomber attacked")
will tend to its expected value (for the aforementioned strategies, 0.6). Therefore, the
following will be a good long-term analysis.
Bear in mind that we should give the utility of both players, but here Neumann’s utility
has implicitly been given as it will be the matrix on top with a minus sign in front of all
entries.

Remark. text

1. Nash can make sure that at least 60% of the attacks are successful by always putting
the bomb in the bomber, as we would only be dealing with the matrix’ first row.

2. Neumann can make sure that no more than 70% of the attacks are successful by
attacking the bomber plane, as we would only be dealing with the matrix’ first
column.

These facts could determine their strategies. If that was the case, the game would unfold
as a constant 0.6 gain for Nash. However, instead of always putting the bomb in the
bomber, Nash decides, every now and then, to bluff and to put the bomb in the support
plane. How often should he do that? Which is the best percentage of success he can get?
How should Neumann adapt to this change? Let’s give an answer to all this questions.
Given that Nash will no longer stick to one of the strategies but combine them, he will
start to employ a so-called mixed strategy. Let’s use a probability distribution X = (a, b)
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1 to encapsulate this, where it should be understood that Nash will put the bomb in
the bomber with a probability a and in the support plane with a probability b. Using
this notation, a pure strategy is then (1, 0) -bomb always in the bomber- or (0, 1) -bomb
always in the support plane. Let us denote by A the matrix of table 1.1. For any strategies
X ∈ Ŝ1 and Y ∈ Ŝ2 (Ŝi should be understood as the set of all possible mixed strategies
of player i) we can calculate the expected payoff Ĥ(X, Y ) by ponderating the payoffs of
the pure strategies, i.e., by calculating XAY T . For any strategy Nash (Neumann) picks,
the strategy that minimizes the other’s payoff is called the optimal counterstrategy or
the best reply.

Theorem 1.1. If either Nash or Neumann employ a fixed strategy (and it means they
will not keep changing the probabilities of how they distribute their choices), then the
opponent’s best reply is a pure strategy.

Proof. Assume Nash’s strategy is X = (1 − x, x) and Neumann’s Y = (1 − y, y). The
expected payoff is the averaged payoff of every situation. For the sake of generality, let’s
assume a general (aij) payoff 2× 2-matrix for Nash. Thus, for x ∈ [0, 1]

Ĥ(X, Y ) = Ĥ((1− x, x), (1− y, y)) = (1− x)(1− y)a11 + (1− x)ya12 + x(1− y)a21 +

+xya22 = x(−a11 + a11y + a21 − a12y − a21y − a22y) + (a11 − a11y + a21y)

Given that y is fixed, the function Ĥ(x) is a straight line, Ĥ(x) = ax + b, so obviously
the maximum and minimum of the function will be attained at the borders (either where
x = 0 or where x = 1). The same result clearly holds if x is fixed and we let y vary. �

1.1.1 Max-Min Strategy

Let Nash have a strategy X = (1−x, x), where x is the probability he will put the bomb
in the support plane. As it has just been seen, Neumann’s best reply will either be the
strategy (1, 0) or (0, 1), so let’s focus only on these cases. We will therefore have two
possible payoffs when Nash uses X.

r1(x) = H(X, (1, 0)) = (0.7− 0.6)x+ 0.6 = 0.1x+ 0.6

r2(x) = H(X, (0, 1)) = −0.65x+ 1

Neumann, in order to protect his citizens, clearly wants to minimize Nash’s gain, and
therefore between these two possible options, he will always prefer the smaller one, so in
the end the payoff will be:

Ĥ(X, Y ) = Ĥ(x) = min{r1(x), r2(x)}

In figure 1.1 we can see the graph of Ĥ(x). Since the intersection of r1(x) and r2(x)

(x∗ = 0, 533 and Ĥ(x∗) = 0, 653) is the higher point of the graph Ĥ(X, Y ), it is Nash’s
1Throughout the whole senior thesis the following convention will be used: A vector will be a row-

vector and a transposed vector will be a column vector.
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Figure 1.1: Graph of min{H(X, (1, 0)), H(X, (0, 1))}

wisest choice. Nash will maximize the function min{r1(x), r2(x)}, thus he will maximize
Neumann’s minimal return, and that’s why we call it the max-min strategy. Nash then
will employ the strategy X∗ = (0.47, 0.53) and succeed, at least, 65.3% of the times.
Nevertheless, if he does not adhere to these recommendations, it is clear that:

• for x ≤ 0.533 (when the bomb is in the bombarder more than 53.3% of the time)
Neumann should always attack the bombarder.

• for x ≥ 0.533 (when the bomb is in support plane more than 46.7% of the times)
Neumann should attack the support plane.

1.1.2 Min-Max Strategy

Let’s focus now on Neumann and let’s think of a good strategy for him. Again, for any
strategy Y = (1 − y, y) that he picks (where y represents the probability of attacking
the support plane), Nash’s best reply will be either (0, 1) or (1, 0). As before, we can
calculate the expected payoff for these cases:

c1(y) = H((1, 0), Y ) = (1− 0, 6)y + 0.6 = 0.4y + 0.6

c2(y) = H((0, 1), Y ) = −0.35y + 0.6

Nash will always choose the strategy that yields the greatest payoff, so now, Ĥ(X, Y ) =

Ĥ(y) = max{c1(y), c2(y)}, which is graphed in figure 1.2.
Neumann clearly wants to minimize Ĥ(y) = max{c1(y), c2(y)}, which is attained at
y∗ = 4

30
and yields Ĥ(y∗) = 0.653. This is called a min-max strategy because Neumann

is minimizing Nash’s maximum payoff. Neumann will then employ the strategy Y ∗ =

(0.87, 0.13) and the attack will succeed no more than 65.3% of the times. If he does not
adhere to these recommendations, it is clear that:
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Figure 1.2: Graph of max{H((1, 0), Y ), H((0, 1), Y )}

• for y ≤ 0.133 (when Neumann attacks the bombarder more than 86.6% of the times)
Nash should place the bomb in the small plane.

• for y ≥ 0.133 (when Neumann attacks the bombarder less than 86.6% of the times)
Nash should put the bomb in the bombarder.

1.1.3 Solution of the game

At the beginning, we said that Nash could guarantee an attack efficiency of 60% and
Neumann could make sure the attack success rate didn’t exceed 70%. Their guarantees
were different. However, if we allow mixed strategies, the guarantees do coincide! This is
a central theorem in Game Theory that we will prove in this thesis. When Nash employs
his min-max strategy and Neumann his max-min strategy 2, we will see a 65.3% success
rate of Nash’s attacks. This will be called the value of the game. As we will see, this
game is solved as we can give:

min-max strategy X∗ = (0.47, 0.53)

max-min strategy Y ∗ = (0.87, 0.13)

value of the game v = Ĥ(X∗, Y ∗) = 0.653

Remark. The reader should now wonder: doesn’t this contradict Theorem 1.1? It was
stated and proven that for any fixed strategy that your opponent picked, the optimal
counterstrategy was a pure strategy. When player 1 picks X∗, which is a fixed strategy,
why do we suggest player 2 pick Y ∗, which is not a pure strategy? The answer is that it

2To lighten the notation, we will most of the times refer to these strategies as the max-min strategies.



CHAPTER 1. INTRODUCTION 9

can be readily checked that:

Ĥ(X, Y ∗) = v ∀X ∈ Ŝ1

Ĥ(X∗, Y ) = v ∀Y ∈ Ŝ2

and given this remarkable property, it is convenient for every player to pick a max-min
strategy because they guarantee certain results that other strategies fail to assure.



Chapter 2

Definition of Game and First
Properties

2.1 What are games?

As said in chapter 1, a game is a tool that can model any situation in which there are
people that interact - taking decisions, making moves, etc - in order to attain a certain
goal. In this undergraduate thesis, we will focus on noncooperative games, which model
those situations in which all players want to maximize their own profit and don’t cooperate
between each other. We will always assume that the players are rational, i.e., that they
know what’s best for them and can think ahead of the game no matter how complex that
is. We will also assume that the number of players is finite and we will assign a number
to each player. Let I = {1, 2, ..., N} be the set of all players and let i ∈ I mean player i.
Each of these players has available a set Si of strategies. Throughout this senior thesis, all
players will choose their strategies simultaneously and independently. A game consists
in every player choosing a strategy si ∈ Si, thus creating a situation s = (s1, ..., sN)

which will translate in a certain outcome. The set of all possible situations is clearly
S = S1 × ...× SN .
Every player i ∈ I has preferences over the outcome of the game, which derives directly
from the situation. First, we would like to mathematize these predilections. Let’s assume
the preferences of player i are given by the binary relation <∈ S × S. The expression
s1 < s2 should be understood as player i either prefers s1 over s2 or in indifferent about
it. To move from this abstract preference relation to a numeric expression we will use a
utility function.

Definition. A utility function representing <∈ S × S is a function H : S −→ R s.t.
∀a, b ∈ S,

a < b ⇐⇒ H(a) ≥ H(b)

To define the payoff of player i with a preference relation <∈ S × S we will use a utility
function Hi : S −→ R that sends every situation s, to Hi(s), which will denote the payoff
that player i gets when s arises.

10
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Under what conditions can a preference relation be modeled by a utility function?

Theorem 2.1. Let S be a countable set and < a preference relation over S × S. Then
there exists a utility function representing <.

Proof. Given that S is a countable set, we can write S = {s1, s2, ...}. Let’s define
∀i, j ∈ N

hij =


1 si, sj ∈ S and si < sj

0 otherwise

We can define the utility function H as:

H(si) =
∞∑
j=1

1

2j
hij ≤ ∞

The transitivity of the preference relation (a preference relation is a binary relation and
these are always transitive) guarantees that, for this definition, if s1 < s2 ⇐⇒ H(s1) ≥
H(s2). �

This theorem will help us in most games, but let’s give, without a proof, the most general
result:

Theorem 2.2. Let < be a preference relation over S × S. Then < can be represented
by a utility function iff there is a countable set A ∈ S that is order dense in S, i.e., that
∀s1, s2 ∈ S there exists a ∈ A s.t. s1 < a < s2.

To define a noncooperative game we need:

• A set of players I

• A set of available strategies to every player (∀i ∈ I ∃Si = {set of strategies of player i})

• The payoff functions of every player (∀i ∈ I ∃Hi : S −→ R that gives the payoff of
player i when s is played)

Definition. In a compact way, a noncooperative game Γ is thus defined as:

Γ = 〈I, {Si}i∈I , {Hi}i∈I〉

2.2 Basic Concepts

Intuitively, a situation is admissible for player i if, when deviating unilaterally from
it, he decreases his own payoff. If we have a certain situation s = (s1, ..., sN) and i

changes his strategy from si to some other s′i ∈ Si we will be left with a new situa-
tion (s1, ..., si−1, s

′
i, si+1, ..., sN), which, in an attempt to simplify the notation, will be

shortened to s||s′i. In mathematical terms, a situation s ∈ S is admissible for player i if:

Hi(s||s′i) ≤ Hi(s) ∀s′i ∈ Si
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At the same time, a situation s∗ ∈ S is admissible for everyone if:

Hi(s
∗||s′i) ≤ Hi(s

∗) ∀s′i ∈ Si ∀i ∈ I

This is either called a Nash equilibrium or an equilibrium situation. If adopted, nobody
would want to change his strategy and if the game was repeated, everybody would stick to
the same strategy again. In most cases, to reach an equilibrium situation will be referred
as to solve the game. As Game Theory is crucial in Economy, let’s start with a typical
example: the study of a duopoly.

Example. Let i ∈ I be the manufacturer of a certain good and let #I = N be the
number of manufacturers. Each of them must choose a certain strategy si ∈ Si = [0,∞),
which denotes the number of units made and put up for sale. Let ci(si) be the cost
every producer has to face when manufacturing si units of this good. Let’s set ci(si) =

{Cost per unit} × {number of units manufactured} = csi. It is a good approximation
to suppose that the price π of every unit, according to the supply and demand model,
depends on the number of units that are up for sale, so π

(∑
i∈I si

)
We have the set I of

players, the strategies Si of every player and, if we define the payoff of every player when
choosing a certain strategy, we will have a game. Let:

Hi(s) = {Total income} − {Total cost} =

Unit price︷ ︸︸ ︷
π

(∑
i∈I

si

)
# units︷︸︸︷
si︸ ︷︷ ︸

Total income

− cisi︸︷︷︸
Total cost

where it was assumed all manufactured units were sold. Let’s find now an equilibrium
situation for the case N = 2. Let d be a number that accounts for the price of a unit in
a noncompetitive market. Let d > c and let’s assume that the function π has the form:

π(s1, s2) =


d− (s1 + s2) s1 + s2 < d

0 otherwise

The payoff, using the expressions Hi(s) and π(s1, s2) is:

Hi(si) =


si(d− s1 − s2 − c) s1 + s2 < d

−sic otherwise

A pair (s∗1, s
∗
2) ∈ S is a stable equilibrium if H1(s

∗
1, s
∗
2) ≥ H1(s

′
1, s
∗
2) ∀s

′
1 ∈ S1 and

H2(s
∗
1, s
∗
2) ≥ H2(s

∗
1, s

′
2) ∀s

′
2 ∈ S2. Let’s focus on the interesting case, namely s1 + s2 < d

and so Hi(s) = si(d− s1− s2− c). We look for maximums of the functions Hi, so we will
procede as we all know:

∂H1

∂s1
(s) = 0 ⇐⇒ −2s1 + d− s2 − c = 0 ⇐⇒ s1 =

d− s2 − c
2
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At the same time, from ∂H2

∂s2
(s) = 0 we deduce that: s2 = d−s1−c

2
. It is immediate to check

that ∂2H1

∂s21
= ∂2H2

∂s22
= −2, so we have found maximums. Let’s explain a bit what we found.

For any strategy s1 ∈ S1 that player 1 picks, the greatest payoff that player 2 can get will
be attained when playing s2 = d−s1−c

2
. At the same time, for any strategy s2 ∈ S2 that

player 2 picks, the greatest playoff that player 1 can get will be attained when playing
s1 = d−s2−c

2
. These are clearly the best replies to any strategy of the opponent. Thus, to

find an equilibrium situation we only need to solve:
s∗1 =

d−s∗2−c
2

s∗2 =
d−s∗1−c

2

which gives:

s∗ =

(
d− c

3
,
d− c

3

)
Hi(s

∗) =
(d− c)2

9
, ∀i

and therefore we have solved the game.

All strategic games can be classified and divided into classes, which will facilite their
study.

Definition. Two games with the same players and strategies:

Γ = 〈I, {Si}i∈I , {Hi}i∈I〉 Γ
′
= 〈I, {Si}i∈I , {H

′

i}i∈I〉

are strategically equivalent (and will be written Γ ∼ Γ
′) if ∃k > 0 and ci ∈ R s.t.

Hi(s) = kH
′
i(s) + ci

Theorem 2.3. The strategically equivalence relation is an equivalence relation

Proof. Let’s start

• Reflexive: Just set k = 1 and ci = 0 ∀i and the result follows.

• Symmetric: If Hi(s) = kH
′
i(s) + ci, then clearly:

H
′

i =
1

k
Hi −

ci
k

= k̂Hi + ĉi k̂ =
1

k
> 0 ĉi = −ci

k
∈ R

• Transitive: We have that Γ ∼ Γ
′ and Γ

′ ∼ Γ
′′ , so:

Hi(s) = kH
′

i(s) + ci & H
′

i(s) = k′H
′′

i (s) + c
′

i

It readily follows that:

Hi(s) = kH
′

i(s) + ci = k(k′H
′′

i (s) + c
′

i) + ci = kk′H
′′

i (s) + (k′ci + c
′

i) = k̂H
′′

i (s) + ĉi

k̂ = kk′ > 0 ĉi = k′ci + c
′

i ∈ R

�
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Theorem 2.4. Strategic Equivalent games have the same equilibrium situations

Proof. Let Γ ∼ Γ
′ and let s∗ be an equilibrium situation in Γ. By definition,

H(s∗||si) ≤ H(s∗) ∀si ∈ Si ∀i ∈ I

Using that Γ ∼ Γ
′ , i.e., that Hi(s) = kH

′
i(s) + ci, we conclude that:

kH
′

i(s
∗||si) + ci ≤ kH

′

i(s
∗) + ci

k>0
==⇒ H

′

i(s
∗||si) ≤ H

′

i(s
∗) ∀si ∈ Si ∀i ∈ I

Given that I = I ′ (same players) and Si = S
′
i ∀i ∈ I (players have same strategies) s∗ is

an equilibrium situation in game Γ
′ . �

Definition. A non cooperative game Γ = 〈I, {Si}i∈I , {Hi}i∈I〉 is a constant-sum game if:∑
i∈I

Hi(s) = c ∀s ∈ S

In particular, a noncooperative game Γ = 〈I, {Si}i∈I , {Hi}i∈I〉 is a zero-sum game if∑
i∈I

Hi(s) = 0 ∀s ∈ S

Theorem 2.5. All noncooperative constant-sum games are strategically equivalent to a
certain zero-sum game.

Proof. Consider a constant-sum game Γ, for which
∑

i∈I Hi(s) = c ∀s ∈ S. Pick some
{ci}i∈I s.t.

∑
i∈I ci = c. Let’s consider now a strategically equivalent game with H ′i(s) =

Hi(s)− ci. It readily follows that

Γ
′
= 〈I, {Si}i∈I , {H

′

i}i∈I〉

is a zero-sum game strategically equivalent to Γ. �

2.3 Antagonistic Games

Definition. An antagonistic game is a two-player zero-sum game.

These types of games are called antagonistic because everything that player 1 gains
results from the loss of player 2. Clearly H2(s) = −H1(s) and therefore when dealing
with antagonistic games we only need to give the payoff function of one of the players.
For this reason, and bearing in mind that I = {1, 2}, antagonistic games are expressed
as:

Γ = 〈S1, S2, H1〉
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2.3.1 Equilibrium situations in antagonistic games

It is time to talk about equilibrium situations in antagonistic games. As was previously
said, we have an equilibrium situation when no player increases his payoff when unilater-
ally deviating from the situation. Let Γ = 〈S1, S2, H1〉 be an antagonistic game and s∗ =

(s∗1, s
∗
2) an equilibrium situation. For player 1, this means H1(s

∗
1, s
∗
2) ≥ H1(s1, s

∗
2), ∀s1 ∈

S1, and for player 2: H2(s
∗
1, s
∗
2) ≥ H2(s

∗
1, s2), ∀s2 ∈ S2. Recalling that H1 = −H2, we can

transform the condition for player two into H1(s
∗
1, s
∗
2) ≤ H1(s

∗
1, s2), ∀s2 ∈ S2. Putting

together both inequalities we readily conclude that, if s∗ = (s∗1, s
∗
2) is an equilibrium

situation, it follows that:

H1(s1, s
∗
2) ≤ H1(s

∗
1, s
∗
2) ≤ H1(s

∗
1, s2) s1 ∈ S1 s2 ∈ S2

Recall that (s∗1, s
∗
2) are fixed values here and the variables are s1 and s2. Let’s try to

understand this expression. For s2 fixed and s2 = s∗2, the s1-function H1(s1, s
∗
2) attains its

absolute maximum at s∗1, according to the first inequality. At the same time, according
to the last inequality, if we set s1 = s∗1, the s2-function H1(s

∗
1, s2) attains its absolute

minimum at s∗2. The function H1(s1, s2) therefore has a saddle point in (s∗1, s
∗
2). We

deduce:

(s∗1, s
∗
2) is a Nash eq. of Γ = 〈S1, S2, H1〉 ⇐⇒ (s∗1, s

∗
2) is a saddle point of H1(s1, s2)

(2.1)

Remark. In Game Theory, a saddle point is not exactly the same that in Analysis.
Typically, the directions in which the function increases and decreases are irrelevant. For
us, however, the first variable needs to attain a maximum and the second a minimum, and
the inverse option is not acceptable. At the same time, the definition of a saddle point
in analysis involves partial derivatives and the Hessian matrix. For us, this regularity is
not required and a saddle point can be perfectly defined at the boundary.



Chapter 3

General Results Concerning
Equilibrium Situations

3.1 Matrix Games

Definition. A Matrix Game is an antagonistic game where the number of available
strategies for every player is finite. In mathematical terms, it’s a certain Γ:

Γ = 〈S1, S2, H1〉 s.t. #Si <∞ i = 1, 2

Given that #Si < ∞, we can now numerate the strategies of every player and speak
of strategy j of player i, i.e. j ∈ Si. Let’s think of a matrix (aij) in which each row
represents a strategy of player 1 and every column a strategy of player 2. Consequently,
each cell corresponds to a situation. Let us write in such cell the payoff of player 1 for
such situation, i.e. aij = H1(i, j), where i ∈ S1 and j ∈ S2. To obtain the payoff of player
2 we only need to recall that for antagonistic games H2 = −H1. We therefore have a
description of the game in the form of #S1 ×#S2-matrix (The matrix of the game) and
that’s why we speak of matrix games. For what we have seen for antagonistic games,
a situation (i∗, j∗) will be an equilibrium situation (or saddle point) of a matrix game
A = (aij) if and only if aij∗ ≤ ai∗j∗ ≤ ai∗j ∀i ∀j. Let us derive now methods to determine
whether generic functions have saddle points.

3.2 Requirements for the existence of saddle points

Theorem 3.1. For any function f(x, y) defined in a certain set the following inequality
holds:

sup
x

inf
y
f(x, y) ≤ inf

y
sup
x
f(x, y)

Proof. Obviously f(x, y) ≤ supx f(x, y) ∀y. For any function f(x, y) ≤ g(y) ∀y, then
infy f(x, y) ≤ infy g(y), so it follows that:

inf
y
f(x, y) ≤ inf

y
sup
x
f(x, y)

16
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The infy supx f(x, y) of any function is a number, so the inequality on top of this line could
be summarized as infy f(x, y) ≤ C. For a function s.t. f(x) ≤ C, using the definition of
the supremum, one can assert that supx f(x) ≤ C, so:

sup
x

inf
y
f(x, y) ≤ C = inf

y
sup
x
f(x, y)

and the result follows. �

Theorem 3.2. A necessary and sufficient condition for a function f(x, y) to have saddle
points (and consequently equilibrium situations if f(x, y) expresses the payoff of one player
in an antagonistic game) is the existence of maxx infy f(x, y) and miny supx f(x, y) and
the satisfaction of the equality:

max
x

inf
y
f(x, y) = min

y
sup
x
f(x, y)

Proof. Let (x∗, y∗) be a saddle point. Clearly then:

f(x, y∗) ≤ f(x∗, y∗)︸ ︷︷ ︸
constant

≤ f(x∗, y)

Proceeding as in the previous proof, it follows that supx f(x, y∗) ≤ f(x∗, y∗). The quantity
supx f(x, y∗) is clearly a value, so trivially, if we let y vary and chose the infimum:

inf
y

sup
x
f(x, y) ≤ sup

x
f(x, y∗) ≤ f(x∗, y∗) (3.1)

Proceeding similarly, given that if k ≤ f(y) ∀y then k ≤ infy f(y) it follows that
f(x∗, y∗) ≤ infy f(x∗, y) and then

f(x∗, y∗) ≤ inf
y
f(x∗, y) ≤ sup

x
inf
y
f(x, y) (3.2)

and using the two previous equations:

inf
y

sup
x
f(x, y) ≤ sup

x
inf
y
f(x, y)

According to the previous theorem, however: infy supx f(x, y) ≥ supx infy f(x, y), so the
only way both inequalities can hold is if:

inf
y

sup
x
f(x, y) = sup

x
inf
y
f(x, y)

This means that all the above inequalities are equalities, in particular infy supx f(x, y) =

supx f(x, y∗) which means that the infimum is attained. At the same time the expression
infy f(x∗, y) = supx infy f(x, y) tells us the supremum is also attained. We could thus
write:

min
y

sup
x
f(x, y) = max

x
inf
y
f(x, y)
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and we have proved that if (x∗, y∗) is a saddle point of function f(x, y), then the above
equality is satisfied.
Let’s prove the converse result. Let maxx infy f(x, y) and miny supx f(x, y) exists and be
equal to each other. Let x∗ and y∗ be the points where the extrema of this expressions
are attained. By this we mean that:

max
x

inf
y
f(x, y) = inf

y
f(x∗, y) & min

y
sup
x
f(x, y) = sup

x
f(x, y∗)

By definition, inf f(y) ≤ f(y∗), so infy f(x∗, y) ≤ f(x∗, y∗) and then:

max
x

inf
y
f(x, y) = inf

y
f(x∗, y) ≤ f(x∗, y∗)

Analogously we could prove that: f(x∗, y∗) ≤ supx f(x, y∗) = miny supx f(x, y). As the
the minimaxes must be equal, again all inequalities are in fact equalities. In particular:

sup
x
f(x, y∗) = f(x∗, y∗) =⇒ f(x, y∗) ≤ f(x∗, y∗) ∀x

inf
y
f(x∗, y) = f(x∗, y∗) =⇒ f(x∗, y∗) ≤ f(x∗, y) ∀y

And it follows that (x∗, y∗) is a saddle point. �

Remark. It must be stressed that throughout this demonstration, a series of useful
results were proven. First, given that in the end all the inequalities turned out to be
equalities, it is deduced from (3.1) and (3.2) that:

min
y

sup
x
f(x, y) = max

x
inf
y
f(x, y) = f(x∗, y∗)

and therefore the value of the function at the saddle point is the same as the obtained
by computing the expressions miny supx f(x, y) or maxx infy f(x, y). What’s more, this
shows that we can determine the saddle points treating the variables independently, first
maximizing one and the minimizing the other, or the other way round. It therefore follows
that if (x∗1, y

∗
1) and (x∗2, y

∗
2) are saddle points, then (x∗1, y

∗
2) and (x∗2, y

∗
1) are also saddle

points. The same property then obviously holds for the Nash equilibriums.

Definition. Let Γ = 〈S1, S2, H1〉 be a matrix game with matrix A = (aij). Then:

v1(A) = max
i

min
j
aij & v2(A) = min

j
max

i
aij

Remark. Let A = (aij) be the matrix of a certain game. For what we have seen in
Theorem 3.2, such a game has equilibrium situations if, and only if, v1(A) = v2(A),
where we have used that for matrix games, which let’s recall that have a finite number
of strategies, the supremum and infimum of each row or column are trivially attained.

Player 1 should think as follows: Assume I chose strategy i ∈ S1. In the worst case
scenario, I will be left with minj aij. Then I shall chose a strategy that guarantees me at
least v1(A). Player 2 should think analogously: If I chose strategy j ∈ S2, what I will
lose in the worst case scenario is maxi aij. Therefore, the intelligent thing is to chose the
strategy that minimizes this and yields v2(A). We will call this optimal strategies the
max-min strategies.
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3.2.1 Examples

1. Assume we have a game with matrix:


21 22 23

11 5 1 4

12 3 2 4

13 −4 0 2


where Ij denotes the strategy number j of player I = 1, 2. Here maxi minj aij =

minj maxi aij = 2, so it has equilibrium situations. When picking a strategy, player
1, in the worst case scenario, will get the following payoff:

11 1

12 2

13 −4


so it would be advisable for him to pick 12. When picking a strategy, player 2, in
the worst case scenario will lose the following payoff:

( 21 22 23

5 2 4
)

so it would be advisable for him to pick 22. The game is perfectly determined. Even
if the players knew the strategy the opponent would employ, they wouldn’t be able
to do any better than this.

2. Assume we have a game with matrix:

( 21 22

11 4 2

12 0 3

)
Now maxi minj aij = 2 6= 3 = minj maxi aij, so no equilibrium situation exists. If
we proceed like in the previous game we see that player 1 could guarantee a minimal
gain of 2 if he choses 11 and player 2 could guarantee a maximal loss of 3 when
choosing 22. However, the game is not strictly determined because if player 1 knew
that player 2 was picking 22, he would pick 12, and also would player 2 change his
strategy is he knew his opponent’s intentions.

3.2.2 How should we play against an irrational player?

All the theory we have developed is applicable when both players are rational, but I believe
this is not a really good approximation, so let’s momentarily change this assumption. If
we stopped someone by in the street and we convinced him to play the game of example
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1 (as player 2) against us, chances are he would not reason as we explained before. How
should we play against such an individual? Should we opt for 12 again? There is no best
strategy, but some interesting things can be said. Could we use our rationality to get
something better than a 2? The first interesting observation is that the max-min strategy
is a really conservative option: we only focus our attention in minimizing the maximum
possible loss. If this is the most important thing for us, we should employ this strategy.
However, we might be confident in our chances and like to take risks. Someone like that
would like to opt for 11, hoping to get the 5.
If we played with a completely irrational player that chose his strategies randomly, a
possible thing to do would be to average the payoffs we can obtain and opt for the one
that maximizes that. In that case we would have:


a. p.

11 3, 3

12 3

13 −0, 6


where a.p. stands for average payoff. It would therefore be appropriate to chose 11. Now
imagine we knew our opponent was a risk lover, so we could foresee he would try to get
the −4 and therefore employ 21. We could now chose 11 and get the 5.
There is no optimal strategy in this kind of situations, but we should make sure to use all
the information we know about the opponent and use it in our favor, as we have outlined
how to do so here.



Chapter 4

Mixed Extensions of Matrix Games

In such games where maxi minj aij 6= minj maxi aij, no equilibrium situation will be
reached. This won’t satisfy the players, and, if the game is repeated, they may try to
change their strategy in order to increase their payoff. Let’s assume now that the players
will chose their strategy among the si ∈ Sni

i
1 with a certain frequency. The determination

of a mixed strategy consists in assigning a probability xi to every strategy si ∈ Sni
i , so

xi = P (Y = si), where Y is the strategy it is picked. This can be thought as a probability
distribution X that:

X = (x1, ..., xni
) xi ≥ 0

ni∑
i=1

xi = 1

If Ini
is the ni-vector (1, ..., 1), we can summarize the last condition to XITni

= 1. The
totality of all vectors (x1, ..., xni

) form a ni-dimensional Euclidian space Eni . However,
these are subject to conditions xi ≥ 0 and

∑ni

i=1 xi = 1. Taking that into account, it
is easy to see that the set of these resulting vectors is a (ni − 1)-dimensional simplex
submerged in Eni . We will call this set, the one of all possible mixed strategies over Sni

i ,
as Ŝni

i , and we will denote a mixed strategy by X ∈ Ŝni
i . In the case of ni = 2, for

example, Ŝ2
i is the segment that joins (1, 0) to (0, 1). The fact that

∑n
i=1 xi = 1 trivially

tells us that Ŝni
i is bounded. The simplex Ŝni

i is clearly a subset of a hyperplane of Eni .
It is easy to see that is closed and it follows that Ŝni

is therefore compact.

4.1 Mixed Extension of a game

With a clever trick, we can transform an antagonistic game where players use mixed
strategies to a normal game. Let A = (aij) be the matrix of the matrix game Γ =

〈S1, S2, H1〉.

Definition. A pair (X, Y ) ∈ Ŝ1 × Ŝ2 of mixed strategies is called a situation in mixed
games.

1From now on, for the sake of clarity, we will always make explicit the cardinal ni of Si, so Sni
i will

mean the set of ni available strategies to player i.

21
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Every situation (i, j) (in the common usage) is a random event that occurs now with
a certain probability xiyj. In such situation the payoff aij is obtained. We can easily
compute the average payoff when X and Y are employed as:

Ĥ1(X, Y ) =
m∑
i=1

n∑
j=1

aijxiyj = XAY T

So basically now we can assign a precise payoff to every situation in mixed strategies
because we have eliminated the probabilistic nature of the strategies. Given that we
are using the expected value, the Law of Large Numbers accounts for why the following
analysis will works when the game is repeated a lot of times. Therefore a good strategy
might give bad results in an isolated realization of the game.

Definition. A mixed extension of the game Γ = 〈S1, S2, H1〉 is the antagonistic game
Γ̂ = 〈Ŝ1, Ŝ2, Ĥ1〉.

As condition (2.1) claims, for a general antagonistic game Γ = 〈S1, S2, H1〉, a situation
(s∗1, s

∗
2) ∈ S1 × S2 will be an equilibrium situation of Γ iff (s∗1, s

∗
2) is a saddle point of

H1(s1, s2). If we apply this result to the antagonistic game Γ̂ = 〈Ŝ1, Ŝ2, Ĥ1〉, we deduce
that a situation (X∗, Y ∗) ∈ Ŝ1 × Ŝ2 will be an equilibrium situation of Γ̂ if (X∗, Y ∗) is a
saddle point of the function Ĥ(X, Y ). We know then that a situation (X∗, Y ∗) ∈ Ŝ1× Ŝ2

is an equilibrium situation / saddle point iff:

XAY ∗T ≤ X∗AY ∗T ≤ X∗AY T ∀(X, Y ) ∈ Ŝ1 × Ŝ2

We will see that for any matrix game Γ with matrix A there exists an equilibrium situation
(X∗, Y ∗) in the mixed extension of the game Γ̂. As we saw in Theorem 3.2, to prove so
we have to verify that maxX minY XAY

T and minY maxX XAY
T 2 exist and are equal.

Lemma. For any Y ∈ Ŝ2 and a s.t.

Ai·Y
T ≤ a ∀i

then ∀x ∈ Ŝ1 we have that XAY T ≤ a. Similar results for the inequalities of the form
Ai·Y

T ≥ a, XA·j ≤ a and XA·j ≥ a follow.

Proof. Clearly, as xi ≥ 0 ∀i:

Ai·Y
T ≤ a =⇒ xiAiY

T ≤ xia

It readily follows that:

XAY T =
∑
i

xiAi·Y
T ≤

∑
i

xia = a
∑
i

xi = a

2For matrix games, given that X = (1−x, x) and Y = (1− y, y), to maximize and minimize for every
vector, i.e., to compute for example maxX minY XAY

T , is the same as to compute maxxminyXAY
T .
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Theorem 4.1. Let Γ̂ be the mixed extension of a game Γ. Then (X∗, Y ∗) ∈ Ŝ1 × Ŝ2 is
an equilibrium situation of Γ̂ iff Ai·Y

∗T ≤ X∗AY ∗T ≤ X∗A·j

Proof. The necessity is trivial, as this is a particular case of XAY ∗T ≤ X∗AY ∗T ≤
X∗AY T for X = 1i and Y = 1j, where the notation should be clear. Let’s prove the
sufficiency. To do so, let’s call X∗AY ∗T = a. We just proved that:

Ai·Y
∗T ≤ a =⇒ XAY ∗T ≤ a

X∗A·j ≥ a =⇒ X∗AY T ≥ a

and then clearly XAY ∗T ≤ X∗AY ∗T ≤ X∗AY T . �

Existence of maxX minY XAY
T and minY maxX XAY

T

Lemma. Let Γ̂ be the mixed extension of a game Γ. For any Y0 ∈ Ŝ2 there exists the
maxxXAY

T
0 and for any X0 ∈ Ŝ1 there exists the minyX0AY

T .

Proof. It is clear that:

XAY T
0 =

∑
i

xiAi·Y
T
0 ≡ linear function f(xi)

Given that Ŝ1 is a compact set (it is trivially closed and it is bounded because we are
dealing with matrix games) then the maximum clearly exists. The other statement is
proved analogously.

Lemma. Let Γ̂ be the mixed extension of a game Γ. For any X0 ∈ Ŝ1 there exists j0(X0)

s.t.
min
y
X0AY

T = X0A·j0

and for any Y0 ∈ Ŝ2 there exists i0(Y0) s.t.

max
x

XAY T
0 = Ai0·Y0

Proof. Consider {X0A·j}j and let X0A·j0 be the smallest element in the set. Then given
that:

X0A·j0 ≤ X0Aj ∀j =⇒ X0A·j0 ≤ X0AY
T ∀Y ∈ Ŝ2

Given that this inequality is valid ∀Y ∈ Ŝ2, using the definition of minimum we can
conclude that:

X0A·j0 ≤ min
y
X0AY

T

At the same time, X0A·j0 is a particular case of X0AY
T (for Y = 1j) so it’s also true

that:
X0A·j0 = X0A1T

j ≥ min
y
X0AY

T

and the result follows. The demonstration of maxxXAY
T
0 = Ai0·Y

T
0 would be carried

out analogously.
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Lemma. The y-function maxxXAY
T and the x-function minyXAY

T are continuous

Proof. We are only going to prove the continuity of the first function, the other case is
proven analogously. Given that maxxXAY

T = maxiAi·Y
T , we only need to prove that

maxiAi·Y
T is continuous. Ai·Y

T is obviously continuous in Y . Take ε > 0 and δ s.t.

for |Y ′−Y ′′| < δ =⇒ |Ai·Y
′T−Ai·Y

′′T | < ε ⇐⇒ Ai·Y
′′T−ε < Ai·Y

′T < Ai·Y
′′T+ε ∀Y ′, Y ′′

Recall that if f(Y ′) > f(Y ′′) ∀Y ′, Y ′′ then max f(Y ′) > max f(Y ′′) and so it follows that:

max
i
Ai·Y

′′T − ε < max
i
Ai·Y

′T < max
i
Ai·Y

′′T + ε =⇒ |max
i
Ai·Y

′T −max
i
Ai·Y

′′T | < ε

Theorem 4.2. The quantities maxX minY XAY
T and minY maxX XAY

T exist.

Proof. It has just been proven that maxX XAY
T is a continuous function of Y , which

is defined in Ŝ2, which, as was discussed, is a compact set and hence the minimum is
trivially attained. The other result is proven analogously. �

Convex Sets

Definition. In an euclidian space En, a certain S ⊂ En is called a convex subset of En

if ∀ U, V ∈ S and ∀λ ∈ [0, 1] then

λU + (1− λ)V ∈ S

i.e. the whole segment going from any point of the subset to some other one is also part
of the subset.

Lemma. (cf.[8]) If A is a closed convex set and x ∈ En\A, then A and x can be separated
by a hyperplane.

Lemma. For any matrix A one of this two options holds:

1. There exists a vector X ∈ Ŝm
1

3 s.t. XA·j ≥ 0 ∀j

2. There exists a vector Y ∈ Ŝn
2 s.t. Ai·Y

T ≤ 0 ∀i

Proof. Recall that Ŝm
1 is the (m− 1)-simplex. The convex hull or convex envelope of a

set S, i.e., the smallest possible convex set C that contains it, can be expressed as:

C(S) =

{
#S∑
i

αixi

}
where xi ∈ S, αi > 0 ∀i, and

#S∑
i

αi = 1

Let’s consider the convex envelope of Ŝm
1 and A·j. There are two possibilities: ~0 ∈

C(Ŝm
1 ∪ A·j) or ~0 /∈ C(Ŝm

1 ∪ A·j).
3Bear in mind that we are using again the notation explained in the first footstep of this chapter.
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• If ~0 ∈ C(Ŝm
1 ∪A·j), applying the definition of convex hull it follows that there exist

certain {αj}j and {ηi}i s.t.

n∑
j=1

αjA·j +
m∑
i=1

ηisi = ~0 with αi > 0, ηi > 0 and
∑
j

αj +
∑
i

ηi = 1

The above expression can be written as
∑
bisi = ~0, and therefore:

bi =
n∑

j=1

αja·j + ηi = 0

and given that ηi > 0 ∀i it follows that
∑n

j=1 αja·j ≤ 0. The quantity α =
∑n

j αj

is positive. It is clearly nonnegative, and if it was 0 it would follow that αj = 0 ∀j,
what would mean using the expression above that ηi = 0, something which would
contradict

∑
j αj +

∑
i ηi = 1. We can therefore define yj = αj/α. Given that

yj ≥ 0 ∀j and
∑

j yj = 1, Y = (y1, ..., yn) could be thought as a mixed strategy, i.e.,
as an element of Ŝn

2 . If we use now the expression
∑n

j=1 αja·j ≤ 0 and we divide it
for α, the desired result follows:

n∑
j=1

yjaij = Ai·Y
T ≤ 0 ∀i

• For ~0 /∈ C(Ŝm
1 ∪ A·j), we can apply the previous lemma4 to find that ~0 can be

separated from C by a hyperplane, which we will assume to go through the point
~0. Let V z = 0 be its equation. Without any loss of generality, we can assume that:

V Z > 0 ∀z ∈ C(Ŝm
1 ∪ A·j)

In particular, for any pure strategy, it follows that V si = vi > 0 and let’s call
v =

∑
vi. It is time we considered now

X =
(v1
v
, ...,

vn
v

)
The same arguments that justified in the previous case that Y was a mixed strategy
apply here to show that X ∈ Ŝm

1 . Consider now:

Xz =

(∑
i

1

v
vi

)
zi =

1

v
V z ≥ 0 ∀z

apply this to the vectors A·j and the result readily follows.
4It can be proved that the convex hull of a compact set is closed.
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4.1.1 The MinMax Theorem

Theorem 4.3. (The MinMax Theorem) For any matrix A and for any (X, Y ) ∈ Ŝ1× Ŝ2

the equality:
max
X

min
Y
XAY T = min

Y
max
X

XAY T

holds.

Proof. We apply to A the previous lemma. Let’s assume first the first option, i.e.
XA·j ≥ 0 ∀j. As it is clear now:

XA·j ≥ 0 ∀j =⇒ X0AY
T ≥ 0 ∀j ∀Y ∈ Ŝ2

As this is valid for every Y ∈ Ŝ2, then

min
Y
X0AY

T ≥ 0 =⇒ max
X

min
Y
XAY T ≥ 0

The second option, Ai·Y
T ≤ 0 ∀i, leads, proceeding analogously, to minY maxX XAY

T ≤
0. One of the two inequalities must hold, so it is impossible that:

max
X

min
Y
XAY T < 0 < min

Y
max
X

XAY T

If A = (aij), consider A(t) = (aij − t). Now:

XA(t)Y T =
∑
i

∑
j

xi(aij − t)yj =
∑
i

∑
j

xiaijyj − t
∑
i

∑
j

xiyj = XAY T − t

It is impossible that:

max
X

min
Y

(XAY T−t) < 0 < min
Y

max
X

(XAY T−t) =⇒ max
X

min
Y
XAY T < t < min

Y
max
X

XAY T

And therefore, it is impossible that maxX minY XAY
T < minY maxX XAY

T so it must
always be maxX minY XAY

T ≥ minY maxX XAY
T . However, according to Theorem

3.1, and applying it to a matrix game, it must always hold that maxX minY XAY
T ≤

minY maxX XAY
T , so the only way both things can be true is if:

max
X

min
Y
XAY T = min

Y
max
X

XAY T

�

Just as it happened for non-repeated games, player 1 is inclined to choose the strategy
that accomplishes v1 = maxi minj XAY

T and player 2 the strategy that accomplishes
v2 = minj maxiXAY

T . But now, the equivalent of this expressions, as it has just been
proven, will always be equal, i.e. v′1(A) = v′2(A) 5 always! This means that if both
players behave rationally the game will always end up in this situation. Mixed extensions
of matrix games are therefore predetermined and that’s why they are called completely
determined games.

5where by analogy v′1(A) = maximinj XAY
T and v′2 = minj maxiXAY

T
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Definition. Let Γ̂ be the mixed extension of the matrix game Γ. We define the value of
the game (and bear in mind it only makes sense in mixes strategies) as:

v(A) = max
X

min
Y
XAY T = min

Y
max
X

XAY T

or in a shorter way v(A) = v′1(A) = v′2(A). Notice that v(A) tells us the mean gain
player 1 will get, as long as they both employ their max-min strategies. Trivially then:
v(A) = H1(X

∗, Y ∗). To solve a game is to determine the value of the game and the
min-max strategies.

4.1.2 First Example

It is time now we talked about how to find equilibrium situations in mixed strategies. The
first thing it should be said is that this has already been done in the first chapter of this
undergraduate thesis. Let’s give now a more precise explanation of how we proceeded.
To do so, let’s focus our attention on the example 2 of section 3.2.1. We had a game with
matrix A for which there was no equilibrium situation. We know now that, in mixed
strategies, it must have at least one equilibrium situation. Let’s assume each player picks
a general mixed strategy, i.e. X = (1− x, x) and Y = (1− y, y) 6.

( 1− y y

1− x 4 2

x 0 3

)
We therefore have that:

Ĥ(X, Y ) =
m∑
i=1

n∑
j=1

aijxiyj = 4(1− x)(1− y) + 2(1− x)y + 3xy = 5xy − 2y − 4x+ 4

Now we want to compute:

max
0≤x≤1

min
0≤y≤1

5xy−2y−4x+ 4 = max
0≤x≤1

min
y∈{0,1}

5xy−2y−4x+ 4 = max
0≤x≤1

min{−4x+ 4, x+ 2}

where we have used Theorem 1.1 in the first equality. The function Ĥ(x) = min{−4x+

4, x+ 2} is graphed in figure 4.1.
It can readily be checked that it attains its maximum at x∗ = 2/5 and thus:

v(A) = v′I(A) =
2

5
+ 2 = 2.4

If we want to know now the strategy player 2 should employ we only need to compute:

min
0≤y≤1

max
0≤x≤1

5xy − 2y − 4x+ 4 = min
0≤y≤1

max
x∈{0,1}

5xy − 2y − 4x+ 4 = min
0≤y≤1

max{−2y + 4, 3y}

6This is arbitrary and we could have perfectly taken X = (x, 1− x) and Y = (y, 1− y). We warn the
reader that we will alternate between these throughout the following chapters.
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Figure 4.1: Graph of min{−4x+ 4, x+ 2}

The minimum of max{−2y+4, 3y} is attained when y∗ = 4/5 and it obviously yields 2.4.
We have solved the game:

min-max strategy X∗ =

(
3

5
,
2

5

)
max-min strategy Y ∗ =

(
1

5
,
4

5

)
value of the game v(A) =

12

5
= 2.4

Both this and the bomber game were matrix games with 2×2-matrixes, i.e. n1 = #Sn1
1 =

2 and also n2 = 2. Let us say at this point that there is no easy algorithm to solve n×m
games. Everything that can be said is that a Nash Equilibrium will always exist in mixed
strategies. However, let’s try to go beyond 2× 2 games by studying 2×m games

4.1.3 Two lemmas

Definition. Let Γ be a game with matrix A = (aij). Then a row i dominates over row
k if aij ≥ akj ∀j and column j dominates over column l if aij ≤ ail ∀i. Intuitively, a
dominated row is not interesting for player 1 and a dominated column is not interesting
for player 2, so given that the players are not going to pick them, we can remove them
from the game. Let’s prove it.

Lemma. If either a dominated row or column is removed from the matrix A, the solution
of the remaining game is the same as the one of the original game.

Proof. Let Γ = 〈S1, S2, H1〉 be a matrix game and Γ̂ = 〈Ŝ1, Ŝ2, Ĥ1〉 its mixed extension.
Let the second strategy of player 1 dominate over the first one. Consider thus the games
Γ′ = 〈S ′1, S2, H1〉 and Γ̂′ = 〈Ŝ ′1, Ŝ2, Ĥ1〉 where clearly Ŝ ′1 = {X ∈ Ŝ1 s.t. x1 = 0}. Let
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(X ′∗, Y ′∗) be the optimal strategies of Γ̂′. Are these the optimal strategies of Γ̂ as well?
Let v′ be the value of Γ̂′. This means that:

Ĥ1(X
′∗, Y ′) ≥ Ĥ1(X

′∗, Y ′∗) = v′ ∀Y ′ ∈ Ŝ2

Ĥ1(X
′, Y ′∗) ≤ Ĥ1(X

′∗, Y ′∗) = v′ ∀X ′ ∈ Ŝ ′1

In order to prove the lemma, we want to check if:

Ĥ1(X
′∗, Y ′) ≥ v′ ∀Y ′ ∈ Ŝ2

Ĥ1(X
′, Y ′∗) ≤ v′ ∀X ′ ∈ Ŝ1

what will mean that v′ is also the value of the game Γ̂. The first inequality is trivially
true. When it comes to the second:

Ĥ1(X
′, Y ′∗) =

n∑
i

m∑
j

x′iaijy
′∗
j = x′1

m∑
j

a1jy
′∗
j +

n∑
i=2

m∑
j=1

x′iaijy
′∗
j ≤ (domination)

≤ x′1

m∑
j=1

a2jy
′∗
j +

n∑
i=2

m∑
j=1

x′iaijy
′∗
j = Ĥ1(X̃ ′, Y

′∗) ≤ v ∀X ′ ∈ Ŝ1

where we used that X̃ ′ = (0, x1 + x2, x3, ..., xn) ∈ Ŝ ′1. �

Definition. A pure strategy is said to be relevant if it is employed with probability
greater than zero in a max-min strategy.

Lemma. Any relevant strategy played against a max-min strategy yields the value of
the game.

Proof. Let Γ = 〈S1, S2, H1〉 be a matrix game and Γ̂ = 〈Ŝ1, Ŝ2, Ĥ1〉 its mixed extension.
Let X∗ = (x∗1, ..., x

∗
k, 0, ..., 0) (x∗i 6= 0 i < k) and Y ∗ be the max-min strategies. Then:

v = Ĥ1(X
∗, Y ∗) =

∑
i

∑
j

x∗i aijy
∗
j =

k∑
i

x∗i Ĥ1(1i, Y
∗) =⇒

k∑
i

x∗i
Ĥ1(1i, Y

∗)

v
= 1

We know that
∑

i x
∗
i = 1. Recall that v = v′2, so given that player 2 is employing a

max-mix strategy we have that Ĥ1(1i,Y
∗)

v′2
≤ 1 ∀i ≤ k. In fact, these inequalities will turn

out to be equalities. If Ĥ1(1i,Y
∗)

v
< 1 for some i and the others were equal to 1, we would

have: ∑
i

x∗i
Ĥ1(1i, Y

∗)

v
<
∑
i

x∗i = 1

which can’t be true. Therefore:

Ĥ1(1i, Y
∗)

v
= 1 ∀i ≤ k =⇒ Ĥ1(1i, Y

∗) = v ∀i ≤ k

�



CHAPTER 4. MIXED EXTENSIONS OF MATRIX GAMES 30

In the example of section 4.1.2, we found that all strategies were relevant and that the
value of the games was 12/5. We can thus check the validity of the lemma:(

1 0

0 1

)(
4 2

0 3

)(
1
5
4
5

)
=

(
12
5
12
5

)
&

(
3

5
,
2

5

)(
4 2

0 3

)(
1 0

0 1

)
=

(
12

5
,
12

5

)
which obviously turns out to be right.

4.1.4 2×m games

Let’s assume we have a game Γ = 〈S1, S2, H1〉 with matrix A where #S1 = 2 and
#S2 = m. Also let’s assume no saddle point exists (otherwise we don’t need mixed
strategies to solve the game). We can solve these games by:

1. Using the domination lemma.

2. Finding relevant strategies.

3. Using the relevant strategies lemma to find the max-min strategies.

Let’s see how this works with an example:(
1 7 5 3

8 2 6 4

)
We apply 1) and we are left with: (

1 7 3

8 2 4

)
Now let’s move to 2). We assume a strategy X = (x, 1− x) for player 1 and we confront
it all the pure strategies of player 2 (21 = (1, 0, 0), 22 = (0, 1, 0) and 23 = (0, 0, 1)). We
do that because if X is a max-min strategy, we know that we only need to confront it
against all the pure strategies to obtain the value of the game. We thus have:

The combination of X with 21 yields: r1(x) = x+ 8(1− x) = −7x+ 8

The combination of X with 22 yields: r2(x) = 7x+ 2(1− x) = 5x+ 2

The combination of X with 23 yields: r3(x) = 3x+ 4(1− x) = −1x+ 4

Figure 4.2 a) shows the graph of these functions.
Player 1, as always, will choose the strategy that accomplishes max min{−7x + 8, 5x +

2,−x + 4}. See figure 4.2 b), where the function f(x) = min{−7x + 8, 5x + 2,−x + 4}
is represented. The maximum (the value of the game), which lays somewhere between
x = 0.2 and x = 0.4, comes from the intersection of r2(x) and r3(x). Provided that r1(x)

can’t yield the value of the game and applying the relevant strategies lemma, we conclude
that 21 is an irrelevant strategy, so it can be removed. As a consequence, we are left with:(

7 3

2 4

)
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Figure 4.2: a) Graph of r1(x), r2(x) and r3(x). b) Graph of min{r1(x), r2(x), r3(x)}

Let X∗ = (x∗, 1−x∗) be the max-min strategy of player 1. The relevant strategies lemma
asserts that:

(x∗, 1− x∗)
(

7 3

2 4

)(
1

0

)
= v & (x∗, 1− x∗)

(
7 3

2 4

)(
0

1

)
= v

From these equations we conclude that: 5x∗ + 2 = −x∗ + 4 and therefore x∗ = 1/3 and
v = 11/3. At the same time:

(1, 0)

(
7 3

2 4

)(
y∗

1− y∗

)
= v =

11

3

from where we deduce that: 4y∗ + 3 = 11/3 and therefore y∗ = 1/6. We have solved the
game:

min-max strategy X∗ =

(
1

3
,
2

3

)
max-min strategy Y ∗ =

(
1

6
,
5

6

)
value of the game v(A) =

11

3
= 3.67



Chapter 5

General Noncooperative Games

Let us study now those noncooperative games where there are more than two players.
We have seen so far how all matrix games have at least one equilibrium situation in
mixed strategies. This interesting result can be generalized into a much more powerful
statement, originally proved by Nash, that we present now and will be proved later.

Nash’s Theorem. In any noncooperative game there is at least one equilibrium situation
in mixed strategies.

5.1 Mixed Extensions of Noncooperative Games

Let Γ = 〈I, {Si}i∈I , {Hi}i∈I〉 be a noncooperative game and let’s assume that #{Si} <
+∞ ∀i. Let σi denote the mixed strategy of player i. We could think of σi as a
probability distribution that assigns to every strategy si ∈ Si the probability of being
actually employed: σi(si). If player i decides to pick the same strategy ṡi every time, i.e.
to pick a pure strategy, clearly σi(si) = 0 ∀si 6= ṡi and σi(ṡi) = 1. The set of all mixed
strategies of player i will be denoted by Ŝi. The probability distributions will be assumed
to be independent, so the probability of arriving at the situation s ∈ S will be:

σ(s) = σ(s1, ..., sn) = σ1(s1) · · ·σn(sn)

The set of all this probability distributions will be now the set of situations. To define
the payoff of this new situations, we will proceed as we did for the mixed extension of
matrix games, i.e. averaging the payoff of every pure strategy.

Ĥi(σ) =
∑
s∈S

Hi(s)σ(s) =
∑
s1∈S1

· · ·
∑
sn∈Sn

H(s1, ..., sn)
n∏

i=1

σi(si)

Clearly now we can define the mixed extension of the game Γ = 〈I, {Si}i∈I , {Hi}i∈I〉 as:

Γ̂ = 〈I, {Ŝi}i∈I , {Ĥi}i∈I〉

32
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Theorem 5.1. For any situation σ, there is at least one pure strategy s0i ∈ Si ∀i s.t.

σi(s
0
i ) > 0 (It is sometimes employed) & Ĥi(σ||s0i ) ≤ Ĥi(σ)

Proof. We are going to proceed with a reductio ad absurdum. Suppose no such strategy
exists. Then, all pure strategies si of player i that satisfy σi(s0i ) > 0 must satisfy as well:

Ĥi(σ||si) > Ĥi(σ)

As for these strategies σi(si) > 0, we can readily state that Ĥi(σ||si)σi(si) > Ĥi(σ)σi(si).
For those si ∈ Si that are never employed (σi(si) = 0) it holds that Ĥi(σ||si)σi(si) =

Ĥi(σ)σi(si) = 0. Clearly: ∑
si∈Si

Ĥi(σ||si)σi(si) >
∑
si∈Si

Ĥi(σ)σi(si)

from where it follows that Ĥi(σ) > Ĥi(σ), which is a contradiction. �

Analogously as we have done before, we will say that σ∗ ∈ Ŝ is an equilibrium situation
in Γ̂ if:

Ĥi(σ
∗||σ′i) ≤ Ĥi(σ

∗) ∀σ′i ∈ Ŝi ∀i ∈ I

Let’s derive now a result we will use to prove Nash’s Theorem.

Theorem 5.2. A necessary and sufficient condition for a situation σ∗ in Γ̂ to be an
equilibrium situation is that:

Ĥi(σ
∗||s′i) ≤ Ĥi(σ

∗) ∀s′i ∈ Si ∀i ∈ I (5.1)

Proof. First of all, what is Ĥi(σ
∗||s′i)? Clearly, as we said before, σi(si) = δ(si=s′i)

so
using the expression for Ĥi(σ) it’s easy to see that:

Ĥi(σ
∗||s′i) =

∑
s1∈S1

· · ·
∑

si−1∈Si−1

∑
si+1∈Si+1

· · ·
∑
sn∈Sn

H(s1, ..., si−1, s
′
i, si+1, ..., sn)

n∏
i=1
i 6=j

σi(si)

The statement (5.1) is a particular case of the definition of equilibrium situation. Let’s
focus on the necessity. Let’s assume the validity of (5.1) and let’s choose an arbitrary
strategy σi ∈ Ŝi. We have that:

Ĥi(σ
∗||s′i) ≤ Ĥi(σ

∗) ⇐⇒ Ĥi(σ
∗||s′i)σi(s′i) ≤ Ĥi(σ

∗)σi(s
′
i)

Trivially: ∑
s′i∈Si

Ĥi(σ
∗||s′i)σi(s′i) ≤

∑
s′i∈Si

Ĥi(σ
∗)σi(s

′
i) = Ĥi(σ

∗)
∑
s′i∈Si

σi(s
′
i) = Ĥi(σ

∗)
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But:

∑
s′i∈Si

Ĥi(σ
∗||s′i)σi(s′i) =

∑
s′i∈Si

∑
s1∈S1

· · ·
∑

si−1∈Si−1

∑
si+1∈Si+1

· · ·
∑
sn∈Sn

H(s||s′i)
n∏

i=1
i 6=j

σi(si)

σi(s
′
i) =

=
∑
s1∈S1

· · ·
∑
si′∈Si

· · ·
∑
sn∈Sn

H(s||s′i)

 n∏
i=1
i 6=j

σi(si)

σi(s
′
i) = Ĥi(σ

∗||σi)

and the result follows.

5.2 Nash’s Theorem

Theorem 5.3. (Brower’s Fixed Point Theorem) (cf.[5]) For any continuous function f

mapping a compact convex set into itself there is a fixed point, i.e. a point x0 such that
f(x0) = x0.

Theorem 5.4. (Nash’s Theorem) In any noncooperative game Γ = 〈I, {Si}i∈I , { Hi}i∈I〉
there is at least one equilibrium situation in mixed strategies.

Proof. Every player has available a set of pure strategies Smi
i . The set Ŝmi

i is the set
of mixed strategies. Geometrically, as previously discussed, it’s a (mi − 1)-simplex. Any
situation σ = (σ1, ..., σn) can be seen as a point of the cartesian product Ŝm1

1 × ...× Ŝmn
n .

This is a convex closed subset of the (m1 + ... + mn − n)-euclidean space. For any
situation σ and for any pure strategy of any player, ∀sji ∈ Si (it should understood as
the jth strategy of player i) let’s define

φij(σ) = max{0, Ĥi(σ||si)− Ĥi(σ)} ≥ 0

For a fixed situation σ, we are calculating the increase of payoff when we change σi by a
pure strategy sji . Let’s define now, ∀i and ∀j:

σi(s
j
i ) + φij(σ)

1 +
∑mi

j=1 φij(σ)

where σi(sji ) is the probability of employing sji , so it’s a nonnegative value. So is φij(σ)

and consequently the fraction is always positive. Clearly:

mi∑
j=1

σi(s
j
i ) + φij(σ)

1 +
∑mi

j=1 φij(σ)
=

∑mi

j=1 σi(s
j
i ) +

∑mi

j=1 φij(σ)

1 +
∑mi

j=1 φij(σ)
=

1 +
∑mi

j=1 φij(σ)

1 +
∑mi

j=1 φij(σ)
= 1

For a fixed situation σ and for a fixed player i, the elements of{
σi(s

j
i ) + φij(σ)

1 +
∑mi

j=1 φij(σ)

}
j
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given that are positive and add up to one, could be thought as forming a mixed strategy.
As this can be done for every player, we would have a mixed strategy for every player
and thus a situation. Therefore, given a situation σ we can define a new situation f(σ)1

the way we have explained. To be able to apply Brower’s fixed theorem, we need to
check if f is continuous. Is φij(σ) a continuous function of σ? Clearly max{0, x}, Hi(σ)

and the rest function are continuous and provided that the composition of continuous
functions is a continuous function the result follows. At the same time, the probability
distribution σi(sji ) is also continuous on σ and therefore the numerator is continuous. The
same arguments show that the denominator is always continuous and given that it never
vanishes, f is a continuous function. All the requirements to apply the Brower Fixed
Theorem hold so we conclude that there exists at least one σ0 s.t. f(σ0) = σ0. In other
terms:

σ0
i (sji ) =

σ0
i (sji ) + φij(σ

0)

1 +
∑mi

j=1 φij(σ0)

According to Theorem 5.1, for every player and applied to the situation σ0, there exists
a pure strategy s0i ∈ Si s.t. σi(s0i ) > 0 and φi0(σ

0) = 0. For this particular strategy, the
expression above reads as:

σ0
i (s0i ) =

σ0
i (s0i )

1 +
∑mi

j=1 φij(σ0)

from where it follows that
∑mi

j=1 φij(σ
0) = 0. Recalling that φij(σ) = max{0, Ĥi(σ||si)−

Ĥi(σ)} ≥ 0 it is clear that:

φij(σ
0) = 0 ∀i∀j =⇒ Ĥi(σ

0||sji ) ≤ Ĥi(σ
0)

and applying Theorem 5.2 we deduce that σ0 is a Nash Equilibrium. �

Remark. This important theorem is what allows us to say that there always exists, at
least, one Nash equilibrium. However, it is not a constructive theorem, so it doesn’t tell
us how to find such equilibrium situations. This comes from the fact that Brower’s fixed
theorem, the basis of our demonstration, is not constructive either because it does not
explain how to find the fixed points.

In noncooperative games, not all the players have the same payoff at all equilibrium
situations. For general noncooperative games, there is no optimal strategy that yields
the value of the game, because there is no value of the game, only one or more Nash
equilibriums. Also, assuming that every player knows which of his strategies can yield
an equilibrium situation, only certain combinations of these strategies will in the end
actually lead to a Nash equilibrium. Let us illustrate this with some examples.

1f : Ŝ1 × ...× Ŝn −→ Ŝ1 × ...× Ŝn and clearly f(σ) = σi(s
j
i )+φij(σ)

1+
∑mi

j=1 φij(σ)
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5.3 Examples

In general noncooperative games, we can also speak of v1 = maxX minY H1(X, Y ) and
v2 = maxY minX H2(X, Y ) 2. They represent, clearly, the minimum gain each player can
assure. As such, we can define the max-min solution (X∗, Y ∗) formed by those strategies
that satisfy the previous equalities. Every time we do that, we are assuming a zero-
sum game for every player. However, now the players do not necessarily have opposite
motivations, i.e., the players gain does not come from the opponent’s loss as in zero-sum
games. This will mean that H1(X

∗, Y ∗) and H2(X
∗, Y ∗) are not going to be necessarily

equal to v1 and v2. So even if we can define a max-min solution, this will not correspond
to an equilibrium situation. Let’s illustrate this with an example.

5.3.1 The gender war

A couple is discussing what to do this evening. The guy, who is passionate about cinema,
wants to go to the movies whereas the girl, a big tennis fan, wants to stay in and watch a
match on TV. Even if they have opposite preferences, both of them prefer to do something
together. If 11 and 21 stand for going to the cinema and 12 and 22 for staying in, we can
write: ( 21 22

11 (1, 4) (0, 0)

12 (0, 0) (4, 1)

)
where it is clear which player is the guy and which the girl. Let’s find the max-min
solution for the girl. We assume a zero-sum game and therefore have:

( y 1− y
x 1 0

1− x 0 4

)
; H1 = 5xy− 4x− 4y+ 4 =⇒ v1 = max

x
min
y

(5xy− 4x− 4y+ 4) =
4

5

This is attained at x∗ = 4
5
and the max-min strategy for the girl therefore is X∗ = (4

5
, 1
5
).

Analogously for the boy we have that Y ∗ = (1
5
, 4
5
) and v2 = 4

5
. If this were the strategies

they actually picked, 16
25

of the times we would end up with the outcome (0, 0). There are
two evident equilibrium situations, which are: (11, 21) and (12, 22). Are there any more?
To answer the question, let’s explain a method to find Nash equilibriums in 2× 2 games.

5.3.2 The swastika method

Let’s assume general strategies (X, 1−X) and (Y, 1− Y ) for our players. A equilibrium
situation is an admissible situation for every player. We are going to calculate separately
for every player the admissible situations and we will then intersect them. Let’s focus on

2If H2 = −H1 we have that vII = maxY minX −H1 = −minY maxX H1 which corresponds to the
definition we gave of vII for matrix games with a minus sign in front. This is because before we spoke
of the loss of player 2 whereas now we talk about his gain.
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player 1. For any strategy his opponent picks, i.e. for any Y , we are going to calculate
the best reply which yields maxX H1(X, Y ). Let’s pick the same matrix as in the gender
war. Starting with H1 we have:

( y 1− y
x 1 0

1− x 0 4

)
; H1 = x(5y − 4)− 4y + 4

The part that player 1 can alter is the one that depends on x. The maximum of the
expression above, given that it is linear on x, is either attained at x = 0 or at x = 1.
Also, there is the option that the linear term vanishes. All in all, to maximize H1:

• if y < 4
5
, then player 1 should set x = 0.

• if y = 4
5
, then the maximum is attained for any x.

• if y > 4
5
, then player 1 should set x = 1.

If we adopt now player’s 2 perspective, for him:

( y 1− y
x 4 0

1− x 0 1

)
; H2 = y(5x− 1)− x+ 1

and proceeding analogously:

• if x < 1
5
, then player 2 should set y = 0.

• if x = 1
5
, then the maximum is attained for any y.

• if x > 1
5
, then player 2 should set y = 1.

We can graph all this (see figure 5.1) and we find three equilibrium situations:

(X∗, Y ∗) = ((0, 1), (0, 1)) . Then H1(X
∗, Y ∗) = 4 and H2(X

∗, Y ∗) = 1

(X∗, Y ∗) = ((1, 0), (1, 0)) . Then H1(X
∗, Y ∗) = 1 and H2(X

∗, Y ∗) = 4

(X∗, Y ∗) =

((
1

5
,
4

5

)
,

(
4

5
,
1

5

))
. Then H1(X

∗, Y ∗) =
4

5
and H2(X

∗, Y ∗) =
4

5

First of all, it is important to remark that the Nash Equilibriums yield different payoffs
for the players, something that illustrates that the concept of the value of the game has
no sense in general noncooperative games. Also, notice that the equilibrium points are
not interchangeable. See for example that (0, 1) is one of the strategies of player 1 that
yield a Nash equilibrium and so is (1, 0) for player 2. However, the combination of these
strategies is not an equilibrium situation. As we said before, even if everybody knew
which strategies yield Nash equilibriums, only certain combinations of these would in
fact actually lead to equilibrium situations.
Could this method be generalized? or in other words: How can we solve a general
noncooperative game? The answer is that nobody knows. The research of algorithms to
do so is a very active topic of research nowadays.
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Figure 5.1: Swastika method for the gender war

5.3.3 Prisoner’s Dilemma - First approach

Consider a 2× 2-game where S1 = S2 = {C,D} 3 with:

( C D

C (−1
2
,−1

2
) (−10, 0)

D (0,−10) (−6,−6)

)
We can apply the Swastika Method to this game. Let’s see what happens. Proceeding
as before, for player 1:

( y 1− y
x −1

2
−10

1− x 0 −6

)
; H1 = x

(
7

2
y − 4

)
+ 6y − 6

The part that player 1 can alter is the one that depends on x. However, ∀y ∈ [0, 1] the
term (7

2
y − 4) < 0. To maximize H1 player 1 should always set x = 0 regardless of the

value of y. If we do the same for player 2, we will have H2 = y
(
7
2
x− 4

)
+ 6x− 6, so the

same argument applies. Therefore, the only equilibrium situation is (D,D). But let’s
take some perspective: This result is awful. Both player would be better off with (C,C),
which, even if it is not an equilibrium situation, it is the best outcome of the game. What
is going on here?

3The meaning of every strategy will be explained later.



Chapter 6

A Mathematical Explanation of
Cooperation

The last chapter of this undergraduate thesis is of a different nature. Now we are going
to see how Game Theory can be used to help disciplines like Biology, Political Science,
Law, Economy, etc. We are going to address a philosophical problem, known as the origin
of cooperation, that reads as follows: How can cooperation emerge in a world of selfish
individualistic people? As experience suggests, nowadays people normally pursue their
self interest, most of the times leaving no room for helping others. From a rational point
of view, there’s no point in helping strangers. Thomas Hobbes believed that, if left to
a complete laissez faire, selfishness would compromise communal living and life would
become "solitary, poor, nasty, brutish and short". To prevent this, he claimed that a
central authority, in the form of a state, was completely necessary. The debate, however,
did not finish here, and the question of whether cooperation could emerge without the aid
of a central supervision continued. In both the human race and animals, there are certain
individuals that challenge these pessimistic views on the human nature by showing clear
signs of altruism towards strangers. For example, is it known that during World War
One, an admirable tactic agreement was made between the fighters of each side on the
western front. Violating the orders of their superiors, the front-line soldiers kept from
shooting to kill as long as their enemies did the same, creating a pattern of cooperation
that benefited them all.
Darwin, the father of the theory of evolution, was very aware of the need of cooperating
dispositions to perpetuate a species. As a consequence, he was concerned at the thought
that cooperation was destroyed by natural selection. As he himself explained:

"He who was ready to sacrifice his life [...] rather than betray his comrades, would
often leave no offspring to inherit his noble nature. The bravest men, who were
always willing to come to the front in war, and who freely risked their lives for
others, would on an average perish in larger numbers than other men. Therefore, it
hardly seems probable that the number of men gifted with such virtues [...] could be
increased through natural selection, that is, by the survival of the fittest."

Charles Darwin, The Descent of Man. Part One, Chapter V.

39
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In the animal kingdom, where there is neither government nor law, theories such as the
Selfish Gene, by Richard Dawkins, have been put forward to account for the presence of
cooperation. However, Game Theory can be used to prove the counterintuitive thesis that
pure self interest can lead to the emergence of cooperative dispositions towards strangers.
To begin with, let’s take another look at the prisoner’s dilemma.

6.1 Prisoner’s Dilemma

Imagine that two burglars are caught red-handed breaking into a house but in accordance
with the need in a civilized world to keep within the legal frameworks, not enough valid
evidence is collected to find them guilty of an unlawful break-in. The intelligent police
officers proceed to separate the suspected offenders and tell them the exact same thing.
If you testify against your friend, you will be automatically released, and he will have to
face a 10-year prison sentence. However, if your friend testifies against you too, you will
also be found guilty and both of you will face a 6-year prison sentence. If nobody says
anything, both of you will be accused of minor charges and will serve a 6 month sentence.
The possible strategies are S1, S2 = {C,D}, C standing for Cooperate (with your partner)
and D standing for Defect (your partner).

( C D

C (−1
2
,−1

2
) (−10, 0)

D (0,−10) (−6,−6)

)
We saw in the previous chapter that there is only one equilibrium situation. We could
have reasoned the following way to discover this: If your opponent cooperates, we compare
a payoff of −1

2
(when you cooperate) to a payoff of 0 (when you defect). If he doesn’t

cooperate we compare a payoff of −10 to a payoff of −6. This means, by definition, that
de situation (D,D) is an equilibrium situation. As we said before, this is an awful result,
because it is clear that they would be better off cooperating. The prisoners dilemma,
as an example of how the pursuit of self interest by each player leads to a bad outcome
for all, goes beyond the mere anecdotal story to raise a fundamental reflection regarding
human cooperation. As we are going to see, the prisoner’s dilemma can shed some light
on why we cooperate with unknown individuals. To study this a bit better, let’s consider
a generic version of the game:

( C D

C (R,R) (S, T )

D (T, S) (P, P )

)
where R is the reward for mutual cooperation, T is the temptation to defect, S is the
sucker’s payoff and P the punishment for mutual defection 1. To encapsulate the problems
we want to deal with, we need to set T > R > P > S. In the repeated prisoner’s dilemma

1Where I am using Axelrod’s terms. See: [4]
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a second condition is added: 2R > T + S, which prevents the players to get out of the
dilemma by exploiting each other. We want mutual cooperation to be a better option
than betraying and being betrayed in turn.
This game has served to show how cooperation can emerge in a world of selfish players
where there is no central authority. Is this, nevertheless, a good approximation of the
real world? Many philosophers have argued that human nature is entirely selfish. If we
care for others, they claim, it is because our own welfare resides in the welfare of others.
This is not a very optimistic perspective of the human being but it is quite realistic. If
we adhere to this train of thought, our analysis would also apply to cooperation between
friends and family members. At the same time, nowadays we live in a society ruled by
a central authority that forces us to cooperate (by prosecuting for failure to provide aid
and assistance, for example), so someone could say our analysis would not apply to real
life. However, in most cases, like in the story that motivates the prisoner’s dilemma,
cooperation is an option and not an obligation. But that’s not everything. Countries, for
example, do interact between each other without any supervision, and therefore topics
like the nuclear disarmament or the custom duties would also fall into this description.
These situations are iterated versions of the prisoners dilemma. How should we play in
such case? Let’s assume we tell the players of the game that we are going to repeat the
game 20 times. Can cooperation emerge in this context? As we said, if the game is only
played once, the optimal choice is to defect. Let’s then consider the last movement of our
iterated game. In that stage of the game, given that there will be no further encounter
between the players, the wisest choice again is to defect. But bearing that in mind and
going one step back in the game, we too should defect in the 19th move. Following this
train of thought, we can deduce that the game is determined and its outcome is awful.
What happens, though, if we never know how long the game is going to last for? Now,
in every move, you have to think about the consequences your decisions might entail.
To study this, the mathematician and political scientist Robert Axelrod organized a
computer prisoner’s dilemma tournament. He invited experts in the field to submit ideas
of strategies, and he confronted 14 of them in total. It should be noted that no best
strategy exists regardless of the one your opponent employs. What it is clear is that
as long as you play against someone that decides how to play before the start of the
game, i.e., someone that has a predetermined strategy, the optimal strategy is to defect
all the time. Cooperation can only emerge when your movements will have repercussions
and when your opponent will take into account your behavior to decide how to play.
Intuitively, cooperation will emerge when the chances of having another encounter with
the player are high. In this analysis, we will see how mathematics can be helpful to social
sciences and at the same time how social sciences and humanities are crucial to understand
the results mathematics produce. The outcome of Axelrod’s tournament turned out to
be very interesting, and it is convenient to know why. The strategy "Tit for tat", the
simplest of all the submitted ones, won the tournament. "Tit for tat" starts cooperating
in the first move and copies the strategy his opponent employed in the previous step of
the game. The key to its success, using Alxelrod terms is that: it is nice, it retaliates but
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at the same time is forgiving. Being nice means never being the first player to defect,
i.e., starting the game with good intentions. This is a property that clearly determines
the success of the strategy, as the eight top-ranking entries were nice and none of the
others was. The reason for this is that a nice strategy does very well when confronted
with another nice strategy, as they cooperate until the end of the game. However, just
as it happens in real life where mean people can take advantage of the kindness of other
people, the strategies that were too nice were exploited by some of the others. Retaliation
is necessary to avoid this, but how should we punish our opponent? Some of the strategies
were nice but resentful, so when the opponent betrayed them, they would punish him
defecting ever after. This attitude is not clever because it fosters a defection loop that
in then end will be negative for all the players. Even if there has to be retaliation, it has
to be proportional. "Tit for tat" punishes a defection with a defection, but it is happy
to cooperate again if his opponent rectifies. This is the key to "Tit for tat’s" success.
In this undergraduate thesis, I thought it would be interesting to repeat this tournament.
To do so, I created a program in C that repeats and slightly modifies Axelrod’s confronta-
tions. Before we start making calculations, there are certain parameters that need to be
given, which are the number n of iterations and the elements of the matrix of the game:
R, P, S and T 2. Let’s thus create a vector:

int G[5]= {n ,R,P, S ,T} ;

We are going to adopt the following convention: a 0 will denote cooperation and a 1

defection. The strategies will therefore be n-vectors of either 0s or 1s. Let s1 be the
strategy of player one and s2 the strategy of player 2. Clearly si[j] tells us the strategy
player i employs in turn j. To confront them, we create a function that takes the vector
G, s1 and s2 and returns the payoff of player 1 after the n iterations. This is the form of
our function:

int game( int G[ 5 ] , int s1 [G[ 0 ] ] , int s2 [G[ 0 ] ] ) {
int a = 0 ;
for ( int i =0; i<G[ 0 ] ; i++){

i f ( ( s1 [ i ] == 0)&&(s2 [ i ] == 0) ) {
a=a+G[ 1 ] ;

}
else i f ( ( s1 [ i ] == 1)&&(s2 [ i ] == 1) ) {

a=a+G[ 2 ] ;
}
else i f ( ( s1 [ i ] == 0)&&(s2 [ i ] == 1) ) {

a=a+G[ 3 ] ;
}
else i f ( ( s1 [ i ] == 1)&&(s2 [ i ] == 0) ) {

a=a+G[ 4 ] ;
}

}

2Let us recall that R is the reward for mutual cooperation, P the punishment for mutual defection,
T is the temptation to defect and S is the sucker’s payoff
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return a ;
}

We are going to confront 11 strategies in total. We will therefore create a matrix int
b[11][11], where b[i][j] will denote the payoff of player 1 when he plays strategy i against
a player that employs strategy j. Let us explain all the strategies we will use:

• Always Cooperation (C)

• Always Defection (D)

• Random Choices (RC)

• Alternate between cooperation and defection (Alt)

• Tit for Tat (TfT)

• Harsh Tit for Tat (HTfT): If in one of the two last iterations my opponent defected, I will punish
and defect him too. Otherwise I cooperate.

• Resentful (Res): I cooperate as long as my partner cooperates. If he defects, I shall defect ever
after.

• Evil Tit for Tat (ETfT): I defect in the first move and use Tit for Tat ever after.

• Light Resentful (LRes): I always cooperate as long as my partner does not defect twice. In other
other, if he defects once I will give him a second chance. If he ever defects again, I will defect ever
after.

• Majority Other (Maj): I keep track of the opponent and employ the strategy he most employs. I
will start with good intentions, i.e., cooperating.

Let us present the results, for n=1000, R=3, P=1, S=0 and T=5.

Strategies C D RC Alt TfT HTfT Res ETfT LRes Maj
C 3000 0 1434 1500 3000 2994 3000 2997 3000 3000
D 5000 1000 2912 3000 1004 1004 1004 1000 1004 1004
RC 4044 522 1956 2284 2200 1342 526 2196 526 580
Alt 4000 500 2174 2000 2503 500 2503 2500 503 4000
TfT 3000 999 2200 2498 3000 3000 3000 2500 3000 3000
HTfT 3004 999 2562 3000 3000 3000 3000 1000 3000 3000
Res 3000 999 2911 2498 3000 3000 3000 1003 3000 3000
ETfT 3002 1000 2201 2500 2500 1000 1003 1000 3002 2500
LRes 3000 999 2911 2998 3000 3000 3000 2997 3000 3000
Maj 3000 999 2890 1500 3000 3000 3000 2500 3000 3000

Table 6.1. Tournament Result.

If we now sum all the elements in one row we will obtain the total payoff for the corre-
sponding strategy after all the confrontations. Let us directly present the ranking:

1. Light Resentful (27905)

2. Tit for Tat (26197)
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3. Majority other (25889)

4. Harsh Tit for Tat (25565)

5. Resentful (25411)

6. Always cooperation (23925)

7. Alternate (21183)

8. Evil Tit for Tat (19708)

9. Always defection (17932)

10. Random (16176)

Axelrod’s analysis can account for this distribution. Notice that the six top-ranking
entries are nice and none of the others are. This clearly shows that being nice is extremely
important for maximizing your result. But we can say more: among these 6 strategies,
5 retaliate (at some point) and 1 - "always cooperation" - does not. Just as Axelrod
suggests, those strategies that retaliate do better and that’s why "always cooperation"
is the last of the nice strategies. Finally, Axelrod claims a good strategy has to be
forgiving. "Resentful", which is the last of the 5 nice and retaliatory strategies, is not
forgiving at all. The others, to some extent, do forgive. It is important to stress to what
great extent Axelrod’s explanations account for the overall ranking on the strategies.
The analysis cannot go any further without going into the details of every strategy and
I invite the reader to do so. The most important difference between my tournament and
Axelrod’s is that, even if "Tit for Tat" ranks very good in mine, it does not hold the
first position as in Axelrod’s. Instead, "Light Resentful", a strategy that was not part
of the 14 that Axelrod confronted, won my tournament. This, far from showing that
Axelrod was wrong, shows that there is no best strategy regardless of the one you play
against. In his tournament, some of the strategies tried to figure out how the opponent
played by analyzing how he responded to cooperation and to defection. If the opponent
cooperated regardless of whether they defected, they would always defect and exploit
him. However, if the opponent retaliated, they cooperated with him as long as he went
back to cooperation. Therefore, "Tit for Tat" did good against these strategies. On the
contrary, "Light Resentful", given that it is not forgiving after the second defection, did
awful as a spiral of defection emerged that was detrimental to both players.

6.2 Evolutionary Game Theory

To continue, let’s see how Game Theory can be applied to the field of Biology, specially
evolution. In the early seventies, Game Theory, which was centered on the concept of a
rational individual, was modified and enriched to be applied to a wide range of biological
problems. In classical Game Theory, individuals could choose their strategies out of
a certain set and could change them in repeated games. However, evolutionary Game
Theory deals with entire populations whose members have fixed strategies - for instance,
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a type of behavior. A change of strategy is not a decision of a certain player but the
replacement of certain individuals by their offspring. In this kind of games, what a player
does depends on what everybody else is doing and that’s why they are called frequency-
dependent games. Here it is not one species evolving against another, but the members
of a certain species evolving against one another.

6.2.1 Basic Concepts

Imagine a mutation comes up in a species and modifies the behavior of certain individuals.
Is this mutation going to spread across the population? If it increases the reproductive
success of those individuals who carry it, it definitely will, and we will call this an invasion.
A Evolutionary Stable Strategy (ESS) is a strategy that cannot be invaded. This is
typically a problem of Dynamical Systems. Consider a population consisting of n different
types of individuals and let xi be the frequency of type i. We are interested in studying
how this frequency changes with time, i.e., in ẋi. If we assume that individuals meet
randomly and engage in a game with matrix A, the average payoff for an individual of
type i is:

1iAx
T = (AxT )i

whereas xAxT clearly stands for the mean payoff. The rate of change of the frequencies of
the different types derives from the reproductive success (fitness) of each of these types.
In evolutionary Game Theory, the payoff will be the fitness. This yields the replicator
equation:

ẋi = xi((Ax
T )i − xAxT ) ∀i

How can we know which alternatives and mutations are there that could invade a species?
It is a complicated question. However, if we restrict our attention to a certain finite set
of n possible mutations (that let’s assume that will generate n different behaviors), it can
be proved that there’s a bijection between the zeros of the replicator equation and the
equilibrium situations of the symmetric game A which results from the confrontation of
individuals with one of these behaviors. We therefore have a link between Dynamical Sys-
tems and Game Theory (normally called the Folk Theorem of evolutionary Game Theory)
and then employing the tools we have developed we can readily solve evolutionary-related
questions.
Let’s focus on the easiest kind of games, where only two players interact. The first thing
it should be said is that we want the players to be interchangeable individuals. As they
are part of the same population, they must have available the same strategies and the
same payoff matrix. The games where S1 = S2 and aij = H1(i, j) = H2(j, i) = bji are
called symmetric games. Let W (I) be the mean fitness of the individuals that employ
strategy I. Let us assume I is the strategy employed by all the members of a population
and J is trying to invade. I will be stable if W (I) > W (J), i.e., if it is more widely
spread than the other. At the same time, I will be stable iff H1(I, I) > H1(J, I) or if
H1(I, I) = H1(J, I) then H1(I, J) > H1(J, J). If this conditions do not hold, J is going
to invade I.
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Imagine that two animals contest a resource of value V . When contesting the resource,
there are two possible strategies: F: fight for it, and D: display but back off if attacked.
Therefore S1 = S2 = {F,D}. If F confronts D, his fitness will be increased by V. D,
on the other hand, won’t modify his fitness out of the encounter. If two individuals F
contest the resource, one of them will get injured and suffer a loss of fitness C. If two
individuals D meet, they will cooperate and share the resource. Therefore:

( F D

F
(
V−C
2
, V−C

2

)
(V, 0)

D (0, V )
(
V
2
, V
2

))
where we have assumed there’s a 50% chance for F to win or get injured and, given that
we do a long-term analysis, we have averaged his payoff. We can say some interesting
things by looking at the matrix

• D is not an EES. If in a population of Ds one F comes up, it will rapidly spread
throughout the population, as it will increase his fitness by V in every encounter.

• F is an EES if V−C
2

> 0, i.e., if V > C. If this conditions holds H(F, F ) > 0 =

H(D,F ). However, if V < C, D invades. That’s because the fighters basically
mutilate each other, whereas a D is a neutral element. D’s fitness is not decreased
but F’s is.

Let’s proceed now to find the equilibrium situations of this game using the swastika
method and check the folk theorem. Given that the game is symmetric H1(x, y) =

H2(y, x), so we only need to analyze one of the players. Let’s focus on player 1, who has
a strategy (x, 1− x) and plays against player 2, who employs (y, 1− y).

H1 = x

(
V

2
− C

2
y

)
− V

2
(y − 1)

Therefore:

• if V
2
− C

2
y < 0 =⇒ x = 0.

• if V
2
− C

2
y = 0 =⇒ any x.

• if V
2
− C

2
y > 0 =⇒ x = 1.

The expression V
2
− C

2
y = 0 is equivalent to y = V/C. Therefore we can write:

• if y < V
C

=⇒ x = 1

• if y = V
C

=⇒ any x

• if y > V
C

=⇒ x = 0
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Figure 6.1: Swastika method.

If V > C, then clearly V
C
> 1 and therefore ∀y ∈ [0, 1] it follows than y < V/C, so player

1 will set x = 1. Thanks to the symmetry of the game we will also have y = 1 so the
situation (F, F ) will be an equilibrium situation.
If V < C the swastika method leads to fig. 6.1, from where we see that we have 3
equilibrium situations.

1. (F,D). Then H1(F,D) = V and H2(F,D) = 0.

2. (D,F ). Then H1(D,F ) = 0 and H2(D,F ) = V .

3. (X∗, Y ∗) =
((

V
C
, 1− V

C

)
,
(
V
C
, 1− V

C

))
. Then H1(X

∗, Y ∗) = H2(X
∗, Y ∗) = V

2

(
1− V

C

)
.

Clearly there is a bijection between an EES and a equilibrium situation. The methods
we have developed in this undergraduate thesis have enabled us to make a complete
analysis of this. As we already said, the situation (D,D) is never an EES and (F, F )

is only an EES when V > C. However, the following results are new. The first two
equilibrium situations for V < C are not symmetric. They come from the fact that
D is not tempted to turn into a F (this obviously doesn’t make sense in evolutionary
Game Theory) because now that V < C he would decrease his payoff. However, in
evolutionary Game Theory we are looking for symmetric equilibrium situations where all
the individuals are interchangeable. We therefore have to turn to

(
V
C
, 1− V

C

)
.

This game, for V < C shows one of the main models of human cooperation. Just
like the prisoners dilemma, it confronts us with a situation in which the cost of not
cooperating (C) is higher than the gain of betraying your opponent (V ), but at the same
time betraying you cooperating opponent is more beneficial than cooperating with him.
In this case, what Game Theory suggests is betraying V/C of the times and cooperating
the rest. Again, even if we are selfish and only want to maximize our payoff, there is
room for cooperation.
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6.3 The Ultimatum Game

To conclude this chapter, it is convenient to analyze an experiment, the result of which
cannot be explained with the tools we have developed. Imagine that we randomly select
two people and we tell them to play the following game: Player 1 has to propose a way
to divide a certain quantity of money between the two players and then player 2 decides
if he accepts or rejects the deal. If he accepts, the distribution is carried out as player 1
suggested, but if he rejects nobody gains anything. According to classical Game Theory,
even if player 1 proposes to keep with 99% of the total amount and give only 1% to
player 2, he should always accept the deal because something, even if it’s a paltry sum of
money, is better than nothing. The economist Ernst Fehr, from the University of Zurich,
conducted this experiment to find that people do not adhere to the recommendations of
Game Theory. In fact, most of the times that player 1 offered player 2 less than 30%

of the initial value, the deal was rejected. When you reject a deal, you are sacrificing a
certain economic gain in order to punish the other player. Those who renounce to a gain
do it for the greater good. The fact that you could increase your payoff is subordinated
to a bigger idea: you have to make sure your opponent does not increase his payoff. This
concept, known as altruistic punishment, is a crucial element in fostering cooperation. At
the moment, nobody has been able to give an explanation for this in terms of self interest.
This experiment, and other similar ones, has motivated the introduction of different kinds
of players, apart form the selfish player, in Game Theory. This could be a good start
to study Cooperative Game Theory. However, it is time for this undergraduate thesis to
come to an end.



Conclusions

In this undergraduate thesis the foundations of Noncooperative Game Theory have been
laid. From a mathematical standpoint, Nash’s Theorem (Theorem (5.4)) represents the
cornerstone of this senior thesis. It asserts that in any noncooperative game - regardless
of the number of players, of the number of strategies they can employ, etc - there is at
least one equilibrium situation. However, Nash’s Theorem falls under the category of
those theorems which are only really appreciated by mathematicians. This is because,
even if its implications are huge, it doesn’t give the slightest clue on how to find Nash
equilibriums, i.e., it is not constructivist. Therefore, when it comes to applying Game
Theory to real life, it is rather useless. The main goal of my senior thesis was to show how
Game Theory could be used to tackle a great number of different problems. Throughout
this undergraduate thesis, Game Theory has served us to design optimal war strategies,
to study a duopoly or to analyze how animals contest a resource. However, from a
social standpoint, the cornerstone of this research work was to show that cooperative
dispositions can indeed emerge in a world of selfish individuals.
I would consider myself to be satisfied if I managed to convince the reader that Game
Theory is a really useful tool to analyze all kinds of situations in which there is some sort
of interaction. If I had the opportunity to pursue research in this field, I believe it would
be very interesting to study Cooperative Game Theory, as it would enable us to gain a
new perspective and tackle a lot of new problems.
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