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Abstract. Protein misfolding and aggregation into amyloid-like 

structures is related with an increasing number of both non-

neuropathic (either localized or systemic) and neurodegenerative 

human disorders. Decrypting the mechanisms and implications 

underlying amyloid assemblies has become a central issue in 

biology and medicine. Compelling evidence show that the 

formation of amyloid aggregates has a negative impact in cell 

physiology, entailing the cell dysfunction and finally apoptosis and 

cell death. The aim of the present review is to illustrate the 

currently status of the most common and/or debilitating 

conformational diseases, from Alzheimer to prion diseases.  

 
Introduction 
 

 Proteins and peptides are the main cellular components allowing 

organisms to execute the cellular functions required for life through complex and 
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usually transient networks of intermolecular interactions [1]. In this complex 

network the proteins display functions of (1) binding, wherein the specific 

recognition of other molecules is central to protein function and specific 

binding is governed by shape complementarity and polar interactions such as 

hydrogen bonding; (2) catalysis, essentially every chemical reaction in the 

living cell is catalyzed, and most of the catalysts are protein enzymes;  (3) 

switching, since proteins are flexible molecules and their conformation can 

change in response to microenvironment changes act controlling cellular 

processes. 

 In the cell, the final protein conformational equilibrium is the result of a 
delicate and multi-step balance regulated by diverse intrinsic and extrinsic 
factors. It is known that the unfolded polypeptide chain dramatically 
determines the conformational structure and folding pathways of the proteins 
[2]. Usually, when the polypeptide chain leave the ribosome a fast 
conformational process is produced (with nanoseconds or picoseconds rates) 
favoring that the smallest proteins fold spontaneously on a millisecond or 
even microsecond time scale that exclude the possibility of a random-search 
mechanism for protein folding [3]. Since alternative structures, as               
amyloid-like ones that in addition may represent the primordial ground state 
of protein folding and assembly reactions, can be a possible alternative (even 
probable in certain situations) to native and functional protein structure, 
protein aggregation has now become recognized as an important and generic 
aspect of protein energy landscapes [4]. Since the biophysical properties that 
promote folding also tend to favor intermolecular contacts, leading to the 
formation of β-sheet-enriched insoluble assemblies, protein folding into 
stable globular conformations is in competition with aggregation into       
non-functional and usually toxic structures as amyloid-like structures [5]. 
 It is known that the self-assemble potential into -sheet enriched 
amyloid-like structures of any protein is embedded in their primary structure 
[6,7]. However, although all polypeptide chains could theoretically 
aggregated in amyloid conformations, it has been stated that while the 
majority of the primary sequence is unable to self-associate per se, short 
sequences in the chain protein, usually named ―hot-spots‖ are the final 
responsible to trigger the protein aggregation in amyloid conformation [8]. 
Interestingly, although these short regions, able to form amyloid fibrils by 
themselves [9], are inherently present in the sequence of globular proteins, 
evolutionarily it effect have been minimized by the flanking with anti-
aggregation sequences named ―gatekeepers‖, being embedded in the protein 
core or protected for the quaternary structure. Nevertheless, when these 
amyloid-like regions are exposed to solvent (i.e. in situations of deregulations 
of the protein synthesis, environmental alterations), the intermolecular 
contacts leading the formation of β-sheet enriched aggregates could be 
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drastically favored [10]. Importantly, the presence of these hot-spot regions is 
usually observed in the proteins involved in conformational diseases. 
 In the recent years, protein misfolding and aggregation has become a 

widely active area of research, mainly because of the connection between the 

formation of insoluble protein deposits in human tissues and the development 

of dozens of human diseases. The conformational diseases, linked to protein 

aggregation into amyloid conformations, ranked from neurodegenerative 

affections such as Alzheimer (AD), Parkinson (PD), Huntington (HD), 

frontotemporal dementia (FTD), amyotrophic lateral sclerosis (ALS) or human 

transmissible sporadic encephalopathies (TSEs) commonly known as prion 

diseases, to non-neurodegenerative systemic and localized amyloidosis as light-

chain (AL) amyloidosis or type II diabetes, respectively [11] (see Tables 1a-c). 

 
Table 1a. Human diseases associated with formation of extracellular amyloid deposits 

or intracellular inclusions with amyloid-like characteristics: Neurodegenerative 

diseases 

 

     Disease Aggregating protein or peptide 

     Alzheimer’s disease Amyloid β peptide  

     Spongiform encephalopathies Prion protein or fragments thereof  

 

     Parkinson’s disease α-Synuclein  

     Dementia with Lewy bodies α-Synuclein  

     Frontotemporal dementia Tau 

     Amyotrophic lateral sclerosis Superoxide dismutase 1  

     Huntington’s disease Huntingtin with polyQ expansion  

     Spinocerebellar ataxias Ataxins with polyQ expansion  

     Spinocerebellar ataxia TATA box-binding protein with  
polyQ expansion  

     Spinal and bulbar muscular atrophy Androgen receptor with polyQ  

expansion 

     Hereditary dentatorubral-pallidoluysian atrophy Atrophin-1 with polyQ expansión 

     Familial British dementia ABri 

     Familial Danish dementia ADan 

Extracted from ref. [11]. 
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Table 1b. Human diseases associated with formation of extracellular amyloid 

deposits or intracellular inclusions with amyloid-like characteristics: 

Neurodegenerative diseases: Non-neuropathic systemic amyloidosis. 

 

     Disease Aggregating protein or peptide 

     AL amyloidosis Immunoglobulin light chains or  

fragments 

     AA amyloidosis Fragments of serum amyloid A protein 

     Familial Mediterranean fever Fragments of serum amyloid A protein 

     Senile systemic amyloidosis Wild-type transthyretin  

     Familial amyloidotic polyneuropathy Mutants of transthyretin  

     Hemodialysis-related amyloidosis β2-microglobulin  

     ApoAI amyloidosis N-terminal fragments of  

apolipoprotein  

     ApoAII amyloidosis AI N-terminal fragment of  

apolipoprotein  

     ApoAIV amyloidosis AII N-terminal fragment of  

apolipoprotein AIV  

     Finnish hereditary amyloidosis Fragments of gelsolin mutants  

     Lysozyme amyloidosis Mutants of lysozyme 

     Fibrinogen amyloidosis Variants of fibrinogen 

     Icelandic hereditary cerebral amyloid angiopathy α-chain Mutant of cystatin C 

 

       Extracted from ref. [11]. 

 
 These protein deposits, constituted mainly by fibrillar structures known 

as amyloid aggregates, are thread-like protein aggregates with a cross-β 

structure, which is composed by β-strands stacked perpendicular to the fibril 

axis [11]. For years the structural characterization of these amyloid-like 

aggregates were limited due to the lag of crystalline forms and their low 

resolution by solution nuclear magnetic resonance (NMR). However, these 

aggregates often display enriched β-sheet structure detectable by X-ray 

diffraction, Fourier transform infrared spectroscopy (FTIR) and circular 

dichroism (CD). Like this, they are able to bind amyloid-tropic dyes as 

Thioflavin-T (fluorescence spectroscopy and optical microscopy) or Congo 

Red (UV/Vis spectroscopy and birefringence), present proteinase K digestion 
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resistance and fibrillar structures are detectable by transmission electronic 

microscopy (TEM) or atomic forces microscopy (AFM). Moreover they 

show seeding capacity reminiscent of amyloids, form homogeneous 

aggregates without cross-aggregation, and display aggregation propensities 

strongly affected by mutations. Importantly, since some of these tests can be 

non-conclusive, giving false positive and false negative, nowadays the 

confirmation of amyloid structures is usually based upon the positive in 

diverse of these amyloid tests [2].  

 
Table 1c. Human diseases associated with formation of extracellular amyloid deposits 

or intracellular inclusions with amyloid-like characteristics: Neurodegenerative 

diseases: Non-neuropathic localized amyloidosis 

 

     Disease Aggregating protein or peptide 

     Type II diabetes 
Amylin, also called islet  

amyloid polypeptide (IAPP) 

     Medullary carcinoma of the thyroid Calcitonin  

     Atrial amyloidosis Atrial natriuretic factor 

     Hereditary cerebral haemorrhage  
     with amyloidosis 

Mutants of amyloid β peptide  

     Pituitary prolactinoma Prolactin  

     Injection-localized amyloidosis Insulin  

     Aortic medial amyloidosis Medin  

     Hereditary lattice corneal dystrophy Mainly C-terminal fragments of                 

kerato-epithelin  

     Corneal amylodosis associated with trichiasis Lactoferrin 

     Cataract γ-Crystallins  

     Calcifying epithelial odontogenic tumors Unknown 

     Pulmonary alveolar proteinosis Lung surfactant protein C  

     Inclusion-body myositis Amyloid β peptide 

     Cutaneous lichen amyloidosis Keratins 

        

 Extracted from ref. [11]. 
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 Due to the large number of conformational diseases, in this review we 

tempt to provide readers concise information about the most prevalent 

conformational diseases as well as the most debilitating ones. In this way we 

have chosen: Alzheimer’s disease (AD), Parkinson’s disease (PD), 

forntotemporal dementia (FTD), Huntington’s disease (HD) and amyotrophic 

lateral sclerosis (ALS) as the most prevalent neurodegenerative diseases. In 

addition, spongiform encephalopathies including Creutzfeldt-Jakob’s disease 

(CJD), the most prevalent human spongiform encephalopathy, has been 

added as the most debilitating and transmissible case (see Table 2). 
 

Table 2. Human diseases associated with formation of extracellular amyloid deposits 

or intracellular inclusions with amyloid-like characteristics. 
 

Disease Cases Cases per 100,000 population* 

 
Alzheimer’s disease  

 
4 000 000 

 
1 450 

 

Parkinson’s disease 

 

1 000 000 

 

   360 

 
Frontotemporal dementia 

      
     40 000 

 
    14 

 

Huntington’s disease  

      

     30 000 

 

    11 

 

Amyotrophic lateral sclerosis      20 000      7 

Progressive supranuclear palsy       15 000      5 

Spinocerebellar ataxias      12 000      4 

Pick’s disease        5 000      2 

Prion disease          400    <1 

Extracted from ref. [12]. * Data are based on a population of approximately 275 

millions in 2000. 

 

1. Alzheimer’s disease  
 

 Among all dementia types, Alzheimer’s disease (AD) represents ≈70% 

of these cases. By 2009, more than 35 million cases of AD were recorded 

worldwide, with an expectancy of doubling this number in 2050 [1,13]. Two 

distinctive features characterize the brain physiopathology of AD patients: (1) 

the apparition of extracellular amyloid plaques formed as a consequence of 

the accumulation in amyloid form of -amyloid peptide (A ) and (2) 
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neurofibrillary tangles mainly formed by hyperphosphorylated forms of 

neuronal tau protein associated in microtubules [1,14]. 

 While amyloid plaques are primarily composed of the A , a host of other 

compounds such as proteoglycans, inflammatory molecules, serum related 

molecules, metal ions, amyloidogenic related molecules, protease and 

clearance related elements, antioxidant defense protein, cholinesterases and 

up to 26 proteins enrich these amyloid deposits [15,16]. A , the main 

component of amyloid plaques, is a hydrophobic 39–43 amino acid peptide 

resulting from the proteolysis of the trans-membrane amyloid protein 

precursor (APP) by - or -, and -secretases [15]. Interestingly, this 

proteolysis can follow two different pathways with different cleavages: (1) 

non-amyloidogenic pathway in which the action of the - and -secretases 

undergo the formation of a soluble and non-amyloid peptide or (2) 

amyloidogenic pathway wherein the action of the -secretase in a first step 

entail the apparition of a A  peptide that can be quickly aggregated in 

amyloid conformation [15]. 

 Tau protein binds microtubules through some repeated domains (R1–R4) 

(encoded by exons 9–12) located at the C-terminus of the molecule, however 

in AD this role is ineffective to keep the cytoskeleton well organized in the 

axonal process [17]. The conformational changes and misfoldings in the 

normal structure of tau lead the formation of paired helical filament (PHF), 

the main component of the neurofibrillary tangles, as result of microtubule-

associated protein tau in a hyperphosphorylated state. It is know that the 

hyperphosphorylation of tau trigger its inability to bind to microtubules that 

are associated in PHFs [18]. Inasmuch as tau protein stabilize the neural 

axons, this binding incapacity undergoes the axon disruption, and finally the 

neuron disfunction and neural cytotoxicity.  

 The apparition of extracellular amyloid plaques and neurofibrillary 

tangles lead to nerve cell death and tissue loss throughout the brain. In the 

Alzheimer's brain the cortex shrivels up, initially damaging areas involved in 

thinking (primarily in the formation of new memories) and language mainly 

affecting the Broca’s and Wernicke’s areas in the hippocampus. Although the 

disease progression rate varies greatly the average survival is 8 years can 

reach up to 20 in some cases. In early stages, that may have begun 20 years 

before diagnosis, extracellular amyloid plaques and neurofibrillary tangles 

begin to form in brain areas involved in learning and memory, and thinking 

and planning. In mild to moderate stages, generally last from 2 - 10 years, the 

evolution of the disease entails a dramatic increment of the presence of 

plaques and tangles in the memory, thinking and language, entailing clear 

language and spatial difficulties. Finally, in the severe stages, usually last 
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from 1 - 5 years, senile plaques and tangles are massively scattered for all 

cortex region entailing dramatic increment of neuronal death with serious 

damage and consequences for the patient. In this stage the patient lose the 

abilities of communicate, recognize, love and self-care. 

 

2. Parkinson’s disease 
 

 Parkinson’s disease (PD), disease associated to motor symptoms such as 

bradykinesia, tremor, rigidity and impaired postural reflexes, as well as 

mental disorders like depression or psychosis, is the second most common 

neurodegenerative illness after AD [19]. The prevalence of PD, affecting 

approximately 7 million people worldwide, is estimated at 0.3% of the entire 

population and about 1% in people over 60 years of age [20,21]. The 

prevalence and incidence of PD increase exponentially with age, and are 

slightly higher in men than in women. Interestingly, although PD 

traditionally has been considered a non-genetic disorder, around 15% of 

individuals with PD have a first-degree relative who has the disease and at 

least 5% of Parkinson’s cases have forms of the disease that occur because of 

a mutation of one of several specific genes [22]. 

 PD is a progressive neurodegenerative disease, primarily affecting voluntary 
and controlled movement, consequence of death of dopamine-generating cells in 
the substantia nigra and loss of dopaminergic terminals in the basal ganglia and 

with motor impairments [23]. The abnormal accumulations of -synuclein in 
Lewy bodies suggest that this protein has a central role in a group of 
neurodegenerative diseases known as synucleinopathies [23]. -synuclein is a 
presynaptic neuronal protein of 140 amino acids encoded by a gene on 
chromosome 4 with a putative role in synaptic function and neural plasticity [24]. 
Although -synuclein is extensively expressed in the central nervous system, 

neuronal death and Lewy body formation in PD are mostly restricted to the 
substantia nigra [23]. As previously shown in AD, under certain conditions              

-synuclein can self-polymerize in amyloid-like conformations. Thus,                       
-synuclein soluble monomers nucleate becoming oligomers (protofibrils) that 

can be associated forming fibrils and finally resulting Lewy’s body inclusions. 
While the toxicity of Lewy’s bodies is nowadays unclear, it seems clearer the 

implication of protofibrils in the toxicity via formation of circular amyloid pores 
entailing ion deregulation, membrane disruption and finally apoptosis and cellular 
death [25]. 

 Despite the amyloid aggregation of -synuclein is initially localized in 

the substantia nigra in the mesencephalon, during the progression of the 

disease are increasing protein aggregates that appears in different areas of the 

brain. The increment of the amount of Lewy’s bodies in the brain entails 
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increment in the severity of the symptomatology and neuronal affectation. 

Interesting, this pathology appears to spread throughout the brain as the 

disease progresses. Recent works show that this spreading process could be 

caused by neuron-to-neuron spread of α-synuclein aggregates and that the 

anatomical pattern of progression of lesions between axonally connected 

areas results from the axonal transport of such aggregates [26]. 

 

3. Frontotemporal dementia 
 

 Frontotemporal dementia is a term grouping diverse uncommon disorders 

that primarily affect the frontal and temporal lobes of the brain. The 

degeneration of these FTD lobes is associated with alterations of the 

personality, behavior and language. As previously observed in AD, the loss 

of neuronal cells is associated to the misfolding of tau protein. For years this 

fact has led to diagnostic confusions entailing an infra-diagnosis of FD cases 

which were erroneously attributed to AD; however, nowadays more accurate 

evaluation methods allowing more clear differentiation between both disease 

have shown that the incidence and prevalence of FTD were clearly more 

elevated than the initial considered. 

 Although FTD tends to occur at a younger age than does AD, typically 

between the ages of 40 and 70, but incidence and prevalence is increased for 

the age and it is more frequent in men. The prevalence estimates in the age 

categories of 45–64 years old have ranged from 15 to 22 per 100,000 person 

each year and an estimated incidence from 2.7 to 4.1 per 100,000 person each 

year [27]. Age-specific prevalence rates is calculated for 1.2 per 100,000 in the 

40 to 49 age group; 3.6 per 100,000 in the 50 to 59 age group; 9.4 per 100,000 

in the 60 to 69 age group; and 3.8 in the 70 to 79 age group. Thus, the highest 

prevalence is found at ages 60 to 70, although patients older than 85 years have 

been reported. Interestingly, about 25% of patients have a hereditary form of 

FTD with autosomal dominant inheritance. Mutations in the tau gene are 

present in less than half of familial FTD cases. A mutation in the CHMP2B 

gene on chromosome 3 is probably even rarer. Therefore, it is very likely that 

more common disease-causing genes, one of them possibly located on 

chromosome 17q close to the tau gene, have still to be identified [27,28]. 

 

4. Huntington’s disease 
  

 Polyglutamine (polyQ) Pathies are a particular class of conformational 

diseases linked to proteins associated to several different types of hereditary 

neurodegenerative disorders wherein a polyQ extension become thus a 
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molecular hallmark for fibril propensity, undergoing the protein 

polymerization in amyloid-like conformations. Now, nine different 

conformational diseases have been shown to be related to polyQ extensions: 

Huntington’s disease (HD), spinocerebellar ataxia (SCA) types 1, 2, 3, 6, 7, 

17, dentatorubral-pallidoluysian atrophy (DRPLA) and bulbar muscular 

atrophy (SBMA) [1]. 

 Huntington’s disease (HD), also known as Huntington’s chorea, is a rare, 

adult-onset, autosomal dominant linked to mutation in Huntingtin (HTT) 

gene, and progressive neurodegenerative disease. HTT was the first               

disease-associated gene to be molecularly mapped to a human chromosome. 

The mutation turns out that the HTT gene contains a region where the triplet 

nucleotide CAG is repeated several times. The number of CAG repeats 

present in the HTT gene determines whether an individual will have HD. 

Thus, while from 6 to 26, normal allele, and 27-35, intermediate allele (IA) 

also termed large normal allele, CAG repeats do not entail misfolding protein 

and aggregationan; 36-39 repeats, incomplete or reduced penetrance allele 

(RPA), will be at increased risk for HD; and 40 or more CAG repeats, full 

penetrance allele (FPA), will definitely manifest disease phenotypes 

undergoing amyloid-like aggregation [29]. Importantly, recent works show 

that the length of polyQ extension is directly related with the protein 

destabilization, and consequently the formation of amyloid aggregates [30]. 

This fact is in correlation with the previously shown; the number of repeats 

determines the probability an individual will have HD because an increased 

number of repeats triggers the amyloid conversion of the protein. 

 The worldwide prevalence of HD, similar for men and women, is 5-10 

cases per 100,000 persons. HD symptoms, which typically manifest between 

35 and 55 years of age, ranked from behavioral changes, psychiatric, 

movement, feeding, communication and sexual problems in a progressive 

manner. In early stage the usual symptoms are personality changes, mood 

swings and unusual behavior as consequence of the initial affectation of basal 

ganglia called the neostriatum, which is composed of the caudate nucleus and 

putamen, as well as the substantia nigra, layers 3, 5 and 6 of the cerebral 

cortex, the hippocampus, purkinje cells in the cerebellum, lateral tuberal 

nuclei of the hypothalamus and parts of the thalamus [31].   

 

5. Amyotrophic lateral sclerosis 
  

 Amyotrophic lateral sclerosis (ALS), also known as Lou Gehrig's disease 

and motor neuron disease, encompasses a group of genetic neurodegenerative 

disorders characterized by progressive and lethal muscle weakness caused by 
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loss of both upper and lower motor neurons of central and peripheral motor 

neurons [32-34]. The hallmark of this disease is the selective death of motor 

neurons in the brain and spinal cord, leading to paralysis of voluntary muscles. 

The paralysis begins focally and disseminates in a pattern that suggests that 

degeneration is spreading among contiguous pools of motor neurons [35]. This 

progressive degeneration of the motor neurons in ALS eventually leads to their 

death. When the motor neurons die, the ability of the brain to initiate and 

control muscle movement is lost. With voluntary muscle action progressively 

affected, patients in the later stages of the disease may become totally 

paralyzed. Symptoms typically have a localized limb or bulbar onset and 

progress to other muscle groups of the body. The degeneration of motor 

neurons, that can no longer send impulses to the muscle fibers altering the 

muscle movement, also entail denervation of respiratory muscles leading 

dysarthria from early phases of the illness and finally respiratory complications 

that are the most common causes of death. In addition, the dysphagia is a 

characteristic symptom that appears in the disease evolution dramatically 

difficulty the deglutition and the alimentation of the patients. Thus, ALS is 

characterized by 3- to –5-yr median survival post-diagnosis [36]. 

 The incidence and prevalence of ALS are 1–2 and 4–6 per 100,000 each 

year, respectively [35]. Although most cases are classed as sporadic ALS 

(sALS), 10% of cases are inherited known as familial ALS (fALS). 

Interesting, ALS most commonly occurs in people between the ages of 40 

and 60, and is slightly more men than women [37]. Five Mendelian gene 

defects were initially reported to cause ALS. The protein products of these 

mutated genes are cytosolic Cu/Zn superoxide dismutase (SOD1), alsin, 

senataxin (SETX), synaptobrevin/ VAMP (vesicle-associated membrane 

protein)-associated protein B (VAPB) and dynactin [35]. However, fALS 

have been attributed to mutations in 12 different genes, the most common 

being SOD1, FUS and TARDBP—mutations in the other genes are rare [38]. 

The SOD1 misfolding and precipitation in amyloid-like aggregates is 

considered one of the main causes of ALS. SOD1 is a ubiquitous, 

predominantly cytosolic protein consisting of 153 amino acids that acts as a 

homodimer. Each subunit of SOD1 binds one zinc and one copper atom, and 

through cyclical reduction and oxidation (dismutation) of copper, SOD1 

converts superoxide radicals, a by-product of oxidative phosphorylation, to 

hydrogen peroxide and molecular oxygen. The exact mechanism by which 

SOD1 mutations lead to ALS pathology is unknown although several toxic 

properties of mutant SOD1 such as aberrant oxidative stress, protein 

instability, and mitochondrial damage have been proposed to be causative 

[35]. Interestingly, the presence of mutant SOD1 in non-neuronal cells 

contributes to pathogenesis and is needed for disease progression [39]. 
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6. Spongiform encephalopathy 
  
 Prion diseases, also termed transmissible spongiform encephalopathies 
(TSEs), compresses fatal, progressive and transmissible neurodegenerative 
diseases that affect humans and a wide variety of animals [40]. Although 
initially the TSEs were considered caused by a ―slow virus‖, in 1982 the 
Nobel Prize Stanley B. Prusiner showed that the responsible of this group of 
diseases was a protein that coined ―prion‖ from the ―protein-only‖ concept. 
In human prion diseases include Kuru, Creutzfeldt-Jakob disease (CJD), 
variant CJD (vCJD) –―after mad-crows disease–, Gerstmann-Sträussler-
Scheinker (GSS) disease and fatal familial insomnia (FFI) (see Table 3) [40]. 
 The prion disease is related to a 209 amino acids protein normally found 
anchored in the cell membrane by a C-terminal glycosylphosphatidyl inositol. 
The prion propagation is usually associated with post-transcriptional 
convertion of normal cellular prion protein (PrP

C
) –soluble, protease-sensible 

and native form– to amyloid-like aggregated isoform (PrP
Sc

) –less soluble 
and proteinase-K resistant– [12,41]. In the prion infectivity, the PrP

Sc
 

transfers its amyloid conformation from the spleen to the central nervous 
system (CNS) in a biphasic model with the first phase characterized by 
widespread colonization of lymphoreticular organs and the second one 
involving the CNS and also probably the peripheral nerves, acting in 
concomitance with vesicle-associated infectivity, and cell-free, free-floating 
oligomeric or protofibrils infectious particles [40,41]. 
 

Table 3. Human prion diseases. 

 

Disease Etiology 

Kuru  Infection 

Creutzfeldt-Jakob disease  

          Iayrogenic Infection 

          Sporadic  Unknown 

          Familial PRNP mutation 

          Variant  Presumed BSE infection 

Gerstmann-Sträussler-Scheinker 

disease 

PRNP mutation 

Fatal familial insomnia PRNP mutation 

                         Extracted from ref. [40]. 
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 The human prion diseases are classified as infectious, inherited or 

sporadic disorders, depending on the clinical, genetic, and neuropathological 

findings. The clinical evolution is characterized by widespread 

neurodegeneration; therefore, affected individuals exhibit clinical symptoms 

of both cognitive and motor dysfunction. After infection and/or conversion 

triggering the disease undergoes a fast and progressive dementia, myoclonus, 

visual or cerebellar impairment, pyramidal/extrapyramidal signs, and akinetic 

mutism [40]. 

 

8. Conclusion 
 

     In the cell, the biological function is determined for the native protein 

fold.  In this way, problems in the protein fold with the consequent 

apparition of misfolded species can disturb the essential cellular processes. 

The protein misfolding entailing the polypeptide aggregation into amyloid 

structures have been associated with an increasing number of human 

diseases as Alzheimer, Parkinson or prion diseases. Importantly, recent 

studies have shown that the amyloid aggregation process is not limited to 

disease-related proteins but appears to be a generic property of the proteins 

in both eukaryotic and prokaryotic cells. The possibility that the amyloid 

formation is a universal and omnipresent process shared for all life 

organisms entails important consequences in biology: (1) If the folding and 

aggregation compete in the cell, during the evolution the prevention of the 

protein aggregation have to be an essential selective mechanism of the 

regulation. (2) The fact that amyloid formation is an omnipresent process 

entails that the number of human genetic diseases associated to misfolding 

and aggregation could be much larger than previously thought. (3) 

Interestingly, as the paradigmatic case of the prion proteins that use the 

amyloid-like structure and the particular amyloidal properties to become 

self-perpetuating; in several cases, amyloid structures could have been 

selected during the evolution for functional purposes.  
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