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Abstract 

 

The directional consistency and skew-symmetry statistics have been proposed as global 

measurements of social reciprocity. Although both measures can be useful for 

quantifying social reciprocity, researchers need to know whether these estimators are 

biased in order to assess descriptive results properly. That is, if estimators are biased, 

researchers should compare actual values with expected values under the specified null 

hypothesis. Furthermore, standard errors are needed to enable suitable assessment of 

discrepancies between actual and expected values. This paper aims to derive some exact 

and approximate expressions in order to obtain bias and standard error values for both 

estimators for round-robin designs, although the results can also be extended to other 

reciprocal designs. 
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Several statistical techniques for quantifying social reciprocity have been proposed in 

recent decades, and the best-known is probably the Social Relations Model (SRM: 

Kenny & La Voie, 1984; Warner, Kenny, & Stoto, 1979). Indeed, the SRM has often 

been used in social psychology studies, for instance in family assessment research 

(Cook, 2005; Cook & Kenny, 2004; Delsing, Oud, De Bruyn, & Van Aken, 2003), 

interpersonal perception (Albright, Kenny, & Malloy, 1988; Kenny & De Paulo, 1993; 

Malloy & Albright, 1990), and developmental psychology (Miller & Byrnes, 1997; 

Whitley, Ward, & Snyder, 1984). Although the SRM allows social researchers to 

compute dyadic and generalized reciprocity (Kenny & La Voie, 1984; Kenny & Nasby, 

1980, Warner et al., 1979), it does not provide an absolute and global measure of social 

reciprocity among all individuals. That is, a measure of social reciprocity founded on 

the discrepancy between the behaviour each individual addresses to others and what is 

received in return. With respect to inferential purposes, several statistical procedures 

have been proposed for testing round-robin data in the SRM (Lashley & Bond, 1997). 

 

In this regard the directional consistency index (DC: van Hooff & Wensing, 1987) 

has been developed to obtain global social reciprocity measurements. The DC is a ratio 

that reflects the degree of symmetry in social interactions and it has been widely used 

by ethologists (Côté, 2000; Koenig, Larney, Lu, & Borries, 2004; Pelletier & Festa-

Bianchet, 2006; Stevens, Vervaecke, de Vries, & van Elsacker, 2005; Vervaecke, de 

Vries, & van Elsacker, 1999; Vogel, 2005; Wittemyer & Getz, 2007). The index is 

computed as follows: 
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where xij denotes the number of behaviours that individual i addresses to j. Note that the 

index is scaled between 0 and 1, and takes values close to 0 if social relations are 

symmetrical and values near 1 if social relations are asymmetrical. It should also be 

noted that the DC index is only a global measure and is unable to obtain measures at 

dyadic or individual levels or to measure dyadic and generalized reciprocity. A test 

founded on Monte Carlo sampling has recently been proposed to obtain statistical 

significance for the DC statistic (Leiva, Solanas, & Salafranca, 2008). 

 

Another recent technique for quantifying social reciprocity (Solanas, Salafranca, 

Riba, Sierra, & Leiva, 2006) is based on dyadic interactions, specifically on absolute 

differences between the amount of behaviour that each individual addresses to her/his 

partners and what she/he receives in return. Consequently, dyads are the unit of analysis 

and it is assumed that every individual is able to interact with all his/her partners. 

Several measurements at individual, dyadic and group levels can be obtained by means 

of this procedure. Furthermore, the technique also allows social researchers to obtain 

dyadic and generalized social reciprocity measures. The procedure decomposes any 

square sociomatrix X into its symmetrical and skew-symmetrical parts: 

 

,
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where S and K denote symmetrical and skew-symmetrical matrices, respectively. The 

global index of skew-symmetry Φ can be obtained as follows: 
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Note that if Φ equals .5, it corresponds to the maximum lack of reciprocity that can be 

achieved. 

 

The substantive meaning of the DC and the skew-symmetry statistics is supposed to 

be adequately based on the distance between their minimum values and the outcome for 

available data. However, it should be noted that these comparisons would fail if both 

estimators were biased, and biased estimators have indeed been obtained for other 

quantifications of social interactions (Landau, 1951). Therefore, it is necessary to 

demonstrate whether the two estimators are unbiased, and if not, a mathematical 

expression for their bias should be obtained in order to make adequate substantive 

interpretations. Additionally, given that variability is another important feature of 

estimators, it is also necessary to derive exact or approximate mathematical expressions 

for the standard errors of the two statistics. 

 

The main purpose of this paper is to obtain — at least — approximate mathematical 

expressions for the bias and standard error of the DC and the skew-symmetry 

estimators. Mathematical expressions for bias will allow social researchers to make both 

proper comparisons and suitable descriptions, while standard error expressions will 
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enable them to take decisions regarding the relative distance between expected values 

under the specified null hypothesis and statistic values. Although this research was 

mainly intended to provide some analytical results for analysing data obtained from 

round-robin designs, the mathematical expressions can also be applied to other dyadic 

designs such as standard and block designs (Kenny, Kashy, & Cook, 2006). 

 

The directional consistency index: Expected value and standard error 

 

The expected value of the DC estimator can be computed by 
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where xij denotes the number of behaviours that individual i addresses to j. In order to 

obtain this expected value it is first necessary to solve E[|xij − xji|]. It will be assumed 

that only one individual addresses behaviour to the other individual of the dyad in each 

social interaction between them. Thus, if πij and πji denote, respectively, the probability 

that individual i addresses behaviour to individual j and individual j addresses behaviour 

to individual i, πij + πji = 1. Furthermore, it is supposed that the outcome of every social 

interaction is independent of previous encounters and each dyad interaction does not 

depend on other dyadic outcomes. It is also assumed that the probability values πij and 

πji are constant during the observation period. This set of assumptions has been 

previously used to model dominance encounters (Appleby, 1983; Boyd & Silk, 1983; 

Tufto, Solberg, & Ringsby, 1998) and, although they are not always maintained in 

observational settings, these assumptions are likely to be approximately valid whenever 
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social relations are steady during the observation period and outcomes are close to 

independence. It should be noted that these assumptions are also common in the SRM 

(Kenny et al., 2006; Warner et al., 1979). Under these assumptions a binomial 

probability function can be used to describe the random distribution that follows the 

number of behaviours for each individual in a dyad, xij. In what follows it will be 

denoted the number of recorded behaviours in each dyad by cij = xij + xji, cij being equal 

to cji. 

 

The expected value for the DC estimator can be computed as follows (see Appendix 

I): 
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Figure 1 shows how the mathematical expectancy varies for several values of πij and 

cij. For those conditions in which complete and moderate reciprocation is assumed, the 

frequency of interactions in dyads, cij, affects the mathematical expectancy of the DC. 

Note that the mathematical expectancy of the DC decreases as a function of the number 

of interactions. This effect vanishes as the parameter values πij approach 1. Regarding 

group size, it does not affect to the mathematical expectancy of the estimator under any 

assumed parameter values (see Figures 1a and 1b). In fact, the bias of the estimator 

increases as the number of behaviours decreases and the parameters πij approach to .5 

(see below for computing the bias). 

 

INSERT FIGURE 1 ABOUT HERE 
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Of special interest may be the particular case in which πij = πji = 1/2 for every dyad, 

since this corresponds to complete reciprocation among individuals. In this case the 

probability for each possible value of |xij − xji| can be expressed in the following way: 
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Now the mathematical expectancy of the DC estimator under the null hypothesis of 

complete reciprocation can be computed, that is, πij = πji = 1/2 for all dyads. First, the 

expected value of E[|xij − xji|] is computed as follows: 
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Thus, 
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Although interpreting DC values may seem straightforward enough it should be 

noted that the DC estimator is biased under the null hypothesis of complete 

reciprocation. Therefore, the statistic’s values should be compared with its expected 

value instead of zero in order to take decisions regarding social reciprocity in groups. 

 

The variance of the DC estimator equals (see Appendix I) 
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where pij = mij if cij is odd and pij = mij +1 if cij is even. The variance increases or 

decreases as a function of πij and cij (see Figure 2). When increasing the number of 

behaviours per dyad, the variability of the directional consistency estimator approaches 

gradually 0. Additionally, it can be noted that its variability increases when moderate 

conditions of social reciprocity are assumed (i.e., πij is approximately equal to .7). 

Furthermore the variance of the directional consistency estimator decreases as group 

size increases (Figures 2a and 2b). 

 

INSERT FIGURE 2 ABOUT HERE 

 

If πij = 1/2 for all dyads and cij is odd, then 
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Additionally, if πij = 1/2 for all dyads and cij is even 
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Now, using the proper expression in the formulae, one can compute the variance of 

the DC estimator and its standard error. 
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The skew-symmetry index: Expected value and standard error 

 

Here the expected value and standard error for the skew-symmetry estimator is 

obtained. Firstly, this statistic can be expressed as follows: 
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It can be shown that the expected value for the skew-symmetry estimator is equal to 

(see Appendix II) 
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where 
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Figure 3 shows how the mathematical expectancy of the skew-symmetry estimator 

depends on πij and cij. For complete and moderate reciprocity, the amount of behaviour 

in dyads has an effect on the mathematical expectancy of the skew-symmetry estimator. 

Thus, its mathematical expectancy decreases as the number of interactions increases. 

This effect disappears as parameters πij are close to 1. Similarly to the results obtained 

for the DC estimator, the mathematical expectancy of the skew-symmetry estimator 

seems to be unaffected by the group size (Figures 3a and 3b). Like the DC estimator, 

the bias of the skew-symmetry estimator increases as the number of behaviours 

decreases and the parameters πij approach to .5. 
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Once again, note that the statistic’s values should be compared with the expected 

values instead of zero when making statistical decisions regarding social reciprocity, as 

the skew-symmetry estimator is biased under the null hypothesis of complete 

reciprocation. 

 

The general expression for computing the variance of the skew-symmetry estimator 

is (see Appendix II) 
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Figure 4 shows how the variance of the skew-symmetry estimator varies for several 

values of πij and cij. As it was found for the directional consistency estimator, the skew-

symmetry estimator shows more variability in moderate conditions of social reciprocity, 

that is, for πij values near .7. Note that its variability decreases as a function of the 

number of behaviours per dyad and the group size (Figures 4a and 4b). 

 

INSERT FIGURE 4 ABOUT HERE 

 

The variance of the skew-symmetry estimator, if πij = .5 for all i and j, equals 
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Now the standard error can be easily obtained. 

 

Mean square error for the DC and skew-symmetry estimators 

 

The following matrix contains the parameters πij: 

 

12 13 1

12 23 2

13 23

1 2

0

1 0

1 1 0

1 1 0

n

n

n n

  
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 
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 
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Π



 

    
 

.


 

 

Then, the expected values of xij can be obtained for all admissible null hypotheses of 

social reciprocity as follows: 

 

; , 1, 2,...., , .ij ij ijE x c i j n i j       

 

The matrix of expected values will be denoted by Xe: 
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21 23 2
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1 2

0 [ ] [ ] [ ]

[ ] 0 [ ] [ ]

[ ] [ ] 0

[ ] [ ] 0

n

n

n n
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E x E x
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 
 
 
 
 
 

X



 

    
 

,  

 

therefore, the value of the DC in the population (DCp) can be obtained as it is shown in 

the following expression: 
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Now, we can compute the mean square error (MSE) for the directional consistency 

estimator as follows: 

 

      2 2 2 .p 2MSE DC E DC DC DC Bias DC DC         

 

The MSE for the directional estimator decreases as a function of increasing the 

amount of behaviour in dyads and the parameter values πij (see Figure 5). 

 

INSERT FIGURE 5 ABOUT HERE 

 

Regarding the skew-symmetry estimator, the matrix Ke of expected skew-

symmetrical values can be computed by means of the matrix Xe: 
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Hence, the value of the skew-symmetry parameter equals 
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Finally, the MSE for the skew-symmetry estimator is equal to 

 

       2 2 2ˆ ˆ ˆ ˆ .MSE E Bias            
2 ˆ  

 

Figure 6 shows how the mean square error for the skew-symmetry estimator varies 

for several frequencies of dyadic interactions and parameter values πij. Similarly to the 

results obtained for the DC estimator, the MSE for the skew-symmetry estimator 

decreases when increasing cij and πij.  

 

INSERT FIGURE 6 ABOUT HERE 

 

An example 

 

The example consists of a sociomatrix taken from Vervaecke et al. (1999), in which 

dyadic encounters in a group of six captive primates are studied. This sociomatrix was 

originally used for sorting individuals into competitive rank orders in a feeding context. 

These social interaction data are here used in order to illustrate the computation of the 

mathematical expectancy and standard error for both the DC and skew-symmetry 

estimators. R functions have been developed in order to compute expected values, 

standard errors, and biases under specific null hypotheses; interested researchers can 

obtain these functions on request. Table 1 shows the sociomatrix containing the feeding 

scores, that is, each cell xij represents the number of times that the ith individual takes 

food in the presence of the jth individual. 
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INSERT TABLE 1 ABOUT HERE 

 

Computing expected values and variances for the DC and skew-symmetry 

estimators allows researchers to obtain proper information regarding social reciprocity 

in groups, since it enables them to make suitable comparisons of empirical and 

theoretical values. The results from the group-level analysis of the six captive primates 

provide social researchers with some evidence of the non-reciprocal style in these social 

interactions. The empirical value of the DC statistic was found to be extremely different 

from its expected value under the hypothesis of complete reciprocation (DC = 0.630667 

and E[DC] = 0.079589; σ2[DC] = 0.000244). Similar results were found when the 

analysis was performed for the skew-symmetry statistic (Φ = 0.328089 and E[Φ]  

0.009882; σ2[Φ]  0.000013). 

 

Given that expected values for both statistics under the hypothesis of complete 

reciprocity are almost equal to 0 and actual statistic values are far from their expected 

values, social researchers thus have some evidence regarding the non-reciprocal pattern 

in dyadic feeding behaviour observed in the group of captive primates.  

 

Although this analysis enables social researchers to quantify overall reciprocity in 

the group, individual and dyadic effect can be also estimated in the example shown 

above. Regarding this issue, researchers can be interested in knowing whether the 

overall effect is mainly explained by the behaviour of a sole individual or a dyad, and 

not by the whole group pattern. Therefore, it can be useful to carry out the dyadic and 

individual decompositions for the skew-symmetry measurement (Solanas et al., 2006). 
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Looking at the individual contributions to the skew-symmetry, it can be noted that all 

individuals in the group show asymmetrical relationships, being Dzeeta and Desmond 

the most asymmetrical individuals in the group (υj = 0.417 and υj = 0.375, respectively). 

When decomposing υj into dyadic contributions, no differences were found in the 

dyadic decomposition of the skew-symmetry for the 15 dyads. Hence, there exists a 

skew-symmetrical pattern in the overall functioning of the group, but this pattern is not 

explained by any specific dyadic relationship. In other words, all individuals were 

skew-symmetrical in their interactions regardless of the partner. 

 

Despite we have illustrated the mathematical expressions for both the DC and the 

skew-symmetry estimators under the null hypothesis of complete reciprocation, 

different patterns can be specified in the null hypothesis. For instance, suppose that in 

feeding agonistic contexts the interactions among individuals are properly described by 

high degrees of asymmetry. Under this assumption researchers may be interested in 

testing the following null hypothesis: 

 

0 .85 .85 .85 .85 .85

.15 0 .85 .85 .85 .85

.15 .15 0 .85 .85 .85
: .

.15 .15 .15 0 .85 .85

.15 .15 .15 .15 0 .85

.15 .15 .15 .15 .15 0

Ho

 
 
 
 

  
 
 
  
 

Π  

 

In this second example, all dyadic relationships are assumed to be extremely 

asymmetrical in the population. The empirical value of the DC statistic was found to be 

quite similar to its expected value under the hypothesis shown above (DC = 0.630667 

and E[DC] = 0.70; σ2[DC] = 0.00034). Similar results were found when the analysis 
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was performed for the skew-symmetry statistic (Φ = 0.328089 and E[Φ]  0.331; σ2[Φ] 

 0.00013). Given these results, researchers have some evidence in favour of this more 

realistic pattern expressed in the null hypothesis. In other words, this could be a better 

model for describing dyadic agonistic encounters in a feeding context. 

 

Discussion 

 

This study provides some exact and approximate mathematical expressions for the bias 

and standard error of the DC and skew-symmetry estimators. Both measures are useful 

for quantifying social reciprocity and are based on dyadic discrepancies. The DC index 

allows social researchers to quantify social reciprocity at global level whereas the 

technique proposed by Solanas et al. (2006) allows researchers to decompose social 

reciprocity into different effects since individual, dyadic and group measurements can 

be obtained. Additionally, the statistical procedure also enables obtaining dyadic and 

generalized social reciprocity measures. 

 

These expressions require social researchers to state the specific null hypothesis, and 

by comparing statistics and expected values it is possible to extract correct information 

about social reciprocity in groups. Thus, the expressions for bias will allow social 

researchers to make appropriate comparisons and develop proper descriptions. Standard 

error expressions will enable making decisions about the relative distance between the 

statistic values and the expected values under the assumed null hypothesis. In order to 

derive the mathematical expressions three assumptions have been made. Firstly, it has 

been supposed that the probability of the event “individual i addresses behaviour to 
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individual j” (pij) is a constant value for every trial during the observation period. Given 

that the statistical methods being analysed are concerned with sociomatrices in which 

data are usually aggregated, despite being gathered in several observation sessions, it is 

necessary to make this assumption for a null hypothesis to be tested. In fact, a related 

assumption is implicit, for instance, in the SRM (Bond & Lashley, 1996; Kenny & La 

Voie, 1984; Warner et al., 1979). Specifically, the parameter value, the values of 

variances and covariances, must be supposed to be constant during the observation time 

in the SRM. Other techniques for analysing sociomatrices require this assumption, such 

as procedures for quantifying social dominance (Appleby, 1983; Boyd & Silk, 1983; 

Tufto et al., 1998). This assumption appears to be realistic for modelling dyadic data if 

the period of observation is short enough. Therefore, researchers should establish 

periods of observation as short as possible if the studied procedures are to be used. 

Secondly, it is also assumed that the outcomes of the successive encounters are 

independent during the period of observation. This is a more restrictive assumption than 

the previous one since individuals may adapt their behaviour to the preceding results in 

the encounters. It should be noted again that the analysed techniques are concerned with 

aggregated data, which does not allow analysing interdependence. Although the 

presented statistical methods require sequential sociomatrices to analyse dependency, 

many researches deal with aggregated data in sociomatrices. In some studies, 

researchers have to aggregate data due to the scarce number of dyadic interactions in 

isolated sociomatrices, for instance, those obtained by an only observation session. The 

present study is focused on this kind of observational study and that is why it deals with 

aggregated sociomatrices, which do not allow estimating dependency between 

successive encounters. This seems to be a general problem, even if the SRM is carried 

out (Kenny, Kashy, & Cook, 2006, pp. 217). Thirdly, it is additionally assumed that 
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dyads’ behaviours are independent. The reason is the same as explained above. It is 

reasonable to think that the second and third assumptions are invalid for many social 

studies. However, this third assumption is, for example, also assumed in the SRM 

(Kenny et al., 2006, pp. 216; Kenny & La Voie, 1984; Warner, Kenny, & Stoto, 1979). 

For the reasons mentioned above we only propose to use the studied statistical methods 

in those cases in which all three assumptions could be assumed or, at least, could 

approximately represent reality. The main problem with these assumptions or part of 

them is that many statistical methods, if applied to sociomatrices, also require the same 

suppositions, as it occurs when applying the binomial distribution. 

 

Although the null hypothesis of complete reciprocation may be of interest for social 

researchers, other hypotheses can be specified since the statistical procedure allows 

specifying all admissible πij values. For instance, social researchers who are interested 

in testing the maximum degree of asymmetry hypothesis in social interactions (e.g., 

hierarchy, directionality) must specify πij = 1 and πji = 0 for each dyad. Furthermore, the 

procedure allows social researchers to obtain bias and standard error for the DC and 

skew-symmetry estimators under all social reciprocity null hypotheses. Note that 

researchers could specify more complex patterns of dyadic interactions since the 

statistical procedure allows it (for instance, π12 = 0.4, π21 = 0.6, π13 = 0.2, π31 = 0.8, and 

so on). The mathematical expressions here presented can be applied to all null 

hypotheses concerning social reciprocity. The specific null hypothesis must be chosen 

by researchers in accordance with theoretical basis and research objectives. 

 

Round-robin designs require intensive data gathering, therefore this kind of design 

are not common in social psychology research (Kenny et al., 2006). Regarding this 
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issue, it should be highlighted that the mathematical expressions here presented can be 

also applied to other reciprocal designs, such as standard and block designs. The 

mathematical expressions work well in those cases in which there are dyads with no 

interaction, that is, cij = 0. Hence, social researchers can obtain bias and standard error 

values for the DC and the skew-symmetry estimators just assigning πij = πji = 0 in the 

developed R functions. For example, social researchers will be able to obtain bias and 

standard error for both estimators in standard dyadic designs and thus measuring the 

degree of overall social reciprocity for the set of available dyads. 

 

Future research is needed to determine the exact or approximate sampling 

distributions for the DC and skew-symmetry statistics, as well as, propose mathematical 

procedures that deal with non-dependence and do not suppose such restrictive 

assumptions as the technique here presented. Additionally, bias, standard error, and 

sampling distribution should be obtained for dyadic and individual effects. 
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Appendix I 

 

Given the assumptions stated in the text, the probability values for |xij − xji| can be 

solved as follows: 
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It should be noted that Pr{|xij − xji| = cij/2} for even cij values has not been included 

as |xij − xji| = 0 and its corresponding term thus vanishes when computing the expected 

value. Also note that the number of different values for |xij − xji| equals mij + 2, 

including |xij − xji| = 0. Thus, the expected value for the DC estimator equals 
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Having solved the expected value for the DC estimator, one can be interested in 

obtaining its standard error. Here it should be taken into account that if a random 
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variable X is binomially distributed, the random variable X2 can also be described by a 

binomial probabilistic model. Thus, as it is assumed that dyadic outcomes are 

independent, the variance of the DC estimator is given by 
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where pij = mij if cij is odd and pij = mij +1 if cij is even. 
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Appendix II 

 

The expected value of this estimator is equal to 

 

2 2

1 1 1 1

2 2

1 1 1 1

1ˆ 1 1
22

n n n n

ij ij
i j i i j i

n n n n

ij ij
i j i j

c c

E E E .
x x

     

   

  
  
           
  
  

  

 








 

 

A precise enough approximation of the expected value for the quotient can be 

obtained by means of the delta method (Johnson, Kotz, & Kemp, 1992; Stuart & Ord, 

1994), which is founded on Taylor’s series expansion. Thus, 
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Then, 
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In order to compute the expected value of the estimator, the expected value, 

variances and covariances have to be solved in the previous expression. To solve these 

expressions note that the second, third and fourth moments about zero for a binomially 

distributed random variable are given by (Johnson, Kotz, & Kemp, 1992, pp. 107) 
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Thus, the expected value can be solved as follows: 
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Regarding the variances, 
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After some algebraic operations, 
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It can now be shown that 
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Now the expected value of the skew-symmetry estimator can be rewritten as follows 
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Regarding the covariance terms, 
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Note that 
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Regarding the variance of the skew-symmetry estimator, 
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and, according to the delta method, 
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Tables 

 

Table 1. Dyadic feeding scores in a group of six captive bonobos (Vervaecke, de Vries 

& van Elsacker, 1999; Brill Publishers. Printed with permission.) 

 

Partner 
Actor 

Dzeeta Hermien Desmond Kidogo Hortense Ludwig 

Dzeeta - 75 96 95 91 100 

Hermien 25 - 73 89 64 94 

Desmond 4 27 - 98 81 90 

Kidogo 5 11 2 - 52 63 

Hortense 9 36 19 48 - 62 

Ludwig 0 6 10 37 38 - 

 

 34



Figure Captions 

 

Figure 1. Mathematical expectancy for the directional consistency estimator under 

several conditions of πij and cij for groups of n = 4 (1a) and n = 6 (1b). 

 

Figure 2. Variance for the directional consistency estimator under several conditions of 

πij and cij for groups of n = 4 (2a) and n = 6 (2b). 

 

Figure 3. Mathematical expectancy for the skew-symmetry estimator under several 

conditions of πij and cij for groups of n = 4 (3a) and n = 6 (3b). 

 

Figure 4. Variance for the skew-symmetry estimator under several conditions of πij and 

cij for groups of n = 4 (4a) and n = 6 (4b). 

 

Figure 5. Mean square error for the directional consistency estimator under several 

conditions of πij and cij for groups of n = 6. 

 

Figure 6. Mean square error for the skew-symmetry estimator under several conditions 

of πij and cij for groups of n = 6.   
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Figure 5. 
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Figure 6. 
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