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Abstract: 

 

In this paper we propose a latent variable model, in the spirit of Israilevich and Kuttner (1993), to 

measure regional manufacturing production. To test the validity of the proposed methodology, we 

have applied it for those Spanish regions that have a direct quantitative index. The results demonstrate 

the accuracy of the methodology proposed and show that it can overcome some of the difficulties of 

the indirect method applied by the INE, the Spanish National Institute of Statistics. 
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1. Introduction 

 

Despite the predominance of service industries in most developed economies, the evolution of 

manufacturing activities is still crucial to determine current economic conditions. In this context, 

quantitative manufacturing indices have become valuable tools for checking regularly how national 

and regional economies change over short periods of time. Two different methods are used to obtain 

quantitative manufacturing indices: direct and indirect. Direct quantitative indicators are elaborated 

using industrial production data from a survey addressed to a sample of firms. This method provides 

the best quantitative indices for monitoring the evolution of industrial production, but its costs are very 

high. Indirect quantitative indicators estimate industrial production using pre-existent information 

(Clar, 1998). As a consequence, the estimation is not as accurate as the one obtained by direct 

methods, but it offers the advantage of being cheaper. For this reason, these indicators have been (and 

still are) used in a range of economies, mainly regional. 

In Spain, at a regional level (until very recently) there were big difficulties to analyse the 

short-term industrial activity evolution as there were great deficiencies regarding the availability of 

statistical information of these characteristics. In front of this situation, during the last years, in some 

Spanish regions several public and private initiatives were initiated to overcome these deficiencies. 

Although an important effort was carried out, the real situation was that not every Spanish region had 

a quantitative indicator of the industrial activity evolution and, moreover, the available regional 

indicators were not directly comparable as non-homogenous methodologies were used to elaborate 

them. In relation to this topic, in different forums a debate was initiated about which was the most 

appropriate methodology to elaborate regional industrial production indicators with a high level of 

reliability and, at the same time, a low cost. The result was that, at last, the INE recently published 

regional industrial production indicators following an indirect method and, in this sense, some of the 

existing deficiencies have been partially overcome. 

In a previous work, Clar et al. (2000), we analysed the reliability of the INE's methodology from 

both a theoretical and an empirical point of view. 
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First, the theoretical analysis of INE's methodology leaded to the conclusion that, in spite of its 

low cost, it does not guarantee the obtained indicators reliability for each region at a monthly frequency. 

In particular, the good performance of the methodology for a particular region depends on the degree of 

geographical concentration of the industrial production, the level of detail of the base information, the 

weight of the regional industrial production in the national production, the similarity between the 

regional productive structure and the national structure and the availability of a priori information. With 

these considerations in mind, the INE’s methodology is completely justified for certain regions, but not 

for every Spanish region. 

Second, the existence of quantitative direct indices for some Spanish regions (País Vasco, 

Asturias and Andalucía) also offered the possibility of validating empirically the methodology proposed. 

The reason for focusing on these three regions was that they are three of the four regions that have their 

own direct indicator (Extremadura, the fourth region, was not considered because there were only eight 

observations available). The results reinforce the previous conclusions: the INE's methodology is not 

valid for every Spanish region. 

In this paper, we propose a latent variable model, following Israilevich and Kuttner (1993), as a 

way to overcome some of the difficulties of the method applied by the INE. Again, the existence of 

quantitative direct indices for some Spanish regions (País Vasco, Asturias and Andalucía) offers the 

possibility of validating the methodology proposed. In the next section, the theoretical model is shown 

and, in the third section, the model is estimated for these three regions and the results are compared with 

the direct indexes and the INE indirect indexes. The results show that this method overcomes some of 

the difficulties of INE’s method. 

 

2. A latent variable model for measuring regional manufacturing production: The 

theoretical model and its specification in state-space form 

 

In this section, an alternative strategy for calculating indirect quantitative manufacturing 

indicators at a regional level for the Spanish case is proposed. Following Israilevich and Kuttner 

(1993), the regional industrial production can be considered as a latent variable. To estimate latent 
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variable models and obtain the desired regional indicators, the considered model can be expressed in 

state-space form and, then, be estimated using the Kalman filter. 

The basic assumption of the model is that the monthly regional industrial production can be 

treated as a latent variable which depends on other regional variables that are observable (proxies of 

labour and capital) and national variables (the national IPI). This assumption permits the specification 

of a parametric Cobb-Douglas production function at a regional level where the regional industrial output 

(monthly and regional) depends on two inputs: capital (proxied by the regional electric energy 

consumption for industrial purposes1) and labour (proxied by the number of hours worked in the 

manufacturing sector): 

 

m,t
reg
m,t

reg
m,t

reg
m,t lex  , (1) 

 

where the subindexes t and m refer respectively to the year and the month; (·)t,m denotes the monthly 

difference operator; xreg represents the unobservable regional production (in logarithms); ereg the 

regional electric energy consumption for industrial purposes (in logarithms); lreg the number of hours 

worked in the region in the period considered (in logarithms);  and  are, respectively, the share of 

capital and labour inputs;  measures the technological progress; and,  is a perturbance term which 

represents the shocks in the production function. Moreover, as is usual in the literature, it is supposed 

that equation (1) is neutral in Hicks’s sense. The problem with equation (1) is that it is not possible to 

obtain a direct estimate of monthly regional industrial output ( reg
m,tx ). To solve this difficulty, another 

assumption needs to be included in the model. It is assumed that there is a relationship between the 

evolution of national and regional industrial output (the first provides indirect information about the 

second). So, the monthly national IPI ( nation
m,tx ) can be considered as an indirect measure (a noisy 

                                                 
1 As Griliches and Jorgenson (1966) and Moody (1974) point out, certain conceptual and empirical problems are practically 
insurmountable and make it very difficult to measure this input. Capital input by electric energy consumption has been used 
in many empirical studies. Moreover, Moody shows that there are theoretical and practical reasons for approximating capital 
input by the electric energy consumption for industrial purposes. 
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indicator) of the monthly regional industrial activity. In this sense, the relationship between the nation 

and the region i fluctuations can be expressed as follows2: 

 

i,m,t
ireg

m,tii
nation

m,t xx  , (2) 

 

where nation
m,tx  is the growth rate of the national IPI; ireg

m,tx  is the growth rate of the regional 

production indicator; i is included in the model to allow, on average, the (monthly) growth rate of the 

national IPI and the (monthly) growth rate of the regional output to be different.; i is the weight 

associated to the regional output fluctuations; and, last, t,m,i, is a perturbance term that represents 

those national IPI source fluctuations which are not related to the regional output. Positive values of i 

reflect a slower growth in the region than in the nation. i reflects the relation between the variation of the 

regional industrial production index as a result of the variation of the national index. So, positive values of 

i are indicative of a direct relation between the region i and national fluctuations: when ireg
m,tx  increases 

(reduces), nation
m,tx  also increases (reduces). As regards the magnitude of fluctuations, the larger i is, the 

larger the effect of the movements in region i on the national ones; in other words, the higher the values of 

the parameter i, the higher the correlation between national and regional fluctuations will be. However, if 

0<i<1, national fluctuations will be lower than regional ones (aggregation reduces the variability). From 

this point of view, i has the same interpretation as the slope in a classical regression equation: it 

determines the relative size of the regional fluctuations with respect to national ones. Last, t,m,i is an error 

term which represents the shocks experienced by the regional production that are not directly related with 

national shocks3. 

According to the above definitions, i and 2
  (the variance of t,m,i) allow the quantification of 

the linkage between (the fluctuations of) the region i and the nation: the higher i and the lower 2
 , the 

                                                 
2 For more details, see Clar et al. (1998). 
3 But it is not pure noise because it is related with the other B-1 regional shocks. Consider this fact could be a future line to 
extend the model. 
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bigger the linkage. As 2
  is a measure of the amount of noise in the relationship between the nation and 

the region, the lower the noise is, the smaller the effects of the variations of the industrial output in other 

regions in the national one will be. In fact, 2
  is lower-bounded by zero (no noise) and has an upper-

bound in  nation
m,txvar   (the national indicator does not give any information on the regional evolution). 

Israilevich and Kuttner (1993) propose normalising 2
  by the variance of the endogenous variable of (2) 

to measure the link between the fluctuations of the region i and the nation, calling this measure pseudo-

R2=  nation
m,txvar 


 

2

1 . The pseudo-R2 measures how informative the fluctuations of the national indicator 

are to infer the size and the direction of the regional indicator: if it is equal to zero (if 2
  is equal to 

 nation
m,txvar  ), the national IPI fluctuations will not supply any information about the regional 

fluctuations; if it takes values close to one, the national indicator provides valuable information about the 

regional evolution. Note, consequently, that an advantage of the proposed model is that, as a 

subproduct, a measure of the nature and the degree of the linkages between the regional and national 

economic activity is obtained. 

The last element of the model is the imposition of the consistency of the estimates of the monthly 

regional output with the (only) available indicator of regional production: the industrial GAV annual data, 

through the following condition: 

 











 

 


12

1

11

012

1

m h

reg
hm,t

reg
t

A xx , (3) 

 

where reg
t

A x  represents the annual variation (of the logarithm) of the regional production. 

The model is then formed by the equations (1), (2) and (3); taken together, these equations can 

be expressed in terms of a state-space form4, which permits the application of the Kalman filter to obtain 

                                                 
4 See Harvey (1989). 
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estimates of the regional manufacturing production indexes. A possible specification5 of equations (1), (2) 

and (3) in state-space form is shown in (4), the measurement equation, and (5), the transition equation: 
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(5) 

 

3. Estimation of the model and validation of the results 

 
Once the theoretical has been introduced and expressed in state-space form, in this section we 

have used the Kalman filter to obtain estimates of the regional indicators for those regions with direct 

regional indexes (País Vasco, Asturias and Andalucía). Next, these estimates are compared with the 

available direct indicators and the INE indirect indexes to assess the validity of the methodology. 

 

3.1 Statistical information available for the exogenous variables. 

 

Statistical information about labour, capital, regional GAV in manufacturing and the national 

IPI -the exogenous variables- is needed for the model. As regards the labour input, the number of 

                                                 
5 The definition of t depends on the characteristics of the system considered, but there is usually more than one possible state-
space form for each system. As a rule, models with a lower number of parameters are preferred. 
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worked hours in manufacturing (proxy of labour) is not available on a monthly basis6. So, we 

approximate it by another variable which was available for the three regions considered: the number of 

industrial workers in the General Social Security System. For these regions, electric energy 

consumption for industrial purposes (proxy of capital) has only been available on a monthly basis from 

January 1993 to December 1996. The source used for the regional GAV was Contabilidad Regional de 

España and the national IPI was the quantitative direct indicator produced by the INE. As a 

consequence, after differentiating, only 36 observations (for the period 1994-96) were available for 

each variable considered. 

 

3.2 Estimation using the Kalman filter: hyperparameters and initial values. 

 

Once the model formed by equations (4) and (5) has been specified in terms of a state-space form, 

it is possible to apply the Kalman filter to estimate the values of the latent variable. The Kalman filter is a 

recursive procedure that allows us to obtain the optimal estimates (in terms of MSE) of the state vector at 

time t using all the available information at time t-1, and updates and improves these estimates when 

additional information about the observable variables becomes available. 

However, as noted above, applying the Kalman filter requires knowledge of the values of the 

hyperparameters. In the proposed model, the hyperparameters are , , , i, i and the variances of the 

error terms of the equations (4) and (5). To estimate these values there are three different approaches. 

The usual approach is to estimate the unknown hyperparameters by maximum likelihood using 

the prediction error decomposition (Harvey, 1984). Since the analytical expression of the derivatives of 

the system likelihood function are too complicated7, numerical expressions and numerical optimisation 

procedures are usually used. The main disadvantage of using this recursive procedure is its high 

sensitivity to the numerical optimisation procedure chosen and to the available sample. 

                                                 
6 In Spain, at a regional level these data are only available on a quarterly basis. 
7 According to Harvey (1990), the direct solution of the likelihood equations (resulting from equalling the first derivate of the 
logarithm of the likelihood function respect the unknown hyperparameters to zero) is usually not possible. 



 

 8 

The second approach consists of estimating the values of the hyperparameters using the EM 

algorithm, first developed by Dempster et al. (1977) and introduced in this framework by Shumway and 

Stoffer (1982) and Watson and Engle (1983). 

The third way of solving the problem of estimating the hyperparameters values consists of 

specifying the model as simply as possible and estimating some of them using a priori (external, ad 

hoc) information as it reduces considerably the complexity of the maximum likelihood estimation 

(Hackl and Westlund, 1996). This approach is strongly recommended when the number of available 

observations is reduced. It also reduces considerably the computational cost of the estimation 

procedure. 

In this paper, we have tried to consider these three approaches. However, our attempts to apply 

the maximum likelihood estimation method for the whole set of hyperparameters have not been 

satisfactory as no convergence using the usual criteria was obtained. For this reason, we have focused 

on the other two alternatives, the EM algorithm and the a priori estimation. 

In reference with the a priori estimation of the hyperparameters, the parameters of the state 

equation (i, i and i) have been estimated by maximum likelihood from a national Cobb-Douglas 

production function for the period 1964-918 using panel data with fixed effects (the Hausman’s test 

statistic for testing the hypothesis of fixed versus random effects is 38.89). The results of this 

estimation and the fixed effects for the three considered regions are summarised in table 1. Both 

variables, the energy consumption (proxy of capital) and the number of affiliated workers in the 

General Social Security System (proxy of labour), are statistically significant. Moreover, the results, as 

far as the estimated values for both inputs are concerned, are consistent with the ones obtained in other 

studies: their sum is near one (constant returns to scale) and the capital and labour shares are, 

approximately, 1/3 and 2/3 respectively. 

 

TABLE 1 
 

                                                 
8 GAV and workers employed data come from BBV Renta Nacional y su Distribución Provincial and the private capital 
stock data are from Fundación Bancaja, El Stock de Capital en España. 



 

 9 

The parameters of the measurement equation (i and i) have been obtained as the regional 

share in the national GAV (see table 2) using an OLS regression9. Table 2 also summarises the results 

for the three regions considered for the estimation process using the EM algorithm. As it can be seen, 

there are important differences between both sets of estimates, especially for the parameters associated 

to factors share in the regional production function. In particular, the EM estimates are much lower 

than the a priori estimates having no economic interpretation, being this one of the main 

disadvantages of the application of this algorithm. Last, it is important to remark that the variances of 

the perturbance terms of both equations have been estimated in both cases by maximum likelihood 

obtaining similar values. 

 

TABLE 2 
 

Nevertheless, to obtain estimates of the state vector (the regional manufacturing indicator), the 

initial values of the state vector and its associated prediction error covariance matrix are also needed. To 

solve the problem of the initialisation of the Kalman filter, we have followed the proposal of Harvey 

(1981 and 1989) and Bell and Hillmer (1991), which consists of starting the recursions from t=0 

assuming that the initial values of the unobservable variable (0) are equal to zero and the prediction 

error covariance matrix (P0) is equal to ·I, where I is the identity matrix and the constant  has been 

approximated by 106 as in most empirical studies. 

 

3.3 Validation of the results 

 

Once the hyperparameters have been estimated using the two different previously mentioned 

approaches (a priori estimation and EM algorithm) and the problem of initial values of the Kalman 

filter has been solved, it is straightforward to obtain estimates of the regional industrial production 

indexes10. The results obtained are presented in figures 1 to 3 where the evolution of the official 

                                                 
9 The value of R2 and F-test for País Vasco are 0.72 and 4.93, Asturias 0.72 and 24.88 and Andalucía 0.81 and 43.25. 
10 These estimates have been obtained using SAS 6.12 software. We would like to thank Philip Israilevich for sending us part 
of the GAUSS code used in their computations. 
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(EUSTAT; SADEI and IEA), the INE (INE) and latent variable models indexes (SS-KF –state space 

Kalman filter using a priori estimation-, SS-KF-EM –state space Kalman filter EM algorithm 

estimation-) are compared. As it is shown, the results obtained with the latent variable models provide 

a good approximation to the direct indexes’ evolution. The comparison between results obtained using 

the a priori (external) estimates of the hyperparameters with the ones obtained using the EM algorithm 

show that for the País Vasco the second works better, for Asturias the results are better using the first, 

while for Andalucía there are no remarkable differences. 

 

FIGURES 1 TO 3 
 

The results for the pseudo-R2 have also been calculated and are shown in table 3. The results 

using the a priori estimates of the hyperparameters or the EM algorithm are very similar. The value for 

Asturias and País Vasco is very similar and close to 0.5 while the value for Andalucía is higher and 

near 0.7. As pseudo-R2 measures how informative the fluctuations of the national indicator are to infer 

the size and the direction of the regional indicator, this means that the national indicator provides more 

valuable information about the regional evolution in Andalucía that in the other two regions. 

 

TABLE 3 
 

As another way of validating these results, the MAPE between the series shown in figures 1 to 

3 plus the results obtained adding one time the standard deviation of the a priori estimates of the 

hyperparameters (SS-KF+) and substracting one time this deviation (SS-KF-) for different time 

frequencies. The results based on a range of values around a priori (external) estimates permits to 

assess the sensibility of the indexes to hyperparameters. As it can be seen from table 4, there are no 

relevant differences between the results obtained using the a priori (external) estimates (SS-KF) or the 

“adjusted” a priori (external) estimates (SS-KF+ and SS-KF-). However, there are several cases where 

MAPE values are a bit lower for the second ones. In general terms, the results confirm the conclusions 

derived from the graphical analysis, but it should be remarked that indexes elaborated using EM 

estimates provide always better results at quarterly and yearly frequencies. 
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TABLE 4 
 

Additionally, to analyse if the latent variable models provide more reliable indicators than the 

indirect method used by the INE, the above mentioned indexes have been compared for the same 

period (1994-96) with the official ones. The results obtained in terms of MAPE can be found in table 

5. As can be seen in this table, in general the results based on latent variable models are better for the 

three considered regions at yearly, quarterly and monthly basis than the ones obtained using the INE 

method. 

 

TABLE 5 
 

4 Conclusions 

 
In a previous work, Clar et al. (2000), we analysed the advantages and disadvantages of the 

indirect method used by the INE for measuring manufacturing quantitative indicators for the Spanish 

regions. The results showed that this method is only valid under certain hypothesis (among others, the 

similarity of the regional productive structure to the national structure, the weight of the regional 

manufacturing production in the national production, etc.), 

For this reason, in this paper, we have estimated a latent variable model, following Israilevich 

and Kuttner (1993), using the Kalman filter with the aim of overcoming some of the defficiencies of the 

INE's method. The results obtained for the three Spanish regions where direct indicators were available 

show that this method overcomes some of these difficulties. These conclusions could be confirmed as 

more regional statistic information becomes available. In this sense, it is also important to remark that 

the estimates of labour and capital could be improved; the production function could be extended to 

consider richer specifications for technology and the possible change of factors share over time; and the 

dynamicity of the relationships between regional and national economic activity could be analysed in 

more detail. 
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Last, the empirical results also highlight the potentiality of the state-space modelization and 

the Kalman filter to analyse economic data, especially in a regional economic context. The 

consideration of different procedures to estimate unknown values of hyperparameters has also permit 

to compare their accuracy. There seems to be evidence in favour of using the EM algorithm instead of 

the a priori (external) estimates of some hyperparameters. However, the a priori estimates provide 

quite accurate results, have a clear economic interpretation and much less complexity and 

computational time. 
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TABLES 

 

TABLE 1. Estimates of the production function in the presence of fixed effects. 
   Xjt = -0.61157+0.69499LMANjt+0.38304PKMANjt    j=Andalucía, Asturias, País Vasco   t=1964-91 
t-ratio   (-2.544)  (26.420)             (16.355) 
R2=0.9422 

Estimated fixed effects: Individual 
Andalucía=-0.21167 
Asturias=0.11637 
País Vasco=-0.16833 

The number of observations is 238 (17 regions and 14 years). LMAN and PKMAN denote the logarithm of workers employed 
and private capital stock in manufacturing respectively. 

 

TABLE 2. Estimates of the hyperparameters. 
 País Vasco Asturias Andalucía 

A priori* EM algorithm A priori* EM algorithm A priori* EM algorithm
i 
 i 
 i 

-0.77 (0.24) 
0.38 (0.02) 
0.69 (0.03) 

-0.55 
0.17 
0.01 

-0.49 (0.24) 
0.38 (0.02) 
0.69 (0.03) 

-0.43 
0.13 
0.31 

-0.82 (0.24) 
0.38 (0.02) 
0.69 (0.03) 

-0.57 
0.17 
0.16 

i 
i 

4.01 (1.58) 
0.65 (0.13) 

4.08 
0.72 

4.85 (1.53) 
0.68 (0.14) 

5.01 
0.71 

1.58 (1.47) 
0.85 (0.12) 

2.18 
0.79 

* Standard errors in parentheses. 
 

TABLE 3. Pseudo-R2 values associated to the latent variable models. 1994-96. 
 SS-KF SS-KF-EM 
País Vasco 0.50 0.47 
Asturias 0.48 0.48 
Andalucía 0.66 0.69 

 

TABLE 4. MAPE values associated to the latent variable models at monthly frequency. 1994-96. 
 SS-KF SS-KF+ SS-KF- SS-KF-EM

País Vasco 6.20% 7.33% 5.00% 3.21% 
Asturias 3.10% 3.27% 3.44% 4.29% 
Andalucía 4.89% 4.71% 5.25% 4.62% 

 

TABLE 5. MAPE values associated to the INE indicators at monthly frequency. 1994-96. 
País Vasco 4.94% Asturias 5.65% Andalucía 5.67% 

 

 



 

 

FIGURES 

 

 
FIGURE 1. EUSTAT, INE and latent variable indexes 

 

 
FIGURE 2. SADEI, INE and latent variable indexes 

 

 
FIGURE 3. IEA, INE and latent variable indexes 
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