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Chapter 1

Introduction: Scope of the
Thesis

Throughout most of the twentieth century, molecular biology has been
reductionist.  Reductionism is an approach to understanding complex
systems (e.g. cells, tissues, or organisms) by reducing them to simpler or
more fundamental molecules (e.g. individual genes, mRNAs, proteins or
metabolites). However, during the last twenty years, there has been a change
of strategy on the subject that is totally different. It consists in study all
the molecules in one or a population of complex systems (e.g. genome,
transcriptome, proteome or metabolome), that is, studying a complex
system by taking a holistic point of view of the molecules that make up such
a complex system. This revolution began with the deciphering of the whole
genome sequences of several organisms —among them the human genome—,
and rapidly, similar ideas were applied to the study of the transcriptome,
proteome and metabolome. This resulted in the emergence of omic studies:
genomics, transcriptomics, proteomics and metabolomics (figure 1.1).

With the advent of the omic era huge quantities of information have been
generated, and it has become a major breakthrough for molecular biology.
This has been possible thanks to a new generation of high-technologies
known as high-throughput technologies.  These technologies allow the
performance, in a routine way, of new types of experiments to analyze
simultaneously the behavior of thousands of features (e.g. genes, mRNA,
proteins or metabolites) under different conditions.

There are different types of high-throughput technologies (e.g. microarrays,
next generation sequencing and mass spectrometry) that allow the perfor-
mance of a broad range of omic experiments. For example, a microarray
experiment makes it possible to determine the correlation between the
expression of a large list of genes, or proteins or entire genotypes of the
phenotypic traits, characterizing a studied group. In the case of a Next
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Figure 1.1: General schema showing the relationships between the genome,
transcriptome, proteome and metabolome in omics studies.

Generation Sequencing (NGS) experiment, it is possible to obtain the
genomic sequence of a new organism by assembling small “pieces”’ of DNA,
or identifying genes that are being expressed in a particular organism,
or analyzing protein interactions with DNA by identifying the binding
sites of DNA associated proteins. And finally, in a Mass Spectrometry
(MS) experiment a researcher can separate proteins, peptides or metabo-
lites, according to their molecular mass and /or structure and so detect them.

Independently of the high-throughput technology used in an omic exper-
iment, very often it will result in long lists of features which have been
selected using some criteria to assign them statistical significance. For
instance, in a microarray experiment a t-test can be used to identify genes
differentially expressed between two or more conditions. With those lists
in hand, a researcher is faced with the problem of finding a biological
interpretation. However, most of the time, biological interpretation of a list
of genes is not obvious. Even a biologist with great experience may have
some difficulties in interpreting what the list of features mean. At this point,
the experimenter has different alternatives. For instance, he/she could do
a comprehensive search in the literature regarding each feature and collect
information about whether a specific feature has a known function, or if some
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of them have been described to work in a cluster, or if this list of features
is known to be associated with a phenotype under certain experimental
conditions, and so on. But even if it is still possible to perform this task, it
is almost certain that this quest will take a long period of time. Moreover,
sometimes the number of items selected as being statistically significant is
very high and it seems reasonable to (try to) summarize them by looking
at what the list means from a biological point of view. Sometimes, instead,
the selected items do not show any statistical significance, but even so it
is expected -or it seems clear- that, biologically, they “mean something”,
probably related to the process being analyzed.

In whatever of the previous situations we find ourselves, the usual way to
proceed is to shift the focus from “statistical” to “biological” significance.
However, while there is a clear agreement about what statistical significance
means, there is no consensus definition for biological significance at all.

1.1 Meaning of Biological Significance Con-
cept

Interestingly, what many authors do to define Biological Significance is to
redefine it in terms of statistical significance. This can be clearly seen in
[41], where the authors state:

... to understand the biological relevance of statistical differences
in gene expression data by examining significant differences in the
distribution of Gene Ontology (GO) terms related to biological
processes or molecular function.

This is not however the only possible definition. For instance, GeneSifter
[61], a company presenting their goals as to “make it easier to understand the
biological significance of your microarray data” does not give any definition
of the term. The nearest explanation of what they mean is:

... to characterize the biology involved in a particular experiment,
and to identify particular genes of interest... combining the iden-
tification of broad biological themes with the ability to focus on
a particular gene...

In any case, it is clear that whatever they mean by Biological Significance
they do not relate this concept to Statistical Significance.
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Therefore, while many efforts are addressed to attribute Biological Signif-
icance to the results yielded in omic experiments, because it is of course
an important step towards answering the biological questions that are be-
ing pursued by experiments, fewer efforts are devoted to clarifying what this
concept exactly means.

1.2 The Gene Ontology

Attempts to perform a biological interpretation of results from high-
throughput experiments are often based on existing annotation spaces (e.g.
Ensembl [56], KEGG [86] or UniProt [35]). Many of these annotation
spaces are focused on species or context-dependent. That is, the biological
knowledge is associated with a specific species or biological vocabulary.
Moreover, many of these resources use methods to manage the information
that might only be properly used by specialists in a restricted domain,
or sometimes these methods are very difficult to understand, or they are
not appropriated, etc. Whatever the case, users are often not able to
deal and share with the information stored in annotation spaces, because
they are not able to access the biological knowledge. Furthermore, there
are resources that store the information as plain text, and here it is very
difficult to automate management because there are no recognition patterns
to identify fields or traits associated with the information stored. That is,
the generalization or extension to related situations is not straightforward.
For these reasons and in order to facilitate the comparison of annotations
and also to increase the unification of the biological knowledge, the scientific
community developed a resource which does not depend on either specific
organisms or experiments. This tool is the Gene Ontology (or commonly
called GO) ([148]). It has become one of the most successful resources used
for performing biological interpretations.

The GO is an annotation resource created and maintained by a public
consortium, The Gene Ontology Consortium ' ([152]), whose main goal is,
citing their mission, to produce a controlled vocabulary that can be applied
to all organisms even as knowledge of gene and protein roles in cells is
accumulating and changing.

!The GO Consortium is a collection of biological databases and research groups actively
involved in the GO project. This includes a number of model organism databases and
multi-species protein databases, software development groups, and a dedicated editorial
office.
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In order to give a more comprehensive explanation of the GO project, the
following subsections provide a comprehensive explanation of the information
content, the scope, and the structure of the GO. Descriptions have been
extracted and adapted from the GO documentation [151].

1.2.1 The Ontology Domains of the GO

The GO project provides an ontology of terms representing gene product
properties. It is organized covering three domains:

e Cellular Component (CC), the parts of a cell or its extracellular envi-
ronment;

e Biological Process (BP), operations or sets of molecular events with a
defined beginning and end, pertinent to the functioning of integrated
living units: cells, tissues, organs, and organisms; and

e Molecular Function (MF), the elemental activities of a gene product at
the molecular level, such as binding or catalysis.

One way to understand this organization is to think that individuals (i.e.
gene products) have different tasks (i.e. functions) and they work together
to achieve different goals (i.e. processes).

Currently, there are approximately 40.000 terms in the GO. More specifically:
the Biological Process (BP) domain consists of 27.224 GO terms, Molecular
Function (MF) domain consists of 10.725 GO terms, and Cellular Component
(CC) domain consists of 3.745 GO terms. These numbers were extracted from
the tool AmiG02 ([22]) when writing this thesis.

1.2.1.1 Cellular Component

The CC ontology describes the components of a cell, at the levels of subcel-
lular structures and macromolecular complexes. This may be an anatomical
structure (e.g. rough endoplasmic reticulum or nucleus) or a gene product
group (e.g. proteasome complex, ribosome, or a protein dimer). A gene
product is located in or is a subcomponent of a particular cellular compo-
nent. Terms in CC ontology include multi-subunit enzymes and other pro-
tein complexes, but not individual proteins or nucleic acids, or multicellular
anatomical terms (figure 1.2).
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Figure 1.2: GO annotation terms of the Cellular Component domain for
Proteasome complex (gray) and Rough Endoplasmic Reticulum (pink) terms.
Colors of the links establish the types of relationships between two categories.

1.2.1.2 Biological Process

The BP ontology describes terms that represent collections of molecular
events with a defined beginning and end. For instance, a broad biological
process term is a cellular physiological process or a signal transduction, and
an example of a more specific term is alpha-glucoside transport or pyrimidine
metabolic process (figure 1.3).
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Figure 1.3: GO annotation terms of the Biological Process domain for Signal
Transduction (pink) and Alpha-Glucoside Transport (gray) terms. Colors of
the links establish the types of relationships between two categories.

It can be difficult to distinguish between a biological process and a molecu-
lar function, but in general a process must have more than one distinct steps.

A biological processes is not equivalent to a pathway. GO does not try
to represent the dynamics or dependencies that would be required to fully
describe a pathway.

1.2.1.3 Molecular Function

The MF ontology terms represent activities rather than the entities
(molecules or complexes) that perform the actions, and do not specify where
or when, or in what context, the action takes place. In general, molecu-
lar functions are activities that can be performed by individual gene prod-
ucts, but some activities are performed by complexes of gene products that
work together. For example, a broad functional term is catalytic activity, or
transporter activity, or binding, and an example of a more specific term is
adenylate cyclase activity or Toll receptor binding (figure 1.4).
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Figure 1.4: GO annotation terms of the Molecular Function domain for Cat-
alytic Activity (gray) and Adenylate Cyclase Activity (gray) terms. Colors
of the links establish the types of relationships between two categories.

To confuse a gene product name with its molecular function is easy. For this
reason many molecular functions are annotated with the word “activity”.

1.2.2 Scope of the GO

GO allows us to annotate genes and their products with a limited set of
properties. For example, GO does not allow us to describe genes in terms
of which cells or tissues they are expressed in, which developmental stages
they are expressed at, or their involvement in disease. GO describes how gene
products behave in a cellular context. However, GO is not a database of gene
sequences, nor a catalog of gene products. There are other ontologies that
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are being developed for these purposes (e.g. the Open Biomedical Ontologies
([158])). Thus, it is important to understand that there are some areas that
are outside the scope of GO. The domains covered by GO were described
in previous section 1.2.1, and the following list of items shows what is not
covered in the scope of the GO:

e Gene products (e.g. cytochrome complex? is not in the ontologies, but
attributes of it, such as oxidoreductase activity, are).

e Processes, functions or components that are unique to mutants or dis-
eases (e.g. oncogenesis is not a valid GO term because causing cancer
is not the normal function of any gene).

e Attributes of sequence such as intron/exon parameters.
e Protein domains or structural features.

e Protein-protein interactions.

e Environment, evolution and expression.

e Anatomical or histological features above the level of cellular compo-
nents, including cell types.

1.2.3 The Structure of the GO

Each ontology domain (i.e. MF, BP or CC) consists of a high number of
terms or categories hierarchically related from least (top) to most (bottom)
specialized characteristics, but unlike a hierarchy, a term may have more
than one parent term. For example, figure 1.5 shows the relationships be-
tween the biological process term hexose biosynthetic process (violet) and its
ancestors. This GO term has two parents, hexose metabolic process (blue)
and monosaccharide biosynthetic process (cyan). This is because biosyn-
thetic process (green) is a type of metabolic process (pink) and a hexose
(blue) is a type of monosaccharide (gray).

2The cytochrome complex (cyt c) is a small heme protein found loosely associated with
the inner membrane of the mitochondrion.
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Colors of the links establish the type of relationship between two categories.

Thus, the structure of GO can be described in terms of a graph, where each
GO term is a node, and the relationships between nodes are links. Theses
relationships are directed (e.g.
organelle is not a mitochondrion) and the graph is acyclic, that is, cycles are
not allowed in the graph. Therefore, MF, BP and CC ontologies are indeed
Direct Acyclic Graphs (DAG) and graph theory ([17], [162], [43], [155]) is
clearly one possible, although not yet generalized, approach for their study.

a mitochondrion s an organelle, but an

Most genes are annotated in one or more categories. Annotations are made
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as specific as possible. As a consequence, a gene is not only associated with
its annotations but also with all the less specific terms associated with them.
Furthermore, a given gene product may represent one or more molecular
functions, be used in one or more biological processes and appear in one
or more cellular components. For example, gene TP53 in humans encodes
protein pb3. This protein is essential because it regulates the cell cycle and
functions as a tumor suppressor, preventing cancer. In its anti-cancer role,
pH3 works through several mechanisms, which are annotated in terms of the
three domains of GO. Figure 1.6 describes some mechanisms and behaviors
of p53 in terms of MF, BP and CC DAGs.

Together this configures a graph of terms for each gene included in the bigger
graph, which is the Gene Ontology.

1.3 From Biological to Statistical Signifi-
cance

To contribute to the biological interpretation from the point of view of
mathematical and statistical methods, bioinformatics has focused on two
major types of strategies based on the study of the Gene Ontology, among
others.

These approaches are the study of semantic similarity measures and enrich-
ment analyses. The following subsections describe both strategies.

1.3.1 Philosophy of Semantic Similarity Measures

In section 1.2.3 it was mentioned that a possible approach to navigate the
relationships between GO term is based on the graph theory. To be clear, in
order to assess the degree of relationship between two nodes in a graph, graph
theory allows us to use the concept of distance. Thus, applying this method
to biological ontologies, in particular to the GO, it is possible to measure
how far or close two specific terms are housed in the topological structure of
the GO. However, the concept of distance is difficult to digest when we are
talking about biological interpretation. For instance, in figure 1.6, the hexose
biosynthetic process is a hexose metabolic process, and it is a biosynthetic
process, too. So, if we look at the distance between these GO terms, notice
that the hexose biosynthetic process is close to the hexose metabolic process,
but the biosynthetic process is far from the hexose biosynthetic process. For
this reason, instead of using the distance measure between two terms, it is
more appropriate to use some sort of function that measures the similarity
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some microRNA miR-34a [113].
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between such terms. In fact, in statistics, similarity measures are well known
tools, and usually a similarity measure is defined as the inverse of a distance.
In other words, relationships between annotations in the context of biological
ontologies may be quantified by similarity measures, and such measures are
functions that quantify the similarity between pairs of semantic terms. That
is, the more similar two concepts are, the greater their similarity must be,
and the smaller the distance between.

1.3.1.1 Semantic Similarity Methods

In terms of biological interpretation being able to measure the relationship
between two terms it is important. However, in itself it does not go any
further. A researcher needs to be able to “read” what, how and why
a phenomenon in which he/she is interested occurs. The advantage of
ontologies in front of a simple database is that they allow building “phrases”
with a subject (i.e. terms), a verb (i.e. the type of relationship) and a
predicate (i.e. restrictions of the relationship). In linguistic analysis of a set
of terms with an ontological structure, a number of metrics to compute the
level of similarity of the syntactic content of such terms have been defined.
These metrics are called semantic similarity measures. The idea of distance
between the terms is based on the affinity of their meaning as opposed to
similarity that can be calculated regarding their syntactical representation
(i.e. their ontological structure). Therefore, it is not surprising that these
metrics have been widely accepted by statisticians and bioinformaticians
in the study of biological ontologies with the aim of organizing and sum-
marizing biological information. For example, in figure 1.6, there is no
direct relationship between the terms monosaccharide biosynthetic process
and hexose metabolic process, but both terms are a metabolic process, and
they are also a monosaccharide metabolic process. Note that a similarity
measure can tell us that a metabolic process has a lesser level of relationship
with both specialized terms than a monosaccharide metabolic process has.
However, it does not take into account the discourse of these terms and
relationships at the same time. That is, a metabolic process is a term
including many different concepts (e.g. primary metabolic process, organic
substance biosynthetic process,...), but leaving aside the distance between
this term and its offspring, syntactically it does not describe most of
them. For example, just by looking at the meaning of hexose metabolic
process it is quite clear that this concept describes a specialization of a
metabolic process, however, this does not happen with the monosaccharide
biosynthetic process. A semantic similarity has the capability to take into
account the discourse of annotations.
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Large lists of semantic similarity measures have been suggested and they have
been classified in many different ways ([72]). For example, a classification
based on cognitive models ([72]) proposes four major categories: structural
measures, feature-model measures, information theory measures, and hybrid
measures. But, probably, the most accepted organization is according to the
elements of the graph ([122]), where measures are classified into three cat-
egories: edge-based approach, node-based approach, and hybrid approach.
In fact, often, edge-based measures refer to structural measures, node-based
measures are unfolded into feature-model and information theory measures,
and hybrid measures refer to those measures which mix several criteria. Fig-
ure 1.7 shows a schema of the main approaches used for computing semantic
similarity measures based on these two classifications.

Edge-based Structural
| »L
Feature-Model
Semantic Similarity Measures I ~| Node-based ‘L
Information Theory
-i Hybrid-based ‘L Hybrid

Pesquita ef al. 2009 Harispe et al. 2013

Figure 1.7: Schema of two classifications of semantic similarity measures

The following subsections describe the main idea of each type of semantic
similarity measure according to its corresponding category.

1.3.1.2 The Edge-Based Approach

It consists of measures focused on relationships between concepts. These
measures try to find out how similar two concepts are, by counting the num-
ber of edges that exist in the graph path between the corresponding nodes.
For instance, a common procedure is to compute a distance by selecting ei-
ther the shortest-path [127] or the average of all paths, when there is more
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than one path linking the two nodes, and then converting this distance into
a similarity measure.

1.3.1.3 The Node-Based Approach

They are measures focused on the properties of the concepts being com-
pared. These measures examine how similar the concepts are by taking into
account properties that are attributable to the concepts themselves, their
ancestors and/or their descendants. For example, one of the most widely
used techniques is based on the Information Content (IC) [128]. This mea-
sure calculates the amount of information that a concept conveys, allowing
to interpret how informative and specific such a concept is. IC can be com-
puted in different ways. For instance, one of these methods is to count the
number of offspring that a particular concept has. So, when two concepts
in the ontology structure are being compared, the IC of common ancestors
are used to give a measure of semantic similarity. To do this, there are two
main approaches: (i) the Most Informative Common Ancestor (MICA) and
(ii) the Disjoint Common Ancestors (DCA) [122].

1.3.1.4 The Hybrid-Based Approach

This approach considers measures that take advantage of both edge-based
and node-based measures [72]. That is, hybrid-base measures take into ac-
count different types of properties like the depth of the concept in the ontol-
ogy, the number of children associated with the term, the IC, etc.

1.3.2 Philosophy of Enrichment Analysis

In section 1.1 it was explained that some efforts have been made to define
the Biological Significance concept and it has no clear relation with the
Statistical Significance. ~However, what is true is that the Biological
Significance encompasses different aspects of biological knowledge, as well as
the methods used to annotate a set of objects under study with information
stored in different sources of such a knowledge. For example, in section
1.2.1 it was seen that relevant aspects of biological knowledge are functional
annotations, that consist of assigning biological and biochemical functions to
elements under study, or involve regulations and interactions, or expression,
etc.; biological processes of living organisms made up of any number of
chemical reactions or other events that result in a transformation; and
cellular components referring to the unique, highly organized substances
of which cells and organisms are composed. With regard to the methods,
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possibly the most well-known and widely used approach to obtaining
Biological Significance in terms of Statistical Significance is a collection of
methods called Enrichment Analysis ([79]).

The principal basis behind enrichment analysis is that a function, a
process or a component is not normal in a study by itself. The reason
for this is that a set of features (i.e., genes, proteins or metabolites) that
co-operate together should have a higher probability of being selected by
the high-throughput technology that has been used in the study. That
is, these features should be potentially relevant or enriched. Therefore,
instead of looking at the biological meaning of a single gene, for example,
the objective of the enrichment analysis is to consider a relevant gene group-
based analysis, and so increase the likelihood of researchers identifying
the most appropriate biological information for the phenomena under study.

Notice that annotation spaces, such as GO, where biological information
knowledge is described as gene-to-annotation, are very suitable for enrich-
ment analysis based on high-throughput data.

1.3.2.1 Enrichment Analysis Tools

During the last decade there have been many methods developed with the
aim of studying biological meaning based on the enrichment analysis ([9]).
Different authors consider many related methods and applications that apply
the “same” idea ([47]) in different ways. However, what they have in common
is that most of the tools devoted to this task generally work in two systematic
steps. They consider a list of interesting genes from a population (aka
universe or reference), resulting from a high-throughput experiment. The
first step consists in mapping each gene of interest to all the annotation terms
that are associated with it, and the second step is quantifying the enrichment
of genes annotated in each category by comparing the proportion of genes
of interest that were assigned to such a category versus the proportion of
genes from the universe that were assigned to the same category (figure 1.8).

Tools for enrichment analysis have been classified into three major categories
([79]): Singular Enrichment Analysis (SEA) ([89], [45]), Modular (or con-
current) Enrichment Analysis (MEA) ([79], [80]), and Gene Set Enrichment
Analysis (GSEA) ([146]). The following subsections describe the principles
of each approach.
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Figure 1.8: Outline of steps that follow most of tools to perform an enrich-
ment analysis.

1.3.2.2 Singular Enrichment Analysis

SEA is the most widely used approach for enrichment analysis ([89], [45]).
Briefly, a selected gene list is used to query different annotation terms one by
one. That is, SEA consists in taking a selected list of interesting genes (e.g.
it considers a list of differentially expressed genes selected from a compar-
ison between experimental and control conditions by applying a statistical
criterion), and it then performs a statistical test to survey the enrichment of
each annotation term independently, iteratively, and one-by-one. After that,
terms whose p-values are lower than a threshold of significance are reported
in a table ordered by the enrichment p-value (i.e. the probability of the num-
ber of genes in the list that have fallen into a specific term compared with
random chance). Statistical methods commonly used are Hypergeometric
distribution, Fisher’s Exact Test, Chi-square, or Binomial probability.

1.3.2.3 Modular Enrichment Analysis

Annotation terms in a database are highly redundant, and also have strong
interrelationships regarding the same biological phenomenon. Thus, consid-
ering such relationships are closer to the biological reality. MEA [79] and [80]
inherits the idea of SEA, but adds network discovery methods by consider-
ing relationships between terms. That is, a selected gene list is used to test
multiple terms at once. The advantage of this approach is that relationships
between each pair of terms may contain unique biological meaning for a given
experiment that is not held by single terms. The idea behind this approach is
to re-organize complex co-occurrences retrieved from multiple heterogeneous
annotations (e.g. GO terms, protein domains and KEGG pathways) into
gene classes with a measure of agreement, such as Kappa statistic, combined
with the computation of SEA enrichment p-values.
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1.3.2.4 Gene Set Enrichment Analysis

GSEA ([146]) is completely different from SEA and MEA. It takes into
account the magnitude of measure differences between conditions for each
gene resulting from the high-throughput experiment. It asks the question of
whether the measures of the gene set of interest show significant differences
between conditions. GSEA relies on more than 10000 pre-defined gene sets
(currently, when writing this thesis, there are 10295 gene sets) collected from
different databases (such as GO or KEGG databases) and computational
studies, which are stored in a database called Molecular Signatures Database
(MSigDB) ([146]). The gene sets in MSigDB are divided into the following
seven major collections.

e cl: positional gene sets for each human chromosome and cytogenetic

band.

e c2: curated gene sets from online pathway databases, publications in
PubMed, and knowledge of domain experts.

e c3: motif gene sets based on conserved cis-regulatory motifs from a
comparative analysis of the human, mouse, rat, and dog genomes.

e c/: computational gene sets defined by mining large collections of
cancer-oriented microarray data.

e ¢5: GO gene sets consist of genes annotated by the same GO terms.

e c06: oncogenic signatures defined directly from microarray gene expres-
sion data from cancer gene perturbations.

e c7: immunologic signatures defined directly from microarray gene ex-
pression data from immunologic studies.

This organization allows us to restrict the search to specific groups of genes
that have traits associated with the interest pursued by the researchers.

The basic idea of the statistical method that is behind GSEA consists in test-
ing for enrichment of some gene set among genes from the high-throughput
experiment. Specifically, GSEA ranks the whole list of genes according to
the correlation of the profiling measures generated in the high-throughput
experiment with the phenotype. This is performed in order to calculate the
fraction of genes in a gene set weighted by their correlation (“hits”), and the
fraction of genes not present in the same gene set (“misses”) up to a given
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position in the whole list of genes. So, these fractions are used to calculate
the enrichment score of the gene set ES(S), which is the maximum deviation
from zero. Usually, to compute the ES, the Kolmogorov-Smirnov statistic
is applied, but alternative parametric statistical approaches such as z-score,
t-test, or permutation analysis have been purposed.
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Chapter 2

Hypothesis, Objectives and
Outline of the Thesis

2.1 Hypotheses

Based on high-throughput data generated in omic experiments, different ap-
proaches to studying biological information associated with these data, and
stored in heterogeneous annotation databases of bioinformatic sources, have
been proposed. One of these types of sources is biological ontologies, and
probably the most widely accepted and used is the Gene Ontology (GO). In
order to deal with the annotation terms of the GO, two main strategies have
been adopted. On the one hand, semantic similarity measures that allow the
summarization and comparison of such terms and, on the other hand, enrich-
ment analyses that allow the extraction and attribution of biological meaning
to a large list of features resulting from a particular omic experiment. How-
ever, both strategies have some weaknesses and fundamental issues not yet
studied. Specifically:

e Regarding the semantic similarities, large lists of measures have been
proposed ([128], [98], [84], [82]), and they have been organized and
classified in different ways ([122], [72]). However, current state-of-the-
art of semantic similarity measures:

1. Has no mathematical proofs to demonstrate that these types of
similarities are indeed similarity measures, understanding these as
reverse complementary of metric distances.

2. In addition, there is also a weak linkage between semantic similar-
ities from the node-based approach and the edge-based approach,
when they are applied to the specific case of the Gene Ontology.

e Concerning GO tools for enrichment analysis, many different methods
and software have also been proposed ([47]). Some efforts to classify
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these tools based on the type of method applied for the enrichment of
GO terms have been performed ([79]). However,

1. When a researcher is looking for software to perform an enrich-
ment analysis, it is highly possible that it is lost, or at least that
he/she does not find the most suitable tool for his/her needs, due
to the large number of existing GO tools, even having classified
the GO tools based on the type of enrichment that they carry out.

2. The speed of development of new methods and tools for the en-
richment analysis, as well as the improvement of existing applica-
tions, by the scientific community, is really considerable. In this
regard, neither has any comprehensive monitoring of tools been
conducted to see how their capabilities evolve, nor has a general
strategy been organized for the development of new applications.

In order to shed light on these issues, the main and specific objectives that
this thesis will address are presented in the following sections.

2.2 Objectives

The context of this thesis is focused on the methods and tools that are
used to attribute biological meaning based on data generated with high-
throughput technologies in omic experiments, with special emphasis on lists
of differentially expressed genes generated with microarrays in the field of
transcriptomics and the discourse of the Gene Ontology.

2.2.1 Main Objectives

This thesis has two main objectives:

1. The study of two types of semantic similarity measures for exploring
GO categories.

2. The classification and study of GO Tools for traditional enrichment
analysis.

2.2.2 Specific Objectives

In order to accomplish the main objectives, two major lists of specific objec-
tives are considered.



47 CHAPTER 2. HYPOTHESIS, OBJECTIVES AND OUTLINE OF THE THESIS

2.2.2.1 Specific Objectives Associated with the Study of Semantic
Similarity Measures

The specific objectives associated with the study of semantic similarity mea-
sures are:

1. Proofs that both approaches are related to the concept of metric dis-
tance.

2. Development of an R package for computing semantic similarity mea-
sures between terms of any ontology and compare semantic similarity
profiles.

2.2.2.2 Specific Objectives Associated with the Classification and
Study of GO Tools for Enrichment Analysis

The specific objectives associated with the study of GO Tools for traditional
enrichment analysis are:

1. Definition of a list of functionalities that allows us to classify GO tools
for enrichment analysis.

2. Classification of existing GO tools for enrichment analysis based on the
list of functionalities and according to their capabilities.

3. Development of a web-based application intended to select and compare
the GO tools that are best suited for the needs of a user.

4. Study of the GO tools evolution in order to characterize the existence
of representative models.

5. Construction of an ontology for organizing a vocabulary devoted to
developing new GO tools.

2.3 Outline

The thesis consists of eight chapters divided into four parts. After this intro-
duction and problem formulation, Part 2 surveys major lines of research on
the study of two types of measures regarding the semantic similarity approach
for exploring the relationship between pairs of GO categories. This part is
organized into three chapters. The first chapter introduces and describes the
materials and methods used. The second chapter presents the results. The
third chapter discusses the contributions. Part 3 deals with the classification
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and study of Gene Ontology Tools for traditional enrichment analysis. In
this part, the research is also organized into three chapters, similarly to the
second part. Finally, Part 4 presents the conclusions. Additionally, in the
appendixes, published results, and some extra information used in carrying
out the research are presented. Figure 2.1 shows the organization of the
different parts of the thesis and the relationship between chapters.

Part I: Introduction and Objectives

Introduction

Objectives
Part Il: Semantic Similarity Measures Part lll: Study of GO tool for EA
Motivation }-— H Motivation

s .

Appendixes
Material Material
and Methods Publications and Methods
and
R Vignetie \

Results Results

\
Discussion Discussion
%J ﬁij

Part IV: Conclusions

Conclusions

Figure 2.1: Organization of the different parts of the thesis and the relation-
ship between chapters.
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Part 11

Study of Two Semantic
Similarity Measures for
Exploring GO Categories
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The three cornerstones of experimental science are observation, classification
and comparison. A very good example of this philosophy is the study of
molecular biology. Usually, biological knowledge is stored in databases,
whose records consist of a set of fields describing the experiment, the
methodologies and the results, often written in natural language. When
researchers discover something new, they try to infer new biological knowl-
edge according to the “degree of similarity” between the new observed
entity and the previous classified knowledge stored in an specific database.
However, looking for “something similar” is a concept that is sometimes
hardly definable. For instance, when comparing a gene sequence with
genome sequences stored in a database, applying an alignment algorithm is
a relatively easy thing to do, while comparing the annotations describing
biological processes or functional characteristics is not so easy to perform.
Moreover, when “looking for something similar” is well established, searching
for matches in a database might not be viable in computing time because of
the huge quantity of information stored.

The advent of the omics era has had a deep impact on molecular biology
knowledge. Instead of dealing with experiments focused on a single feature
level, omic experiments have allowed us to deal with a large-scale features
level. The completion of several genomes has generated enormous quantities
of sequence data, and with the continuous development of high-throughput
technologies, the amount of functional data has increased dramatically.
Thus, it has become crucial to develop strategies that help researchers to
annotate and classify all the observed data, and then permit comparison
with new discoveries afterwards. Different approaches such as databases with
cross-linked annotations, schemes, or taxonomies have been proposed. But,
probably the most widely used way to classify entities and annotate concepts
has been ontologies. Three significant examples of these methodologies to
organize and store large quantities of data are: Sequence Ontology (SO),
which provides a structured controlled vocabulary for sequence annotation
[50], PRotein Ontology (PRO), which is designed to describe the relation-
ships of proteins [114], and Gene Ontology (GO), whose objective is the
standardization of the representation of gene and gene product attributes
across species and databases [148].

Informally, an ontology is a way of annotating concepts in a certain domain
that allows comparison between entities through their associated concepts,
and which would not otherwise be comparable. For instance, very often
researchers are interested in comparing the pathways associated with two
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lists of genes, whose expression profiles have shown significant differences.
If the associated gene products are annotated in the GO, then these two
lists of genes might be compared through the terms in which the associated
gene products were annotated. Many methods for performing these types
of analyses have been proposed. A usual way of comparing two concepts
within an ontology is by looking at common terms, but a more sophisticated
way to proceed relies on similarity measures [15].

This part of the thesis is devoted to answer the first main objective in 2.2.1.
That is, to studying a couple of measures about the semantic similarity ap-
proach for exploring GO categories. To carry out such a study, the specific
objectives stated in section 2.2.2.1, are answered one by one. Thus, in chap-
ter 3 material and methods associated with specific objectives are introduced
or described, in chapter 4 results associated with specific objectives are pre-
sented, and finally, in chapter 5 results are discussed.



Chapter 3

Material and Methods

3.1 Main Concepts of Graph Theory

The Gene Ontology Consortium states in its web that “GO terms are
organized in structures called Directed Acyclic Graphs (or DAGs), which
differ from hierarchies in that a child, or a more specialized term, can have
many parents, or less specialized terms” ([148]). In fact, very often the Gene
Ontology is defined as a DAG.

Given a list of genes, their associated GO terms form a subgroup of the
ontology which is called the induced subgraph. That is, given one or
more gene products, it is possible to recover their associated terms and
their ancestors in the biological processes, molecular functions or cellular
components (see section 1.2.1). These ancestors constitute an unstructured
list of GO terms whose associated annotations might be useful for certain
purposes. However, this list of GO terms does not contain any information
about the relation between the GO terms associated with the query genes
list. This kind of information is contained in the subgraph induced by the
genes. So, it is hardly surprising that an alternative way to perform “GO
Analysis” is to consider the induced subgraphs as the starting point of the
analysis.

There are different approaches that use the graph theory ([43], [17]) as
the basis for the ontological analysis. For instance, in the case of the
GO, a theoretical approach that has been widely explored is the notion of
defining distances between two genes in terms of the similarity of their GO
annotations. In this sense, we will see in section 3.5.3, there are different
strategies that have been proposed for defining distances, or similarities
between genes based on GO annotations. Two different approaches have
been explored by Lord et al. ([98]) and Joslyn et al. ([85]). The former
makes use of the Information Content in the GO as the basis for assigning
similarity between terms. And the latter adopt a different strategy that

23



3.1. MAIN CONCEPTS OF GRAPH THEORY 54

relies on the inherent structure of a general graph to define distances,
pseudo-distances indeed, between the GO terms.

In any case, if one wishes to either work with semantic similarities or simply
be able to compute any kinds of distances between nodes of a graph, it is
necessary to establish the main concepts of the graph theory. Therefore, in
the following subsections, some graph theory concepts are introduced that
will be used later to better understand the structure of the Gene Ontology.

3.1.1 Basic Graph Concepts

Many problems of daily life can be represented by a diagram consisting of a
set of concepts joined by certain relations. A mathematical abstraction to
solve this kind of situation is the idea behind a graph.

Definition 3.1. A graph is a pair G = (V,E), where V is a set called
vertex set whose elements are called vertices (or nodes or points), and
E C{eij = (vi,v;) : v;,v; € V'} is a binary relation on 'V where a pair e;; is
called edge (or arcs or lines), i,j € I CN.

The most important advantage of working with graphs is that it makes it
possible to have a visual representation of the problem. For each vertex v € V
a point is usually drawn in the plane, and for any two vertices v;,v; € V' a
line joining them is drawn. The use of this abstraction is a good way to
translate the real life problem into a mathematical form.

Notation 3.1. The number of nodes and edges in graph G = (V, E) are
denoted by v(G) and e(G), respectively.

There is no a unique way to draw a graph. The main idea is to realize which
pairs of vertices give an edge and which of them do not.

Definition 3.2. Let v;,vf € V be two nodes with i € I, k € N. Let e, efj €
E be edges such that e;; = (v;,vj) and efj = (vf,vf), i,j €I, k € N. Then,

1. An edge e;; is a self-loop if v; = v;.
1,2 el 2 1_ 2
2. Edges e;;, e;; are parallel edges if v; = v; and v; = vj.

3. An edge e;; is incident on vertices v; and v;.

4. Two vertices v;,v; € V are adjacent (or neighbours) if Je;; € E.
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Definition 3.3. A graph is called stimple graph if it contains neither self-
loops nor parallel edges. If a graph contains self-loops or parallel edges it is
called multigraph.

Examples B.1 and B.2) in appendix B show the representation of a graph
and a multigraph respectively.

From now on, simple graphs are assumed, unless the opposite is indicated.

3.1.2 Subgraphs

Definition 3.4. A graph S = (Vs, Eg) is a subgraph from G = (V, E)
if Vo CV and Eg C E. Dually, if S is a subgraph from G, then G is a
supergraph for S.

In other words, a subgraph from G induced by Vg is a graph S = (Vg, Eg)
such that Eg contains all the edges from E that exist between nodes of V.

Example B.3 in appendix B shows the representation of a subgraph.

3.1.3 Directed Graphs

Despite the many problems that can be solved with graph theory approaches,
as mentioned in section 3.1, sometimes this cannot be done if no restrictions
are introduced. For instance, let G be a graph whose edges E link two specific
vertices. But, imagine that the two vertices must only be connected in one
direction. That is, the vertices have to only be connected when “travelling”
from the source vertex (origin) to the target vertex (terminus). So, a notion
of “orientation” is required.

Definition 3.5. A directed graph D (or digraph) is an ordered pair (V, E)
of disjoint sets of vertices and edges, and an incidence function v that assigns
for each edge an ordered pair of vertices,

v: E — VXV

e — Y(e) = (v;,v;). (3.1)

We say that edge e joins from v; to v;, where v; is the initial node (or
source), and v; is the terminal node (or target).
Edges in a digraph are also called arcs.
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A graph whose edges connect nodes in both ways is called an undirected
graph (aka symmetric graph). Digraphs are usually drawn with arrows to
indicate the arc directions.

The incidence function 1 must be taken into account when working with
digraphs, because it plays a central role. That is, given a subgraph .S induced
by Vs from a digraph D, the incidence function g is the restriction of ¢ for
the digraph D to Eg.

Definition 3.6. A digraph D is an orientation of a graph G if

1. The sets of vertices and arcs from D, and the sets of vertices and edges
from G are the same.

2. Given an incidence function 1, then V(e;j) = (v;,v;) = ;; for every
edge e;; = (vi,v;).

Thus, given a graph G, an oriented graph D can be obtained by joining each
edge from one of the ends to the other. Conversely, for each digraph D, a
graph G can be obtained by assigning for every arc from D an edge from G
with the same ends. In that case, G will be the underlying graph of D.

Example B.4 in appendix B shows the representation of a digraph.

3.1.4 Paths and Connection
Definition 3.7. A path is a graph P = (Vp, Ep) such that

Vp = {UO, U1y -+ 7Uk} , Ep= {601, €12, -, e(k—l)lc}
where, v; # v;, Vi # j.

However, very often, there is a misuse of the path concept. Given a graph
G, the path between two nodes is usually understood as a natural sequence
of the nodes that there are between them. Formally,

Definition 3.8. Let G = (V, E) be a graph. A path P from vy to v is a
sequence of nodes P = (vg,v1,...,vx) in G such that the target node of each
edge is the source node of the next edge in the sequence where vy is the origin
node, vy is the terminus (both commonly called the ends of the path), and
V1, Va, ..., Vx_1 are the internal nodes.

Definition 3.9. Let G = (V, E) be a graph. If there is path P with origin vy
and terminus v, then we say v, 18 reachable from vy.
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So, the first way to know how far apart two nodes are is to count the number
of edges that exist between them.

Definition 3.10. Let P be a path from vy to vy in a graph G = (V, E). The
length is the number k € NU {0} of edges in the path P and is denoted by
P*.

Example B.5 in appendix B illustrates the ideas of path and length in a
digraph.

Definition 3.11. Let G = (V, E) be a graph. Two vertices v;,v; € G are
connected if there is a path P in G that joins them.

The connection could be interpreted as an equivalence relation of a set of
nodes V' ([51]). This suggests that there is a partition V;,V5,...,V, € V
where Vi, # 0, Vk = 1,2, ..., p such that v; and v; are connected < v;,v; € V,.

3.1.5 DAG and Rooted DAG

Definition 3.12. Let P = (vg,v1,...,vx) be a path in a graph G = (V, E).
Then, we define

1. a cycle as a path such that vy = vy,
2. an acyclic graph as a graph with no cycles, and
3. a directed acyclic graph (DAG) as a digraph with no cycles.

Example B.6 in appendix B shows the representation of a DAG.

There is a kind of DAG that contains an special node which is the “father”
of the remaining nodes in the DAG, however, it is an “orphan” node. Such
a vertex is known as the root (aka top) node.

Definition 3.13. We say rooted DAG o DAG D = (V, E) such that it has
a root node.

3.1.6 Matrices and Graphs

Visual representations of graphs are powerful tools to quickly observe how
a set of nodes are related. However, from an analytical point of view
and in order to both explore and quantify such relationships it is much
better to work with alternative mathematical objects such as matrices.
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Thus, graph structures are usually “converted” into associated matrix forms.

In this subsection basic matrix concepts associated with graphs are intro-
duced.

Definition 3.14. Let G = (V, E) be a graph. We define the adjacency
matriz of G as a matric Ag = (Qij)nxn Such that a;; € N U {0} is the
number of edges between v; and v;, and n = v (V).

That is, an adjacency matrix is a matrix whose elements are the number
of edges between each pair of nodes. Notice that a;; = 0 when there is no
connection between nodes v; and v;.

If G is a simple graph, then diag (Ag) is a null vector because such a
graph has no self-loops, and each a;; only takes value 1 if (v;,v;) € E or 0
otherwise, since it has no parallel edges.

In a digraphs, as a general rule the adjacency matrix is read from rows
(origin nodes) to columns (terminus nodes) to know if a vertex is reachable
from another one.

Following on with that mentioned at the end of the subsection 3.1.1,
adjacency matrices of simple graphs are the focus of this thesis, unless the
opposite is indicated.

Usually, the number of entries with a 0 is substantially higher than entries
with 1. In these cases, we say that a matrix (or a graph) is sparse when

(@) < % and is dense otherwise.

Definition 3.15. Let G = (V, E) be a multigraph where V- = (vy,vq, ..., 0y)
and E = (e1,ea,...,6n). The incidence matrixz of G is a matriz Bg €
Mism ({0,1,2}) where b;j is the number of times that v; and e; are incident.

Since the present chapter is focused on DAGs, it is necessary to redefine this
matrix.

Definition 3.16. Let D = (V,E) be a DAG where V. = (v1,vq,...,0y)
and E = (ey,es,...,¢ey). The incidence matrixz of D is a matric Bp =
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(bij)nxm where

1 if v; 1s the source node of e; € B
bij = ¢ —1 if v; is the target node of e; € E (3.2)
0 otherwise.

Definition 3.17. Let D = (V, E) be a DAG where V = (vy,va,...,v,). The
accesstibility matrix associated with a digraph D is a matrizc Rp = (74 )nxn
such that

ry — {1 if v; 1s accessible from v; (3.3)

0 otherwise,

This matrix can be straightforward computed by
n—1
R=(p4* (34)
k=0

where AY = Id and the truncated addition operator @ is such that
a®b:=min{l,a+ b}.

Examples B.7, B.8 and B.9 in appendix B illustrate the adjacency matrix,
the incidence matrix, and the accessibility matrix of a DAG, respectively.

3.1.7 Order and Degrees

After introducing the general structures of graphs, the next step required
is to establish some methods for “describing” what a graph is like. In
notation 3.1 two measures were introduced devoted to quantifying how
many nodes v(G) and edges €(G) there are in a graph. However, in
order to answer this, more sophisticated questions are required that go
beyond these numbers and are associated with similarities. For instance,
we would like to know how many edges are coming out from one specific
node, or what kind of relations there are between nodes and edges in a graph.

In this subsection, some concepts to characterize a graph are introduced.
Thus, a formalization of the number of nodes in a graph is the first concept
required.

Definition 3.18. Let G = (V, E) be a graph. Then, we define

1. the order of the graph G as the number of vertices in G, |G| = v(G),
and
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2. the degree (or valency) of a vertex v € V as the number of edges
incident to it, d(v) = |E(v)|.

Example B.10 in appendix B illustrates the ideas of the order of a graph and
the degree of a vertex.

Definition 3.19. Let G = (V, E) be a graph, then
1. Minimum degree of G is

0(G) := min(v;). (3.5)

v, EV

2. Maximum degree of G 1is

A(G) := max(v;). (3.6)

v; EV

3. Average degree of G as
d(G) = T > d(vy). (3.7)

Thus, based on these concepts, the following inequality is clearly established,

5(G) < d(G) < A(G) (3.8)

The average degree might be understood as a global measure about how
many edges are incident to each node in a graph.

Definition 3.20. Let D = (V, E) be a digraph, and let v € V' be a vertex.
Then, we define

1. the in-degree d—(v) of a vertex v as the number of arcs whose terminal
node is v, and

2. the out-degree d* (v) of a vertex v as the number of arcs whose initial
node s v.

Example B.11 in appendix B illustrates the different degree measures of a
graph.
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3.2 The GO graph

The Gene Ontology is a rooted DAG. Actually, it is structured as three
independent DAGs: Molecular Functions (MF), Biological Processes (BP)
and Cellular Components (CC). Whatever the case, it is clear that the
relationship between the terms of the GO may be studied according to the
graph theory.

In the following subsections, specific concepts based on the graph theory for
dealing with the GO DAG and performing “GO-based analyses” are intro-
duced.

3.2.1 Basic Concepts of the GO graph

The most commonly used concepts, when working with the GO graph, are:

e GO terms (or terms: nodes in the GO graph.
e Parents: initial nodes associated with in-degrees of a GO term.

e Descendants (or children): terminal nodes associated with out-
degrees of a GO term.

e Ancestors: all nodes belonging to the paths that exist between a
specific GO term and the root node.

e Offspring: all nodes belonging to the paths between a specific GO
term and all terminal nodes at the end of each of these paths, whose
in-degrees are one and out-degrees are zero.

As mentioned in section 1.2.1, currently the GO DAG contains 40.000 GO
terms approximately. Figure 3.1 shows a visualization of the complex archi-
tecture of the GO graph.

3.2.2 The Study of the GO based on the Graph Theory

The goal of Gene Ontology-based analysis is to facilitate an interpretation
by means of the annotations that gene products may have in its database.
However, in contrast with the agreement found in different existing types
of omic experiments, there is no well-defined classification of the (types of)
problems where GO analysis might help to answer biological questions. In the
literature, some typical questions about tools and methods are found ([4]).
Some of them are:
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Figure 3.1: Visualization of the GO DAG. Image taken from the Cytoscape.


http://www.cytoscape.org/screenshots.html
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e What is the biological meaning of a gene list? That is, what Molecular
Functions, Biological Processes or Cellular Components are these genes
associated with?

e [s this set of “meanings” coherent with any biological interpretation?

e In the case of the comparison of several conditions, how should these
different conditions be related based on the meaning attributed to each
of them independently?

e Does a given tool enable the hierarchical structure of GO to be ex-
ploited?

e Does the analysis of a given tool enable simultaneous functional profil-
ing for all three GO ontologies?

To answer this list of questions there is no unique approach. The strategies
based on the graph theory for answering them are strongly dependent on
the way used to represent or synthesize the mapping between the gene list
and the Gene Ontology.

Given a list of genes, they are associated with certain GO terms in the GO
graph. Each gene product may be associated with none, one or more than
one GO term. This fact determines an induced subgraph (see section 3.1.2).
That is, once the GO terms that annotate the list of genes are selected,
we can retrieve all ancestors and relations between them automatically.
In other words, we can retrieve an specific subgraph that is the so called
induced graph.

Induced graphs may be very complex structures, especially when the list of
genes producing such subgraphs is also large (i.e. hundreds or thousands).
Therefore, it is important to provide a good mathematical formalization for
correctly managing these structures.

3.3 Carey’s Framework

Carey, who is one of the developers of the Bioconductor Project ([62]),
introduced a simple formalism for working with ontologies for statistical
purposes ([23]). He showed how this formalism can be used for different
applications. One of them is precisely the semantic similarity computation.
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The following section is devoted to both introducing the main ideas of Carey’s
framework, and mathematically formalizing usage of the graph theory con-
cepts that have been introduced in previous sections in order to “give bio-
logical meaning to a gene list” based on the GO.

3.3.1 Refinement of Relationships

The definition of ontology adopted by Carey ([23]) is similar to the one
informally introduced at the beginning of this part of the thesis (see section
IT). An ontology provides a set of vocabulary terms covering a conceptual
domain. These terms must have a definition and be placed within a structure
of relationships. In order to describe relationships between terms the concept
of refinement is presented.

Definition 3.21. Let T = {t1,ta,...,t,} be a set of n terms in an ontology.
We define a relationship of 1- refinement between two terms t; and t;
as

Rt t;) = 1 t; refines t; and A ty, € T such that R(ty,t;), R(tj,ty)
710 otherwise.

(3.9)

In words, t; is a one-step refinement of ¢; if there is no term ¢, such that ¢
is a refinement of ¢; and ¢; is a refinement of .

Carey takes the relationship of refinement among terms to be primitive: for
all t; # t; it is decidable whether term ¢; refines term ¢; or not. But, in
fact, 1-term refinements are an alternative way to describe the relationships
between nodes in a graph. That is, in the language of nodes and edges,
definition 3.21 says that given a graph having nodes t; and ¢;, there is a
single directed edge leaving ¢; and reaching ¢;. Note that it is possible for
one term to be a l-step refinement of several other terms, as well as it
being possible for one node in a graph to be joined by several edges to sev-
eral distinct nodes. In other words, each term may have one or more parents.

In subsection 3.2, we have seen that the GO is a rooted DAG. That is, the
GO is an ontology structured as a hierarchical DAG, whose nodes are linked
by arcs with an special meaning. In terms of Carey’s language, these nodes

are refinements linked by relationships. In the GO there are two main types
of relationships ([128]) and Lord et al. ([98])

e is-a, that establishes a relationship between a parent and a child, and
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e part-of, meaning that a relationship exists between a part and the
whole.

Note that in this sense the root term is a singular node, that is, it is refined
by all other terms in the rooted DAG, but it does not refine any other term.

3.3.1.1 Refinement Matrix

In Carey’s framework the adjacency matrix is reinterpreted as follows,

Definition 3.22. Let T = {t1,ta,...,t,} be a set of n terms in an ontology.
The matriz I' = (T'y;), .. satisfying

R(tit;) 0>
rij:{ (b t) > (3.10)

0 otherwise,

is called the (one-step) refinement matriz.

Example B.12 in appendix B shows a representation of a rooted DAG with
12 terms and shows its associated refinement matrix.

The refinement matrix is not only important because it represents the graph
itself, but also because many relevant measures are derived and computed
from it. For instance, k-step refinements represent terms that can be accessed
from other terms in k steps, and they are encoded in terms of powers of this
matrix. For example, I'> encodes terms that can be accessed from other
terms in two steps, that is, terms separated by two edges.

Definition 3.23. Let T = {t1,ta,...,t,} be a set of n terms in an ontology.
Then,

1. the depth of an ontology is the zero-based length of the longest path
from the most refined term to the root, and it can be computed as the
number

do = mink (3.11)

such that the matriz T** = 0!, and

!Carey defines the depth of an ontology as

k.

dg := rrgnmaxfzj.

,J
This definition is confusing and we have not been able to prove the equivalence with the
one we have given above, which seems to agree better with the intuitive notion of depth
in an ontology.
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2. the depth of a term t; in an ontology is the number
do(t;) = mink (3.12)
such that the matriz T = 0.

In section 3.1.3 a digraph was presented as a type of graph resulting from
the application of an incidence function to the underlying undirected graph,
where arcs e;j join two nodes ¢; and ¢; from the first to the second. These
arcs can be reinterpreted as a 1-step refinements. Thus, it is not difficult to
see that columns in the refinement matrix are the parents and rows are the
descendants. Usually, the underlying meaning in an ontology is that columns
are the source nodes and rows are the target nodes. But, in Carey’s language,
we read that descendants (rows) are refinements of parents (columns). Note
that this way of reading a refinement matrix might seem a contradiction
in light of that explained in previous sections. For instance, following this
criterion the arcs in figure B.6 are point backwards. However, descendants are
1-step refinements. The orientation concept takes on significant importance
when the directions of edges are drawn in a digraph, and even more so when
dealing with the meaning of the terms of an ontology like the GO.

3.3.1.2 Accessibility Matrix

To derive other measures from I' the use of the truncated addition operator
is required in order to define the truncated summation?.

The accessibility matriz associated with a graph depicting an ontology is a
square matrix, whose elements are equal to one if and only if a term path
exists following the arcs from term ¢; to term ¢;, and elements are otherwise
equal to zero (see section 3.1.6). This concept can be redefined in terms of
Carey’s notation as the matrix A = (a;;),, X n that can be obtained from the
refinement matrix I' by using the truncated summation as

A=Pr* (3.13)

where dj is the depth of the ontology.

2This operation allows the formal construction of many interesting matrices. However,
most of them can be described without the use of this operation so that these formalisms
can be omitted without loss of understanding. Instead, the definition 3.4 can always be
kept in mind as an alternative ([25]).
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Example B.13 in appendix B shows the accessibility matrix associated with
a DAG described in the example B.12.

3.3.2 Mapping Genes to GO

The main interest of the formalism elaborated by Carey is probably in
the notion of Object-Ontology Complex. For instance, as we mentioned in
previous sections, one of the challenges of biomedical researchers consists in
analyzing a list of genes using the associated gene products annotated in
the GO. These types of analyses can be performed thanks to the previously
established relation between the gene products and the relationships between
terms in each of the three ontologies of the GO. This fact makes this relation
explicit, to perform relevant calculations, and the analysis relies on such a
relation. Globally speaking, given a list of objects that are described by an
ontology, we assume for simplicity purposes that each object is mapped to
at least one term, with the stipulation that the mapping is made to the
most refined term in each case.

Example B.14 in appendix B shows the representation of an OOC with 10
objects annotated in an ontology with 12 terms.

3.3.2.1 Mapping Matrix

Due to the fact that a graph can be described by an adjacency matrix, or
in Carey’s framework by a 1-step refinement matrix, the mapping between
objects and ontology can be written in its matrix form too. That is, a matrix
encoding the object-term mapping where the i-th row object maps to the j-th
column term can be constructed. Formally,

Definition 3.24. Let T = {t1,ta,...,t,} be a set of n terms in an ontology,
and Q@ = (w1, wa, . ..,wy) be a set of object identifiers. A mapping matrix
is a matric M = (m;j)pxn such that

(3.14)

_J 1 object i maps to term j
Y10 otherwise.

Now the main concept of Carey’s philosophy can be defined.
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3.3.2.2 Object-Ontology Complexes

Definition 3.25. An Object-Ontology Complex is the ordered quadruple
(T,T,Q,M) where T is a vocabulary, I' is a refinement matriz encoding the
ontology based on T, €1 is a set of object identifiers, and M is a matric
mapping from Q to T .

Thus, in the case of the Gene Ontology, the vocabulary 7 is one of the three
ontologies (MF, BP or CC), T" is the refinement matrix encoding the GO
DAG,  is a query list of genes, and M is the matrix mapping genes to GO
terms.

Example B.15 in appendix B shows the mapping matrix associated with the

00C B.7.

Using this notation and the truncated summation operation together, it is
possible to define and compute many different characterizing methods and
measures associated with ontologies. One of these characterizing methods is
the coverage matriz.

3.3.2.3 Coverage Matrix

Definition 3.26. Let (7,I',Q, M) be an Object-Ontology Complex. We say
that a term t; € T covers an object w; € (2 if that term or any refinement
of it is associated with the object via mapping M.

Note that for an object-term mapping matrix M and a refinement matrix I,
the boolean matriz product® C; = MI encodes the 1-step refinements of the
mapping. That is, the (i, j)-element of C; is 1 if term j is a 1-step refinement
of the term to which object ¢ is mapped by M, and 0 otherwise.

Definition 3.27. Let (T,I',Q2, M) be an Object-Ontology Complex, and let
do be the depth of the ontology represented by I'. We define the coverage

matriz as
do+1

C = P MI* = (cij)pxn (3.15)
k=1

3 Given two matrices such that A € M,,5,(0,1) and B € My« (0,1), we define the
boolean matriz product is defined as

MEN = (\n/ (aik A bkj)> € Myuxm(0,1).
k=1

See M. Castellet & I. Llerena ([25]).
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where

(3.16)

Cij

B {1 object i is covered by term j

0 otherwise.

Example B.16 in appendix B shows the coverage matrix associated with the
0O0C B.7.

3.4 Main concepts of POSET theory

In previous sections a mathematical formalization was given based on the
graph theory for the analysis of ontologies, and specially focused on the
Directed Acyclic Graph of the GO introduced. A totally different approach
adopted by Joslyn et al. ([85], [84], [83]) relies on the algebraic point of
view of the order theory. This is a field of mathematics that is focused
on different types of binary relations capturing the intuitive notion of a
mathematical ordering ([135], [39], and [51]).

The main concept of Joslyn’s approach is the Partially Ordered Set
(POSET). This is a mathematical structure P = (P, <) where P is a finite
set and <C P? is a reflexive, antisymmetric, transitive binary relation P.
Indeed POSETs are general combinatorial structures that are basically
equivalent to Direct Acyclic Graphs. In spite of using different notations,
both POSET theory and graph theory deal with the same objects. Figure
3.2 shows a classification of some related types of combinatorial objects,
where POSETSs, DAGs, or Trees are particular cases.

Directed graphs are much more specific structures than the trees. Every
partially ordered set is a digraph without cycles. Semilattices, complete
semilattices and trees are more specific posets. Notice that while nodes
in lattices can have multiple parents, and of course in graphs with higher
structural complexity, nodes in trees can not have multiple parents.

In the following subsections some definitions and concepts about lattices and
order theory to deal with POSETSs are introduced.

3.4.1 Partially Ordered Sets Definition

Definition 3.28. A finite partially ordered set(or POSET) is a mathe-
matical structure P = (P, <) where P is a finite set and <C P? is a binary
relation called partial order (or order) on P such that the relation is
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1. Reflexive: ¥Yp; € P, p; < p;.
2. Anti-symmetric: Vp;,p; € P, (pi < p;) A (pi > pj) = pi = p;.
8. Transitive: Vp;,pj,pr € P, (pi < pj) A (pj < pe) = pi < 5.

It is proved that every poset is a digraph with no cycles, and every tree or
lattice is a poset. Moreover, each DAG determines a POSET based on the
partial order on its nodes. p; < p; exactly when there is a path from p;
to p; in the DAG. However, notice that many different DAGs may give rise
to this same reachability relation. For instance, a DAG with two edges e
and ey; has the same reachability as a graph with three edges e;;, ex; and
eij. Therefore, such a determination is not unique unless removing transitive
nodes is considered.

3.4.2 Chains and Anti-chains
Definition 3.29. Let p;,p; € P be two nodes in a poset. We say

1. p; and p; are comparable and we write p; ~ p; < p; < p; or p; > p;.
2. A chain C C P is a collection of comparable nodes.

3. The height H(P) is the size of the largest chain.

4. If C is a finite chain in P its length is the number [(C) := |C| — 1.

The height of a poset is sometimes called length. “Opposite” concepts can
be defined, similarly.

Definition 3.30. Let p;,p; € P be two nodes in a poset. We say
1. p; and p; are non-comparable if p; ~ p;.
2. An anti-chain is a collection of non-comparable nodes.

3. The width W(P) is the size of the largest anti-chain.

3.4.3 Ideal, Filter and Hourglass
Definition 3.31. Let p; € P be any node in a poset. Then, we say that

1. The ideal (or down-set) of p; is

Lpi={p; € P:p; <pi}. (3.17)
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2. The filter (or up-set) of p; is
T pi:={p; € P:p; > pi}. (3.18)
3. The hourglass of p; is
=(pi) =T pi UL pi. (3.19)

These concepts can be defined for a collection of nodes similarly as follows,

Definition 3.32. Let (Q C P be a collection of nodes in a poset. We define

1Q=Utm » te=U1rr ., 2@ = Zm). (320

Pi€Q Pi€Q Pi€Q

Definition 3.33. For any subset Q C P, let p; € QQ a node. Then, we say
that p; is a

1. maximal node in Q, if pj € Q such that p; > p;, and

2. minimal node in Q, if 3 p; € Q such that p; < p;.
And we define

1. the set of all maximal nodes in Q as max(Q), and

2. the set of all minimal nodes in Q as min(Q).

Notice that if () is non-empty then both max(()) and min(()) are non-empty.

3.4.4 Upper and Lower Bounds

In some sense, for any given two nodes p;,p; € P, the set 1 p; N1 p; is the
joint filter.

Definition 3.34. Let p;, p; € P be two nodes in a poset. Then,

1. joins of p; and p; are
pi V p; :==min(T p; N T pj). (3.21)
2. The meets of p; and p; are

pi A p; :==max(} p; Ul pj). (3.22)
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Again, these concepts can be defined for a collection of nodes.

Definition 3.35. Given a collection of nodes () C P we define,

\/Q;:min<ﬂ Tpi> , /\Q:zmax(U ¢pi>. (3.23)

Pi€Q Pi€Q

Definition 3.36. Let 1 € P a node such that max(P) = \/(P) = {1}, and
0 € P a node such that min(P) = A(P) = {0}. Respectively, we say P is
upper-bounded and lower-bounded.

Definition 3.37. Let P =< P, <> a finite poset, and let 0,1 € P two nodes.
The closure of P is

P = (PU{0,1},2), (3.24)
where Vp;,p; € P, pi<p; < p; < pj, and ¥p; € P, 0<p;<1.

Most of the following notions have to be upper-, lower-, or completely
bounded posets. From now on, when P is not bounded, we assume its closure

P.

3.4.5 Interval Orders and Length

In discrete mathematics, when talking about intervals the first thought is for
a set of points allocated on a piece of a “real line”. However, notice that this
“line” is not unique under the posets context. For instance, consider two
comparable nodes p; < p;, here it might be the case that arbitrary chains of
posets exist that join them.

Definition 3.38. Let P be a finite poset. Given two comparable nodes p; < p;
in P an interval [p;,p;| is defined as

i, 0] = A{pr € P:pi <pp <p;} =T piNlp; =C(pi,py), (3.25)
where C(p;,p;) is the set of all chains between p; and p;.

Definition 3.39. Let P;, P; C P be comparable subsets such that Vp; €
P,,p; € P;, p; <pj (i.e. P, < P;). We define the interval [P;, P;] as

p.Pl=J (2P (3.26)
(pi,pj) EP; % Pj

Definition 3.40. Let C(p;, p;) be the set of all chains between two comparable
nodes p; < p;. Then
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1. The vector of chain lengths is the collection of the lengths of all
these chains

h(pi; p;) == (IC (i, pi)1)- (3.27)
2. The minimal chain length is

ho(pi,p;) :== min |C|. 3.28
(i, p;) Ceg&r_}pj)! | (3.28)

3. The maximal chain length is

W (pi, ) = e | Cl. (3.29)

3.4.6 POSET Ontology

In previous sections we talked about GO relationships. Specifically, in section
3.3.1, “is-a” and “part-of” links were introduced. The ontological structure
of the GO could be thought of as a pair of DAGs: first by considering “is-a”
links, and second by considering “part-of” links. Therefore, for each one of
these relations the GO suggests a specific poset, either P;; =< Pgo, <;s> or
Prart =< Pgo, <part>. But, in fact, these two kinds of links are considered
to be equivalents. Thus, from the point of view of the POSET theory, a GO
poset model arises defined as Pgoo =< Pgo, <go> where <go=<;s U <p4t.

Definition 3.41. A POSET Ontology (or POSO) is a structure O =
(P, X, F), where P = (P, <) is a poset, X is a finite non-empty set of labels,
and F' is a function such that,

F: X — 2F
r — F(x)CP (3.30)

where 2F is the set of all functions from P to {0,1}.4

Thus, in the GO, P is the collection of GO terms, < is the ordering relations,
and X is the set of gene products annotated in the GO terms.

Example B.17 in appendix B illustrates the idea of a POSO associated with
the OOC B.7.

1Let P be a finite set with |P| = n elements, and let us write any subset of P in the
format {p1,p2,...,pn} where p;, 1 < i < n, can take the value of 0 or 1. If p; = 1, the i-th
element of P is in the subset; otherwise, the ¢ — th element is not in the subset. Therefore,
the number of distinct subsets of P is |P(P)| = 2". This fact is the motivation for the
notation 2° and, note that there is a bijection between 2 and the power set P(P). Hence
2P and P(P) could be considered an identical set- theoretically ([70]).
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3.5 Similarity Measures

A similarity measure is a function that quantifies the similarity between
two objects. It is usually defined in some sense as the inverse® of a distance.
There are many possible ways to build a similarity measure that depend
on the nature of the objects compared and the goal being pursued. In
bioinformatics, similarities are used in a wide diversity of applications. For
instance, they are used for finding similar patterns in expression data ([28])
or for querying searches in gene sequence databases ([112]). In the context
of biological ontologies, probably the most widely used measure of similarity
for comparing functional annotation is the so-called semantic similarity

([72]).

The following subsections formally define the concepts of similarity measure
and metric distance, and present the concept of semantic similarity measure,
as well as an organization about different semantic similarity approaches.

3.5.1 Formal Definitions of Similarity Measure and
Metric Distance

Definition 3.42. Let Q = wy,ws,...,w, be a set elements. A similarity
measure between two elements w;,w; € §) is a function

st QxQ — [0,1]€R

(wiywj) = s(wi,w;) = sij (3.31)
such that
1. 0<s; <1
2. s; =1,
3. Sij = Sji-

s(wj,w;) is a measure of the degree of similarity between the two ele-
ments w; and w;. That is, s(w;,w;) increases as the similarity between w;
and w; increases. So, the maximum similarity is reached when s(w;, w;) = 1.

The similarity concept is inversely related to distance concept. Thus, when
working with similarity measures it is required to keep in mind that they are
closely related with the concept of metric distances.

®By inverse we understand the idea of opposite (or reverse complementary), we are not
referring to the mathematical concept of inverse function.
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Definition 3.43. Given a set of elements ), a metric distance is a func-
tion
d: OQxQ — R

3.32
(thj) = d(Wiawj):dij ( )

such that

&
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=)
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Therefore, in principle, a similarity should also obey the distance axioms,
but in the opposite way. However, different theories suggest for violations
in some or all of the axioms ([8]). In order to overcome these drawbacks
different restrictions on the axioms have been proposed ([8]).

3.5.2 Semantic Similarity Measure

A semantic similarity measure can be considered a type of similarity
measure, but with nuances and restrictions. The most significant restriction
is that semantic similarities are intended for taxonomies (or hierarchies).
The notion was suggested for measuring the strength of the semantic
relationship between “units” of language, concepts or instances, through a
numerical description obtained according to the comparison of information
supporting their meaning or describing their nature ([72]). Harispe et. al
([72]) proposed the following definition:

A semantic similarity measure quantifies the strength of the se-
mantic relationships between two objects restricted to a taxo-
nomical (or hierarchical) domain.

The general idea underlying semantic similarity measures is intuitive, the
more similar two concepts are, the greater their similarity, and the smaller
the distance between the concepts. But, more specifically, a semantic simi-
larity measures the likeness of terms, concepts, words or any objects which
can be characterized through semantics. That is, the likeness of compared
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objects is based on their meaning or semantic content, as opposed to simi-
larity that can be computed with respect to the syntactical representation
(i.e. its string formats). For instance, in transcriptomics, if the pathways
associated with two lists of gene products are being compared, then the
GO terms in which these genes were annotated could be considered, then a
semantic similarity measure could be calculated to obtain a numerical value
that would allow us to measure how their biological processes are related.

However, there is no unique way to formally define (i.e. in a mathematical
sense) a semantic similarity. Depending on the field of study ([110]), the type
of taxonomy ([72]) or the method used, ([128], [85], [122]) the definition of
a semantic similarity measure can be different because of restrictions on the
type of relationship which is conditioned by the context. In any case, mathe-
matically speaking, most of the methods for computing semantic similarities
consider the following definition:

Definition 3.44. Given a set of elements (), a semantic similarity is a
function
sim: QxQ — [a,b] CR

(Wi wj) = sim(w;,w;) (3.33)

such that

1. sim(w;,w;) > a , Yw;,w; € Q

2. sim(w;, w; wi =wj; , Yw;,w; €8

3. sim(w;, w; im(wj,w;) , Yw;,w; € Q

) >
)
)
) <

4. sim(w;, w; im(w;, w;), Yw;,w; € .

The range of the codomain [a,b] C R, usually, vary from 0 to 1, or from 0 to
oo, or from -1 to 1.

3.5.3 Organization and Classification of Semantic Sim-
ilarities

There are many different ways to compute and classify semantic similarity

measures ([72]). For example, they are usually organized according to the

elements of the graph ([122]). This way to classify the semantic similarity

measures distinguishes three approaches: (i) the edge-based approach, (ii)
node-based approach and (iii) hybrid approach.
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e The edge-based approach consists of measures focused on relation-
ships between concepts. These measures try to find out how similar two
concepts are by counting the number of edges that exist in the graph
path between the corresponding nodes. For instance, a common proce-
dure is to compute a distance by selecting either the shortest path or
the average of all paths, when there is more than one path linking the
two nodes, and then converting this distance into a similarity measure.

e The node-based approach consists of measures focused on the prop-
erties of the concepts being compared. These measures examine how
similar the concepts are by taking into account properties that are
attributable to the concepts themselves, their ancestors and/or their
descendants. For example, one of the most widely used techniques is
based on the Information Content (IC) ([128]). This measure calcu-
lates the amount of information that a concept conveys, allowing us
to calculate how informative and specific such a concept is. IC can be
computed in different ways. For instance, one of these methods is to
count the number of offspring that a particular concept has. So, when
two concepts in the ontology structure are being compared, the IC of
common ancestors is used to give a measure of semantic similarity.
To do this, there are two main approaches: (i) the Most Informative
Common Ancestor (MICA) and (ii) the Disjoint Common Ancestors
(DCA) ([122]).

e The hybrid-based approach considers measures that take advantage
of both edge-based and node-based measures. That is, hybrid-based
measures take into account different types of properties like the depth
of the concept in the ontology, the number of children associated with
the term, the IC, etc.

3.6 GO Terms and Semantic Similarity Mea-
sures

In section 3.5.3 it has been explained that there are several approaches to
calculate semantic similarity measures ([15], [82], and [97]), and different
classifications have been proposed to organize them ([72], and [122]).
This section is devoted to introducing the main concepts of two of these
strategies that are going to be used for discussing some of their proper-
ties later on, namely, the node-based approach and the edge-based approach.
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Recapitulating on the main ideas of such methodologies, the node-based ap-
proach uses Information Content (IC) measures or information on object-
part relationships to determine how similar two GO terms are, and the edge-
based approach compares two terms by using the distance, or edge length,
between the corresponding nodes. This part of the thesis is focused on
two methods for computing semantic similarities, one from node-based ap-
proaches and the other from edge-based approaches. The first method was
introduced by Phillip Lord et al. ([98]). From now on, it will be referred to
as Lord’s measure. Basically, they proposed a way to compute the similarity
between two gene products based on the semantic similarity of their corre-
sponding GO annotations, by considering a measure previously introduced
by P. Resnik ([128]). Such a measure makes use of the IC of the terms.
The second methods considered was developed by Joslyn et al. ([85]). From
now on, it will be referred to as Joslyn’s measure. It was proposed in a
wider context of categorization problems of semantic hierarchies ([84]). One
characteristic of this approach, which quickly begs comparison with Lord’s
measure, is that it rejects the idea of enriching a hierarchy, such as the GO,
with IC. Instead it looks for alternative ways that take advantage of the
structure of the hierarchy.

3.6.1 Lord’s Measure

Lord et al. ([98]) introduced the idea of using the ontological annotations
assigned to entries in biological databases in order to measure the similarities
in terms of IC between these entries, which they called semantic similarity.
That is, instead of attempting to define a similarity simply on the basis of
the structure of the ontology, Lord et al. appealed to examine the usage
of terms to find out how informative each term used is. Thus, instead of
defining a new semantic similarity measure they adapted one that had been
introduced by Resnik ([128]) to measure the similarity between terms in a
semantic hierarchy based on the concept of Information Content.

3.6.1.1 The Information Content Concept

The coverage matrix defined in section 3.3.2.3 plays an important role for
calculating the term informativeness and of course the semantic similarity.
For instance, the sum n(t) of column ¢ from the coverage matrix is the number
of times the term ¢ or any of its refinements appears in the Object-Ontology
Complex.

Definition 3.45. Let (T,1',Q2, M) be an Object-Ontology Complex, and let
t € T be any term in the ontology. The probability of finding a term t
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s a function such that
(3.34)

where n(t) is the number of times that the term t or any of its specializations
appears in the ontology and N is the total number of these terms that appear
for the root node.

Note that the top node (i.e. the root term), to, verifies P(ty) = 1.

As the probability increases, the informativeness of GO terms decreases.
This is due to the fact that to be raising the level of abstraction of GO
terms, these are increasingly referenced, and thus the informativeness of the
terms is lower. That is, the less often a term is used, the more informative
it 4s. Thus, if a GO term is rare and it has been “selected”, then it gives
much more information than a usually selected GO term. Reciprocally, if a
selected GO term is often very uninformative, then it does not add very much
to what we already know. To be more specific about the term “informative”
the notion of information content is defined explicitly.

Definition 3.46. The information content (1C) of a term t is a function
measured as,
i T — 00

[0,
t = i(t):=—log P(t). (3.35)

In words, the IC of a single GO term is inversely proportional to its frequency
in the GO DAG, and this frequency is propagated to the ancestors, meaning
the IC of that GO term is related to its depth in the GO DAG. Thus, when
a query list of genes is available, frequency is defined as the number of genes
mapped to each GO term.

Example B.18 in appendix B shows the computation of the IC’s associated
with the OOC B.7.

3.6.1.2 Resnik’s Similarity Measure

The IC of GO terms relies on the relationships given by the DAG structure
of the ontology. Thus, the shared information between two terms is usually
proportional to the IC of the Most Informative Common Ancestor (MICA)
in the rooted DAG ([122]). That is, given GO terms ¢; and t;, the lowest
common ancestor for both terms is the one with the greatest 1C. Many differ-
ent semantic similarity measures that rely on the MICA have been proposed
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([72]). Resnik ([128]) introduced a measure of semantic similarity that is
defined precisely in that way.

Definition 3.47. The semantic similarity of Resnik between two terms
ti,t; € T in the ontology based on the IC, is defined as

Simpes: T XT — [0,00] (3.36)
tity) > simpes(ti,t;) = (1), 3.36
(tut) o simnaltit) = max (i)
where S(t;,t;) is the set of terms that subsumes both t; and t;, and i(t) is the
Information Content measure of term t.

Although the similarity is computed by using all upper bounds of the
two terms, the information measured identifies the minimal upper bound.
For instance, in the Object-Ontology Compex B.7 described in example
B.14 (see appendix B), the set of terms that subsumes nodes H and F is
S(H,E) = {I,B,C,1}, but structurally the minimal upper bound is the
MICA, I. MICA helps to differentiate cases where multiple inheritance is
given. For instance, in the same figure the terms C' and K are structurally
indistinguishable as upper bounds of terms E and J, however the IC’s can
be completely different.

Example B.19 in appendix B shows the semantic similarities of Resnik be-
tween terms associated with the OOC B.7.

3.6.1.3 Lord’s similarity measure

Resnik’s measure selects only the one common ancestor. However, an on-
tology DAG allows multiple parents for each term, that is, two terms can
share parents by multiple paths. Instead of using the one common ancestor
between two GO terms ¢; and ¢; with the highest IC, Lord et al. introduced a
variant of Resnik’s measure that consists in taking the minimum P(t) where
there is more than one shared parent ([98]).

Definition 3.48. The semantic similarity of Lord between two terms
ti,t; € T in the ontology is

SiMrera . T XT —> [0,00]

(ti,tj) —> SimLOTd(ti,tj) = SimLm«d(ti,tj) = —10ngs(ti,tj>,
(3.37)
where P,,s is the probability of the minimum subsumer
Pt t;) = in |[P(t .
(ti, £5) teg%iﬁj)[ (t)] (3.38)

where S(t;,t;) is the set of terms that subsumes both t; and t;.
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Resnik introduced a second measure where only the probability of a term is
involved instead of the IC ([128]).

Definition 3.49. The semantic similarity of Resnik between two terms
ti,t; € T in the ontology based on the probability, is defined as

sz'mp(t) D T xT — [O, 1]
(tz, t]) — SZmp(t) (tz, t]) = tegl(iﬁj)[l — P(ﬂ]? (339)
where S(t;,t;) is the set of terms that subsumes both t; and t;, and P(t) is
the probability of finding the term t.

3.6.2 Joslyn’s Measure

Joslyn et al. argue that one drawback of Lord’s measure is the fact that
they rely on the probability of occurrence of terms, which not only depends
on the ontology, but also on the dataset being considered, see ([85] and
[84]). Thus, if the dataset changes, the probabilities will change too. These
authors consider that this aspect is undesirable and they make an attempt
to define appropriate measures of similarity which do not depend on any
extra information beyond structural topology. Indeed, instead of similarities
they use the complimentary concept of distances, or rather, in their case
pseudo-distance, which is a function that does not completely verify all
distance properties. Based on this concept, they present a method to score
each term in an ontology. Thus, this ranking of nodes can be used as a way
to summarize a list of terms, leading to a way to find the most characteristic
term in an ontology.

In section 3.4.6 the concept of POSO was presented. Based on this struc-
ture, Joslyn et al. suggest different measures of distance that range from very
intuitive measures (e.g. shortest paths ([127]), longest paths ([43]), and com-
binations of them ([72])) to others which are much more complex (such as an
interval-valued distance ([163]), that take into account height and width of
the structure). In order to discuss some aspects about this second strategy,
which is an edge-based approach, this thesis is focused on the first types of
measures. That is, measures based essentially on the length of paths be-
tween two nodes. These measures were introduced in the GO Categorizer
algorithms ([85]). In short, given a list of GO terms associated with a con-
cept, the GO categorizer algorithms return an ordered list of these GO terms
according to their capability of representing overall semantic meanings of the
set. It is performed by studying the relationship between the GO terms on
the GO DAG through the POSET theory.
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3.6.2.1 Pseudo-distances

The approach of Joslyn et al. begins with measures between comparable
nodes p; < p; (see section 3.4.2), which indicate how “high” p, is above p;.

Definition 3.50. Let h.(p;,p;) and h*(pi,pj) be respectively the length of
shortest and longest paths between p; and p;. A pseudo-distance is a func-
tion § : P? — R where

That is, a pseudo-distance is any function assigning a number to a given
pair of comparable nodes in such a way that its value falls between the
longest and the shortest path between these two nodes ([43]).

There is also a normalized form that measures what proportion of the height
of the whole POSET P is taken up between nodes p; and p;.

Definition 3.51. Let (P) and H(P) a be POSET structure and the associ-
ated height. The normalized pseudo-distance is defined as

b: P — [0,1] (3.41)
(pipy) +— O(pipy) = ), '

The first pseudo-distances proposed by Joslyn et al. ([85]) were:

1. Minimum chain length

S = . (3.42)

2. Maximum chain length

8y := h*. (3.43)

3. Average of extreme chain lengths

Ogz 1=
2

(3.44)

4. Awverage of all chain lengths

. Zheh(pi,pj) h

Oap 1= b (3.45)




3.7. SIMS: AN R PACKAGE FOR COMPUTING SEMANTIC SIMILARITIES OF AN ONTOLOGY&84

Example B.20 in appendix B shows the pseudo-distances of the minimum
chain length between terms associated with the OOC B.7.

Note that refinement matrix B.13 could have been used to compute the min-
imum chain length pseudo-distances between each pair of nodes.

3.7 sims: An R Package for Computing Se-
mantic Similarities of an Ontology

sims is a package developed in R ([126]), and some specific functions from the
packages AnnotationDbi ([119]), expm ([64]), GOstats ([54]), plyr ([161]),
Matrix ([11]), igraph ([37]), methods ([126]), plotrix ([94]), Rgraphviz
([71]), and vegan ([118]).



Chapter 4

Results

In this chapter, the minor and main contributions of this part of the thesis
are presented. These results are organized according to the sections outlined
in Material and Methods 3.

4.1 Minor Contributions

The following subsections present two types of minor results: one, some
parts of the proofs presented here were used as algorithms for programming
some specific functions of the R package sims, and two, the mathematical
formalization of some basic concepts that are usually relatively neglected in
research and bioinformatic literature.

4.1.1 Graph Theory

The following propositions could be placed in section 4.2.4, because some
pieces of their proofs have been used as parts of the algorithms in some
functions of the package sims. However, due to the fact that they are results
associated with graph theory, we found it convenient to present them in this
section.

The first preliminary result could be skipped because it is merely an obvious
formalism. However, we found it convenient to formalize the concept because
it allowed us to take advantage of this idea when we were programming some
specific functions during the development of the R package sims. Namely,
in section 3.1.3, symmetric graphs were defined as those whose edges are
connecting nodes. Then, it is easy to prove that the associated accessibility
matrix is symmetric. Formally speaking:

Proposition 4.1. If G is a symmetric graph = Ag is symmetric.

Proof. Let G be a symmetric graph. Then, all edges in G are target
and source. Therefore, entries of its associated matrix are such that

85
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a;j = aj;, Vi,j. And vice versa, if A is symmetric, then a;; = aj; is 1 or 0.
Therefore, e;; = ej;, hence G is basically undirected, that is a symmetric
graph. O

Therefore, in order to reduce the amount of information that some functions
of the package sims pass to the memory of the computer for managing
symmetric matrices, we only considered the lower triangular matrices
rearranged as single vectors.

One of the most important characteristics of a DAG, or graphs in general,
are the number of nodes and edges. These quantities allow computing of
different types of semantic similarities. In node-based approaches, semantic
similarities based on the IC are probably the most widely used. The IC
is a measure that relies on the number of times that a term has been
reached from an object (e.g. a gene product in the case of the GO). For
this reason it is important to know how many links are reaching each term.
Different methods to compute the number of edges that a node has have
been proposed and studied ([162], [155], [17], [90]). Two of these methods
have been studied. They are a well-known theorem of the graph theory,
sometimes called the Handshaking Theorem, and corollary of it. According
to the literature consulted, the proofs associated with them are either not
reasoned from a matrix point of view ([155], [155]) or carelessly written
([17]). Therefore, we have strictly proven the theorem and the corollary
based on the incidence matrix, in order to used the proofs for computing
the number of edges in a DAG with the package sims.

Theorem 4.1 (Handshaking Theorem). Let G = (V, E) be a graph such that
|G| =n and e(G) the number of edges in G. Then,

Z d(v;) = 2¢(Q). (4.1)

Proof. Let us consider the incidence matrix Bg!. On one hand, the sum of
the entries in each column is 2,Vj = 1,2, ...,e(G), then

(@)
> 2=12:(G).
j=1

!Note that, we are assuming G as a multigraph. In case of a DAG, we should consider
the incidence matrix of the underlying graph for the DAG.
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On other hand, the sum of entries in each row is d(v;), ¢ =1,2,...,n. So

Z d(v;) = Z d(v;) = 2¢(@).
O

Corollary 4.1. Let D = (V, E) be a DAG such that |D| = n and (D) the
number of edges in D. Then,

Z d*(v;) = (D) = Z d=(vy). (4.2)

Proof. Let us consider the incidence matrix Bp. Handshaking Theorem says
that the sum of entries by row is d(v;), i = 1,2,...,n. Indeed, d*(v;) is the
sum of the positive one’s and —d_(v;) is the sum of negatives one’s. Thus,

Z d(v;) = Z d*(vi) - Z d™(v)

However, the sum of entries in each column is 0,Vj = 1,2,....¢(G) =

52590 = 0. Then,

n n

0= d () =Y d (v) & Y d"(w) = d (v)

i=1 i=1

Hence,

2e = id(vz) = Qid—’—(vz) ~E= id+<vz>

4.1.2 Semantic Similarity Measures

While Joslyn et al. developed a well-defined mathematical framework [84]
[85], and [83] based on order theory [39], and [135], in their approach, Lord et
al. did not make a development that is so implicit, however, in their work. In
order to minimize this lack of formalism, we suggest some basic formalisms
in the following subsections.



4.1. MINOR CONTRIBUTIONS 88

4.1.2.1 The Information Content Concept

In previous sections, different methods for computing the semantic similarity
between terms have been mentioned. The most intuitive idea relies on the
length of the shortest path. That is, given multiple paths between two nodes
that are being compared in an ontology, the length of the shortest path is the
selected as the “best” measure of “similarity” [140]. Based on this measure,
the closer two nodes are, the more similar they are. However, when dealing
with ontology DAG structures, like the GO, this strategy is not enough to
capture the essence of the annotations, as well as the relationships between
them. In contrast to other graph structures, in ontology DAGs, the links
between terms mean something. For instance, in the GO these links establish
relations of either “is-a” or “part-of”. In a broader sense, that is, if B is-a
(or part-of) A, then B is a subset of A, B C A. Thus, taking into account
this observation and the way of calculating the probability of finding a term
t, the monotonic property of the probability theory can be proved in terms
of these relationships.

Proposition 4.2 (Monotonic property). Let t;,t; € T be two terms of re-
finement in an ontology. If t; is-a (or part-of) t; = P(t;) < P(t;).

Proof. Let t;,t; € T such that t; C t; (read t; is-a t;). Rewriting ¢; as
t; =t; W (t; —t;) where W is the disjoint union, then

P(ty) = P(ti W (t; —t:)) = P(t:) + P(i; — ;) > P(t)
>0

O
In some sense, the paths between terms in an ontology act as channels that
distribute the flow of information from more abstract to more specific terms.

Related with these probabilities, and as a node-based approach, Resnik in-
troduced the Information Content concept ([128]). This measure captures
the importance of the meaning of a single term, which is associated with
the number of times that such a single term has been reached when a query
object is available for an Object-Ontology Complex. Thus, it is very easy
to prove that the root node of the Ontology is the term with the lowest 1C
because it is the most abstract concept.

Proposition 4.3. i(ty) = 0.

Proof. Let tg € T be the root term in the ontology. Then, based on the
Monotonic property P(ty) =1 = i(tg) = 0. O
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4.2 Main Contributions

In the following subsections we present the main results of the thesis. First,
we contribute with an important clarification about the relation between
Lord’s measure and Resnik’s measure. Second, we suggest a proposition and
a corollary for computing the number of times that the terms or any of their
refinements appears in an OOC. Third, we proof that the Renik’s measure
in terms of distance and one of the Joslyn’s pseudo-distances under certain
conditions are actually metric distances.

4.2.1 GO Terms and Semantic Similarity Measures

Two different strategies for calculating semantic similarity measures have
been considered. The first methodology relies on a node-based approach,
which leads us to establish a relation between the list of objects (e.g. genes)
and how terms of the ontology (e.g. GO terms) are related through an struc-
ture called Object-Ontology Complex (OOC). The second methodology relies
on an edge-based approach. It is based on the POSET theory and suggests
to construct a POSET Ontology (POSO) structure in order to establish the
relation between objects and terms mentioned above. Thus, there exists a
certain level of analogy between the OOC and the POSO. That is, concepts
used in the definition of the OOC and in POSO can be easily related. Briefly,
a POSET P = (P, <) and the set of objectes (e.g. genes) X mapped by the
function F' can be described in terms of an OOC so that the vocabulary of
the Ontology is the POSET, the Object is the set of objects, and the func-
tion F(X) is the mapping between the Ontology and the list of objects.
Thus, given a list of selected genes in an omic experiment, the OOC and the
POSO can be considered two ways of formalizing mathematically “how to
attribute biological meaning” when we are working with the GO. Note that
this concept does not be confused with “biological significance” concept 1.1.

4.2.2 Lord’s Measure

Clearly, as stated in section 3.6, an important thing for the similarity between
two terms is the amount of information in common that they are sharing,
which is indicated by a specific term that subsumes them. The concept
of subsuming a set of refinements means explaining those terms in a more
comprehensive concept. For instance, in figure B.7 of the example B.14 in
appendix B nodes H and F are both subsumed by node I, whereas [ is
a more specific node that explains the information of nodes H and F. In
this sense, Resnik ([128]) introduced a measure of similarity that depends
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on the MICA (see equation 3.36). Lord et al. argue that this semantic
similarity measure selects only one common ancestor, and due to the fact
that ontology DAGs (e.g. GO) allow multiple parents for each term, they
suggested a variant of Resnik’s measure that depends on the minimum P(t)
when there are more than one shared parents (see equation 3.37). However,

in fact, this “new” measure of similarity is the same as the one proposed by
Resnik ([128]) because

‘ es tl7t = t - _1 Pt 4.3
simnett) = mox (0] = max FlogPO] (43

and since the logarithm is a monotone increasing function, we obtain that

= —log min |[P(t)]| = —logP,.(t;,t;) = simpera(ti, t;).
g, min [P(0)] = ~10g Pou(tit) = simioalts. 1)
Example B.22 in appendix B illustrates computationally the fact that Resnik’
measure is the same than Lord’s measure.

4.2.2.1 The Information Content Concept

In order to compute the IC, or rather, the number of times that a term ¢ has
been referenced, the product of the matrix with the number of paths of any
length between each pair of terms by the mapping matrix can be used for
computing the number of times that each term ¢ or any of its specializations
appears in the ontology. Therefore, we propose the following proposition and
corollary.

Proposition 4.4. Let (T,T,Q, M) be an Object-Ontology Complex, where T
15 a set of s terms from a vocabulary, I' is the refinement matrixz encoding the
ontology based on T, €2 is a set of p object identifiers, and M is the matrix
mapping from € to T. Then, the matrixz of the number of times that each
term t; or any of its specializations references to an specific ancestor t; can
be calculated as

N, = M(I—TI)"!

Proof. On one hand, if N, is the matrix where each of its elements n;; is the
number of times that an object identifier o; in €2 maps to a term ¢; and its
specializations in 7T, then it can be written as

rj

Ty
— k _ .0 1 2
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where nfj denotes the number of times that an object identifier o; maps to the
kth- specialization of term t?, and n?j is 1 if term ¢; has been mapped by the
object identifier o;. On other hand, note that (I—T)(/+T+T?+...+I") =
(I-T"*'). The Neumann series ([145]) of a matrix holds that, when a matrix
I' has the property that

lim "t =0
r—00

then I' is non-singular and its inverse may be expressed by the identity

I-T) ' =51

Thus, due to the fact that I'"™! = 0 when there are no paths with length
exactly k + 1, so the longest path is < r + 1, the sum

e}

[m=I+T+12+.. . +1I"
r=0

represents the number of paths of any length < r between every pair of terms.
Therefore,

M +T+T?+...+T7)=MI-T)"
is a matrix such that each of its elements is the number of times that an
specific object reaches an specific term. That is, each of these elements is

the number of times that each term ¢ or any of its specializations references
to an ancestor. Therefore,

N, = M(I—T)".
O
Corollary 4.2. Let (T,1',Q2, M) be an OOC. Then, the number of times that

a term t; or any of its refinements appears in the OOC can be computed by
summing the columns of the matriz Ny,

S
n; = E i
i=1

where s is the number of terms in T
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Proof. Each element n;; of matrix /NV;; is the number of times that a term ¢;
reaches an ancestor t;. Thus, Vj = 1,2,..., s where s is the number of terms
in T
Nng; =Ny +Ngj + ...+ Nyj

is the number of times that each term t; or any of its specializations
references to term ¢;, plus the number of times that each term ¢, or any of
its specializations references to term ¢;, and so on until the number of times
that each term ¢, or any of its specializations references to term ¢;. Hence,
n; is the number of times that all the term ¢; Vi = 1,2,...,s or any of its
specializations references to term ¢;. O

Example B.21 in appendix B illustrates the application of the proposition
and the corollary to the computation of the N, matrix and n(t) values.

4.2.2.2 Resnik’s Measure in Terms of Metric Distance

As we mentioned in section 3.5.1, Cuadras ([38]) suggested that a metric dis-
tance can be computed in terms of a similarity d;; = 1—sij. Therefore, based
on the second Resnik’s measure 3.49, we prove the following proposition:

Proposition 4.5. Given two terms t; and t; in T such that t; is-a t; then,
d(t“ tj> =1- Slmp(t) (t“ t]> (44)
18 a metric distance.

Proof. Let t;,t; € T be two terms in the ontology such that ¢; C ¢;. Then,

dltisty) = 1= simpy(tisty) = 1—{ max [1-P(t)]}

tES(ti,tj)
- 1—{1— min P(t)}
tES(ti,tj)
= min P(t)

tGS(ti,tj)

Therefore, if this function d : T x 7 — [0, 1] C R complies with the axioms
of metric distance, we will have certainly proved that it is a metric distance.

So,
?
1 d(ti,t;) >0, Vi t; €T

0<P(t)<1 = dt;,t;) = tegrg%_)P(t) > 0.
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2. d(tit;)=0&t;=t; V€T

<) St t;) =0 = d(t;, t;) = tegg‘nt’)P(t) = 0.

=) 0=d(t,t;) = min P(t)= P(t)=0= n(t) =0

tES(ti,tj)

= S(ti,t]‘) =0 <t =t;.

2

3. d(ti, t;) = d(t;,t;) , Yt t; €T

S(ti,t;) ={t € T :subsuming t; and t;} = S(t;,t;) then,

d(t; t;) = min P({t) = min P(t) = d(t;
(ti,t;) 2 (t) oin (t) = d(t;, t;)

2

4. d(ts, ;) < d(ts, ty) +d(t;, ty) , Vi, tjte €T

On the left hand of the inequality we have that,

d(t;, t;) = in  P(t),
(ti ;) i, (t)

and on the right hand,

dlt. At 1 _ . Pt : P(t
(ti, 1) + d(t;, ti) teg(ltli%k) ()+t€g(ltljr}tk) ()

Thus, we need to prove that,

?

min P(t) < min P(t)+ min P()

teS(ti,t5) teS(tistx) teS(t;.tk)
Then, we have to distinguish two cases:

Case 1: t; C t; C t, (we would proceed similarly for ¢; C ¢; C t;) or
t; Ct; C t; such that t, C ¢

( k) = ( ]) tegﬁj) ()_tGg(ltliI}tk) ()

Case 2: t; Ct, Ct;ort; Ct; Ctjsuch that t, C ¢y

S(tit;) = S(tj,ty) = min P(t)= min P(t
(b5) = St t) = min P(t) = min P(t)
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Therefore, Vt;,t;,t, € T
min P(f) < min P({)+ min P(¢).

teS(tit;) teS (ti,tx) teS(tj,tr)

O

Note that, if the monotonic property is not satisfied, then it is not possible
to guaranteeing the triangle inequality.

4.2.3 Joslyn’s Measure

Pseudo-distances are useful measures for calculating how “different” two in
a POSET are. However, these types of measures cannot always be used.
Pseudo-distances make sense only when measuring comparable terms, that
is, between two terms where one is a specialization (i.e. a refinement in
terms of Carey’s vocabulary) of the other. Therefore, pseudo-distances can-
not measure non-comparable terms, and this is the major difference with
Lord’s measure. However, when restricting to comparable terms, a pseudo-
distance is actually a distance. Here, we present a proposition and proof of
this hypothesis, focused on the pseudo-distance of the minimum chain length
3.42.

Proposition 4.6. Let p;,p; € P be two comparable nodes such that p; < p;.
The pseudo-distance

om: PxP — NU{0}CR

o) = Om(pip;) = min |C| = h.(pi,p; (4.5)
(p 7p]) (p 7p]> CGICI'%}l??,pj)l | (p 7p])

where C(p;i, pj) is the set of all chains between two nodes p; and p;, is a metric
distance.

Proof.

?
1. 8n(pispj) >0, Vpi~p; € P

Case 1: C(pi,pj) #0 = |C| € N, YC € C(p;, pj)

= Om(pi,pi) = i Cl > 0.
(i, pj) Ceg}g}pj)l |

Case 2: C(pi,pj) =0=|C|=0, VC € C(pi,pi)

(i, pj) Oeg&gpj)\ |
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?
2. 0m(pipj)) =0 pi=pj, Vpi~p; €P

0 = O0m(pi,pj) = min )|C’| & |C| =0, VC € C(pi, p;)

CeC(pi,pj
& Cpi,pj) =0<pi=pj, Vpi~p; €P.

3. 0m(pi,pj) = Om(pj,pi) , Ypi ~p; € P

C(pi,pj) = {chains between p; and p;} = C(p;, p;) then,

Om(pi,p;) = min |C| = min |C| = dn(pj,pi) , Vpi ~p; € P.
v p]) CEC(Pi»Pj)l | CGC(pj,pi)| | (p] pi) Pi ™~ Dj

2

4. 60 (pis 0;) < O (i, Dk) + O (D5 D) 5 D4y Py, Pk € P comparable

On the one hand we have that,

5m iy Mj = i ¢ !
(ops) = min |C]
and on the other,
6m 79 6m ) - ‘ ¢ | ¢
(p pk) + (PJ pk) Cercr(l;?pk)’ ’ + Ceg(l;ﬁpk)‘ ’

Then, we have to prove that,

2

min |C|] < min |C|4+ min |C].

CeC(pipj) CeC(pipr) CeC(pj,pr)

Now, we know that, p; ~ p; < p; < p; or p; > p;. Thus, we distinguish
three cases

Case 1: p; < p; <py (or p; <p; < pg)

min |[C|> min |[C|= min |C|+ min [C|> min
CeC(pi,pr) CeC(pi,pj) CeC(pi,pr) CeC(pj,pr) CeC(pi,pj)

Case 2: pr < p; < p; (or pr < p; < pi)

We will proceed similarly to Case 1.
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Case 3: p; < pp < pj; (or pj < pr < pi)

Let CP*(p;, p;) be the set of chains between p; and p; through the
pr node. Then, by construction of this set,

min |C|+ min |C|> min |C|> min |C|.
CeC(pi,pr) CeC(pj,pr) CeCPk (p;,p;) CeC(pi,p;)

Therefore, Vp;, pj, pr € P comparable

min |C] < min |C|+ min [C].

CeC(pi,pj) CeC(pi,px) CeC(pj,pr)

O
Similarly, we could prove that, assuming comparable terms, the other dis-
tances proposed are metric distances.

4.2.4 sims: An R Package for Computing Semantic
Similarities of an Ontology

At the beginning of this part of the thesis (see section II) an ontology was
introduced as a way for annotating concepts of a certain domain, and the
vocabulary of an ontology is arranged as a rooted DAG 3.13.

Very often measuring the relationship between pairs of terms and on-
tology is required ([124], [127]). In previous sections we have seen that
an appropriate measure for assessing these relationships relies on the
semantic similarity measures ([60]). We have also seen that there are many
different methods and approaches for computing semantic similarities ([72]).

In order to compute semantic similarity measures an R ([126]) package called
sims (for semantic similarity measures) has been developed.

This section is addressed to present the package sims. Examples of the
main possibilities of sims are shown in the vignette of the package, which is
provided in appendix A.

4.2.4.1 Availability of sims

The package is freely available under a License GPL-2 (http://www.
r-project.org/Licenses/GPL-2). It can be downloaded from the GitHub
repository https://github.com/jlmosquera/sims.


http://www.r-project.org/Licenses/GPL-2
http://www.r-project.org/Licenses/GPL-2
https://github.com/jlmosquera/sims
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4.2.4.2 Requirements

To use the package one must have R 3.1.1 (or greater) ([126]) installed,
as well as Bioconductor 2.14 ([63]) (or greater). But also, some extra
packages from CRAN (http://CRAN.R-project.org/) ([126]) are required.
Specifically, expm ([64]), plyr ([161]), Matrix ([11]), igraph ([37]), plotrix
([94]), and vegan ([118]).

4.2.4.3 Main Possibilities of the Package and the List of Functions

Main possibilities of this package are:

1. To deal with ontology structures (i.e. Object-Ontology Complex).
2. To compute semantic similarities between terms of an ontology.
3. To compute semantic similarity profiles between GO terms.

4. To compare semantic similarity profiles between GO terms associated
with two lists of Gene Entrez Identifiers.

These tasks can be performed thanks to a list of 51 functions that has been
implementes in the package. These functions are shown in table 4.1, where
they are organized by groups of possibilities:

4.2.4.4 Semantic Similarity Measures Implemented in sims

sims package consists of fourteen methods from the node-based and edge-
based approaches 3.5.3. Specifically, there are implemented seven semantic
similarity measures from node-based approaches proposed by Resnik ([128]),
Lin ([97]), Schlicker et al. ([134]), Jiang and Conrath ([82]), Mazandu and
Mulder ([107]), Pirré and Seco ([124]), and Pirré and Euzenat ([123]) are
implemented in sims (see table 4.2). Most of these measures are based on
the 1C 3.6.1.1 and MICA 3.6.1.2. With regard to edge-based approaches
there are implemented two semantic similarity measures proposed by
Resnik ([128]), and Rada et al. ([127]), one distance measure proposed by
Rada ([127]) and four pseudo-distances proposed by Joslyn et al. ([84], [85]).

Table 4.2 shows the list of the measures implemented in the package and
some basic descriptions about them.


http://CRAN.R-project.org/
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4.2.

sims General description of the package {sims}

Functions for managing an OOC

ancestors Ancestors for each term of the ontology

commonAncestors Common ancestors for each pair of terms of the ontology

depth Depth of the ontology

gethA Accessibility matrix associated with the DAG structure of the ontology

getGk Builds a list of the matrices with the number of paths between each pair of terms that are directly connected for each length

getGr Number of paths of any length between each pair of terms that are directly connected

inverseIminusG Computes the number of paths of any length between each pair of terms in the ontology

is.00C Tests if its argument is a (strict) OOC object

Nt Number of times that each term or any of its specializations references to an ancestor

simsMat Coerces a 1-column ’data.frame’ resulting from semantic similarity functions to be an object of class ’dist’.

ooc General container for an Object-Ontology Complex (OOC)

termPairs Builds the pairs of different terms or characters

foMat Builds a matrix of zero and one elements such that zero indicates there is no a relation between row and column, and one there is a
relation.

t000C Builds an Object-Ontology Complex (OOC)

toPairs Builds a 2-columns ’data.frame’ relating elements of a matrix with value one.

Functions for computing semantic similarities between terms of an ontology

simFaith Semantic similarity of Pirro and Euzenat for each pair of terms

simJC Semantic similarity of Jiang and Conrath for each pair of terms

simLin Semantic similarity of Lin for each pair of terms

simNunivers Semantic similarity of Mazandu and Mulder for each pair of terms

simPsec Semantic similarity of Pirro and Seco for each pair of terms

simRada Semantic similarity measure of Rada _et al._ for each pair of terms

simRel Semantic similarity of Schlicker _et al._ for each pair of terms

simRes Semantic similarity of Resnik for each pair of terms

simRes.eb Semantic similarity measure of Resnik _et al._ for each pair of terms, considering the maximal depth of the ontology

distRada Distances of the shortest paths between each pair of terms in the ontology

pdHap Pseudo-distances of the average of all chain lengths between comparable terms of the ontology.

pdHax Pseudo-distances of the average of extreme chain lengths between comparable terms of the ontology.

pdHm Pseudo-distance of the minimum chain lengths between comparable terms of the ontology.

pdHx Pseudo-distance of the maximum chain lengths between comparable terms of the ontology.

sims.eb ‘Wrapper function that calls different methods for computing semantic similarities based on edge-based approaches

sims.nb Wrapper function that calls different methods for computing semantic similarities based on node-based approaches

pseudoDists ‘Wrapper function that calls different methods for computing pseudo-distances

. Summary table providing with the number of times that each term or any of its refinement appears in the OOC, the probability of

resnikSummary finding the term, and the Information Content of the term

IcA Information Content (IC) of common ancestors

LCAs Length of the shortest paths containing the Least Common Ancestors (LCA) between each pair of terms
Computes for each pair of terms the Information Content (IC) of each term the Most Informative Common Ancestor (MICA), and

sunmaryNICA the subsumer associated with the MICA

summaryPaths Lengths of the chains (in terms of depth) or number of paths between each pair of terms.

summarySims Summary of semantic similarity estimates between each pair of terms and measure

Functions for computing semantic similarities profiles of GO terms

go00C Builds an Object-Ontology Complex (OOC) whose slots are associated with GO Identifiers

gosins Wrapper function that calls different approaches and methods for computing semantic similarities between GO Identifiers given a list
of Entrez Gene IDs

gosimsAvsB Wrapper function for computing semantic similarities between GO Identifiers for two lists of Entrez Gene IDs

mapEG2G0 Mapping Entrez Gene IDs to Gene Ontology IDs

mappingMatrix Mapping matrix from the Entrez Gene IDs to the GO IDs associated with the directed subgraph extracted from GO DAG structure

refinementMatrix Builds the refinement matrix associated with the DAG structure of Gene Ontology

simsBetweenGOIDs Wrapper function that calls different approaches and methods for computing semantic similarities between GO ID ancestors of a list

of GO ID’s

Functions for comparing semantic similarities profiles of GO terms associated with two lists of Gene Entrez Ids.

cosSim
gosimsProfiles
plotGODAG

plotHistSims
summarySimsAvsB

Cosine similarity measure

Plots a vertical bar diagram whose bars are associated with the semantic similarities between each pair of terms, and such that
bars on the left side of the plot are the corresponding to the first group of objects and on the bars on the right side are the bars
corresponding to the second group of objects

Plots a subgraph from the GO associated with one or two lists of Entrez Gene Identifiers

Histogram of two semantic similarity profiles

Summary of a two-columns matrix with semantic similarity estimates between each pair of terms for the same measure

Table 4.1: List of functions in sims package.
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4.2.5 Semantic Similarity Profiles between GO Terms

As mentioned above 3.1.5, one of the possibilities implemented in sims
package is addressed to compare lists of Gene Entrez Identifiers annotated
in the GO.

Sometimes a researcher is faced with the problem of comparing two lists of
genes. One of the possibilities for performing this task is to considering the
biological annotation of the GO, and then calculate the so-called functional
similarity measures ([134], [157], [48], [122], [72]). That is, given two lists of
genes, he/she looks for the functional annotations associated with each list
of genes respectively and, then, the researcher measures how these two lists
of genes are similar by comparing the similarity between the two lists of
functional annotations. In other words, this approach is addressed to know
how well a measure captures the similarity in function between these lists
of genes. However, this question is not trivial, because there is no fashion
solution for determining the true functional similarity between two lists of
genes. Different measures have been proposed, but they are still a subject of
debate ([122]). Even so, different tools have implemented such measures. In
this regard, instead of providing an specific measure, we have considered an
alternative approach based on what we called semantic similarity profile.

Given an ontology, we define a semantic similarity profile as the list of
semantic similarity measures between all the pairs of terms from an induced
subgraph given by a list of selected objects. Thus, when we focused on
the GO and we would like to compare two lists of genes, the idea is to
map these lists of genes to the GO, and compute the semantic similarities
between all the pairs of GO terms based on this common induced subgraph
but twice, one, the semantic similarities based on the first lists of genes and,
two, based on the second list of genes. Therefore, we obtain two different
lists of semantic similarity profiles. Figure 4.1 shows the schema for two
hypothetical lists of genes and a fake of the GO.

Then, with these semantic similarity profiles in hand, we have implemented
some functions for yielding a summary that consists of:

1. An statistic descriptive for each profile of semantic similarity measures.

2. A Mantel’s Test ([101]) for examining the association between the dis-
tance matrices (i.e. the similarity matrices).

3. The Cosine Similarity ([147]) for determining the similarity between
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e ] DAG of a GO Domain

Pairs Sem. Sim. 1 Sem. Sim. 2

GO2:GOo1 sim (go2, gol)

. GO03:GO1 sin (go3, gol)

GO10:GOI  sim (£010, gol)  =im (5010, goi)

Figure 4.1: Schema for comparing two semantic similarities profiles associ-
ated with the two lists of genes respectively.

the two semantic similarity profiles.
This summary is also accompanied by three plots:

1. An histogram of the semantic similarity profiles that shows both dis-
tribution in the same figure.

2. A vertical bar diagram, whose bars are associated with the semantic
similarities between each pair of terms.

3. An induced subgraph of the GO domain associated with (one or) both
lists of Entrez Gene Identifiers.
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Chapter 5

Discussion

This part of the thesis focused on the exploration of two different semantic
similarity approaches to deal with Gene Ontology (GO) ([148], [149], and
[150]) terms, in order to give a biological interpretation to the resulting find-
ings associated with high-throughput data generated in omic experiments.
The research tried to show that both approaches are related to the concept
of metric distance, on the one hand, and, on the other hand, to developing
an R package for computing semantic similarity measures between ontology
terms and comparing semantic similarity profiles.

There is no unique methodology for giving biological meaning to a given list
of genes. We saw that depending on the approach used to synthesize the
mapping between the genes list and the Gene Ontology (GO), graph theory
([43], [17]) may be helpful for answering common questions (see section
3.2.2). But there are also other alternatives like the Partially Ordered Sets
(POSET) theory ([135], [39], and [51]). The first approach that we studied
was framed in graph theory and was a semantic similarity measure proposed
by Lord et al. ([98]). It is one of the so called node-based approaches (see
section 3.5.3). The second measure was a pseudo-distance, which is framed
in POSET theory, and was proposed by Joslyn et al. ([85], [84], [83]). This
measure is an edge-based approach (see section 3.5.3). So, in order to deal
with a complex structure such as the GO, large lists of concepts about both
theories were introduced.

When we focused our effort in the Lord’s measure we realized that a step
backwards was necessary. After surveying graph theory concepts, our
research led us to focus on Carey’s framework ([23]). Carey took advantage
of the definition of an ontology and described relationships between terms
as refinements. But, we emphasized that refinements are an alternative
way to describe the relationships between nodes in a graph (see section
3.3.1). Likewise, refinement matrix and accessibility matrix concepts are
both of interest because they are associated with the graph structure of an

103
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ontology and many relevant measures may be derived from them. Based on
these concepts, Carey suggested the idea of an Object-Ontology Complex
(OOC). This structure allows us to relate a list of objects (e.g. genes) to
the vocabulary of an ontology (e.g. GO terms) through a mapping matrix
that assigns each object to the terms organized in a Directed Acyclic Graph
(DAG) (e.g. the GO DAG) associated with the ontology. Once the usage of
the graph theory concepts in terms of Carey’s framework was described, we
could focus on the semantic similarity measure proposed by Lord et al. This
measure is based on the Information Content (IC) concept (see section). It
was proposed by Resnik ([128]).

The literature offers a large list of measures for computing the semantic
similarity between GO terms. Most of them rely on the length of the shortest
path. These methods suggest that the closer two nodes are, the more similar
they are. However, when dealing with the GO, ontology DAGs generally
speaking, this strategy does not capture the meaning of the links between
terms. Resnik suggested a measure that was based on the probability of
appearance of a GO term, which is the IC. However, we detected that the
properties associated with the definition suggested by Resnik, as well as
other concepts proposed in the bioinformatics literature, sometimes show
a lack of clarity. Thus, in a minor contribution we proved the monotonic
property of the probability theory adapted to Carey’s framework (see section
3.3). Moreover, we saw that the IC captures the importance of the meaning
of a single term and the OOC revealed that the root is the most abstract
term. Therefore, based on the monotonic property we proved that the
root node of an ontology is the term with the lowest IC, which is in fact null.

Based on the IC, Resnik introduced a semantic similarity measure that
depends on the Most Informative Common Ancestor (MICA) (se section
3.5.3). The idea is that the IC of GO terms relies on the relationships
given by the DAG structure of the ontology. Thus, the shared informa-
tion between two terms is usually proportional to the IC of the MICA
in the rooted DAG. In this regard, Lord et al. ([98]) argued that such
a measure only selects the one common ancestor, and they suggested
an alternative measure that depends on the minimum probability of a
term when there are more than one shared parents. However, in a ma-
jor contribution of this thesis we proved that such a “new” measure of
semantic similarity is in fact the same as the one proposed by Resnik ([128]).

With respect to the IC we suggested a proposition that allows us to
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compute the matrix with the number of times that each term or any of its
specializations refer to a specific ancestor, and a corollary that allows us to
compute the number of times that a term or any of its refinements appears
in the OOC. Some parts of the proofs associated with these results were the
clue when we developed some R functions of the package sims for computing
semantic similarities. Moreover, based on the idea that a distance can be
computed in terms of a similarity, we proved that by rewriting Resniks
second measure as a distance, then it is in fact a metric distance (see section
4.2.2.2).

The pseudo-distances proposed by Joslyn et al. ([84], [85], [83]) are based on
POSET theory as mentioned above. Joslyn’s approach is a totally different
strategy for four main reasons. First, it is an edge-based approach, which
means that the measures are computed based on the topology of the DAG.
Second, they are not semantic similarities, they are “distances”. That is, the
inverse idea of semantic similarities, which does not mean the mathematical
concept of inverse function. Third, Lord’s measure is based on the IC, which
is a probabilistic point of view, and Joslyn’s measures are an algebraic
point of view. And fourth, pseudo-distances can only be computed between
comparable terms, which are not the case with the Lord’s measure.

When we focused our effort on pseudo-distance, we realized that Joslyn et al.
defined a good mathematical framework. It is based on the POSET theory
and suggests constructing a POSET Ontology (POSO) structure in order
to establish the relation between the objects and terms mentioned above
(see section 3.4.6). We highlighted that POSETs are general combinatorial
structures basically equivalent to DAGs (see section 3.4). But, what is clear
is that the is a certain level of analogy between the OOC and the POSO
(see section 4.2.1). The concepts used in the definition of the POSO and
in OOC can be easily linked. The poset is the vocabulary of the Ontology,
the set of objects is the Object in the OOC, and the mapping function is
the mapping between the Ontology and the list of objects in the OOC.
Therefore, we emphasized that both structures were in fact two ways for
formalizing mathematically “how to attribute biological meaning”.

We saw that pseudo-distances are useful measures for computing how
"different” two terms in a POSET are. However, these types of measures
only make sense when we are considering comparable terms. But, when
restricting ourselves to these comparable terms, a pseudo-distance is actually
a distance, and by focusing on the minimum chain length measure we proved
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that it is a metric distance. In this regard, we highlighted that by assuming
comparable terms we could prove that the other pseudo-distances are metric
distances too 4.2.3.

The second specific objective was the development of an R package for
computing semantic similarities between ontology terms. This package was
called sims. It allows us to compute semantic similarities between terms
in an arbitrary ontology. That is, it is not restricted to the GO. To do
this, the key point is an object of class S4 called 00C. It is merely used as
a container for the ontology vocabulary, the refinement matrix associated
with the ontology, the list of objects and the mapping matrix. Fourteen
measures from different approaches were implemented. Specifically, from
the node-based approach the seven semantic similarity measures proposed
by Resnik ([128]), Lin ([97]), Schlicker et al. ([134]), Jiang and Conrath
([82]), Mazandu and Mulder ([107]), Pirré and Seco ([124]), and Pirré and
Euzenat ([123]) were implemented. With regard to edge-based approaches
the two semantic similarity measures proposed by Resnik ([128]), and Rada
et al. ([127]) were implemented, as well as the distance measure proposed
by Rada et al. ([127]) and the four initial pseudo-distances proposed by
Joslyn et al. ([84], [85], [83]).

The package can manage any ontology as mentioned above, but it was also
designed for proving specific functions devoted to dealing with the GO. In
this regard, there are some functions that allow us to build the refinement
matrix associated with the induced subgraph of the GO, the mapping matrix
that assigns a list of Entrez Gene IDs to the GO IDs. In addition, due to
the fact that a researcher sometimes needs to compare two lists of genes in
terms of their biological annotation, the sims package has some functions
intended to do this task. Given the two lists of genes, the idea relies on
looking for all the GO terms where both lists of genes are annotated, then
extracting the common induced subgraph from the GO DAG and computing
the semantic similarities associated with each list. These facts allow us to
build what we called the semantic similarity profiles (see section 4.2.5).
Based on these profiles, the package allows us to compute some descriptive
statistics associated with each profile, perform a Matel’s Test and calculate
the cosine similarity measure, as well as plotting different types of figures
that help us to compare similarities or differences between both groups of
semantic similarities profiles.

During the package development process, some functions that we were
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programming suggested algorithms that could be used for proving some
basic properties of the graph theory. The most representative was the
Handshaking Theorem and its corollary (see section 4.1.1). After surveying
the literature ([155], [155]), ([17]) we observed that our ideas could be
conceived as an alternative way to prove these properties. For this reason,
we thought it appropriate to provide such formalisms as minor contributions
(see section 4.1.1).

There are other packages for computing semantic similarities available on
the Bioconductor project ([63]) website: the GOSim ([59]) and the GOSemSim
([165]). They are good packages for measuring semantic similarities between
GO terms. However, the sims package goes one step further than these.
As was mentioned above, it does not exclusively depend on the GO terms
because we can compute semantic similarities between terms of an arbitrary
ontology. Furthermore, while GOSim and GOSemSim provide five and four
similarity measures based on node-based approaches, sims provide fourteen
measures based on node-based and edge-based approaches. However, GOSim
and GOSemSim offer the possibility of computing functional similarities, and
sims package do not. That is, they can calculate a specific number based on
a similarity measure for two lists of genes or two lists of GO terms. However,
in our opinion this type of computation does not provide a complete
biological understanding about the differences or similarities between the
two lists of objects that are being compared. For this reason we thought
it suitable to provide a statistical point of view, and so we introduced the
semantic similarity profiles concept as mentioned above. Finally, we did
not perform a formal comparison between the three packages. However, we
observed that our package seems to perform computations more quickly than
the other. We think that this might be due to the fact that our functions
are based on matrix algebra and that they apply computational loops. In
this regard, it would be interesting to mathematically or empirically study
such a priori observed differences.

Natural extensions of this research might be divided in two main lines of
work. On the one hand, the study that we have conducted on the relationship
between the measures from node-based and edge-based approaches and the
metric distance could be extended to hybrid-based approaches. Moreover, it
would be interesting to try to find a theory that would unify the different
approaches and allows you to switch from one type to another approach. On
the other hand, we have observed that sims shows a very interesting behavior
when it is performing the computations. sims seems to calculate semantic
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similarities very fast. We think that this may be because, after doing a quick
inspection of the functions from the other packages seems to suggest that they
have adopted a computer-based approach by considering loops, however, we
have implemented the functions by applying a matrix approach. Neither an
empirical study nor a theoretical proof based on the order of computations
has been performed in order to validate our suspicion about the speed sims.
So, obviously, it would be interesting to perform this task. However, unlike
the other packages, sims does not provide normalized semantic similarity
measures. Therefore, if a user wants to compare the results performed with
different measures, and even to combine them, it could not be done at the
current state of the package. Therefore, an extension in this direction would
be very valuable.
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Experimental omic technologies ([141]) have become both popular and
affordable over the last decade, leading to a considerable increase in exper-
iments and publicly available functional data sets. These high-throughput
methodologies pose different challenges: the experiment itself, the statistical
analysis of the data ([136]) and the obtaining of biological knowledge from
the data ([144]). For example, in gene-expression studies, it is very common
for the statistical analysis to yield long lists of genes and one of the main
challenges is how to give these lists a biological interpretation ([131]).
It might be reasonable to expect that this could be done relying on the
information stored in the existing biological databases, which can help to
relate the experimental results with previously existing biological knowledge.

The Gene Ontology (GO) has been presented, in section 1.2 of chapter 1, as
a useful resource to provide biological interpretation and to answer the need
of automation ([148]). The GO is a cooperative project, which was set in
motion in the late 90s, developed and maintained by the GO Consortium
([148], [149], [150]). Briefly, it is an annotation database originated “to
provide a controlled vocabulary to describe gene and gene product attributes
in any organism”. It consists of three ontology domains: Biological Process
(BP), Molecular Function (MF) and Cellular Component (CC). Each of
them is represented as a Directed Acyclic Graph (DAG) ([43]) with two
kinds of relationships (is-a and part-of) and whose nodes are the GO terms
arranged from the most specific ones at the bottom to the top which is the
most general term. The gene products may be linked to one or more GO
terms in these ontologies. Thus, when a given gene has been annotated to a
GO term it is also linked to its related nodes.

In recent years, many tools have been developed to assist with the analysis
of experimental results based on the GO. Some of these tools are intended
to manage functional annotations while others are specific for analyzing
gene lists and many allow both possibilities ([89]). The scientific community
has rapidly moved from lacking the appropriate GO tools to having a wide
range of applications with, apparently, very similar capabilities. It seems
reasonable to ask ourselves whether it is worthwhile to keep developing new
variants of the same programs. We may have reached the point where most
of the needs might be solved by already existing tools and the question has
simply shifted to decide which of these tools, among those available, is the
one that best fits the objectives that are being pursued.

This part addresses the second main objective of this thesis in 2.2.1. That is,
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“to classify and study the evolution of GO tools for enrichment analysis”. To
carry out this classification and study of GO tools, specific objectives stated
in section 2.2.2.1 are answered one by one. Thus, in chapter 6 material and
methods associated with specific objectives are introduced or described, in
chapter 7 results associated with specific objectives are presented, and finally,
in chapter 8 results are discussed.



Chapter 6

Material and Methods

This chapter introduces and describes materials and methods used to an-
swer the five specific objectives of this second part of the thesis in 2.2.2.1.
Thus, each main section of the chapter is associated with one of the specific
objectives. Briefly, in order to establish a list of standard functionalities for
classifying the reviewed tools, the first section explains how the selection pro-
cess of tools for enrichment analysis based on the GO was conducted. The
second section describes the criteria used to define an Standard Functionali-
ties Set, and how the tools reviewed were classified based on their capabilities
and according to this set of standard features. Based on this set of standard
functionalities, the third section is intended to describe how a web-tool called
SerbG0, devoted to both searching for and comparing GO tools, was designed
and implemented. The fourth section presents the statistical methods that
have been used to study the evolution of the original GO tools, which were
classified and stored in the SerbGO database in order to identify models or
patterns of tools according to their capabilities. Finally, the fifth section
presents basic concepts and principles of ontologies and how they have been
used to develop an ontology called DeGOT.

6.1 Selection of GO Tools

A long list of applications available at the GO website was re-
viewed from the existing literature ([148]). Due to the high
heterogeneity among different types of tools it was decided to
focus only on  Tools for Gene Expression/Microarray Analysis
(http://www.geneontology.org/G0.tools.microarray.shtml).

These tools use either the ontologies or the gene associations provided by the
GO Consortium to facilitate the analysis of gene expression data. It must
be noted that the presence in the GO website does not imply approval by
The GO Consortium ([152]) and does not mean these tools have been either
tested or found to use the information accurately. As the GO Consortium
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staff says, this list “is provided to promote an exchange of information
between users and software developers”.

The list of applications which was finally included with the associated pro-
moter entity and references is provided in table 6.1.

GO Tool Promoter Entity Reference
CLENCH Huck Institutes of the Life Sciences, Penn State [137]
DAVID National Institute of Allergy and Infectious Diseases [40]
EASE [40]
eGOn Norwegian University of Science and Technology and Norwegian [116], [13]
Microarray Consortium
ErminelJ Center for Computational Biology and Bioinformatics, -
Columbia University
FatiGO Bioinformatics Department at the Centro de Investigacion [3]
Principe Felipe (Spain)
FuncAssociate Roth Computational Biology Laboratory, Harvard Medical School [16]
GARBAN University of Navarra, Spain [105]
GeneMerge Harvard University [26]
GFINDer Bio-Medical Informatics Laboratory at the Politecnico di Milano [106]
GOArray Yale Center for Medical Informatics -
GoMiner Genomics and Bioinformatics Group of LMP, NCI, NIH [166]
MatchMiner and Medical Informatics and Bioimaging group of BME, [21]
Georgia Tech/Emory University
GOstat Walter and Eliza Hall Institute of Medical Research, Melbourne, (12]
Australia
GoSurfer Harvard School of Public Health [169]
GOTM University of Tennessee Genome Science and [168]
Technology and Oak Ridge National Laboratory (ORNL)
GOToolBox Developmental Biology Institute of Marseille [104]
MAPPFinder Gladstone Institutes, University of California [44]
NetAffx Affymetrix [29]
Onto-Tools Intelligent Systems and Bioinformatics Laboratory, Wayne [46],[88]
State University
OntoGate(OntoBlast) Max Planck Institute for Molecular Genetics (167]
Ontologizer Charité University Hospital, Germany [129]
Ontology Traverser Baylor College of Medicine [164]
SeqExpress SeqExpress [19]
SOURCE Stanford Microarray Database [42]
THEA Virtual Biology Lab at the Institute of Signaling, Developmental [120]

Biology and Cancer Research

Table 6.1: GO tools selected for defining the and Standard Functionalities
Set.

Most of these programs are constituted by only one platform. However,
some of them are added in different tools (e.g. GoMiner and MatchMiner
or DAVID and EASE). According to this, it must be advised that in or-
der to facilitate the review and the selection process, five different pro-
grams, namely, Onto-Compare, Onto-Design, Onto-Express, Onto-Miner
and Onto-Translate, whose promoter is the Intelligent Systems and Bioin-
formatics Laboratory, were considered as only one platform that has been
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called Onto-Tools.

6.2 Definition of Standard Functionalities
Set and Classification of GO Tools

The review yielded a substantial number of heterogeneous features, which
were grouped into a potential set of functionalities. After several iterations,
the features initially selected were converted into specific functionalities
once redundancies were excluded. This process resulted in a set of features
arranged in 205 standard functionalities.

Capabilities of each GO tool analyzed were classified in situ according to
the Standard Functionalities Set and by taking the following criteria into
account:

1. The functionality was available in the GO tool.

2. The functionality was mentioned in the publication but it could not be
validated.

3. The functionality was neither found in the paper nor in the application.

6.3 SerbGO0: Searching for the Best GO Tool

SerbGO is a web-based application designed to:

1. facilitate for researchers the task of determining which of the existing
tools are appropriate for their needs and

2. to enable a comparison between some of the available tools.

Figure 6.1 shows the workflow to perform both actions of analysis.
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Query for.. Outputs

‘ ‘ type ‘ ‘ annotation

‘ species H main H statistics ‘

Figure 6.1: SerbG0 workflow

Functionalities of
GO Tools selected

GO Tools with the
capabilities selected

6.3.1 Implementation of SerbG0

SerbGO is a web tool developed in PHP ([1]) using the ADOdb Database
Abstraction Library for PHP ([96]) and the Javascript language
([108]) to increase its interactivity. It works accurately on most of the
web browsers. It has been adapted and validated specifically for Mozilla
Firefox, Internet Explorer, Konqueror, Chromium and Opera web
browsers.

Information about tools and their functionalities have been stored in a
database implemented in the open source relational database management
system MySQL ([76]).

6.4 Evolution and Clustering of GO Tools

Periodically, but not regularly, the SerbGO database is reviewed. Such
reviews consist of three basic steps: removing tools that are no longer
available, updating the classification of existing tools when promoters
modify their capabilities, and appending records with new tools available at
the GO Consortium website. This fact led us to observe a certain degree
of evolution in tools classified in the SerbGO database. For this reason we
decided to conduct a statistical study, based on the monitoring of all the
tools included in the first version of SerbGO0, in order to discuss the evolution
of the functionalities, and to observe if some form of clustering of GO tools
exists.
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The following subsections describe the data and the statistical methods that
have been used to perform such a statistical analysis.

6.4.1 Data
6.4.1.1 Raw Data

Data analysis is based on the number of standard functionalities that 26 tools
had available in 3 different years (2005, 2007 and 2009). These tools are the
list of the original GO tools stored in the first SerbGO database. For list
of GO tools, six of the tables (type, species, data, annotation, statistics and
outputs) stored in SerbG0O database (see section 7.3.2), corresponding to each
year, were downloaded.

6.4.1.2 Homogenization of Raw Data

After downloading information from SerbGO, an homogenization process of
raw data has been performed in order to reduce redundancies. This process
consists of three steps:

1. To homogenize some field names from 2005 tables. During the sub-
mission process and after publication of SerbGO, it was necessary to
introduce some modifications in the PHP code and the structure of the
database. Due to this fact some field names were modified.

2. To relabel functionalities mentioned in references but not validated. It
does happen sometimes that a functionality is mentioned in the refer-
ence reviewed, but it is not possible to validate it in situ (see section
6.2). When this situation occurs, a number 9 is stored in the associ-
ated record instead of annotating either a number 1 (i.e. functionality
present) or a number 0 (i.e. functionality absent). Thus, since this
analysis prefer to be conservative, values 9 have been relabeled, as
missing functionalities, that is, as values 0.

3. To reduce functionalities that are too specific, which by themselves do
not provide extra information and would add redundancy to the data.
Some functionalities from different tables (see section 6.3.1) are highly
specific. Actually, they are rarely used for an specific analysis, and
have remained as a mere property of SerbG0. Thus, these characteris-
tics have been removed from the tables because their major immediate
functionalities already hold the relevant information.
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The homogenization of these tables resulted in a reduction of the number of
functionalities. From the original 205 standard functionalities, 178 function-
alities have been selected and pre-processed to be analyzed.

6.4.1.3 Data Matrices

For each year, the seven homogenized tables were merged into one unique
matrix of large data. That is, data analysis has been based on three binary
matrices’ such that each matrix describes the capabilities of the GO tools
under study through the functionalities selected for a specific year (i.e. 2005,
2007 or 2009). Formally, that is:

Func. 1 Func. 2 ... Func. m
GO tool 1 T11 T12 c. T1im
GO tool 2 x x e Tom
H] . .21 .22 2 = Xyear
GO tool n Tnl Tna . Tom

where

1 GO tool ¢ has the functionality j
! 0 otherwise.

6.4.2 Statistical Methods

The statistical analysis to study the evolution and clustering of functionali-
ties of GO tools has consisted of descriptive statistics, and inferential and a
multivariate analyses. The following subsections describe the methods used
in each part of the analysis.

The data analysis has been performed with the statistical software R ([126])
supported by some extra packages, and explicitly programmed functions.
These functions and raw data can be downloaded from the GitHub repository
https://github.com/jlmosquera/gotoolsevolution.

6.4.2.1 Descriptive Statistics Methods

Descriptive statistics have been performed to provide basic summaries about
samples and observations. It may be used to describe relationships between
pairs of variables. In this case, descriptive statistics include:

LA binary matriz (aka zero-one matrix or boolean matrix) is an integer matrix in which
each element is 0 or 1.
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e (Contingency tables: to show frequencies of the number of standard
functionalities present in each GO tool for each year. These tables
are presented globally and disaggregated by section. Each contingency
table is accompanied by its bar diagram.

e Bar diagrams: to display in the same plot the distributions of the
functionalities associated with each year.

6.4.2.2 Inferential Analysis Methods

Inferential analysis has been used to test hypotheses such as whether or not
differences exist between frequencies of functionalities from different years.
To be more specific, both globally and through disaggregating by sections,
the following inferential methods were performed:

e Chi-Squared Tests of Homogeneity ([115]): to test whether frequency
counts of GO tools are distributed identically across different years.
These tests were accompanied by the following descriptive plots:

— Boaxplots: to display graphically the number of functionalities of
GO tools per year.

— Scatterplots: GO tools are displayed as a collection of points in
a diagram of Cartesian coordinates, where values of each axis are
the frequencies of functionalities associated with each GO tool per
each pair of years.

e Locally Weighted Regression (Loess): to provide a graphical summary
of the relationship between frequencies of functionalities available in
GO tools for two different years, smooth curves and their confidence
bands were fitted to scatterplots.

Loess is one of the most popular smoothing methods to model a relation
between an explanatory variable and a response variable, by locally fitting a
polynomial curve ([30], [31], [33]). Here, loess curves were fitted to explain
the number of functionalities available in GO tools in one year based on
the number of functionalities available from a previous year. That is, the
number of functionalities available in each GO tool were represented in
scatterplots for each pair of years (i.e. 2005 ws. 2007, 2007 wvs. 2009, and
2005 ws. 2009) and for each of them a Loess curve and their confidence
bands were fitted in order to model the evolution of GO tool capabilities
from one year to a later on.
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Loess has been performed using the function loess from the R package stats
([126]). This function is based on the method purposed by Cleveland et al.

([32]).

6.4.2.3 Multivariate Analysis Methods

Multivariate analysis has been performed in order to explore the behavior
of GO tools according to their capabilities over time. That is, multivariate
methods have been applied to study how the different programs are grouped
according to their capabilities throughout the years. The multivariate meth-
ods that have been applied in the analysis are:

e Hierarchical Clustering: to identify groups of GO tools.

e Multidimensional Scalings (MDS): to obtain spatial representations in
reduced dimensions of each dissimilarity matrix and help with the task
of identifying potential clusters.

o Mantel Test: to study the association among the three dissimilarity
matrices.

The following paragraphs introduce and describe some basic concepts of
these multivariate methods in short.

Multivariate analysis has been performed using different R ([126]) functions
from packages fpc ([75]), MASS ([156]), rgl ([2]), stats ([126]), and vegan
([118]), and some specific functions have been developed for this analysis.

Similarity Coefficients and Dissimilarity Matrices

For each initial data matrix X, (see section 6.4.1.3) two different sim-
ilarity measures have been used afterwards to compute their associated
dissimilarity matrices. The first is the Jaccard Coefficient ([81]), and the
second is the Matching Coefficient ([143]). Dissimilarities were derived
from similarities using the formula suggested by Cuadras ([38]) (see section
3.5.1). These similarity measures have been calculated based on the counts
of matches (i.e. 1) and mismatches (i.e. 0) for each functionality and each
pair GO tools ¢ and j (see table 6.2).

Dissimilarity matrices based on the Jaccard coefficient have been computed
using the R function vegdist from the package vegan ([118]), and dissim-
ilarity matrices based on the Matching coefficient have been explicitly pro-
grammed.
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GO tool j
1 0 Total
GO Tool i 1 a b a+b
0 c d c+d

Total a+c¢c b+d m=a+b+c+d

Table 6.2: Contingency table displaying frequencies for each particular com-
bination of matches (i.e. 1) and missmatches (i.e. 0) of two arbitrary GO
tools.

Hierarchical Clustering

An agglomerative hierarchical clustering ([103], [52], [53], [73]) for each
dissimilarity matrix has been performed. The metric distances used have
been based on the Jaccard and Matching coefficients as mentioned in
previous section 6.4.2.3, and Average Link (aka UPGMA) has been used as
criterion of clustering method ([143]).

In order to visualize similarities between GO tools and to try to identify
how they are grouped, for each dissimilarity matrix a dendrogram ([103],
[52], [53], [73]) has been plotted.

Hierachical clustering analysis has been performed with the R function
hclust from the package stats ([126]).

Determination of the Number of Clusters

In order to identify the optimal number of clusters, Silhouette plots ([53],
[87]) based on the non-hierarchical method of Partitioning Around Medoids
(PAM) ([53], [87]) have been applied.

The PAM algorithm has been run several times for different numbers of
clusters, in order to compare the results and determine what the “optimal”
number of clusters is. This has been done by using the R function pam from
the package fpc ([75]). This function was not in fact executed directly, but
was included in out own function written for this analysis.

Average Silhouette Widths for the entire data sets ([53],[87]) have been used
for calculating the Silhouette Coefficients (SC) ([87]), and determining what
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the “optimal” number of clusters should be. Table 6.3 gives some hints for
interpreting the SC values ([87]).

Range of SC' Interpretation
(0.7, 1.0] A strong cluster structure.

(0.5,0.7] A reasonable cluster structure.
(0.2,0.5] A weak or artificial cluster structure.
<0.25 Lack of substantial cluster structure.

Table 6.3: Interpretation of Silhouette Coefficient.

Specific functions have been coded for generating bar plots of the Average
Silhouette Widths for the entire data set with respect to the number of
clusters. In each of these plots a red point indicates the Silhouette Coefficient.

Multidimensional Scaling

Two different Multidimensional Scaling (MDS) ([36], [18], [20], [18]) strate-
gies have been performed for each dissimilarity matrix 6.4.2.3: a metric
MDS based on the Classical Multidimensional Scaling ([153], [154], [65]),
and a non-metric MDS based on Kruskal’s Non-metric Multidimensional

Scaling ([91], [138], [139)]).

Classical MDS’s have been performed using the R function cmdscale from
the package stats ([126]), and Kruskal’s Non-metric MDS have been
performed by using the R function isoMDS from the package MASS ([156]).

In order to assess the Adequacy of Dimensionality ([53], [52]), the agreement
measure P2 proposed by Mardia et al.? ([103]) has been calculated for each
dimension of each classical MDS solution performed. They are shown as
percentages in labels of z— and y—s axes of scatter plots associated with the
MDS solutions. But also, in order to show what the “explained variability”

2The agrrement measure P2, proposed by Mardia et al. is defined as

m 2

2 _ 2ic1 A
m n—1 92
21 A

where \; are the eigenvalues associated with the matrix B = XX7T, and where X, is
the matrix of the coordinate axes of the MDS space.
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(i.e. the accumulated measure of agreement) is for each component of each
classical MDS solution, bar diagrams displaying the measures of agreement
P2 with respect to the number of dimensions have been plotted.

Stress-1% proposed by Kruskal ([91]) for measuring the lack of fit be-
tween ideal distances and fitted distances has been calculated for each
resulting solution from Kruskal’s Non-metric MDS performed. Table 6.4
shows some hints suggested by Kruskal ([91]) for the interpretation of stress.

Stress (%) Goodness of fit

> 0.20 Poor

0.100 Fair

0.050 Good

0.025 Excellent
0 Perfect

Table 6.4: Stress and goodness of fit of the MDS solution based on the
guidelines suggested by Kruskal ([91]).

However, due to the fact that stress measure has been the object of some
criticism ([160], [18]), Scree plots and Shepard diagrams ([18], [69]) have
been plotted too.

Specific functions have been programmed for computing Adequacy and stress
01(X) and yielding Scree plot and Shepard diagram for each MDS solution.

Mantel Test

In order to test the correlation between dissimilarity matrices, two tests
have been applied®: the simple Mantel Test ([101], [102]), and the Partial

3The Stress-1 proposed by Kruskal ( is defined as
\/Zz;ﬁg 1.. n plj) - dl](X))Q
175] 1..n d’LQ] (X)

where f(p;;) are the ideal distances in the m-dimensional space X, and d;;(X) are the
fitted distances.

4These tests might of course be placed in the Inferential Analysis Methods 6.4.2.2, but
we decided to include these methods in this section because dissimilarity matrices are
involved.



6.5. DEGOT: AN ONTOLOGY FOR DEVELOPING GO TOOLS 124

Mantel Test ([142], [92], [93], [100]). The first has been performed for testing
the correlation between each pair of dissimilarity matrices, and the second
has been performed for testing the correlation between two dissimilarity
matrices, while controlling the effect of the third dissimilarity matrix, in

order to remove spurious correlations®.

The Mantel Test and Partial Mantel Test have been performed with the R
functions mantel and mantel.partial, respectively, from the package vegan

([118]).

6.5 DeGOT: An Ontology for Developing GO
Tools

When a researcher needs to give a biological interpretation to the results
yielded in an omic experiment, she/he often makes use of the information
stored in the GO 1.2. In section 6.1, it was mentioned that a large quantity
of methods and tools for mining and managing information stored in the GO,
have been developed during the last decade. In this sense, the definition of a
Standard Functionalities Set 6.2, and subsequent classification of GO tools
based on their capabilities, and according to this Standard Functionalities
Set was required. This fact allowed us to build the SerbG0 database and
its associated web application to query GO tools that more or less fit the
goals that are being pursued by a researcher, or who wants to compare
capabilities of different programs.

In next chapter 7 below, we will see that results of data analysis about
the evolution of GO tools (see section 7.4) suggest that most of the needs
associated with the traditional enrichment analysis are covered. However,
many developers are still working on GO tools, either by improving them or
by programming new ones.

Developing a new program is not an easy task. Many factors must be taken
into account and many relevant questions must be answered during the period

of program design. For example,

e What type of user is the tool intended for?

SMantel developed an asymptotic test, but we have used permutations. There are
different permutation procedures [92]. In this analysis the method applied is based on
permuting the objects in the first matrix so that the correlation structure between second
and first matrices is kept constant ([92]).
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e For what types of questions should the information stored provide an-
swers?

e What are the species that the tool will cover? Should the tool actually
be independent from the species?

e Which statistical methods are going to be used?
e Who will curate the tool?

e What kind of structure of information is going to be supported in this
resource?

e What kinds of inputs and outputs are going to be required?

As a starting point, SerbG0 is a good tool to answer some of these questions
and so help developers have an idea about what kinds of functionalities are
“usually” implemented. However, the dynamism of the needs of potential
users and improvements in methodologies, make the design of a new GO tool
a necessary task. Therefore, in order to help with these kinds of questions,
an ontology called DeGOT (for Developing GO Tools) has been built.

DeGOT is an ontology intended to help developers build a new GO tool,
as well as to perform more complex searches than in SerbG0. The reason
for building an ontology is that in a relational database, such as SerbGO,
concepts are stored using tables, however the system does not contain any
information about what these concepts mean and how they relate to each
other. Ontologies do provide the means to store such information, which
allows for a much richer way to store information. This also means that a
user /developer can perform fairly complex and advanced queries.

Ontologies are one of the backbones of the Semantic Web ([14], [74]), al-
though they do not have an standard definition. There are many ways of
defining and developing ontologies ([67], [68]). For the purposes of this the-
sis, and for a better understanding of how DeGOT has been implemented and
developed, basic concepts about ontologies and semantic webs are introduced
in the following subsections.
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6.5.1 Basic Concepts of an Ontology

In general, ontologies are used for capturing conceptualizations of knowledge
domains and then facilitate both communication between users or researchers
and the usage of domain knowledge by computers for multiple purposes.

6.5.2 Domain of Knowledge

Formally, a Domain of Knowledge is a form of cognizance used to refer to
an area of human effort, an autonomous computer activity, or another spe-
cialized discipline ([77]). For instance, the GO project provides ontologies
to describe attributes of gene products in three nonoverlapping domains of
molecular biology knowledge: Molecular Function (MF), Biological Process
(BP), and Cellular Component (CC).

6.5.3 Structure and Constructs of an Ontology

The way that an ontology tries to describe the concepts in a domain of
knowledge, as well as the relationships that exist between those concepts,
is by providing formal explicit descriptions. These formalizations are based
on three main components or components of information: classes, properties
and role restrictions. Without going into details:

e classes of objects denote concepts of the domain (sometimes they are
also called concepts),

e properties (aka roles or slots) describe features and attributes of each
concept, that is they are the relationships, and

e 7ole restrictions (or facets) are restrictions on properties.

For example, in the GO, the term Signal Transduction denotes the concept
of The cellular process in which a signal is conveyed to trigger a change in
the activity or state of a cell. It has a property that consists in Cell Surface
Receptor Signalling Pathway ts a Signal Transduction. But, there is a
restriction and it is that only Regulation of Signal Transduction regulates
the Signal Transduction.

There is a last component called individuals that are instances of a class.
They are not necessarily defined in an ontology structure. For example, GO,
like many ontologies, does not use instances. Terms in GO represent a class
of entities or phenomena, rather than specific manifestations thereof. The
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reason is mentioned in subsection 6.5.2, the GO describe attributes of gene
products, but genes are not individuals of these, even, of course, if they have
been linked in terms. An individual, ontologically speaking, is a specific
example of something. For example, a molecular biologist is a scientis, but
James Watson and Francis Crick are two different instances of a molecular
biologist, rather than a subtype of molecular biologist. However, if we know
that a molecular biologist is a scientist, then it can be said that every instance
of a molecular biologist is a scientist. Thus, an ontology, together with a set
of individuals of classes, constitutes a Knowledge Base®.

6.5.4 Basic Concepts of a Semantic Web

Nowadays, most of the web content generated is intended for human
comprehension, but not for computers. Lets see a couple of examples.
First, when the web content is provided automatically by a computer,
the information is often presented without an appropriate structure that
permits us to perform other processes later on. Second, when a user tries
to extract information, usually, he/she has to fill out forms. However, such
formularies are sometimes designed to access the information, with the
exception of keyword-based searches (e.g. Google, Yahoo,...). But, even in
these cases, keyword-based searches show several drawbacks. For instance,
results are highly sensitive to vocabulary, human involvement is necessary
to interpret and combine results and web searches are not readily accessible
by other software tools. In summary, the meaning of Web content is not
machine-accessible, there is a lack of semantics ([74]). An approach to solve
this situation is the Semantic Web.

A Semantic Web (or vocabulary) is a collection of URIs” with described
meaning or a special type of ontology. That is, a Semantic Web represents
the web content in a much easier way to be processed by machines, and allows
the use of intelligent methods to take advantage of these representations.

6.5.4.1 Semantic Web Languages

Most of the web content is programmed for human readers rather than
software tools as mentioned above. In order to reduce the lack of processing

SA knowledge Base (KB) is a technology used to store complex structured and unstruc-
tured information used by a computer system ([95]).

" Uniform Resource Identifiers (URISs) ([74]) are a way of identifying resources, specially
but not exclusively on the Web.
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capabilities having software tools, the scientific community has been de-
veloping semantic web languages that allow both humans and machines to
read, interpret and process the data.

The most relevant semantic web languages are briefly described in the fol-
lowing paragraphs.

HTML: HyperText Markup Language

HyperText Markup Language (HTML) is a standard markup language used to
create web pages ([66]). This language is written in the form of elements
consisting of tags (vocabulary). Thus, when a web browser reads an HTML
document, then it does not display the tags, but uses these tags to interpret
the content of the page.

HTML was originally conceived as a semantic language free of presentation
details. However, some browser vendors developed attributes and elements
devoted to improve the presentation of the web contents. It is hardly sur-
prising that web pages are predominantly written in HTML. Thus, humans
have no problems in reading and interpreting HTML documents, but machines
cannot process the data in these types of files. A better representation of
written data is XML.

XML: Extensible Markup Language

Eztensible Markup Language (XML) is a markup language that defines a set
of rules for encoding documents in a format that is both human-readable
and machine-readable ([7]).

XML is not about displaying data. It is different from HTML because developers
must create their own tags to annotate data. XML is a flexible text format
language that is used to structure, store, and share information. However,
XML does not provide any method of talking about the meaning of data, that
is, the semantics of data.

RDF: Resource Description Framework

Resource Description Framework (RDF) is a standard for describing resources
on the web ([5]). It attributes meaning by encoding data in sets of triples,
which are subject, predicate and object statements. Each element of a triple
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is identified by an URI, and URIs represent both resources and relations. It
is important to highlight that RDF is a way of working with triples, not the
file formats. In fact, it is to the semantic web what HTML is to the Web.

RDF is written in XML.

OWL: Web Ontologies Language

Web Ontology Language (OWL) ([6]) is a semantic web language designed for
use by software tools that need to process and represent complex information
about things, groups of things, and relations between things, instead of
presenting information to humans. In other words, OWL can be thought
of as an object-oriented language that defines classes, hierarchy of classes,
attributes and relations, and it serves to implement ontologies for the web.

OWL is written in XML and it is more expressive than RDF.

6.5.5 Implementation of DeGOT

DeGOT is an ontology written in OWL by using the Protégé resource version
4.3 ([117]), which is supported by grant GM10331601 from the National
Institute of General Medical Sciences of the United States National Institutes
of Health.

Protégé is a free, open-source platform to build domain models and
knowledge-based applications with ontologies. It is in fact the leading onto-
logical tool ([117]).
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Chapter 7

Results

7.1 Definition of the Standard Functionali-
ties Set for Classifying GO Tools

The Standard Functionalities Set was organized in nine sections. Table 7.1
shows the number of standard functionalities per section.

Section Num. of Functionalities
Tools for 2
Type of experiment 7
Interface 7
Availability 4
Supported species 26
Data 40
Annotation 70
Statistical analysis 26
Output 23

Table 7.1: Number of standard functionalities per section.

The following subsections describe the functionalities associated with each
section of functionalities defined.

7.1.1 Tools for

There are three types of tools identified. These programs can be used for
exploring GO data and/or annotating information associated with functional
information. Thus, two functionalities for classifying the three groups of tools
were defined. The first group is those tools focused on Fzxploration. These
programs consists of a combination of statistical methods and functional
annotation with some kind of graphical representation. The second group

131
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is those tools called Annotation, and they provide query-based access to
functional annotation and produce tabular outputs. The third group is those
tools that consist of both capabilities Exploration and Annotation.

7.1.2 Type of experiment

These programs are focused on data yielded with different types of
high-throughput technologies and experiments. Based on the literature
of the selected GO tools, five main types of platforms/experiments were
identified. Most of the GO tools are devoted to dealing with data gen-
erated with DNA Microarrays focussed on two main types of platforms,
Spotted arrays (e.g. c¢cDNA-Chip) and In situ arrays (e.g. GeneChip of
Affymetrix) ([132], [133]). But they deal with Proteomics data generated
with high-throughput devices ([109], [27]), SAGE data from Serial Analysis
of Gene Expression experiments ([130]), and CGH data from Comparative
Genomic Hybridization experiments ([159]). Few of them deal with data
generated with Other types of experiments or high-throughput technologies.

Table 7.2 shows the types of experiments defined.

Type of technologies and experiments
DNA Microarrays
Spotted arrays
In situ arrays
Proteomics
SAGE
CGH
Other

Table 7.2: Types of experiments and technologies defined.

7.1.3 Interface

Programs are available in one or more work interfaces and supported under
one or more Operative Systems. Four categories were defined: Web-based
when a program is available on-line, Downloadable if it is a GO tool that can
be used locally after downloading it, Command line when a software can be
managed in batch navigation, and Compatible OS indicating if the GO tools
are available for Windows, Mac OS, Unix or Linux.
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7.1.4 Availability

The GO tools can be used under different licenses. Three main types
of licenses were identified and considered for classifying the programs:
Freeware when a software is available without cost, Partial Freeware
when a tool is intended for non-profit uses (usually public or academic
users), and Commercial when it is a tool with some kind of cost for all users.

Many GO tools give the option of performing illustrative analysis with a set
of samples. For this reason the Sample file/sets feature was considered as a
capability of this section.

7.1.5 Supported species

Programs were classified according to the list of species available on the
literature. Table 7.3 shows the list of species defined, which is ordered al-
phabetically.

Species Supported

Anopheles gambiae Arabidopsis thaliana

Ames Bos taurus Bacillus anthracis
Caenorlabditis briggsae Caenorlabditis elegans
Coxiella burnetii RSA 493 Danio rerio

Dictyostellium discoideum Drosophila melanogaster
Fugu rubripes Geobacter sulfurreducens PCA
Glossina morsitans Homo sapiens

Leishmania major Mus musculus

Oryza sativa Plasmodium falciparum
Pseudomonas syringae DC300 Rattus norvegicus
Saccharomyces cervisiae Schizosaccharomyces pombe
Shewanella oneidensis Trypanosoma brucei

Vibrio cholerae Other

Table 7.3: Supported species identified from the reviewed literature of the
GO tools.

7.1.6 Data

Data can be grouped depending on whether the tools have Automated
Updating Sources. If so, the periodicity for updating tool sources is classified
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as Weekly, Monthly or Quarterly.

To perform the analysis GO tools require some Inputs to access their sources.
These input information is characterized as Single Term, Euvidence Codes
and other Descriptions. Inputs can be provided as A List Of identifiers that
refer to Genes, Proteins or Terms. GO tools allow the loading of inputs
from a File and/or by Pasting Into A Text Area.

Table 7.4 shows the common types of input data as well as the most widely
used input Identifiers, which are listed alphabetically.

Automated Updating Sources
Weekly

Monthly

Quarterly

Inputs

Single Term

Evidence Codes
Descriptions

A List Of

Genes

Proteins

Terms

Load Inputs From

File

Paste Into A Text Area
Input Identifiers

Affymetrix ID Clone ID Chromosome Locations
Ensembl 1D Entrez ID FISH clone ID
FlyBase ID GenBank Accession Number  Gene Names
GenePept Accession Gene Symbol GO Consortium ID
GI Accession HUGO Gene Names IMAGE Clone
Entrez ID PIR Accesion Protein Accession
PubMed RefSeq ID Swiss-Prot ID
Symbol Synonyms TIGR-CMR
UniGene

Cluster ID

Names

Symbol
Additional Input Data Other

Table 7.4: Common input data options.

7.1.7 Annotation

Tools with both annotation and exploration functions provide a wide variety
of options in the references evaluated. Three main groups of features
have been organized in order to classify GO tools by their capabilities.
These groups of characteristics are Data Sources for Information Retrieval,
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Functional Annotations and Possibilities.

Data Sources for Information Retrieval consist of a list of databases, tools or
other types of resources. Functional Annotations set up a list of what kind
of functional information is available in the program and/or give access.
Possibilities is a list of information managements capabilities that some GO
tools can apply.

Table 7.5 shows the lists of selected data sources, the main capabilities for
managing information allowed by the software and features selected for clas-
sifying the GO tools based on their functional annotations.

7.1.8 Statistical Analysis

GO tools offer different statistical analyses depending on the focus, that
is, annotation analysis, enrichment analysis or other analysis. The most
common methods have been organized into four categories: Analysis For,
Test Used For Analysis, Correction For Multiple Tests, and Alternative
Methods.

Analysis for is devoted to classifying GO tools according to the features of
the input datasets. There are three types of ways to provide the required lists
of features: A single list, A Query List vs a Reference List, or Multiple Lists.

The most common approaches for assessing the significance of GO terms,
sometimes called refinement of GO terms analysis, are the Single or
Modular Enrichment Analysis of GO terms (see section 1.3.2 in chapter 1).
This capability usually distinguishes if the analysis should be focused on
Under-represented and/or Quver-represented genes in the GO categories. The
resulting significance of GO terms provided by the programs can usually be
controlled by selecting a cutoff for raw p-values and/or g-values associated
with different types of corrections for multiple testing.

The main Tests Used For The Analysis are the Binomial, Chi-square,
Hypergeometric, Fisher’s Fxact Test, Permutation Test and Other tests.

Most of the GO tools offer the possibility of performing a Correction For
Multiple Testing. Common methods applied are Bonferroni or Modified
Bonferroni or False Discovery Rate that distinguishes between either
Benjamini—Hochberg when assuming independence or Benjamini—Yekutiels
when droppring independence, and Family Wise Error Rate that allows
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Data Source or Field for Information Retrieval

BioCarta dbEST

EMBL Ensembl

Entrez Gene FlyBase
GenBank GeneCards
GeneMap99 Gene Ontology
Gene Reference Into Function HomoloGene
Human Genome Database InterPro

KEGG Map Location
Mouse Genome Database Mouse Genome Informatics
NetAffx OMIM

PDB PFAM
PIR/Iprot PlasmoDB
PubMed Rat

Genome Database RefSeq

RHdb SGD

TAIR TIGR

TrEMBL UcCsC

UniGene UniProt
UniSTS ‘WormBase

Own Database Other
Functional Annotations

Biological pathways Disease
Functional categories General annotations
Literature Protein domains
Protein interactions Gene Ontology

Molecular Functions
Biological Processes
Cellular Components

Possibilities

Application Program Interface Ordered-Input mode
File Import/Export Integration with R
Append Retrieval

Remove Clustering options
Preprocess to Obtain IDs Data transformations
Assess Bias Reduce Redundancy

GO Ferms Filtering Functions
Mapping on the ontology
Mapping on a Slim Ontology
Fitting in Depth
Fitting in broad-based

Keyword searching
BLAST search
To Map Against a 2nd List
To Find corresponding IDs

Table 7.5: Annotation options for both providing and managing functional
annotation.
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selection of either Holm or Westfall-Young.

Alternative methods are concerned with Classification/Clustering based on
multivariate analyses, Similarity/Distance Measures, that allow measures
for computing “differences” between GO categories, and Other Methods,
such as Gene Set Enrichment Analysis, Time Series, etc.

Table 7.6 shows statistical methods and available options for the analysis
based on the literature reviewed.

Analysis for
A Single List
A Query List vs a Reference List
Multiple Lists
Enrichment Analysis of GO Terms
Under-represented
Over-represented
Define cutoff
p-value
g-value
Test Used For The Analysis
Binomial Hypergeometric
Fisher’s Exact Test Permutation Test
Other
Correction For Multiple Testing
Bonferroni or Modified Bonferroni

False Discovery Rate Family Wise Error Rate
Benjamini—-Hochberg Holm
Benjamini—Yekutieli Westfall-Young

Alternative Methods
Classification/Clustering
Similarity /Distance Measures
Other Methods

Table 7.6: Statistical methods and options provided by GO tools.

7.1.9 Output

After the analysis, GO tools provide the user with some results. There are
different types of frameworks to show the resulting outputs. These outputs
were organized into three main categories: Format, Annotation Tables, and
Visualization.

Format features are intended to indicate what type of screen and/or file
format is provided by the GO tool. The main file formats are: HyperText
Markup Language (.html), Spreadsheet program (.xls or .ods), Comma
Separated Values (.csv), Semicolon Separated Values (.scsv), Tabulate
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Separated Values (.tsv), Eztensible Markup Language (.xml), and Other
formats

Annotation Tables refer to the characteristics of the table where results are
being reported. These tables usually provide the List of GO terms and the
associated List of p_values, which are Limited by either a Number of Terms
or by A p-value threshold. Sometimes, Annotations for clusters of GO terms
are also shown, and they can be Hyperlinked with Cross—References.

Visualization is intended to describe the method that has been used to
display results. This group of capabilities shows a figure where the user can
View GO Terms in a Directed Acyclic Graph, a Tree and/or Bar Charts.
Sometimes this figure is interactive. That is, the GO tool has an associated
GO Browser, that can be available in two forms: it is Linked to the AmiGO
browser or the program has an Qwn Browser Integrated. GO programs also
have the capability of showing the figure in such a way that the user can
View Genes Within Pathways

Table 7.7 shows the characteristics of how GO tools report the results after
the analysis.

Format
HTML Spreadsheet program CSV
SCSV TSV XML
Other
Annotation tables
List of GO Terms List of p-values List limited by
A Number of Terms
A p-value Threshold
Annotations for clusters Hyperlinked Cross—References
Visualization
View GO Terms GO Browser View Genes Within Pathways
Directed Acyclic Graph Linked to the AmiGO browser
Tree Own browser integrated
Bar Charts

Table 7.7: Types of format files, features of annotation tables and character-
istics of figures shown in outputs
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7.2 Classification GO tools Based on the
Standard Functionalities Set

26 GO tools were used and classified based on the Standard Functionalities
Set. This classification is outlined in tables from 7.8 to 7.13, showing the
following information:

e Table 7.8 classifies each GO tool based on the type of analysis that it
can perform, the type of experiments associated with the information
that can retrieve the tool, the type of the interface, the availability and
the supported species.

e Table 7.9 reports the classification of the GO tools according to their
input data.

e Table 7.10 shows the classification of GO tools according to the data
sources or fields for retrieval annotation.

e Table 7.11 shows the the classification of the GO tools according to their
functional annotations and possibilities managing this information.

e Tables 7.12 contains the methods that use each GO tool to perform
enrichment analyses and/or alternatives their.

e Table 7.13 classifies each GO tool based on their outputs.

Cells in each table shows a symbol reporting whether a GO tool has a specific
capability available. There are three types of symbols, which are: a point (e),
indicating that a GO tool possesses the functionality, a question mark (7),
denoting that a reference does at least exist where the capability is mentioned
but it has not been possible to validate it in situ, and a blank ( ), meaning
that the feature has not been found, neither in the references nor in the
program.
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CLENCH

EASE

ermineJ

FatiGO

FuncAssociate

GARBAN

GFINDer

GOArray

GoMiner

GOstat

GoSurfer

GOTM

MAPPFinder

NetAffx

DAVID

MatchMiner

OntoGate (OntoBlast)

SOURCE

eGOn

GeneMerge

GOToolBox

Onto-Tools

Ontologizer

ontology Transverser

SeqExpress

THEA

TOOLS FOR

Exploration
Annotation

TYPE OF EXPERIMENT

DNA Microarrays

Spotted arrays: cDNA-Chip
In situ arrays: GeneChip

Proteomic

SAGE experiment
CGH

Others

~| e e

oo oo

INTERFACE

Web-based tool
Downloadable tool
Compatible Oss

Windows
Mac OS X
Unix
Linux

Command line (batch navigation)

(o o 0o 0o

AVAILABILITY

Free
Partially Free
Fee

SAMPLE FILES/LISTS

SUPPORTED SPECIES

Anopheles gambiae
Arabidopsis thaliana

Bacillus anthracis Ames

Bos taurus (Domestic Cow)
Caenorlabditis briggsae
Caenorlabditis elegans
Coxiella burnetii RSA 493
Danio rerio (Zebrafish)
Dictyostellium discoideum
Drosophila melanogaster (Fly)
Fugu rubripes

Geobacter sulfurreducens PCA
Glossina morsitans

Homo sapiens (Human)
Leishmania major

Mus musculus (Mouse)

Oryza sativa

Plasmodium falciparum
Pseudomonas syringae DC300
Rattus norvegicus (Rat)
Saccharomyces cervisiae (Beer)
Schizosaccharomyces pombe (Yeast)
Shewanella oneidensis
Trypanosoma brucei

Vibrio cholerae (Cholera)
Others

L EENIESIENN )

NV NN N @ VYV @ )@ D

Table 7.8: Classification of the GO tools according to Standard Functionalities Set for the Type of tool, Experiment,
Availability and Supported Species, and Sample Files.
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CLENCH

EASE

erminelJ

FatiGO

FuncAssociate

GARBAN

GFINDer

GOArray

GoMiner

GOstat

GoSurfer

GOTM

MAPPFinder

NetAffx

DAVID

MatchMiner

OntoGate (OntoBlast)

SOURCE

eGOn

GeneMerge

GOToolBox

Onto-Tools

Ontologizer

ontology Transverser

SeqExpress

THEA

ANNOTATION

Data source or fields for information Retrieval

Affymetrix descriptions

BioCarta

Chromosome locations

dbEST

EBI-EMBL

Ensembl

FlyBase

GDB Human Genome Data Base
GeneBank

GeneCards

GeneMap99

Gene Name

Gene Symbol

Gene Ontology Annotations .
GO-Mouse Genome Databases
Gene Reference Into Function (GRIF)
HomoloGene

InterPro

LocusLink ID

KEGG

Map location

Mouse Genome Database (MGD)
Mouse Genome Informatics (MGI)
NetAffx

Organism

OMIM

PDB

PFAM

Phenotype

PIR/IProt

PlasmoDB

PubMed links

Rat Genome Database (RGD)
RefSeq

RHdb

Saccharomyces Genome Database (SGD)
TAIR .
TIGR

TrEMBL

UCSC Human Genome Build
UniGene

UniProt ID

UniSTS

WormBase

Functional summaries

Own database

Other

~ e

~

Table 7.10: Classification of the GO tools according to the Standard Functionalities Set for the Annotation (part I).
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STATISTICAL ANALYSIS

Analysis for
A single gene list . ? . 3 3 . . . . ° . . °
Interesting list vs. Reference list . ? . ? . . . . ? . . ? . . °
Multiple lists ° ° ? . ?

Enrichment of GO terms . . . . . . . . . . . . . . ? . . . . . . . .
Under represented o o . B . . . °
Over represented o . o o o . . . . . . . °

Define cutoff for . ? . . . . ° .
p-value . . . 3
q-value °

Test in use
Binomial 0 0 0 . . . .
Chi-squared o . . . .

Hypergeometric . . . . . . . o
Fisher’s Exact . . . ) . . . . 0
McNemars .

Permutation o . . ?

Correction for multiple tests ? o o ? . . ? B . . °
Bonferroni or modified Bonferroni . .

False Discovery Rate Method ° o . . .
Assuming independence (Benjamin and Hocberg) . . . .
Dropping independence (Benjami ° ° . .

Family Wise Error Rate method ° . .

Holm . .
Westfall and Young .

Others 0 °

Classification 3 3 ? 3

Similarity /distance measures ? . ? ? . . .

Table 7.12: Classification of the GO tools according to the Standard Functionalities Set for the Statistical Analysis.
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7.3 A Web Tool for Selecting and Comparing
GO Tools (SerbG0)

This section presents the tables of the database, the application outline of
the web tool SerbG0, an example to illustrate the use and the benchmark of
the resource

7.3.1 Availability of SerbGO

SerbGO is freely available under a Common Creative License (http://
creativecommons.org/licenses/by/3.0/) and does not require a login.
It can be accessed directly at the server (http://estbioinfo.stat.ub.es/
apli/serbgo) of the Statistics and Bioinformatics Research Group (http:
//eib.stat.ub.edu/) led by Dr.Alex Sanchez. The tool was submitted
and accepted to be available at the website of The GO Consortium (http:
//www .geneontology.org/G0.tools.microarray.shtml#serbgo). Figure
7.1 shows the main page of the SerbG0 website.

cl D | statBAVE
| §EP b GO ?{ﬁéﬁ.&ﬁﬁ'}theheﬁ GO {ﬂi—:h-

Home | Compare Tools Contact Help

The SerbGO project

» SerbGO Rationale
Presentation
News In recent years many tools have been developed to facilitate exploration and mining of databases and experimental results using the Gene Ontology
License (G0).

» Documentation Some GO tools are intended for functional annotation management of gene products, others are specific for exploration of data sets, while many
Coniant allow both possibilities. Whilst they present different capabilities and different degrees of user difficulty, a common problem for new users is deciding

. which tool to select for their analysis.
p Links

Goals of the SerbGO project
The main goal of the SerbGO project is to develop an experience that helps the user.

® to compare the capabilities of different programs to show their common features and their differences.
® 1o find which tools, if any, have some specific user-required capabilities.

In order to achieve these objectives the SerbGO developers.
GRUP DE RECERCA ® define a set of standard features based on the capabilities of existing GO Toals.
el EM ESTADISTICA | ® perform a thorough review and description of many (if not most) of the existing information tools based on the Gene Ontology.
BIOINFORMATICA .
.

classify programs according to the defined standard features relying on their capabilities.
develop, mantain and update the SerbGO web-based tool to aid researchers to determine appropriate GO programs for their goals.

Last Updated:
April 2008

Figure 7.1: SerbG0 website.

7.3.2 The SerbG0 Database

The database consists of a collection of seven tables with large lists of fields
formally described and organized according to a relational model. These
tables are:


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://estbioinfo.stat.ub.es/apli/serbgo
http://estbioinfo.stat.ub.es/apli/serbgo
http://eib.stat.ub.edu/
http://eib.stat.ub.edu/
http://www.geneontology.org/GO.tools.microarray.shtml#serbgo
http://www.geneontology.org/GO.tools.microarray.shtml#serbgo

147 CHAPTER 7. RESULTS

e main: manages access to the other tables. It contains indexes, informa-
tion about the name of the GO tools, the entities that are promoting
the software, literature references that haven been reviewed, links to
the resources and fields describing if tools are designed for exploration
and/or annotation.

e type: fields describing the types of experiments and technologies to
which each tool is intended for, the types of interfaces of the programs
and which kind of availability is associated with each GO tool.

e species: fields associated with the list of species supported by each GO
tool.

e data: consists of the information associated with the types of inputs
required by each tool to do the corresponding analyses.

e annotation: this is the largest table, and stores information about the
data sources from where each GO tool is fed, the types of functional
annotations that are supported by each tool and the possibilities that
they offer to manage such information.

e statistics: fields in this table are the list of statistical capabilities and
methods associated with each GO tool.

e outputs: this is a table that contains information about the formats
in which results are presented, as well as characteristics of the tables
reported and also fields associated with the types of figures that are
provided.

7.3.3 Application Workflow
7.3.3.1 Inputs

SerbGO offers two possibilities for execution: to search for and/or to compare
GO tools. Both actions require to check some options in two different forms.
The inputs required are:

1. To select a list of desired capacities from the Standard Functionalities
Set in order to look for the GO tools that satisfy such capabilities.

2. To select a list of GO tools in order to yield a table for comparing such

GO tools.

Both actions can be performed interactively using either the Query Form or
the Compare Tools menu options
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7.3.3.2 Query Form: Searching for GO tools

By clicking on the Query Form menu option, at the top of the page, the
user accesses a form consisting of the Standard Functionalities Set arranged
in nine sections (see section 7.1) and spread out over six pages. Each page
allows the user to select required functionalities, and after validating the
last page, to obtain a table listing the GO tools that satisfy the capabilities
demanded. In detail, to find the “right tool”, the user selects the desired
functionalities by checking the appropriate fields in each specific section.
Figures 7.2 to 7.7 show each of the form sections.

Once the choices have been made for a page it is necessary to validate the
query by clicking on the Nexzt button at the bottom of the page, which
allows the user to move on to the following one. The next page will show
the new sections, and the remaining number of tools available satisfying
such features will appear at the top-right corner.

Note that in some sections, there are features shown as shaded colors. This
means that such functionalities are non-available, unless they are activated.
This can be done by switching on the corresponding previous radio button.

Queries are implemented with the logical operator AND. That is, the more
capabilities there are selected, the fewer the tools that will be available.

During the process of navigation over the pages, and at any time, it is
possible to start a new query if the user clicks on the Query Form menu
option at the top of the page.

On the last selection page a Find button will appear instead of the Next
button. This new button allows users to move on to the resulting outputs
from the search after validation. Figure 7.7 shows the last page associated
with the Query Form.
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!_- Query Form Compare Tools Contact

GO Tools avallable [50]

b E5iey TOOLS FOR
Presentation
News
e & Exploration [} Annotation
) Documentation
Contact TYPE OF EXPERIMENT
P Links
) DNA Microarrays Spotted In sit [ proteomic [ sAGE [leeH [ others
INTERFACE @
[ Web-based ! Downlodable [”! command line {batch navigation)
Compatible 0SS
GRUP DE RECERCA
el ENESTADTEAL [ Windows ™ Mac 08 % [ unix ) Linux
N AVAILABILITY
April 2008
[ Freeware [ partial Freeware [l commercial m] Sample filelsets

Figure 7.2: Screenshot of the Query Form showing the standard functional-
ities of sections TOOL FOR, TYPE OF EXPERIMENT, INTERFACE and
AVAILABILITY.
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| SerbGO st

Home " Query Form Compare Tools
GO Tools available with the ionaliti
» Serbco SUPPORTED SPECIES
Presentation
M-ews 0 Anopheles gambiae 0 Arabidopsis thaliana [ Bacillus anthracis ames
License
» Documentation [ Bos taurus [ caenorlabditis briggsae [ caenorlabditis elegans
Contact [ caoxiella burnetii RSA 493 [ Danio rerio [ Dictyostellium discoideum
» Links = Drosophila melanogaster m] Fugu rubripes ") Geobacter sulfurreducens PCA
[ Glossina morsitans " Homo sapiens [ Leishmania major
) Mus musculus [ Oryza sativa ) Plasmodium falciparum
[ Pseudomonas syringae DC300 [ Rattus norvegicus m] Saccharomyces cervisiae
[ schizosace haromyces pombe [ shewanella oneidensis (m] Trypanosoma brucei

("] vibrio cholerae [] others

GRUP DE RECERCA
el EN ESTADISTICA |
BIOII \TICA

Last Updated:
April 2008

Figure 7.3: Screenshot of the Query Form showing the standard functional-
ities of section SUPPORTED SPECIES.

GO Tools available with the jonalities 25
} SerbGO DATA @
Presentation
M_Ews ) Automated Updating Source Weekly Monthly Quarterly
License
p Documentation Inputs
Contact
p Links [ A single term [ Evidence Codes [ pescriptions
Alistof ) Genes [ Proteins [ siim tems
Load inputs from [ p fie [ Paste into a text area
Identifiers [ Aftymetrix Probe Set Ids [ clonein [ chromasome Locations [ ensembl I
"I FISH Cione ID ™ FyBase ID "] GenBank Accession Number ) GenePept Accession
[ Gene Names [ Gene Symbol [ o cansortium ID [ &1 accession
GRUP DE RECERCA. n . = =
I %IESTADIS %ﬁé: HUGO gene names IMAGE Clone Entrez Gene PIR Accession
(] Protein accession m} PubMed O RefSeq lds O Swiss-Prot Ids
Last Updated: O Symbal ] Synonyms O TIGR_CMR ) Additional data input
Al 2008 UniGene ] Others
) custer D 1 Names [ Symbar

Figure 7.4: Screenshot of the Query Form showing the standard functional-
ities of section DATA.
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b SerbGOD
Presentation
Newe
License

p Documerntation

¥ Links

GRLIF OF BECERCA
e
S = Friai

Last Upamed
Apil 200m

Query Form

GO Toals With the
ANNOTATION (1) @
Data Sousees for Information Retrieval
[ mincara [ amest 7wl [ Ensemb
| Enmrez Gene | pyBase | GenBank | Genecanss
[ GeneMapas [ Gene Onology [ Gene Reterence Into Funcion I HomeloGens
| suman Gename Datshase | ingesra [ kece | map Location
[ Mouse Gemoms Dambase [ Mouse Ganome Informatics 1 Mot .7 ]
™ pom ™ eram ! Pikproe I Plasmoon
L pubmss || Rut Ganomne Databass | Rerseq L rHan
[ sen s [ nes ™ nEmeL
[ vese | UniGene || uniprat [T
WormBasy ! own Database L1 oher

b Sernco
Presanann
Newes
License

b Documentation
Caniact

b Links

S

Lant Lipeintes:
Al 200

ANNOTATION (2) @
Fumctional Anatations
| Bialogical pattays | Disense | Functional eats gories Ganatal annatations
I Literaturs " Protzin domains Protein inzractions
" Gene Deaslagy Makccular Furciions Bialngicnl Prcesses Cellilar Companents
Passibilitios
| application Progeam Inberface | Gedered-Input made | File Impord sport ! Integration with R
| Append ) Retrieval ™ Remene " Clustering estions
| Preprocess to shaun gene names | Data transtmrmasans. | Assess mas | Reduce redundancy
GO vy Fiteing barcbons T Maggng o the ontaksgy = Mapping o & sk onlolkgy
" Feang i deptn [ g in bwond-bazad
" Kayword searching ELAST seanch To fnd oveiap wih & 2nd s Ta find canmasgerding 1T

Figure 7.5: Screenshots of the Query Form showing the standard function-
alities of sections ANNOTATION (1) and ANNOTATION (2).
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Home Query Form l_r_wnu;_are Tools Contact
GO Tools available with the ionalities [3]
) SerbGO STATISTICAL ANALYSIS @
Presentation
News Analysis for
License
» Documentation ) & single gene set [ Interesting set vs reference set [ Multiple gene sets
Contact @ Enrichment of GO Terms ") Under represented [ over represented
» Links ) Define cutoff for p_value q_value
Test used for analysis
[ Binomial | chi-Square I Fisher's Exact (& Hypergeometric ) Permutation ) Other Tests
@ correction for Multiple Tests
GRUP OE RECERCA [ Bonferroni or Modified Bonferroni
el ENESTANS CAI —
O False Discovery Rate Method Benjamini & Hochberg (assume independence) Benjamini & Yekutieli (drop independence)
—_— (@] Family Wise Error Rate Method Haolm Westiall & Young
Last Updated;
April 2008
] Classification/Clustering [ Similarity/Distance measures [_| other methods

Figure 7.6: Screenshot of the Query Form showing the standard functional-
ities of section STATISTICAL ANALYSIS.

|°'§erbGO

Query Form  Fff8 0 Contact

GO Tools available with the |
b Serbco OUTPUTS @
Presentation
News Format
License
» Documentation [ WL ") spreadsheet program Cesv I sesv
Contact Crsv Cme [ other
p Links
Annotation Tables
[ List of GO Terms [ Listof p_values ) List limited By number of terms
By a p_value threshold
O Annotations for Clusters m} Hyperlink cross-references
) Visualization
GRUP DE RECERCA.
ela ENESTADISTICA|
BIOI \TICA View GO Terms Directed Acyclic Graph Tree Bar charts
GO Browser Linked to AmiGO browser ‘Own browser integrated
Last Updated: ithi
e View genes within pathways

Figure 7.7: Screenshot of the Query Form showing the standard functional-
ities of section OUTPUTS.
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7.3.3.3 Compare Tools Form: comparing classified GO tools

By checking any of the tools in the Compare Tools form, a list of their
capabilities according to the Standard Functionalities Set can be obtained.
Figure 7.8 shows an screenshot of this form, where the alphabetically listed
GO Tools are the programs available at the end of this thesis.

‘CI§E{‘ b Go Seﬂrc: mg the best GET

Compare Tools

i

GO TOOLS
} SerbGO [ agrico [ BiNGO ] cateGOrizer " CLENCH
Presentation [ clueGo ) pAvID "~ EASE [~ eGOn
News [ ermined [ FatiGO " FIVA [ FuncAssociate
teense ] FunNet ] FusSiMeg [ G-SESAME [ GARBAN
D iy & GENECODIS ) GeneMANIA & GeneMerge [ GFINDer
R fi‘:"::“ ] GO Term Finder U] GoArray oy 1 Godist
[ GoMiner | Gorilla | Gostat " GoSurfer
C cotm [ GOToolBox ] gPrafiler (BITTH
[ Machaon CVE [ MAPPFinder [ matehMiner [ NetAffx
I NOA [ onto-Tools [ ontoGate (O ) o
[ ontology Traverser [ piNGO [ Proteinon [ REVIGO
| seqExpress | SOURCE ) STEM | SIRANGER
[ T-Profiler [ THEA
€|9 N ESTADISTIENT
BIOINFORMATICA
Last Updated:
april 2008

Figure 7.8: Screenshot of the Compare Tools form showing the list of GO
Tools stored in the SerbGO database.

7.3.3.4 Outputs

The output of the Query Form is a table with two columns (see figure 7.9).
The first column shows the list of GO Tool names sorted alphabetically, and
the second column shows the Promoter Body of the GO tool. Each GO tool
name is linked to the corresponding website. Thus by clicking on the name,
a new tab will be opened in the web browser with the tool already opened.
The list of programs shown in that table may be compared by clicking the
Find button placed at the bottom of the page. This action leads the user
to a new page showing a table such that the rows are the functionalities
and the columns are the GO Tool names, which are also linked to their
respective sites (see figure 7.10).
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The output page of the Compare Tools form shows a table like the compar-
ison stated above (see figure 7.10), but instead of comparing the GO tools
provided by the SerbG0 search robot, the GO tools have been selected in the
Compare Tools form.

7.3.3.5 Example

To illustrate the concept of how to determine which GO tools for gene
enrichment analysis provide the features required by a potential user, the
following example is considered. A potential SerbGO user has a list of
Drosophila melanogaster genes. The user would like to know which tools are
available that could perform a GO enrichment analysis for a list of FlyBase
IDs, based on the hypergeometric distribution test and p-values that are
corrected for multiple testing. In such a situation, the user should click
on the Query Form menu option and select “Exploration” in the TOOLS
FOR section (figure 7.2). Then, move on the next page and select the
“Drosophila melanogaster” option (figure 7.3). After validation, there are 25
potential tools available. In the DATA section, the user checks “FlyBase ID”
identifiers (figure 7.4), and he/she has to continue until the STATISTICAL
ANALYSIS section, where he/she will select “Enrichment of GO Terms”,
“Hypergeometric” test and “Correction for Multiple Tests” (figure 7.7).
When the user moves on to the last query page, he/she clicks on the Find
button and the outputs page shows the resulting table. Two GO tools with
the capabilities required by the user are classified in the SerbG0 database.
These tools are GENECODIS ([24]) and GeneMerge ([26]) (figure 7.9).

If the user wishes to compare the resulting tools, it can be done in two ways.
First, just by simply clicking on the Find button at the bottom of the page,
and second by selecting both tools on the Compare Tools form (figure 7.8).
In both cases, the resulting action yields a table where rows are the standard
functionalities, columns are the names of the GO tools. That is, in this
example GENECODIS and GeneMerge are linked to the respective sites. In
each cell from the resulting table a dot is shown when the capability of a tool
is available, otherwise the cell is empty (see figure 7.10).
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rgé‘r' bGO Eﬁﬁﬂ;@ the.pbc%tG'w

Horne " Query Form Compare Tools Contact

GO Tools available with the capabilities selected

b SerbGO GO TOOL Promoting Body
Presentation |GENECODIS National Center of (CNB-CSIC) and Universidad Ci de Madrid, Spain
News. |GeneMerge Harvard University
License

-

Documentation
Contact
Links

-

GRUP DE RECERCA.
I ENESTADIS IcAl

Last Updated,

April 2008

Figure 7.9: Screenshot of the GO Tools classified that satisfy the require-
ments of a user.

GO TOOLS REVIEWED

b SerbGo Functionalities eEnECODIS]GeneMerge
Presentation TOOLS FOR
Lo Exploration [ . [ e
Leense Annotation | [ e
D EesrIiaey TYPE OF EXPERIMENT
C_onlal:l DNA Microarrays * *
b Links Spotied
In situ
Proteomic [ .
SAGE
ICGH
|Others *
INTERFACE
EID FEREET  Dowosn * :
[er \TiCA .
lc line (batch
Last Updated: IC ible 0SS
Agril 2008 Windows 0 *
Mac 0S X * *
Unix * *
Linux L] L]
IAVAILABILITY
Freeware [
Partial Freeware .
[Commercial
Sample file/sets . *
SUPPORTED SPECIES
Anopheles gambiae
Arabit is thaliana * *
Bacillus anthracis ames L]
Bos taurus L]
|Caenorlahditis briggsae
[Caenorlahditis elegans - -
|Coxiella burnetii RSA 493 [ ]
Danio rerio L] L]
Dictyostellium discoideum
Drosophi 0 0
Fugu Rubripes
|Geobacter sulfurreducens PCA
morsitans .
Homo sapiens * *
Leishmania major *

Figure 7.10: Screenshot of the available capabilities for two GO Tools.
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7.3.4 Benchmark

During the testing period, most of the tools available at The GO Consortium
website were included in the beta version. This process included 26 GO
Tools listed in table 6.1 and classified in tables from 7.8 to 7.13. This
beta version was used by several people from different organizations around
the world. SerbGO was also tested by developers of some of these tools,
such as FatiGO ([3]), GARBAN ([105]), o BiNGO ([99]), who suggested some
improvements that were incorporated into the testing version and validated
in the first stable version.

SerbGO has been running since June 2006 and was published in 2008 ([111]).
It has been updated, but not periodically, for technical reasons. At the end
of this thesis the serbG0 database stored information on about 50 GO tools.

7.4 Evolution and Clustering of GO Tools

The following subsections present the results of the statistical analysis, aimed
at understanding how the capabilities of GO tools, based on the classification
of the Standard Functionalities Set 6.2, have been evolving and regrouping
(if so) in clusters over time.

7.4.1 Descriptive Statistics

Descriptive statistics analysis has been divided in two a Global Analysis and
an Analysis by Sections of functionalities. The following paragraph presents
the results obtained in each part of the analysis.

Global Analysis

After homogenizing the tables downloaded from SerbG0 database, and elimi-
nating “redundancies” from the original 205 standard functionalities 6.4.1.2,
26 GO tools are classified according to 178 independent functionalities. Table
7.14 summarizes the capabilities of each GO tool per year showing absolute
and relative frequencies. Briefly, in 2005, Onto-Tools ([46], [88]) was the
tool with most capabilities, and EASE ([40]) was the tool with least function-
alities available. In 2007, most of the GO tools introduced new features, and
Onto-Tools was again the software with most functionalities available. How-
ever, GOArray did not actually introduce new characteristics or improve the
old ones. In 2009, most of the tools once again improved their capabilities.
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The GO tool with most functionalities was DAVID ([40]), covering about 61%
of the Standard Functionalities Set analyzed.

GO Tool 2005 2007 2099

n % n % n %
CLENCH | 29 16.292 | 44 24.719 | 48 26.966
EASE | 8 4.494 | 65 36.517 | 75 42.135
ermineJ | 17  9.551 | 56 31.461 | 61  34.27
FatiGO | 53 29.775 | 60 33.708 | 86 48.315
FuncAssociate | 24 13.483 | 40 22472 | 44 24.719
GARBAN | 31 17.416 | 66 37.079 | 66 37.079
GFINDer | 48 26.966 | 90 50.562 | 100  56.18
GOArray | 14 7.865 | 14 7.865| 14 7.865
GoMiner | 39 2191 | 86 48.315| 94 52.809
GOstat | 36 20.225 | 51 28.652 | 77 43.258
GoSurfer | 40 22.472 | 54 30.337 | 56 31.461
GOTM | 57 32.022 | 58 32.584 | 63 35.393
MAPPFinder | 27 15.169 | 31 17416 | 78  43.82
NetAffx | 21 11.798 | 81 45.506 | 70 39.326
DAVID | 53 29.775 | 77 43.258 | 109 61.236
MatchMiner | 44 24.719 | 56 31.461 | 61  34.27
OntoGate (OntoBlast) | 37 20.787 | 38 21.348 | 41 23.034
SOURCE | 43 24.157 | 48 26.966 | 56 31.461
eGOn | 31 17416 | 55 30.899 | 82 46.067
GeneMerge | 19 10.674 | 50  28.09 | 71 39.888
GOToolBox | 40 22.472 |49 27.528 | 83 46.629
Onto-Tools | 69 38.764 | 93 52.247 | 103 57.865
Ontologizer | 13 7.303 | 58 32.584 | 65 36.517
ontology Traverser | 24 13.483 | 27 15.169 | 31 17.416
SeqExpress | 23 12.921 | 46 25.843 | 75 42.135
THEA | 54 30.337 | 64 35.955 | 77 43.258

Table 7.14: Absolute and relative frequencies of available functionalities in
the GO tools per year

Figure 7.11 shows a bar plot of the percentages of functionalities that are
available for each GO tool and year. There are some differences between
years, in terms of distributions of frequencies. Note that there is a consid-
erable increase in functionalities between the years 2005 and 2007, and even
though there is also an increase in percentages between 2007 and 2009, the
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change is not as remarkable as the previous one.
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Figure 7.11: Bar plot of the percentage of available functionalities in the GO
Tools per year.
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Analysis by Sections

For this analysis, functionalities have been classified into six sections.
Table 7.15 shows the sections and number of functionalities after the
homogenization included in each one.

Tables 7.16, 7.17 and 7.17 show absolute and relative frequencies of capabil-
ities per GO tool and year, separated by sections of functionalities. These
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Section Num. of Functionalities
Type of Tool 18
Supported Specie 26
Input Data 35
Annotation 72
Statistical analysis 14
Output 13
TOTAL 178

Table 7.15: Number of standard functionalities per section.

tables are supported with bar diagrams (one per section), like in the global
analysis 7.4.1, displaying the distributions of the frequencies for each year.
All these plots are shown in figure 7.12.

A bird’s eye view of bar plots suggest that all the sections of functionalities
have experienced relevant changes. It seems that Annotation Functionalities
and Supported Species are the sections where promoters have invested most
effort. Note that in the associated bar plots, bars in blue (i.e. percentages
of functionalities in 2009) are higher than the red ones (e.g. percentages
of functionalities in 2005). That is, the percentage of functionalities avail-
able in 2009 for these sections is considerably higher than the percentage
of functionalities in 2005. However, with bar plots associated with Type of
Tool, Statistical Analysis, and Qutputs, even though the percentages of GO
tool functionalities increased, such changes seem to be more “homogeneous”.
The bar plot of Input Data functionalities does not suggest great changes of
functionalities for GO tools a priori.
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Section GO Tool 2005 2007 2009
n % n % n %

Type of Tool CLENCH 7 38.889 7 38.889 7 38.889
EASE 6 33.333 7 38.889 7 38.889
ermineJ 8 44.444 | 14 77778 | 14 T7.778
FatiGO 8 44.444 6 33.333 | 10 55.556
FuncAssociate 4 22222 5 27.778 5 27.778
GARBAN 4 22222 7 38.889 7  38.889
GFINDer 5 27.778 7 38889 | 11 61.111
GOArray 6 33.333 6  33.333 6 33.333
GoMiner 10 55.556 12 66.667 | 13 72.222
GOstat 3 16.667 4 22.222 8 44.444
GoSurfer 7 38.889 8 44.444 8 44.444
GOTM 7 38.889 6 33.333 | 10 55.556
MAPPFinder 6 33.333 6 33.333 9  50.000
NetAffx 4 22222 7 38.889 | 10 55.556
DAVID 5 27.778 7 38.889 | 13 72.222
MatchMiner 12 66.667 | 13 72222 | 12  66.667
OntoGate (OntoBlast) 5 27.778 4 22222 8 44.444
SOURCE 5 27.778 6 33.333 | 10 55.556
eGOn 4 22222 8 44.444 12 66.667
GeneMerge 9  50.000 13 72.222 13 72.222
GOToolBox 5 27.778 7 38.889 | 12  66.667
Onto-Tools 9  50.000 13 72.222 13 72.222
Ontologizer 6 33.333 | 12 66.667 | 12  66.667
ontology Traverser 6 33.333 5 27.778 5 27.778
SeqExpress 6 33.333 9  50.000 9  50.000
THEA 9 50.000 | 10 55.556 | 10  55.556
Supported Specie | CLENCH 1 3.846 1 3.846 1 3.846
EASE 0 0 8 30.769 8 30.769
ermineJ 0 0 3  11.538 3 11.538
FatiGO 8 30.769 8 30.769 | 11  42.308
FuncAssociate 10 38.462 | 11  42.308 | 13  50.000
GARBAN 2 7.692 2 7.692 2 7.692
GFINDer 3 11.538 | 13 50.000 | 13  50.000
GOArray 0 0 0 0 0 0
GoMiner 1 3.846 | 13  50.000 | 13  50.000
GOstat 5 19.231 7 26923 | 18 69.231
GoSurfer 4  15.385 5 19.231 5 19.231
GOTM 5 19.231 5 19.231 6 23.077
MAPPFinder 3 11.538 3  11.538 11 42.308
NetAffx 0 0 9 34.615 | 11  42.308
DAVID 4 15.385 4 15.385 8 30.769
MatchMiner 1 3.846 2 7.692 2 7.692
OntoGate (OntoBlast) 9 34.615 9 34.615 6 23.077
SOURCE 3  11.538 3  11.538 3 11.538
eGOn 3 11.538 | 12 46.154 | 13  50.000
GeneMerge 0 0| 19 73.077 | 20 76.923
GOToolBox 7 26.923 7 26923 | 19 73.077
Onto-Tools 6 23.077 | 20 76.923 | 20 76.923
Ontologizer 0 0 | 23 88.462 | 23 88.462
ontology Traverser 0 0 3 11.538 3 11.538
SeqExpress 2 7.692 4 15.385 4 15.385
THEA 9 34.615 | 10 38.462 | 10 38.462

Table 7.16: Frequencies of functionalities of the GO tools per year by sections
Type of Tool and Supported Specie.
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Section GO Tool 2005 2007 2009
n % n % n %
Input Data | CLENCH 2 5.714 8  22.857 8 22.857
EASE 1 2.857 7 20.000 | 14 40.000
ermineJ 1 2.857 5 14.286 5 14.286
FatiGO 13 37.143 | 16 45.714 | 21  60.000
FuncAssociate 1 2.857 9 25714 | 10 28.571
GARBAN 3 8.571 9 25.714 8 22857
GFINDer 8 22857 | 13 37.143 | 15  42.857
GOArray 1 2.857 1 2.857 1 2.857
GoMiner 2 5.714 | 10 28.571 | 13 37.143
GOstat 8 22857 | 10 28571 | 11  31.429
GoSurfer 6 17.143 6 17.143 6 17.143
GOTM 9 25714 | 11 31429 | 10 28.571
MAPPFinder 3 8.571 3 8.571 | 14  40.000
NetAffx 4 11429 | 12 34.286 | 14  40.000
DAVID 15 42.857 | 14 40.000 | 20 57.143
MatchMiner 11 31429 | 19 54.286 | 23 65.714
OntoGate (OntoBlast) 4 11.429 6 17.143 6 17.143
SOURCE 9 25.714 9 25714 | 10 28.571
eGOn 7 20.000 | 10 28.571 | 10 28.571
GeneMerge 2 5.714 7 20.000 | 11  31.429
GOToolBox 6 17.143 8 22857 | 12 34.286
Onto-Tools 16 45714 | 16 45.714 | 14  40.000
Ontologizer 2 5.714 7 20.000 7 20.000
ontology Traverser 3 8.571 4 11.429 4 11.429
SeqExpress 2 5.714 | 11  31.429 | 12 34.286
THEA 1 2.857 5 14.286 5 14.286
Annotation | CLENCH 7 9.722 | 12 16.667 | 15 20.833
EASE 0 0.000 | 30 41.667 | 33 45.833
ermineJ 4 5.556 | 18 25.000 | 21  29.167
FatiGO 11 15278 | 17 23.611 | 29 40.278
FuncAssociate 3 4.167 6 8.333 [§ 8.333
GARBAN 15 20.833 | 34 47.222 | 35 48.611
GFINDer 24 33.333 | 38 52.778 | 42 58.333
GOArray 1 1.389 1 1.389 1 1.389
GoMiner 17 23.611 | 37 51.389 | 38 52.778
GOstat 11 15.278 | 16 22.222 | 25 34.722
GoSurfer 10 13.889 | 20 27.778 | 21  29.167
GOTM 27 37.500 | 27 37.500 | 27  37.500
MAPPFinder 10 13.889 | 13 18.056 | 34 47.222
NetAffx 7 9.722 | 41 56.944 | 33 45.833
DAVID 25 34.722 | 36 50.000 | 51 70.833
MatchMiner 14 19444 | 18 25.000 | 20 27.778
OntoGate (OntoBlast) | 14 19.444 | 14 19.444 | 16 22.222
SOURCE 25 34.722 | 25 34.722 | 28  38.889
eGOn 7 9.722 7 9.722 | 29  40.278
GeneMerge 3 4.167 3 4.167 | 19  26.389
GOToolBox 10 13.889 | 10 13.889 | 23 31.944
Onto-Tools 26 36.111 | 26 36.111 | 38 52.778
Ontologizer 2 2.778 2 2.778 9 12.500
ontology Traverser 2 2.778 2 2.778 6 8.333
SeqExpress 8 11.111 8 11.111 | 35 48.611
THEA 24 33.333 | 24 33.333 | 37 51.389

Table 7.17: Frequencies of functionalities of the GO tools per year by sections
Input Data and Annotation.
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Section GO Tool 2005 2007 2009
n % n % n %

Statistical Analysis | CLENCH 6 42.857 | 10 71.429 | 10 71.429
EASE 1 7.143 6 42.857 6  42.857
ermineJ 3 21.429 8 57.143 9 64.286
FatiGO 7 50.000 6 42.857 7 50.000
FuncAssociate 4  28.571 5 35.714 6  42.857
GARBAN 4 28571 7 50.000 7 50.000
GFINDer 4 28571 | 11 78571 | 11  78.571
GOArray 3 21.429 3 21.429 3 21.429
GoMiner 3 21.429 6 42.857 7 50.000
GOstat 5 35.714 7 50.000 8 57.143
GoSurfer 7 50.000 8 57.143 8 57.143
GOTM 4 28.571 4 28.571 4 28.571
MAPPFinder 2 14.286 2 14.286 6  42.857
NetAffx 3 21.429 5 35.714 0 0
DAVID 1 7.143 8 57.143 9 64.286
MatchMiner 2 14.286 0 0 0 0.000
OntoGate (OntoBlast) | 2 14.286 2 14.286 2 14.286
SOURCE 0 0 0 0 0 0
eGOn 8 57.143 9 64.286 9 64.286
GeneMerge 3 21.429 4 28.571 4 28.571
GOToolBox 8 57.143 | 10 71.429 | 10 71.429
Onto-Tools 7 50.000 | 10 71.429 | 10 71.429
Ontologizer 1 7.143 6 42.857 6  42.857
ontology Traverser 7 50.000 7 50.000 7  50.000
SeqExpress 1 7.143 7 50.000 7 50.000
THEA 7 50.000 8 57.143 8 57.143
Output CLENCH 6 46.154 6  46.154 7 53.846
EASE 0 0.000 7 53.846 7 53.846
ermineJ 1 7.692 8 61.538 9 69.231
FatiGO 6 46.154 7 53.846 8 61.538
FuncAssociate 2 15.385 4 30.769 4 30.769
GARBAN 3 23.077 7 53.846 7 53.846
GFINDer 4 30.769 8 61.538 8 61.538
GOArray 3 23.077 3 23.077 3 23.077
GoMiner 6 46.154 8 61.538 | 10 76.923
GOstat 4 30.769 7 53.846 7 53.846
GoSurfer 6 46.154 7 53.846 8 61.538
GOTM 5  38.462 5 38.462 6 46.154
MAPPFinder 3 23.077 4 30.769 4 30.769
NetAffx 3 23.077 7 53.846 2  15.385
DAVID 3 23.077 8 61.538 8 61.538
MatchMiner 4 30.769 4 30.769 4 30.769
OntoGate (OntoBlast) | 3  23.077 3 23.077 3 23.077
SOURCE 1 7.692 5 38.462 5 38.462
eGOn 2  15.385 9 69.231 9 69.231
GeneMerge 2 15.385 4 30.769 4 30.769
GOToolBox 4 30.769 7 53.846 7 53.846
Onto-Tools 5  38.462 8 61.538 8 61.538
Ontologizer 2 15.385 8 61.538 8 61.538
ontology Traverser 6  46.154 6  46.154 6  46.154
SeqExpress 4 30.769 7 53.846 8 61.538
THEA 4 30.769 7 53.846 7 53.846

Table 7.18: Frequencies of functionalities of GO tools per year for sections
Statistical Analysis and Output.
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Type Of Tool Supported Species Input Data
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Figure 7.12: Bar plots of the percentage of functionalities of GO Tools per
year by sections.
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7.4.2 Inferential Analysis
Global Analysis

Table 7.19 shows the results of the Chi-squared tests of homogeneity. The
comparisons between years 2005 vs. 2007 and 2005 vs. 2009 are statistically
significant because, in both cases, adjusted p-values (i.e. 5.763450e-10 and
1.750368e-10 respectively) are less than a level of significance of o = 0.05.
Therefore, in both cases, we reject the null hypothesis that the distribution
of frequencies between each pair of years is the same. However, there is not
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enough evidence to reject the null hypothesis associated with the comparison
2007 wvs. 2009, because the adjusted p-value (i.e. 1.106518e-01) is greater
than a level of significance of o = 0.05.

Comparison Chi.Squared | df PValue | Adj.Pvalue
2005 wvs. 2007 95.29502 | 25 | 3.842300e-10 | 5.763450e-10
2007 ws. 2009 33.87294 | 25 | 1.106518e-01 | 1.106518e-01
2005 wvs. 2009 100.18731 | 25 | 5.834561e-11 | 1.750368e-10

Table 7.19: Results of Chi-squared tests of homogeneity between the distri-
bution of frequencies of the functionalities for each pair of years.

Therefore, the Chi-squared tests of homogeneity tell us that the numbers of
functionalities of GO tools are different between 2005 and 2007, as well as
between 2005 and 2009, but they do not show statistical differences between
2007 and 2009. Such differences between the number of functionalities of GO
tools for each year are clearly recognized in figure 7.13. In this figure there are
four plots represented. The first plot (top-left) are boxplots of the number
of functionalities of GO tools per year. The next three representations are
scatterplots with a Loess curve and the respective confidence bands, where
each one of them shows the GO tools based on the number of functionalities
for a pair of years. Globally, the number of functionalities available in GO
tools have been increasing over time. Looking at the interquartile ranks of
boxplots, one can observe that, while in 2005 most of the GO tools show a
number of functionalities varying from 22 to 42 out of 178 functionalities, in
2007 these numbers of functionalities increase, varying from 45 to 65 out of
178 functionalities, and in 2009 the number of capabilities increased again,
varying from 58 to 80 out of 178 functionalities. Note that the interquartile
range (IQR) seems to be wider in 2009 than in other years. The general
upward trend also becomes obvious in scatterplots, whatever the combination
of years being considered. This trend tends to be linear, that is, for a given
year (i.e. z-axis), GO tools with a low number of functionalities, also show
a low number of functionalities in the year thereafter (i.e. y-axis), and GO
tools with a high number of functionalities, also show a high number of
functionalities in the year thereafter. In some sense, these results suggest that
promoters offering GO tools with more capacities invested much more effort
in the software than the promoters that offer GO tools with less capabilities.
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Analysis by Sections

Table 7.20 shows the results of Chi-squared tests of homogeneity disaggre-
gated by sections of functionalities. Most of the tests are not statistically
significant because adjusted p-values are less than a level of significance
of a = 0.05. In consequence, there is not enough evidence to reject the
null hypothesis associated with each of these comparisons. However, the
comparisons between years 2005 wvs. 2007 and 2005 vs. 2009 in section
Supported Species, and the comparisons between all the pairs of years in
section Annotations, the adjusted p-values are less than a level of significance
of a = 0.05. Therefore, in these cases, we reject the null hypothesis that the
distribution of frequencies between each pair of years is the same. Therefore,
we reject the null hypothesis that the distribution of frequencies between
each pair of years mentioned, in these sections, is the same.

Boxplots and scatterplots associated with each section of functionalities are
shown in figures from 7.14 to 7.19. The overall trend of boxplots display
an increase in the number of functionalities of GO tools. Note that the
boxes show much higher interquartile ranks in 2009 than in previous years.
However, in Statistical Methods and Outputs sections it is more difficult to
appreciate clear differences in the shapes of the boxplots between years 2007
and 2009. When looking at scatterplots such a general upward trend does
not become obvious. It seems to suggest that in all sections a “linear” in-
crease exists between 2007 and 2009. But, the point clouds of scatterplots
representing the number of functionalities between 2005 and 2007, and also
between 2005 and 2009, seem to show fuzzy circular shapes. What is clear is
that in Supported Species and Annotations sections, the point clouds of the
scatterplots between 2005 and 2007, and 2005 and 2009 show a significant
change in the numbers of functionalities.
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Figure 7.14: Boxplots and scatterplots of the number of functionalities of
GO tools in section Type of Tools.
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Figure 7.18: Boxplots and scatterplots of the number of functionalities of
GO tools in section Statistical Methods.
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7.4.3 Multivariate Analysis

In this subsection, for the sake of convenience in consulting the results, some
results are going to be outlined in a different order order to the order in
which the associated methods have been introduced in the previous chapter
(see section 6.4.2.3). Firstly, results associated with the determination of the
number of clusters are presented. Secondly, hierarchical cluster results are
shown. And thirdly, multidimensional scaling results are explained.

Selection of the Number of Clusters

Table 7.21 shows a summary of the optimal number of clusters according to
the corresponding Silhouette Coefficients based on the Jaccard and Matching
coefficients, and after running PAM algorithms. Globally speaking, in all
cases there is a clear lack of substantial cluster structures. That is, due
to the fact that all Silhouette Coefficients (SC) are lower than 0.25, this
suggests that GO tools might not be well characterized by (if so) models
determined according to the clusterings based on the dissimilarity matrices
DSyos, DSgor and DS9. In 2005, the number of clusters seems to be low
(i.e. 2 and 3). In 2007, the number of clusters seems to be high (i.e. 9
and 16). And, in 2009, it is not clear because it depends on the coefficient
used. Based on the Jaccard coefficient, SC suggests 2 clusters and based on
the Matching coefficients it seems to be 5. It is difficult to interpreted, but
it might be associated in some sense with the improvements introduced in
GO tools during the period from 2005 to 2007, in order to fill a “gap” of
capabilities offered to perform the enrichment analysis.

Year | Jaccard Coefficient | Matching Coefficient
Num. Clusters SC | Num. Clusters SC

2005 2 0.13 3 0.2
2007 9 0.09 16 0.1
2009 2 0.1 5 0.12

Table 7.21: Summary table of the optimal number of clusters according to
the SCs based on the Jaccard and Matching Coeffients.

Bar diagrams of the average silhouette widths for each number of clusters
and the silhouette plots of the optimal number of clusters per year and
based on the Jaccard and Matching coefficients are shown in figures 7.20
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and 7.21.
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Figure 7.20: Bar plots of the average silhouette widths for each number of
clusters and the silhouette plots for the optimal number of clusters per year
and based on the Jaccard Coefficient.
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Figure 7.21: Bar plots of the average silhouette widths for each number of
clusters and the silhouette plots for the optimal number of clusters per year
and based on the Matching Coefficient.

Looking at the bar diagrams, whatever the year and the coefficient used, and
leaving aside any limitations due to low values of SC, partitioning the space
with a low number of clusters generally seems to explain a considerable part
of the information about the groups of GO tools. Based on this fact and in
order to discuss the evolution of GO tool functionalities, 3 clusters have been
considered for highlighting groupings in hierarchical clusters and MDS.

Hierarchical Clusters
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Hierarchical Clusters and Multidimensional Scaling plots of GO tools in
2005, 2007 and 2009 are shown in figures 7.22, 7.23, and 7.24, respectively.
Each figure consists of six plots divided into two rows. The first row shows
the hierarchical cluster, the classical MDS and the non-metric MDS based
on the Jaccard Coefficient. The second row shows the same plots, but
based on the Matching Coefficient. GO tool names in dendrograms and
points corresponding to GO tools in both MDS plots are colored in gold,
red or blue. Each of these colors is associated with one of the three clusters
that have been considered after running the PAM algorithm several times
and checking the Silhouette Coefficients associated with each similarity
coefficient and year.

Globally, hierarchical clusters show a large number of GO tools lying in one
“major” cluster (red) and the remain GO tools are divided between two
“minor” clusters (gold and blue), regardless of both the year and coefficient
of similarity used. More specifically, hierarchical clusters based on the
Jaccard coefficient clearly show most of the GO tools lying in the major
cluster (red) and the minor clusters (gold and blue) have very few GO tools.
In 2005, the major cluster consists of 20 GO tools, and the minor clusters
contain 5 (gold) and 1 (blue) GO tools. These quantities are quite similar to
the number of GO tools lying in the three clusters in 2007 and 2009, because
the number of GO tools lying in the major cluster increases to 24 programs
in both 2007 and 2009, and consequently the number of GO tools lying in
the minor clusters are reduced, leaving one GO tool in one cluster (gold)
and another GO tool in the other cluster (blue) in both years. However,
this behavior is quite different when looking at the hierarchical clusters
based on the Matching coefficient. Although most of the GO tools lie in
a major cluster (red), this fact is not as obvious as with the hierarchical
clusters based on the Jaccard coefficient. While in 2005 the major cluster
consists of almost all GO tools, in 2007 the cluster experienced a drastic
decrease in its number of GO tools, which obviously causes an increase in
the number of GO tools in the minor clusters, and this trend is maintained
in 2009. Specifically, in 2005, the major cluster consists of 23 GO tools, and
the minor clusters have 2 GO tools (gold) in one case and 1 GO tool (blue)
in the other case. In 2007, the major cluster consists of 16 GO tools, and
the minor clusters contain 8 GO tools (gold) in one case and 2 GO tools
(blue) in the other case. Finally, in 2009, the major cluster is formed by 14
GO tools (red), the second cluster consists of 8 GO tools (gold) and in the
third cluster there are 4 programs (blue). Table 7.22 shows the numbers of
clusters assigned to each GO tool per year and the coefficient of similarity,
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after “cutting” the corresponding hierarchical cluster.
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Figure 7.22: Hierarchical clusters and two-dimensional plots of MDS solu-
tions based on the Jaccard and Matching Coefficients of GO tools in 2005
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and two-dimensional plots of MDS solu-
tions based on the Jaccard and Matching Coefficients of GO tools in 2007
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Figure 7.24: Hierarchical clusters and two-dimensional plots of MDS solu-
tions based on the Jaccard and Matching Coefficients of GO tools in 2009

Such differences between hierarchical clusters based on the Jaccard coefficient
and Matching coefficients are obviously attributable to the way of under-
standing and defining each coefficient. That is, the Jaccard coefficient only
considers positives matches (i.e. it counts functionalities that are available
in both GO tools), and the Matching coefficient considers positive and neg-
ative matches (i.e. it counts both functionalities that are available and not
available in both GO tools) 6.2. When considering the Jaccard coefficients
the idea of the presence of certain homogeneity among GO tools over time
does of course arise. Note that this fact is in consonance with the lack of
cluster structures suggested by the silhouette coefficients (i.e. 0.13 in 2005,
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0.09 in 2007, and 0.1 in 2009). However, when considering the Matching
coefficient, GO tools seems to evolve from the homogeneity of capabilities
to a some sort of “specialization” of programs. As stated above, lacks of
cluster structures is shown by the silhouette coefficients (i.e. 0.2 in 2005,
0.1 in 2007, and 0.12 in 2009) too, but in all cases they are slightly higher
than those average silhouettes widths based on the Jaccard coefficient. In
any case, the three clusters selected based on the Matching coefficient show a
subset of GO tools that always “go” together (i.e. CLENCH ([137]), ermineJ,
FuncAssociate ([16]), GOArray, GoSurfer ([169]), OntoGate (OntoBlast)
([167]), ontology Traverser ([164]), and SeqExpress ([19])). Note that
these GO tools are those points that lie approximately on the imaginary
line bisecting the scatterplots in figure 7.13. That is, those points that are
approximately “invariant” over time, or in another sense those points repre-
senting GO tools that do not seem to have experienced major changes with
regard to their functionalities.

GO Tool Jaccard Coefficient Matching Coefficient
2005 2007 2009 | 2005 2007 2009
CLENCH 1 1 1 1 1 1
EASE 2 1 1 1 2 1
ermineJ 2 1 1 1 1 1
FatiGO 1 1 1 1 1 2
FuncAssociate 1 1 1 1 1 1
GARBAN 1 1 1 1 2 1
GFINDer 1 1 1 1 2 2
GOArray 2 2 2 1 1 1
GoMiner 1 1 1 1 3 2
GOstat 1 1 1 1 1 3
GoSurfer 1 1 1 1 1 1
GOTM 1 1 1 1 2 1
MAPPFinder 1 1 1 1 1 2
NetAffx 1 1 1 1 2 1
DAVID 1 1 1 2 2 2
MatchMiner 1 1 1 1 2 1
OntoGate (OntoBlast) 3 3 3 1 1 1
SOURCE 1 1 1 2 2 1
eGOn 1 1 1 1 1 2
GeneMerge 2 1 1 1 1 3
GOToolBox 1 1 1 1 1 3
Onto-Tools 1 1 1 3 3 2
Ontologizer 2 1 1 1 1 3
ontology Traverser 1 1 1 1 1 1
SeqExpress 1 1 1 1 1 1
THEA 1 1 1 1 1 2

Table 7.22: Number of the cluster assigned to each GO tool per year and
coefficient of similarity.
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Multidimensional Scaling

The 2-dimensional plots of MDS solutions are shown in figures 7.22,
7.23, and 7.24. Each point in one of these plots is associated with one GO
tool and is coloured red, gold or blue according to the cluster in which it lies.

A general overview of the plots by years suggests that GO tools are more
spread out in MDS solutions based on the Jaccard coefficient than in MDS
solutions based on the Matching coefficient, independently of the type of
approach used (i.e. classical or non-metric MDS). There are some subtle
differences in “meaning”, but globally speaking, from the non-metric MDS
solution based on the Matching coefficient in 2009, distances among points
seem to behave similarly.

Based on the Jaccard coefficient, for all years, classical MDS solutions show
values ranging from -0.5 to 0.5 on the first dimension and from -0.4 to
0.4 on the second dimension. The adequacy for each year are 61.23% in
2005, 52.67% in 2007, and 53.64% in 2009. These percentages suggest that
representation of data by the first two dimensions is not bad. Clusters of
GO tools that have been determined with the help of silhouettes 7.4.3 and
identified in dendrograms 7.4.3, do not show an outstanding separation
effect among them. However, in 2005 the MDS plot seems to suggests that
one of the minor clusters (gold) is slightly separated to the left from any
other GO tool, and one of the programs of such a cluster (i.e. GOArray)
remains a little bit separated from any other GO tool in 2007 and 2009. In
the case of non-metric MDS solutions the behavior is more or less the same
as in classical MDS solutions. On the first dimension, points associated
with GO tools range from -0.5 to 0.5 in 2005 and 2007, but in 2009 values
vary from -1 to 0.5. On the second dimension, points range from -0.4 to 0.4
in 2005 and 2007, but in 2009 this interval is higher, varying from -0.6 to
0.4. Stress values associated with each year are 18.48% in 2005, 16.74% in
2007 and 15.63% in 2009, that a priori suggests poor or fair goodness of fit,
which will be discussed later on.

Based on the Matching coefficient, for all years, points of classical MDS
solutions range approximately from -0.2 to 0.2 on the first dimension, as well
as on the second dimension. But, note that as years go by this interval is
being spread little by little until it ranges from -0.3 to 0.3, more or less. The
measures of agreement for each year are 63.39% in 2005, 73.93% in 2007, and
71.63% in 2009. These percentages suggest that representation of data by
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the first two dimensions is much better than classical MDS solutions based
on Jaccard coefficient. Clusters of GO tools that have been determined
do not show again an outstanding separation effect between them, but in
contrast to MDS solutions based on the Jaccard coefficients, for all years both
approaches (i.e. classical and non-metric MDS) seem to place the clusters
of GO tools in the same areas. Of course, this vague assertion is not free
of criticism, but it could be confirmed considering a higher dimensionality.
In any case, what is clear is that in classical MDS solutions based on the
Matching coefficient, clusters are less fuzzy and points are more crowded
together than in classical MDS solutions based on the Jaccard coefficient.
In the case of non-metric MDS solutions the behavior in 2005 and 2007 is
more or less the same as in classical MDS solutions, but completely different
in 2009. On the first dimension, in 2005, points vary from -0.3 to 0.4, in
2007 the values range from 0.2 to 0.2, and in 2009 the points are lying in
a higher interval ranging from -0.5 to 0.5. On the second component of
dimensionality, in 2005 the values range from -0.3 to 0.4, in 2007 the points
vary from -0.2 to 0.2, and in 2009 the values range from -0.6 to 0.5. That is,
in 2007 there is apparently a contraction of points representing the GO tools,
to be followed by an expansion in 2009. This fact has no easy interpretation,
and even more so if the stress values are taken into account, because they are
17.98% in 2005, 17.14% in 2007, and 20.94% in 2009. A possible explanation
may be that it relies on the specialization process over the time that we
have observed in descriptive statistics 7.4.1 and inferential analysis 7.4.2,
where results suggest that in 2007 most of the promoters introduced and
improved the capacities of GO tools considerably. However, while progress
continued until 2009, the results suggest that in parallel a brake began to be
automatically and significantly triggered. It therefore seems that the two-
dimensional plots of the non-metric MDS show a kind of graphical description
regarding the evolution and specialization of GO tools, but which in turn is
not clear enough to reflect the changes in terms of distances and clusters due
to the fact that the stress values suggest a poor goodness of fit.

Adequacy and Stress of Multidimensional Scaling Solutions

Figure 7.25 shows bar diagrams of adequacy associated with each classical
MDS solution based one the Jaccard coefficient (first row) and the Matching
coefficient (second row). For each bar diagram two points are highlighted
in red and orange. The red point indicates the accumulated percentage of
adequacy associated with dimension 2 and the orange point indicates the
accumulated percentage of adequacy associated with dimension 3.
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Figure 7.25: Adequacy plots associated with MDS solutions.

Interpretation of this kind of bar diagram is quite similar to the interpre-
tation of the scree plot ([18], [69]) for non-metric MDS solutions 6.4.2.3,
because in essence it is the same. However, in this case, the higher the
dimension selected, the greater the percentage of agreement accumulated.
The optimal dimension that should be selected is the site where there is
a “sudden change” of the curve, in the sense that new components do
not contribute with significant improvements. In most of the cases of
these plots they do not seem to show abrupt changes in the shapes of the
curves. Thus, as mentioned in the previous paragraph 7.4.3, by consid-
ering the two-dimensional configuration, no bad representations are reached.
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Scree plots and Shepard diagrams associated with non-metric MDS solutions
based on the Jaccard coefficient are shown in figure 7.26, and are shown in
figure 7.27 based on the Matching coefficient. In both figures, the first row
shows scree plots and the second row shows Shepard diagrams.

these plots show some discrepancies that might be misinterpreted.
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Figure 7.27: Scree plots and Shepard diagrams associated with MDS solu-
tions based on the Matching coefficient.

In Scree plots the percentages of stress o1(X) are represented with respect
to the number of dimensions considered. In these plots there are two
highlighted points, one in red and the other in orange. The first indicates
the stress for dimension 2 and the second indicates the stress for the
first dimension that shows a stress value lower that 5%, according to the
benchmark of a “good” goodness of fit purposed by Kruskal (table 6.4).
Thus, as mentioned in previous section 7.4.3, independently of the coefficient
of similarity used, percentages of stress o;(X) associated with the two-
dimensional configuration of non-metric MDS solutions show fair or poor
goodnesses of fit, because when looking at red points, the stress values range
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between 15% and 21% (red points). Note that none of the curves display an
abrupt “elbow”. In fact, all the curves decrease in a smoother way, although
of course the decrease in stress values is much lower for higher dimensions.
Therefore, by considering 5% as a cutoff for deciding the “optimal number”
of dimensions, the orange points indicate that good non-metric MDS
solutions should be those that consider 7-dimensional configurations for all
cases with only one exception (i.e. non-metric MDS solution based on the
Jaccard coefficient in 2009), which should be 5-dimensional configurations.

In Shepard diagrams, globally speaking, three main traits are observed.
First, these plots display roughly linear regression curves. They show a
number of marked steps, especially when looking at the diagrams associated
with non-metric MDS solutions based on the Matching coefficient, and
slightly curved shapes in the cases based on the Jaccard coefficient. Second,
in the diagrams associated with non-metric MDS solutions based ont the
Matching coefficient, we can graphically observe some differences between
slopes. Third, independently of the year and the coefficient used, their
coefficients of determination based on the stress (i.e. R? =1 —01(X)?) show
values higher than 0.96 (red legends at the top of each plot). In other words,
the respective isotonic regressions models fit very well.

Stress values have been criticized for being over-simplistic ([160], [18]).
For example, for the same underlying data structure, a larger data set
will necessarily result in a higher stress value, or for instance stress values
might be highly influenced by “outliers”. What is clear is that, in this
analysis and in keeping with previous results, scree plots suggest that the
two-dimensional non-metric MDS spaces are not reliable enough, and it is
therefore difficult to ensure that clusters of GO tools are identified. However,
in contrast, Shepard diagram results seem to suggest that distances and
disparities are good when they approximate the original proximities, that
is, the distances between GO tools. Hence, a graphical identification of
clusters of GO tools is apparently observed, even when the separation
between such clusters is a little bit fuzzy. But note that the cloud of
points in all cases are displaced from the ideal bisecting line, and this
fact is not extraordinary. The points in a Shepard diagram are not,
strictly speaking, geometric projections of the proximities. In fact, it is a
technique to project a dissimilarity (or distance) matrix to fewer dimensions.

To sum up, coefficients of determination suggest that isotonic regression mod-
els are well represented for each 2-dimensional non-metric MDS solutions, but
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stress values yielded for these non-metric configurations are high, and in or-
der to reduce such values, Scree plots suggest increasing the dimensionality
on the non-metric MDS configuration, a dimension close to 7 being “opti-
mal”. So, potential models or specialization of groups of GO tools observed
a priori are not being believable.

Mantel Tests

Table 7.23 summarizes the results yielded in Mantel and Partial Mantel
Tests.

(Partial) Mantel Test 7y PValue

rM(DQJU%, Dy 0.450  0.0001

(D 007 Di00) 0.803  0.0001
rM( 2005 Dsyo0) 0.276  0.0033
731 (D005, Dgoo| Diooz)  -0-160  0.9727
rar(D33os, Dot 0.479  0.0002
rar (DM, DY) 0.588  0.0001
rar (DM, DY) 0.283  0.0001
rar(D3dos, DOdoo| DY) 0.003  0.4863

Table 7.23: Mantel and Partial Mantel Tests.

The Simple Mantel Tests have been used to test the correlation be-
tween each pair of dissimilarity (distance) matrices Dy, where
year = {2005,2007,2009} and ¢ = {J,M} (see section 6.4.2.3). The
p-values has been determined by specifying 9999 permutations of the rows
and columns of the first matrix in each case. The results indicate that all
the tests are statistically significant at an a of 0.05. However, the Pearson
product-moment correlation coefficients rj; indicate that there is poor
correlation between each pair of dissimilarity matrices, with the exception of

731 (D507, Digog), Whose value 0.803 indicates a relatively good correlation.

The Partial Mantel Tests have been used to estimate the correlation between
the two matrices D$y,; and D$y,9, while controlling for the effect of the
matrix DSy, and where ¢ = {J, M}. The p-values has been determined
by specifying 9999 permutations of the rows and columns of the first
matrix in each case, so the correlation structure between the first and
second dissimilarity matrices have been kept constant. The results indicate
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that, independently of the similarity coefficient used, the p-values are not
statistically significant at an alpha of 0.05. Therefore, we do not have
enough evidence for rejecting the null hypothesis.

In other words, whatever the coefficient of similarity used (i.e. Jaccard
coefficient or Matching coefficient), the simple Mantel tests show some
sorts of fair relationships between each pair of dissimilarity matrices of
GO tools. This fact may suggests that the similarities between GO tools
evolve over time. However, the Partial Mantel Tests, independently of
the coefficient of similarity used, suggest that the matrix of dissimilarities
between each pair of GO tools in 2005 do not show a linear relationship
with the matrix of dissimilarities in 2009 when taking into account the
matrix of dissimilarities in 2007. That is, the similarities between GO
tools do not seem to be the “same” during this period of time. After
considering the results, when we focus on the comparison between the
dissimilarity matrices D§y,; and D$y,, we might think that there is a
contradiction. However, two questions must be taken into account. First,
in Simple Mantel Tests the coefficients of correlations are close to 0 (i.e.
rar(Dioss Do) = 0.276 and ra (D5, Do) = 0.283), that is, the
correlation is practically null, and second, in Partial Mantel Tests we are
controlling for the action of a third matrix, the matrix of dissimilarities
between GO tools in 2007. This third matrix is involved in removing the
spurious effect of correlation that might not be seen in Simple Mantel Tests.

7.5 An Ontology for Developing GO Tools
(DeGOT)

DeGOT is a simple ontology aimed at providing developers with an organized
and structured vocabulary when they have to design a new GO tool. Further-
more, it is also a resource to help users, as a complementary tool of SerbG0,
when they need to look for specific features of the GO tools.

7.5.1 Availability of DeGOT

DeGOT is freely available under a Creative Commons Attribution 4.0 In-
ternational License (http://creativecommons.org/licenses/by/4.0/)
and does not require a login. It can be downloaded from the website
http://estbioinfo.stat.ub.es/apli/degot of the Statistics and Bioin-
formatics Research Group (http://eib.stat.ub.edu/) lead by Dr.Alex


http://creativecommons.org/licenses/by/4.0/
http://estbioinfo.stat.ub.es/apli/degot
http://eib.stat.ub.edu/
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Sanchez. Documentation about concepts, properties and individuals in-
cluded in the ontology is also available on the website. Figure 7.28 shows
the main page of the DeGOT website.

DeGOT ontology - Overview - Documentation - Contact

DeGOT: Developing GO Tools

An ontology developed by

DeGOT ontology I S

DeGOT is an ontology oriented to provide developers of GO tools with an organized and I Overview

structured vocabulary when they need to design a new application. It is also a thought, as a

I Documentation
complementary tool of SerbGO, for those users who are looking for specific features of GO tools.

I Download
Rationale

Contact

Avinguda Diagonal 645
08028 - Barcelona

When a researcher needs to give a biological significance to the results of its omics data
analysis, often she/ne makes use of the information stored in the in the Gene Ontology (GO).
A huge quantity of methods and tools for mining and managing information stored in the GO
have been developed during the last decade. Therefore, an apropriate classification of GO
tools was required. Thus, in order to organize all these resources, an Sfandard
Funclionalities Sef was defined [1]. This list of functionalities allowed to characterize GO
tools based on their capabilities. All these information was stored in a database, and it can
be accessed by using the query forms of a web aplication called SerbGO. This resource
allows to either look for GO tools that fit more or less to the goals that are being pursued, or
compare capabilities of different programs. However, many developers still working on GO

Ph. +34 93 402 1560
Fax. +34 93 411 1733
e-mail: iImosquera@gmail.com

About us

tools either by improving them or by programming new ones. For this reason, and in order to
capture conceptualizations of GO tools capabiliies, DeGOT ontology was built. Thus,
DeGOT facilitates communication between developers and/or users, as well as the usage of
this domain knowledge by computers for multiple purposes.

References

e "= Mosquera, JL and Sanchez. SerbGO: searching for the best GO fool.
- _ MNucl. Acids Res. 2008; 36(suppl 2):W368-W371.

DeGOT ontoloy has been
developed by J.L. Mosquera
and supervised by A. Sanchez,
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License

DeGOT ontology by J.L.
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Creative Commaons Atfribution
4.0 International License.

Figure 7.28: Screenshot of the Home page at the DeGOT website.

In order to navigate the ontology, an OWL ([6]) navigator is required, and the
best way use is to download and install Protégé software from the website
http://protege.stanford.edu/.


http://protege.stanford.edu/
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7.5.2 General Overview of DeGOT Website

DeGOT website has is structure around four pages.
Home page that welcomes the user (see figure 7.28). The second page is the
Overview where a general description of the ontology is presented (see figure

7.29).

DeGOT ontology - Cverview - Documentation - Contact

The first page is the

DeGOT: Developing GO Tools

An ontology developed by

The domain knowledge of DeGOT ontology is focussed on the characteristics of GO tools.
Terms in this ontology allow to:

= Share common understanding of the structure of functionalities among developers
and/or users.

= Enable reuse of ontology vocabulary.

» Make assumptions of domain explicit.

= Separate discourse knowledge from the functional or operative knowledge of GO

tools.
= Analyse domain knowledge in order to complement SerbGOC queries and
comparisons of GO tools.
Classes
[omny | Classes (aka concepisjare

organised into a superclass-
subclass hierarchy. Main class
- is GOTool_Domain_Concept,
[F@runionaiyy | [Fereroms | [f@mmouce | [@swwviy | whose direct specializations
are  four concepis that

characterize a GO tool in a more comprehensive way. These concepts are:

= Availability: types of inferface, License, and Operafive Sysiem of each GO.

* File_Formatiypes of file formats that are used or provided by each GO tool.

* Functionaliy: types of input, Analysis, Quiputthat allow each GO tool.

» Resource: databases, tools and other resources that are associated with each GO
tool.

Each of these classes have several offspring. Concepts are described using formal
descriptions that state precisely the requirements for membership of the class.

Figure 7.29: Screenshot of the Querview page

The third page is the Documentation (see figure 7.30). Documentation was
obtained by processing the OWL ontology source code through Live OWL

DeGOT overview I Szl
DeGOT is an ontology developed in OWL with protege. It consists of classes, properties, and I Overview
|nd|v|d.uals. The present page put on view main characteristics of DeGOT ontology and their I T
potential uses.
I Download
Domain Knowledge
Contact

Avinguda Diagonal 645
08028 - Barcelona

Ph. +34 93 402 1560
Fax. +34 93 411 1733
e-mail: iImosquera@gmail.com

About us

DeGOT ontoloy has been
developed by JL. Mosquera
and supervised by A. Sanchez,
members of the research group
Statistics and Bioinformatics at
the Department of Stafistics of
the University of Barcelona.

GRUP DE RECERCA
I EN ESTADISTICA |
BIOINFCRMATICA

License

DeGOT ontology by J.L
Mosquera is licensed under a
Creative Commaons Atfribution
4.0 International License.

at the DeGOT website.



7.5. AN ONTOLOGY FOR DEVELOPING GO TOOLS (DEGOT) 192

Documentation Environment (LODE) ([121]). Here, the user can navigate
and read the descriptions and details of each object implemented in DeGOT
ontology. Finally, the fourth page is from where the user can Download the
document tree in OWL code (see figure 7.31).

IRI:

http://esthioinfo.stat.ub.es/apli/degot
Current version:

version 1.0
Other visualisation:

Ontology source

Powered by

Abstract

The ontology describes functionalities of GO tools to help developers when building a new GO program or improving an existing GO tool.

Table of Content

. Classes

Object Properties
Named Individuals

. Annotation Properties
General Axioms
Namespace Declarations

ouswN e

Figure 7.30: Screenshot of the Documentation page at the DeGOT website.

—<Ontology xml:base="http://estbioinfo.stat.ub.es/apli/degot" ontologyIRI="http://estbioinfo.stat.ub.es/apli/degot">
<Prefix name=""IRI="http://www.w3.0rg/2006/12fowl2-xml#"/>
<Prefix name="ont" IRI="http://www.co-ode.org/ontologies/ont.owl#"/>
<Prefix name="owl]" IRI="http://www.w3.0rg/2002/07/ow]#"/>
<Prefix name="rdf" IRI="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#"/>
<Prefix name="xsd" IRI="http://www.w3.0rg/2001/XMLSchema#"/>
<Prefix name="rdfs" IRI="http://www.w3.0rg/2000/01/rdf-schema#"/>
<Prefix name="DeGOT" IRI="http://www.semanticweb.org/ontologies/2009/5/DeGOT.owl#"/>
<Prefix name="owl2xml" IRI="http://www.w3.0rg/2006/12/ow]2-xml#"/>
—<Annotation>
<AnnotationProperty IRI="#language"/>
<Literal datatypeIRI="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#PlainLiteral">en</Literal>
</Annotation>
—<Annotation>
<AnnotationProperty IRI="#creator"/>
<Literal datatypeIRI="http://www.w3.0rg/1999/02/22-rdf syntax-ns#PlainLiteral">Jose Luis Mosquera</Literal>
</Annotation>
—<Annotation>
<AnnotationProperty IRI="#publisher"/>
<Literal datatypeIRI="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#PlainLiteral">Department of Statistics. University of Barcelona</Literal>
</Annotation>
—<Annotation>
<AnnotationProperty abbreviatedIRI="owl:versionInfo"/>
<Literal datatypeIRI="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#PlainLiteral">version 1.0</Literal>
</Annotation>
—<Annotation>
<AnnotationProperty abbreviatedIRI="rdfs:comment"/>
—<Literal datatypeIRI="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#PlainLiteral">
The ontology describes functionalities of GO tools to help developers when building a new GO program or improving an existing GO tool.
</Literal>
</Annotation>
—<Declaration>
<Class IRI="#API"/>
</Declaration>
—<Declaration>
<Class IRI="#Annotation Input Data"/>
</Declaration>
—<Declaration>
<Class IRI="#Annotations Table"/>
</Declaration>
—<Declaration>
<Class IRI="#Availability"/>

Figure 7.31: Screenshot of the Download page at the DeGOT website from
where the user can save the documentation tree in OWL code.
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The following subsections put show the main characteristics of the ontology
and illustrates some examples of their potential uses.

7.5.3 Domain Knowledge of DeGOT Ontology

The domain knowledge of DeGOT ontology is focused on the characteristics
of GO tools. Terms in this ontology allow us to:

1. share common understanding of the structure of functionalities among
developers and/or users,

2. enable reuse of domain knowledge,
3. make domain assumptions explicit,

4. separate domain knowledge from the functional or operative knowledge
of GO tools, and

5. analyze domain knowledge in order to complement SerbG0 queries and
comparisons of GO tools.

The organization of characteristics into the DeGOT hierarchy makes the up-
grading process, including new capabilities, easier than a relational database.
The following subsections describe the organization of DeGOT.

7.5.4 Constructs of DeGOT Ontology

DeGOT is an ontology written in OWL. It consists of classes, properties, and
individuals. Table 7.24 shows a brief summary of DeGOT ontology metrics.

Object Num. of Objects
Classes 314
Properties 18
Individuals 4

Table 7.24: Number of objects of DeGOT ontology.

The following paragraphs present what is collected in each of these constructs.
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Classes

All ontologies written in OWL have a mandatory top class called Thing. Classes
are organized into a taxonomy or superclass-subclass hierarchy. The subclass
of Thing is GOTool_Domain_Concept. Thus, this class might be considered
as the root class of DeGOT, whose specializations are four concepts that char-
acterize a GO tool in a more comprehensive way. These concepts are:

e Awvailability: types of Interface, License, and Operative System of the
GO tool.

e File_Format:types of file formats that are used or provided by each GO
tool.

e Functionality: types of Input, Analysis, Output that are allowed by the
GO tool.

e Resource: databases, tools and other resources that are associated with
the GO tool.

Figure 7.32 shows the main subclasses of GOTool_Domain_Concept.

|' Thing |

GOTool_Domain_C
oncept

N

~
d

-~

+ + +

Functionality ] Resource ] [* Availability

File_Format ]

Figure 7.32: DAG of the main classes of DeGOT ontology.

These classes have different numbers of offspring. The concepts of each class
are detailed in the DeGOT documentation, which is available at the website
for the ontology (see figure 7.33).
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Classes
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api back to ToC or Class Toc]

IRI: http://estbioinfo.stat.ub.es/apli/degot #API

APl is an a GO tool presented as an Application Programming Interface. Usually, this type of application is downlodable.

has super-classes

interface

(has an interface® value bin g o) and (has an interface®” value c le n ¢ h)
has members

bingo™, clench”

aconoidasida back to ToC or Class Toc|

IRI: http://w DeGOT.owl#

Figure 7.33: Screenshot of the documentation about Classes at DeGOT web-
site.

The concepts of the ontology are described using formal descriptions that
state precisely the requirements for membership of the class. For example,
the concept Web_Tool collects all GO tool names that have a web interface.

Classes are divided in two types: subclasses and superclasses. Subclasses
are specializations of their superclasses. For instance, consider the classes
Mammalia and HomoSapiens. HomoSapiens is a subclass of Mammalia,
then Mammalia is a superclass of the HomoSapiens concept. A user can
easily understand that,

e “HomoSapiens is subsumed by Mammalia”

“All members of the class HomoSapiens are members of the class Mam-
malia”

“All GO tools supporting Homo sapiens species are GO tools support-
ing Mammalia class”

Properties

Properties are binary relations of individuals. Strictly speaking, “instances
of properties linking individuals”. The descriptions of the object properties
are available at the website for the ontology (see figure 7.34)
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Object Properties
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Powered by
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IRI: http:/estbioinfo.stat.ub.es/apli/degot#hasALicense

A property created to be used with the Lincense.

has super-properties
has an availability®

0 ToC or Object Property ToC'
has a resource®? fback to ToC or Object Property Toc,

Figure 7.34: Screenshot of the documentation about Object Properties at
DeGOT website.

DeGOT ontology has 18 properties. These properties are shown in table 7.25.

Figure 7.35 shows a subgraph of DeGOT ontology where arcs represent different
types of links, some of them are properties that have been defined.

[ == has individual

—— has subclass

[ = hasAFunctionalAnnotationAnalysis (Domain>Range)

— hasAFunctionality (Domain>Range)

[0 — hasanAvailability (Demain=Range)

—— hasAninput (Domain=Range)

= hasaninput(Subclass some)

—— hasaninputidentifier (Domain>Range)

hasAninputidentifier(Subclass some)

— hasaninputlist(Subclass some)

— hasAninputTable(Subclass some)

[0 — hasaAnOutput (Domain=Range)

[0 — hasanstatisticalAnalysis (Domain>Range)

[ == hasAResource (Domain=Range)

[] = hasASupportedSpecie (Domain>Range)

[ = isAFunctionalityOf (Domain=Range)

(] isAnAnalysisOf (Domain>Range)

[ == isAninputOf (Domain>Range)

00 — isAnOutputof (Domain=Range)

(] isAResourceOf (Demain>Range)

[ == isASupportedSpecieQf (Demain>Range)

[ = isAvallabilityof (Domain=Range|

Figure 7.35: Subgraph of DeGOT showing some relations between GO tools
assigned to different concepts.
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Based on the properties of DeGOT, a user may perform different types of
queries. For example, suppose that a potential user is interested in looking
for different statistical methods, which are available in GO tools annotated
in DeGOT, allowing exploration of GO terms. This can be performed by using
the property hasAnStatisticalAnalysis some GOTool_Domain_Concept.
This property allows he/she to link the whole list of GO tool instances to
the individuals that perform an exploring analysis of the GO terms.

Query (class expression)

hasAnStatisticalAnalysis some GOTool_Domain_Concept

Add to ontology

Query results

Ancestor classes (5] Super classes

Analysis Ancestor classes
Functionality [] Equivalent classes
GOTool_Domain_Concept Subclasses
Statistical_Analysis [] Descendant classes
Thing Individuals

Super classes (1)

Statistical_Analysis

Sub classes (8)
Bejamini-Hochberg-Yekutieli
Benjamini-Hochberg
Bonferroni
Distance_Measure_Analysis
Fisher_Exact_Test
Holm
Other_Statistical_Analysis
Z-Score

Instances (4]
#BiNGO
# CateGOrizer
# CLENCH
#agriGo

Figure 7.36: Result of the query hasAnStatisticalAnalysis some
GOTool_Domain_Comcept.

That is, based on this property the user is asking for GO tools that are
annotated in the superclass Statistical_Analysis. This class has direct
subclasses (i.e. children) and also ancestor classes. Among the direct
subclasses there are statistical methods for exploration such as Distance_-
Measure_Analysis, Fisher_Exact_Test or Other_Statistical_Analysis,
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and among ancestor classes the user finds Functionality or Analysis,
among others. Figure 7.36 shows the result after querying for this property.

Query (class expression)

hasAninput value agriGo

Add to ontalogy

Query results

Ancester classes (4]
Functionality
GOTool Domain_Concept
Input
Thing

Super classes (1]

Input

Sub classes (10)
Annotation_Input_Data
Chi-Square
Hypergeometric
Identifiers_Input_Data
Input_File
Input_Text_Area
Query_List
Reference_List
Resource
Single_Term

Descendant classes (49
Annotation_Input_Data
BioCarta
Chi-Square
dbEST
Disease
EGAD
EMBL
Ensembl
Entrez_Gene
FlyBase
GenBank
Gene_Ontology
GeneCards
HGNC
HomoloGene
Hypergeometric

- Super classes|
Ancestor classes
[] Equivalent classes
Subclasses
Descendant classes
[] Individuals

Figure 7.37: Results of the query hasAnInput value agriGO.

DeGOT also provides properties limited to a single value. For instance,
imagine that the potential user is now interested in knowing the inputs
required by a specific GO tool, for example, agriG0 ([49]). This question can
be answered by applying the property hasAnInput value agriGO. What
this property does is to query for all Input subclasses that hold the GO tool
agriGO. Figure 7.37 shows an snapshot of the results for such a query.

Note that properties can have inverses (see table 7.25). For instance, the

inverse of hasAnInput is isAnInputOf.
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No restrictions have been defined on properties of DeGOT ontology.
Individuals

Individuals annotated in DeGOT classes are the GO tool names. Description
and details about the classes where individuals are annotate can be found at
the website for the ontology (see figure 7.38).

Named Individuals
[2arigo bingo clench categorizer

¢ |agrigo™ back to ToC o Named individual ToC

< R joinfo.stat.ub. iGO

agriGo is a GO Analysis Toolkit and Database for Agricultural Community.

Promoter: Bioinformatics Center, China Agricultural University, Beijing, China.

Figure 7.38: Screenshot of the documentation about Named Individuals at
DeGOT website.

Individuals may belong to more than one class. Figure 7.39 shows a repre-
sentation of some classes of DeGOT ontology containing some individuals.

Some GO tools classified in SerbG0 have been annotated in each domain of
interest of DeGOT ontology. Each annotated GO tool has been assigned to the
respective concepts. That is, each software annotated in DeGOT ontology has
been assigned to the most specific classes that define the capabilities of such
a GO tool. Figure 7.39 displays a subgraph representation of some classes
for agriGO ([49]), BinGO (][99]), CateGOrizer ([78]), and CLENCH ([137]) pro-
grams.
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Figure 7.39: Some concepts of DeGOT classifying agriGO, BinGO,
CateGOrizer, and CLENCH tools. Nodes with a diamond show individuals,
and nodes with circles show concepts. Magenta arcs stand for a relation of
hasASubclass and blue arcs indicate which of the most specific categories of
the domain are annotating an specific GO tool.
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Chapter 8

Discussion

This second part of the thesis is devoted to answer the six specific objectives
associated with the study of GO tools for the traditional enrichment analysis
(see section 2.2.2.2).

The first contribution of this part was the definition of a Standard Func-
tionalities Set (see section 7.1). It was devoted to classifying the GO
tools according to their capabilities. To build this set of functionalities
we examined a large list of literature associated with the GO tools for
enrichment analysis. The candidate list of GO tools to be examined was
extracted from all the GO tools available at the GO Consortium website.
After a long period of time and a meticulous study process, we identified all
the functionalities that GO tools provided for the different types of analyses.
We carried out a standardization process in order to homogenize all the
names and features. As a result we proposed a list of 205 characteristics
organized into nine main sections of capabilities.

Based on the Standard Functionalities Set we classified a list of 26 GO
tools for enrichment analysis that was available at the website of the GO
consortium website. The content analysis for performing such a classification
consisted in identifying whether the capabilities that each GO tool men-
tioned in the associated literature reference(s) were actually provided by the
software. This task involved executing and trying each GO tool in situ, iden-
tifying the standard functionalities names in the literature and categorizing
each capability as validated, non-validated or missing. This research led us
to build several tables showing the Standard Functionalities Set with respect
to the whole list of names of the GO tools, collecting the availability of each
capability for each GO tool and according to the standard functionalities set.

In order to take advantage of such results after evaluating and classifying
the list of selected GO tools, we developed a web-based application, called
SerbGO ([111]) (see section r:serbgo). It is devoted to helping users with the
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selection and comparison of software for dealing with enrichment analysis
that best suits their objectives. SerbGO consists of a database that collects
all the information from the tables mentioned above, and two forms to
access the information stored in the database. The first form consists of
six pages that allow the user to select a list of desired capacities from the
Standard Functionalities Set, and after running the tool to obtain the GO
tools that satisfy such capabilities. The second form was only one page that
contained the whole list of GO tools. This form allows the user to select the
GO tools that he/she would like to compare. After running the program,
SerbGO yields a large table with all the features that each selected GO tool
provide. Nowadays, the SerbGO database stores the information associated
with the classification of a list of 50 GO tools.

All the GO tools stored in SerbGO have been monitored over time. This
process allowed us to detect that developers introduced improvements
and new capabilities in their software. Therefore, we wondered whether
may be the different applications might be clustered according to their
“specializations”. In this regard, we decided to perform a statistical analysis
devoted to understand the evolution of GO tools and identifying, if so, the
existence of some representative models of GO tools (see section 7.4). This
statistical analysis consisted of three parts: descriptive statistics, inferential
analysis and multivariate analysis.

Data analysis was focused on information from the 26 original GO tools
stored in SerbGO database tables. We considered the tables at three
transversal points over time: 2005, 2007 and 2009. These tables required a
homogenization process intended to eliminate “redundancies” in the original
205 standard functionalities. This process left us with 178 independent
functionalities (see section 6.4.1.2).

Descriptive statistics were divided in two parts; a global analysis and an
analysis by sections of functionalities. Global descriptive statistics showed
some differences between years in terms of distributions of frequencies.
We observed a considerable increase in functionalities between 2005 and
2007, and also between 2007 and 2009. But, in this second period these
differences were fewer. These facts suggested us that developers might be
investing more effort during the first period of time than during the second.
Descriptive statistics by sections suggested again that all the sections of
functionalities experienced changes. These improvements were especially
notable in functionalities of supported species and annotations. However,
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improvements in the functionalities of the type of tool, statistical methods
and outputs seemed more “homogeneous”. With regard to the input data,
frequencies did not suggest great changes in functionalities.

Inferential analysis was also divided into a global analysis and an analysis by
sections of functionalities. In global inferential Chi-squared tests of homo-
geneity showed that there were statistically significant differences between
the distribution of frequencies between 2005 and 2007, and between 2005
and 2009. Boxplots and scatterplots with Loess curves and their confidence
bands highlighted the overall upward trend whatever the combination of
years considered in the plots. Inferential analysis by sections did not show
statistically significant differences in most of the comparisons. But, there
were statistically significant differences in supported species between the
distributions of frequencies in the comparisons between 2005 and 2007, and
between 2005 and 2009, as well as between all the comparisons in the anno-
tations section. The overall upward trend in all the boxplots and scatterplots
also became evident. However, in sections of statistical methods and outputs
it was harder to appreciate such differences between the years 2007 and 2009.

Multivariate analysis consisted in the selection process of the number of clus-
ters, the hierarchical cluster analyses, the multidimensional scaling (MDS),
and the Mantel tests. Generally speaking, in all cases we detected a clear
lack of substantial cluster structures. Depending on the year, the number of
clusters appeared to be low or high. This made us think that it might be
associated with the improvements introduced by GO tools developers during
the period from 2005 to 2007 in order to fill a “gap” in capabilities offered
by the programs. Whatever the year, the measure of similarity used, and
leaving aside any limitations due to low Silhouette Coefficient (SC) values,
bar diagrams of the average silhouette widths for each number of clusters
revealed that partitioning the space with a low number of clusters seemed to
explain a substantial part of the information about the groups of GO tools.
Supported by this fact we considered three main clusters that could be used
to understand the evolution of the GO tools. In hierarchical cluster analysis,
regardless of both the year and the measure of similarity used, by cutting
dendrograms at the appropriate distance to get the three predetermined
clusters, the plots revealed the existence of a “major” cluster that grouped
together most of the GO tools, and two “minor” clusters containing one or
very few tools. However, when we distinguished the plots by both measures
of similarity and years, this finding had to be qualified. In the case of the
Jaccard coefficient, we observed that, as time went on, the “major” cluster
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drew together practically every GO tool, leaving only one tool in each of
the “minor” clusters. But, in the case of the Matching coefficient, as time
went on “minor” clusters became more prominent and took some tools from
the “major” cluster. Therefore, these results pointed us towards the idea
of the presence of a certain homogeneity among GO tools over time, when
we used the Jaccard coefficient, which was in consonance with the lack of
cluster structures suggested by the SCs, and an evolution of GO tools from
the homogeneity of capabilities to some sort of “specialization” of programs
over time, when we used the Matching coefficient. Generally speaking,
MDS results suggested to us that GO tools were more spread out in MDS
solutions based on the Jaccard coefficient than in MDS solutions based on
the Matching coefficient, regardless of the approach used. We detected
some subtle differences in “meaning”, but in general, the behavior of the
distances among points in two-dimensional representations were similar with
the exception of non-metric MDS solution based on a Matching coefficient
in 2009. Clusters of GO tools determined with silhouettes and identified in
dendrograms did not show any outstanding separation effect among them,
in classical MDS solution based on the Jaccard coefficients. In contrast,
we observed that, based on the Matching coefficient, both classical and
non-metric approaches seemed to place the clusters of GO tools in the same
areas. We highlighted that this assertion was not free of criticism. However,
we pointed out that in classical MDS solutions based on the Matching
coefficient the clusters were clearly less fuzzy and the GO tools were plotted
much closer to each other than in the classical MDS solutions based on
the Jaccard coefficient. Non-metric MDS solutions behaved similarly to
classical MDS solutions in 2005 and 2007. However, this behavior was
completely different in 2009. We observed a contraction of points in 2007
and an expansion in 2009. This fact had no easy interpretation, even
more so when considering the poor goodness of fit suggested by the stress
values. In our opinion, this fact was a consequence of the evolution and
specialization of GO tools over time, which we already highlighted in
descriptive statistics and inferential analysis, but which was not in turn
clear enough to reflect the changes in terms of distances and clusters. The
adequacy plots associated with classical MDS solutions did not suggest bad
representations for the two-dimensional configuration. However, the Scree
plots and Shepard diagrams associated with non-metric MDS solutions
showed a priori some discrepancies. On the one hand, the Scree plots
showed fair or poor goodnesses of fit for the two-dimensional configuration
and suggested that for achieving “optimal” representations, the number of
dimensions should be closer to 7. On the other hand, the Shepard diagrams
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suggested that distances and disparities were good when approximating the
proximities between GO tools. Hence, a graphical identification of clusters
of GO tools was apparently observed. However, the points in a Shepard
diagram are not geometric projections of the proximities, because this
type of plot projects a dissimilarity matrix to fewer dimensions. In conse-
quence, we concluded that potential models or specializations of groups of
GO tools observed a priori in non-metric MDS solutions were not believable.

We performed two types of Mantel Tests in order to study the relationships
between the dissimilarity matrices of the GO tools over time: Simple Mantel
Tests and Partial Mantel Tests!Partial Mantel Test. Simple Mantel Tests
showed that regardless of the coefficient of similarity used some sorts of
relationships between each pair of dissimilarity matrices of GO tools were
found. However, the associated coefficients of correlation were poor with
the exception of the comparison between dissimilarity matrices for the years
2007 and 2009. This fact suggested to us that the similarities between GO
tools evolve over time in the same way in one respect. Nonetheless, Partial
Mantel Tests indicated, regardless once again of the coefficient of similarity
used, that the matrix of dissimilarities between each pair of GO tools in
2005 did not show a linear relationship with the matrix of dissimilarities in
2009 because they took into account the matrix of dissimilarities in 2007.
That brought us to the next conclusion, that the dissimilarities between GO
tools did not seem to be the “same” during this period of time, because the
third matrix in action removed some type of spurious effect of correlation.
Thus, based on the results of the Mantel Tests we concluded that the
dissimilarities between each pair of GO tools evolved independently over
time.

After surveying the results of the statistical analysis for studying the
evolution of GO tools, and by observing the GO Consortium website, we
detected that the scientific community not only improved old GO tools,
but also developed applications for the enrichment analysis based on new
methods and approaches (e.g. BiNGO ([99]), STRING ([57]), Blast2GO
([34]), etc.). In other words, continuous development and improvement of
methods to deal with functional annotation has stimulated a considerable
increase in the development of GO tools for enrichment analysis. Thus,
we decided to develop an ontology devoted to providing developers with a
vocabulary that helps them to design new GO tools, as well as to be used
as complementary software for SerbG0. That is, DeGOT (see section 7.5) is
an ontology focused on the characteristics of GO tools, whose terms allow
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us to share common understanding of the structure of functionalities among
developers and/or users, in order to enable reuse of domain knowledge,
to make domain assumptions explicit, to separate domain knowledge from
the functional or operative knowledge of GO tools, and also to analyze
domain knowledge in order to complement SerbGO queries and compar-
isons of GO tools. At the end of this thesis, DeGOT consisted of 314 classes,
16 object properties and 4 named individuals, which may be easily extended.

During the last years the growth of integrative studies with omics data and/or
combination of methods in order to improve the biological knowledge has ex-
perimented a remarkable upwards change. In this regard, one of the most
interesting extensions that could be carried out in a future line of research
should be to investigate the possibility of combining different methods and
tools for enrichment analysis in order to provide more plausible and infor-
mative results. Moreover, although the classification process and subsequent
monitoring is a task of a considerable magnitude in terms of resources and
time, it would be interesting to build a tool like SerbG0, that it would enable
us to classify the new fashion of tools for enrichment analysis which is based
on the biological network analysis.
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Conclusions

This thesis has focused on methods and tools for assigning biological interpre-
tation based on the Gene Ontology to data generated in omics experiments.
The research has explored two main aspects:

1. The study of two types of semantic similarity measures for exploring
GO categories.

2. The classification and study of GO Tools for enrichment analysis.

e With regard to the first issue:

1. It has been proved that:

(a)

()
(2)

The accessibility matrix associated with a symmetric graph,
is symmetric.

The Handshaking Theorem and its corollary can be demon-
strated based on the incidence matrix.

The monotonic property of the probability can be verified in
terms of Carey’s framework.

The root node of an ontology is the term with the lowest
information content, which in fact is null.

In order to compute the Information Content, the product of
the matrix with the number of paths of any length between
each pair of terms by the mapping matrix can be used for
computing the number of times that each term or any of its
specializations appear in the ontology.

The second Resnik’s measure redefined in terms of distance,
is a metric distance.

When restricting to comparable terms, the pseudo-distance of
the minimum chain length is a metric distance.

2. It has been shown that:

(a)

(b)

There exists a certain level of analogy between the Object-
Ontology Complex concept and Partially Ordered Sets Ontol-

0gy.
The Lord’s measure is in fact the Resnik’s measure.
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3. It has been developed an R package called sims that:

(a) It is addressed for computing semantic similarity.

(b) It has implemented a large number of measures from two dif-
ferent approaches.

(c) It provides an alternative point of view for comparing two
lists of genes based on semantic similarity profiles.

(d) Tt is freely available at the GitHub repository https://
github.com/jlmosquera/sims.

e With regard to the second issue:

1.

It has been shown that the definition of an Standard Functionali-
ties Set allows us to classify GO tools for enrichment analysis.

. It has been developed a web-based tool called SerbG0 that:

(a) It is addressed for selecting and comparing GO tools for en-
richment analysis.

(b) It is freely available at the server of the Statistics and Bioin-
formatics Research Group (http://estbioinfo.stat.ub.
es/apli/serbgo).

. The study of the GO tools has revealed that:

(a) Promoters have been introducing improvements on the GO
tools for enrichment analysis over time.

(b) GO tools evolved homogeneously and no clears groups of GO
tools has been found.

. It has been developed an ontology called DeGOT that:

(a) It provides an organized vocabulary for helping developers
when they need either to design a new GO tool or to improve
an existing one.

(b) It can be used for supporting queries and comparisons of GO
tools performed with SerbG0.

(c) It is freely available at the server of the Statistics and Bioin-
formatics Research Group (http://estbioinfo.stat.ub.
es/apli/degot).


https://github.com/jlmosquera/sims
https://github.com/jlmosquera/sims
http://estbioinfo.stat.ub.es/apli/serbgo
http://estbioinfo.stat.ub.es/apli/serbgo
http://estbioinfo.stat.ub.es/apli/degot
http://estbioinfo.stat.ub.es/apli/degot
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8.1 Introduccio

L’arribada dels estudis omics ha generat una quantitat ingent d’informacio
que ha fet avancar enormement la biologia molecular. Aix0o ha estat
possible gracies a una nova generacié de tecnologies anomenades tecnologies
d’alt rendiment (p.e. microarrays, Next Generation Sequencing (NGS),
espectrometria de masses, etc.). Aquestes tecnologies permeten analitzar
simultaniament, de forma rutinaria, el comportament de milers de car-
acteristiques (p.e. gens, mRNAs, proteines o metabolits) sota diferents
condicions.

Freqiientment, el resultat d’aquests experiments sén una llarga llista de
caracteristiques que han estat seleccionades en base a algun criteri estadistic
(p.e. en un experiment de microarrays, el test-t permet identificar gens
diferencialment expressats entre dues condicions experimentals). Amb
aquesta llista de gens en ma, l'investigador es troba amb el repte de donar-li
una interpretacio biologica.

Per a donar resposta a aquest repte, usualment, es procedeix en fer un canvi
d’enfoc passant de la “significacié estadistica” a la “significacié biologica”.

8.1.1 El concepte de la significacié biologica

Mentre hi ha un clar consens sobre que vol dir la Significacio Estadistica, no
és tant evident que s’ha d’entedre per Significacid Biologica. Per exemple,
alguns autors ([41]) suggereixen que per a entendre la rellevancia biologica,
donada una llista de caracteristiques (p.e. gens expressats diferencialment),
és necessari comparar estadisticament les diferencies entre la distribucié de
les anotacions associades aquestes caracteristiques i 'univers d’anotacions
en un espai d’anotacions especific. En canvi, altres autors entenen la Signifi-
cacio Biologica com la forma de caracteritzar la biologia involucrada en un
experiment en particular.

8.1.2 La Ontologia Genica

La tasca d’interpretar biologicament els resultats d’un experiment omic sol
basar-se freqiientment en 1'ds de recursos d’anotacié existents ([56], [86],
[35]). El problema d’aixo és que freqiilentment aquests recursos es centren
en un especie concreta, o depenen d’algun tipus de context especific, o
el format de les anotacions no esta suficientment orgnanitzat com per a
explotar-los de forma sistematica i automatitzada. Per tal de solucionar
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aquests inconvenients, la comunitat cientifica ha desenvolupat diversos
recursos d’anotacions basats en onologies, és a dir, les ontologies biologiques

([158]).

Una ontologia és un vocabulari organitzat que cobreix un domini conceptual.
Els termes d’aquest vocabulari han d’estar ben definits i allotjats en una
estructura jerarquica de relacions. Al respecte, possiblement la ontologia
biologica amb més exit per a portar a terme interpretacions biologiques és

la Ontologia Geénica (o Gene Ontology (GO)) ([148]).

El projecte de la GO, tutelat pel The Gene Ontology Consortium ([152]),
intenta anotar els gens i els seus productes genics amb un conjunt de propi-
etats limitat. Es a dir, la GO és un recurs que organitza un vocabulari per
anotar gens. Aquest vocabulari cobreix tres grans dominis d’anotacions:

o Components Cel.lulars (CC): parts d'una cel.lula o el seu entorn extra-
cel.lular.

e Funcions Moleculars (MF): activitats elementals d'un producte genic
a nivell molecular (p.e. la vinculacié o binding, la catalisi, etc.).

e Processos Biologics (BP): operacions o conjunts d’esdeveniments
moleculars amb un inici i final definits, pertinents al funcionament
de les unitats de vida integrada (és a dir, cel.lules, teixits, organs i
organismes).

La forma d’entendre aquesta organitzacié és pensar en que els individus (els
gens) tenen unes tasques (les funcions) que treballan de manera conjunta
per a aconseguir diferents objectius (els processos).

En T'actualitat, a la GO hi han anotats aproximadament 40.000 termes

([22]).

Tal com manen els prinicipis ontologics, els termes de la GO (o termes GO)
de cada domini estan disposats jerarquicament. Aixi, les relacions conecten
les anotacions des del terme menys especialitzat (o arrel) als termes més
especialitzats. Hi ha dos grans tipus de relacions:

e és-un: estableix una relacié entre un terme pare i un terme fill.

e part-de: estableix una relacié entre una part i I'entorn.
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No és doncs d’estrenyar que, freqiientment, es descrigui I'estructura de la GO
en forma de graf ([122], [72]), on cada terme és representat per un node i
cada relacié per una aresta.

8.1.3 De la significacié biologica a ’estadistica

En el camp de la bioinformatica, de cara a proporcionar interpretacions
biologiques, s’han desenvolupat diferents estrategies i metodes [58]. Dues
d’aquestes aproximacions basades en la GO sén les mesures de similaritat
semantica i 1’analisi d’enriqguiment.

8.1.3.1 La filosofia de les mesures de la similaritat semantica

Hem esmentat més amunt 8.1.2 que sovint la GO es defineix com un graf.
La teoria de grafs ([17], [162], [43], [155]) permet definir diferents tipus de
metriques dirigides a mesurar el “grau” de relacié que hi ha entre els nodes
del graf. Es a dir, aquestes mesures permenten quantificar la distancia
existent entre dos nodes. O dit d’'una altra manera, permenten mesurar
com de lluny o de prop es troben situats dos termes especifics a dintre de
I’estructura topologica de la ontologia. No obstant, el concepte de distancia
és dificil de digerir quan estem parlant d’interpretacié bioldgica. Una mesura
alternativa més intuitiva que se sol utilitzar és la mesura de similaritat. Una
similaritat es pot interpretar com a una mena d’inversa de la distancia (no
en un sentit estricte de funcié inversa matematica). Per tant, quant més
s’assemblin dos conceptes, la seva similaritat sera més gran i la distancia
entre ells sera menor. Ara be, quan un investigador necessita “llegir” que,
com i per que es déna un fenomen, el concepte de similaritat de per si sol
no va més enlla. En altres paraules, una mesura de similaritat “simple” pot
dir quin és nivell de relacié que hi ha entre dos termes, pero no és capag de
distingir com de diferents sén aquests conceptes en termes semantics.

Les ontologies, en front de les bases de dades relacionals permeten construir
“frases” amb un subjecte (els termes), un verb (el tipus de relaci6) i un
predicat (les restriccions sobre les relacions), és a dir, les ontologies permeten
crear una lingiiistica.

En I'analisi lingiiistic d'un conjunt de termes estructurats en una d’ontologia,
hi ha un gran nombre de metriques que permeten calcular el nivell de simi-
laritat del contingut sintactic d’aquests termes basats en I'afinitat de la seva
significacié ([67], [95], [10]). Entre aquestes metriques hi han les mesures
de similaritat semantica. Per tant, no es d’estranyar que aquest tipus de
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metriques hagin estat ben acceptades pels estadistics i els bioinformatics
quan volen estudiar les ontologies biologiques i proporcionar significacio
biologica.

Hi ha molts metodes per a mesurar la similaritat semantica entre dos termes
i, de fet, s’han proposat diferents tipus de classificacions d’aquests metodes
([72]). No obstant, la forma de classificacié més acceptada es basa en els
elements que composen el graf de la ontologia ([122]). Aquesta classificacié
consta de tres grans tipus d’estrategies que son:

e aproximacio basada en nodes: examina com de similars sén dos con-
ceptes tenint en compte les propietats que s’atribueixen als propis ter-
mes, als ancestres i/o els descendents.

e L’aproximacio basada en arestes: calcula la similaritat en base al nom-
bre de d’arestes (relacions) que hi ha entre els dos nodes comparats.

e aproximacio basada en hibrids: mesura la similaritat combinant
mesures basades en nodes i mesures basades en arestes.

8.1.3.2 La filosofia de I’analisi d’enriquiment

Un enfoc completament diferent a les mesures de la similaritat semantica
sén els métodes d’analisi d’enriqguiment ([79]). Aquests metodes permeten
avaluar estadisticament si un anotacié o un conjunt d’anotacions associades
a un o més gens sén significativament rellevants. Es a dir, el principi basic
de I'analisi és veure si una o més funcions, processos o components no sén
“normals” de per si sols en un experiment. Concretament, donat un conjunt
de gens que cooperen conjuntament és d’esperar que aquestes anotacions
mostrin una probabilitat més alta de ser seleccionades. En aquest cas,
potencialment, aquestes caracteristiques haurien de ser més rellevants o
haurien d’estar enriquides. Per tant, en comptes de cercar que vol dir
biologicament un gen especific, la idea és trobar com d’enriquit esta un
grup de gens en base a la versemblanca de I'anotacié associada al fenomen
d’interes.

De manera general, per portar a terme aquesta tasca, la majoria dels
metodes 1 eines ([47], [79], [9]) treballen en dues etapes sistematiques.
Donada la llista de gens seleccionats a dintre d’una poblacié (coneguda
com a univers): primer, assignen a cada gen seleccionat totes les anotacions
associades a ell i, després, quantifiquen I'enriquiment dels gens anotats en
cada categoria (o terme), comparant la proporcié de gens d’interes que han
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estat assignats a aquesta categoria amb la proporcié de gens de l'univers
que han estat assignats a la mateixa categoria (figura 1.8).

Durant la darrera decada s’han desenvolupat molts metodes i eines per a
I’analisi d’enriquiment, i s’han fet esforcos de classificacié en base a la seva
aproximacié metodologica ([47], [79]). Aixi, s’han proposat tres grans grups
d’estratégies:

o L’ Analisi d’Enriquiment Singular (SEA) ([89], [45]): consisteix en estu-
diar 'enriquiment terme a terme i de manera independentment. Aques-
ta és 'aproximacié més utilitzada.

o L’ Analisi d’Enriguiment Modular (MEA) ([79], [80]): es basa en la idea
del SEA, pero afegeix metodes d’analisi de xarxes amb 1’objectiu de tro-
bar relacions entre grups de gens, per a reorganitzar les co-ocurrences
complexes d’anotacions extretes de multiples espais d’anotacid, i
mesurar la seva concordancia o associacio.

o L’ Analisi d’Enriquiment de Conjunts de Gens (GSEA) ([146]): és una
idea completament diferent a les anteriors. Aquesta aproximacio té en
compte la magnitud de les diferencies entre les condicions de mesura per
a cada gen resultant de ’experiment omic. La idea consisteix en tes-
tar Penriquiment d’algun conjunt de gens predefinit (recollits en difer-
ents bases de dades i estudis computacionals) respecte dels gens de
I'experiment.

8.2 Hipotesis, objectius i organitzacié de la
tesi

8.2.1 Les hipotesis

Les dues aproximacions presentades a 8.1.3, han estat i son de gran ajuda
per a estudiar la Significacio Biologica. No obstant, ambdues concepcions
presenten algunes debilitats i qliestions fonamentals que no han estat encara
estudiades. Concretament:

1. Respecte a les similaritats semantiques:

(a) No hi han demostracions que provin que aquests tipus de simi-
laritats son realment mesures de similaritat, entenent-les com a
revers complementari de les distancies metriques.
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(b) Hi ha un debil enllag entre les similaritats semantiques dels
metodes basats en nodes i els metodes basats en arestes quan
son aplicades al cas de la GO.

2. Respecte als metodes i les eines GO per a ’analisi d’enriquiment:

(a) Quan un investigador vol trobar un programari que li permeti
fer una analisi d’enriquiment, és quasi segur que es perdi o no
trobi ’eina més adequada pels seus objectius degut a 1’alt nombre

d’eines GO existents, fins i tot havent estat classificades ([47],
[79]).

(b) La velocitat de desenvolupament de nous metodes i eines per a
I’analisi d’enriquiment, aixi com la millora de les aplicacions exis-
tents és considerable. Al respecte, no s’ha portat a terme cap
seguiment exhaustiu de les capacitats de les aplicacions, ni tampoc
s’ha definit una estrategia general que permeti desenvolupar noves
eines que cobreixin mancasses existents.

Amb el repte d’aportar llum a aquestes qiiestions, els objectius principals i
especifics d’aquesta tesi es presenten a continuacio.

8.2.2 Els objectius

El context d’aquesta tesi esta centrat en els metodes i les eines que s’utilitzen
per a atribuir interpretacié biologica a dades generades amb tecnologies d’alt
rendiment en experiments omics, a través del discurs de la Gene Ontology.

8.2.2.1 Els objectius principals

En aquesta tesi es plantegen dos objectius principals:

1. L’estudi de dos tipus de mesures de similaritat semantica per a explorar
categories GO.

2. La classificacié i estudi de les eines GO per a 'analisi d’enriquiment.

8.2.2.2 Els objectius especifics

Per tal aconseguir donar resposta als dos objectius principals es presenten a
continuaci6 dues llistes d’objectius especifics:

1. Objectius especifics associats amb 'estudi de les mesures de similaritat
semantica:
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(a) Demostrar que ambdues mesures estan relacionades amb el con-
cepte de distancia metrica.

(b) Desenvolupar un paquet de R per a calcular similaritats
semantiques entre termes d’una ontologia arbitraria i comparar
perfils de similaritat semantica.

2. Objectius especifics associats amb la classificacio i estudi de les eines
GO per a 'analisi d’enriquiment:

(a) Definir una llista de funcionalitats que permeti classificar les eines
GO per a I'analisi d’enriquiment.

(b) Classificar les eines GO existents en base a la llista de funcionali-
tats definida i d’acord a les seves capacitats.

(c¢) Desenvolupar una eina web dirigida a seleccionar i comparar les
eines GO que millor s’adaptin a les necessitats de I'usuari.

(d) Estudiar l'evolucié de les eines GO per tal de caracteritzar
I’existencia de models representatius.

(e) Desenvolupar una ontologia per a organitzar un vocabulari dirigit
al desenvolupament de noves eines GO.

8.2.3 La organitzaci6

La tesi esta dividida en quatre parts. Despres d’aquesta introduccio i formu-
lacié del problema, la segona part esta adrecada a la recerca de 'estudi de
les dues mesures de similaritat semantica. Aquesta part esta estructurada
en tres seccions. La primera introdueix els materials i metodes utilitzats. La
segona presenta els resultats obtinguts. I la tercera discuteix les contribucions
aportades. La tercera part de la tesi esta adrecada a la recerca de 'estudi de
les eines GO per a 'analisi d’enriquiment. Aquesta part esta estructurada
en tres seccions, de forma similar a la de la segona part. I finalment, a la
quarta part es presenten les conclusions de la tesi. (figura 8.1).
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Figure 8.1: Organitzacié de les diferents parts que composen la tesi i les
relacions entre elles.

8.3 Estudi de dues mesures de similaritat
semantica per a explorar categories GO

8.3.1 Materials i metodes
8.3.1.1 Conceptes fonamentals de la Teoria de Grafs

Hi han diferents tipus d’aproximacions que utilitzen la teoria de grafs ([43],
[17]) com a base per a definir metriques i estudiar les relacions existents
entre les anotacions, amb l'objectiu final d’aportar intrepretacié biologica.
Una d’aquestes idees és considerar la GO en forma de graf i usar el concepte
de distancia (o similaritat) per a comparar els termes GO. Dues d’aquestes
aproximacions son d’especial interés pels objectius d’aquesta tesi. La primera
és una similaritat semantica proposada per en Lord et al. ([98]), basada
en el concepte de Contingut d’Informacic (IC) ([128]). I la segona és una
pseudo-distancia proposada per en Joslyn et al. ([85]), basada en I'estructura
inherent al graf. En ambdds casos és necessari establir els conceptes basics
sobre la teoria de grafs.

Conceptes basics sobre grafs

Un graf és una parella de conjunts G = (V, F) formada per vertex (o
nodes) V| i arestes I que estableixen relacions entre els vertex.

Es facil veure que molts problemes de la vida quotidiana es poden plantejar
en forma de graf, essent representats en un pla on un cojunt de punts (els
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vertex) estan units per algunes linies (les arestes), que indican si hi ha una
relaci6 explicita entre dos d’aquests punts.

Ara be, de vegades només ens interessa estudiar una “petitat” part de
les relacions existents en el graf. En aquests casos, el que es pot fer
és considerar només els subconjunt de vértex i d’arestes d’interés per a
recuperar el subgraf que volem explorar. Tanmateix, en certes situacions
només volem estudiar algun tipus de relacions que estan condicionades per
alguna forma de restricci6. Per exemple, un graf dirigit (o digraph) ens
permet explorar com és un conjunt de nodes i d’arestes als quals se’ls hi ha
aplicat una funcié que assigna a cada aresta un parell ordenat de vertex,
és a dir, 'aresta e;; € E uneiz el node origen v; amb el node terminal v;.

Un tipus de digrafs especialment important pels nostres objectius, sén els
DAGs. Un Graf Dirigit Aciclic (o DAG) és un digraf que no accepta cap
node que es relacioni amb si mateix per una aresta. Els DAGs que tenen un
node que és el “pare” de tots els altres nodes i aquest és “orfe”, diem que

és el node arrel (o root), i per a indicar aquesta caracteristica diem que es
tracta d'un DAG arrelat (o rooted DAG).

Mesures basiques per a descriure un graf

Aquest tipus d’estructures permeten definir camins entre els nodes. Un
cami és la seqiiencia natural de vertex que hi ha entre el node origen i el
node terminal. Llavors, en el cas de que hi hagi un cami entre dos nodes
direm que el node terminal és assolible des del node inicial. Notis doncs que
donada la nocié de cami, sorgeix la primera mesura que permet valorar com
de lluny o de prop es troben dos nodes, i és el concepte de longitud, és a
dir, el nombre d’arestes que hi ha en el cami.

Altres mesures fonamentals per a estudiar com sén els nodes i les arestes
d’un graf sén, per exemple, 'ordre, que es defineix com el nombre de vertex
del graf, o el grau d’un vertex, que és el nombre d’arestes incidents en ell.
Associats al grau, també és comu tenir en compte el grau d’entrada d’'un
node, que és el nombre d’arestes arriben a ell, i el grau de sortida, que sén
el nombre d’arestes que surten d’ell.

Matrius i grafs

Les representacions visuals dels graf son unes eines molt 1tils per a fer-se una
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idea molt rapida de les relacions entre els nodes. Ara be, des del punt de
vista analitic, de cara a avaluar les relacions entre els nodes del graf, és millor
adoptar un punt de vista algebraic. Aixi doncs, usualment, sol treballar-se
amb les formes matricials associades als grafs. Les matrius més rellevants
que permeten descriure un graf sén:

e La matriu d’adjacencia d'un graf: els seus elements sén el nombre
d’arestes entre cada parell de nodes, i quan dos nodes v; i v; no estan
connectats el valor és 0. La forma de llegir aquesta matriu és fer-ho
des de les files (nodes origen) en direccié cap a a les columnes (nodes
terminals).

e La matriu d’incidéncia d'un DAG: els elements prenen valor 1, si el
node de la fila és node l'origen, valor —1, si el node de la fila és final,
o valor 0, altrament.

e La matriu d’accessibilitat d'un DAG: els elements prenen valor 1
si el node de la columna és accessible pel node de la fila, o 0 en cas
contrari.

8.3.1.2 El graf de la GO

L’estructura de la GO pot ser descrita en termes d'un graf, on els termes
GO s6n els nodes del graf, i cada relacié entre dos termes GO és una aresta.
De fet, cadascun dels dominis de la GO (és a dir, CC, MF i BP 8.1.2) és un
DAG arrelat. Alguna de la terminologia, usualment, utilitzada és:

Pares: nodes terminals menys especialitzats d’un terme GO especific.

Fills: nodes inicials més especialitzats d’un terme GO menys especific.

Ancestres: tots els nodes menys especialitzats pertanyents als camins
existents entre un terme GO especific i el node arrel.

Descendeéncia: tots els nodes més especialitzats pertanyents als
camins existents entre un terme GO especific i els termes més especifics
terminals del DAG.

Com hem vist anteriorment, hi han dos tipus d’arestes (les relacions) entre
els termes de la GO. La primera relacié s’anomena és-un, que estableix una
relacié entre un pare i un fill, i la segona s’anomena part-de, que estableix
una relacio entre una part i 1’entorn.
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L’estudi de la GO basat en la Teoria de Grafs

L’objectiu de I’anadlisi de la GO és facilitar la interpretacié biologica a través
de les anotacions dels productes genics. La idea basica és que, donada una
llista de gens, es cerquen quins sén els termes GO especifics en el DAG de
la GO que els anoten. Cadascun d’aquests gens poden estar anotats en cap,
un o més d’'un terme GO. Aquest fet determina un graf induit. Es a dir,
un cop seleccionats els termes GO que anoten la llista de gens, es poden
recuperar tots els ancestres i les relacions entre ells de manera automatica.
En altres paraules, es pot extreure un subgraf que s’anomena graf induit.
Ara be, els grafs induits poden arribar a ser estructures molt complexes,
especialment quan la llista de gens és molt llarga. Per tant, és important
disposar d’una bona formalitzacié matematica per a manegar correctament
aquestes estructures.

8.3.1.3 L’enfoc d’en Carey

En Carey va introduir un formalisme simple ([23]) per a treballar amb
ontologies amb proposits estadistics. La seva idea es basa en el concepte de
refinament de les relacions, defnint una relacié de refinament 1 entre
dos termes t; i ¢;, com una relacié tal que no pot exististir un terme ¢
que sigui un refinament de ¢; i que ¢; sigui un refinament de ¢;. Per tant,
les relacions entre els termes GO s’han d’entendre com a refinaments dels
conceptes anotats. Notis doncs que el node arrel esta refinat per tots els
termes del DAG arrelat de la GO, pero aquest no refina a cap altre terme GO.

En base a aquesta filosofia, en Carey redefineix la matriu d’adjacencies
com la matriu de refinaments (d’un pas), i introdueix la matriu
de mapejat, que permet relacionar una llista d’objectes amb els termes
del DAG de la ontologia que els anoten. Els elements d’aquesta matriu
conten un 1 si l'objecte esta assignat a un terme especific o 0 en cas contrari.

El principal interes d’en Carey és formalitzar una estructura que permeti
relacionar els objectes (els gens) amb el vocabulari (els termes GO) de la on-
tologia per tal d’extreure la informacié o comparar anotacions. Aixi doncs,
defineix un Object-Ontology Complex (OOC) com una quaterna orde-
nada (7,1,Q,M) on T és el vocabulari, I' és una matriu de refinaments co-
dificant la ontologia basada en T, 2 és un conjunt d’identificadors d’objectes,
i M és una matriu de mapejat des de 2 a 7. La figura 8.2 mostra una rep-
resentacio grafica d’'un OOC amb 10 objectes i 12 termes.
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Figure 8.2: Represencié d’'un OOC amb 10 objectes anotats a una ontologia
amb 12 termes.

En base a’O0C, en Carey introdueix una matriu que permet definir diferents
mesures de calcul, i és la matriu de cobertura. Aquesta matriu es pot
calcular amb la férmula

do+1
C= @Mrk (¢ij)psen

on ¢;; és 1 si el terme j-essim o qualsevol dels seus refinaments esta associat
amb l'objecte i-essim (via la matriu de mapejat M), o 0 en cas contrari.

8.3.1.4 Conceptes fonamentals de la Teoria de Conjunts Parcial-
ment Ordenats

Joslyn et al. ([85], [84], [83]) van proposar una alternativa a l'’enfoc d’en
Carey ([23]) basada en els principis de la Teoria de Conjunts Parcialment
Ordenats ([135], [39], and [51]) de Ialgebra.

Un conjunt parcialment ordenat (POSET) finit és una estructura
matematica P = (P, <) on P és un conjunt finit i <C P? és una relaci6
binaria anomenada ordre parcial on P és tal que la relacié és reflexiva,
antisimetrica i transitiva es compleixen.
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Cada POSET defineix un DAG, i cada DAG determina un POSET basat en

I’ordre parcial dels nodes.

Dos nodes p;,p; € P dun POSET es diu que séon comparables quan
pi ~ pj & pi < p; or p; > p;. Basant-se en aquesta nocié es pot definir
una cadena com una col.lecci6 de nodes comparables. Notis que aquest
concepte seria ’equivalent a la nocié de cami d’un graf.

Ara, de la mateixa manera que es va presentar les mesures que permeten
descriure els nodes i arestes d'un graf, en la teoria dels POSET es poden
introduir coneptes que permeten portar a terme tasques analogues. Per
exemple, I'algada d’'un POSSET es defineix com la grandaria de la cadena
més llarga, i si C' és una cadena finita d'un POSET, la seva longitud és

[(C) = |C] - 1.

Arribat aquest punt en Joslyn et al., introdueixen la nocié de la Ontologia
POSET (POSO). Aquest formalisme es pot considerar com ’equivalent a
I'OOC d’en Carey. Una POSO és una estructura O = (P, X, F) on P =
(P, <) és un poset, X és un conjunt finit no-buit d’etiquetes, i F' és una
funcié de mapejat.

8.3.1.5 Les mesures de similaritat, distancia i similaritat
semantica

La nocié més intuitiva per a mesurar com s’assemblen o difereixen dos
conceptes és la de similaritat. Una mesura de similaritat és una funcio
que donats dos objectes w; 1 wj, els hi assigna un ntmero real s;; entre 0 i
1, de manera que sera 0 si és la similaritat minima, 1 quan la similaritat
és maxima, i s;; = sj. Per tant, es tracta d’una una funcié que quantifica
la similaritat entre dos objectes. Ara be, una mesura de similaritat és pot
entendre com una forma de complementari revers de la mesura de distancia.
Es diu que una mesura és una distancia metrica si donats dos objectes
w; 1 wj, els hi assigna un numero real d;; de manera que aquesta funcié
sigui no negativa, d;; = 0 & w; = w; , Vw;,w; € 1, simetrica i compleixi la
desigualtat triangular ([38]).

Una mesura de similaritat semantica pot ser considerada com un tipus
de mesura de similaritat, perd amb certes restriccions, essent la més
destacable que les similaritats semantiques son enteses per a mesurar
elements d’una jerarquia ([72]). Ara be, formalment no hi ha una unica
manera de definir una similaritat semantica perque depen del camp



8.3. ESTUDI DE DUES MESURES DE SIMILARITAT SEMANTICA PER A EXPLORAR
CATEGORIES GO 250

d’estudi, de la taxonomia o del metode usat ([110], [72], [128], [85],[122]).
En qualsevol cas, de manera general es pot considerar que donat un
conjunt {2 una mesura de similaritat semantica és una funcié que
donats dos objectes w; i w; els hi assigna un ntmero real sim;; de manera
que sim;; > a, sim;; = b & w; = wj, és una funcié simetrica i sim;; < sim;;.

Hi han diferents tipus de classificacions de similaritat semantica ([72]), pero
possiblement la més acceptada és la que les organitza d’acord amb els ele-
ments dels graf ([122]).

8.3.1.6 Els terme de la GO i les mesures de similaritat semantica

En aquesta tesi hem considerat dues aproximacions diferents per a calcular
la similaritat entre els termes de la GO. La primera és una mesura de
similaritat semantica proposada per en Lord et al. ([98]). Es tracta d’'una
aproximacié basada en nodes. La segona sén unes mesures de pseudo-
distancies proposades per en Joslyn et al. ([84], [85], [83]) i es tracten
d’aproximacions basades en arestes.

La mesura de Lord

La mesura de Lord et al. és una mesura basada en el concepte del Contingut
d’Informacid (IC) proposat per en Resnik ([128]). L’IC es defineix com:

i(t) = —logP(t)

on P(t) és la probabilitat de que un terme del DAG associat a la ontologia
sigui seleccionat. Notis doncs que el calcul de I'IC de cada terme recau en les
relacions donades per I'estructura del DAG. Per tant, la informacié entre dos
termes és usualment proporcional a I'lC de I’ Ancestre Comu Més Informatiu
(MICA) ([128]) en el DAG arrelat. Hi han moltes mesures de similaritat
semantica que es basen en la MICA. Per exemple, en Resnik va proposar que
donats dos termes del DAG t; i ¢, llavors la seva similaritat semantica es pot
calcular com:

S1MpRes(ti, t;) = max [i(t
st ) = ma [i(0)
on S(t;,t;) és el conjunt del termes que subsumen ambdds termes. Ara be,
com el DAG d’una ontologia admet multiples pares per a cada terme, Lord
et al. ([98]) van argumentar que aquesta mesura només té en compte un tinic
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ancestre comu i que per tant és millor usar el minim de la probabilitat de
que un terme sigui seleccionat P(t), és a dir,

stMpera(ti, tj) = tegrg_nt‘)[P(t)].
isLj

Pero en Resnik també havia introduit una segona mesura que considerava la
probabilitat en comptes de I'IC:

simpw)(ti,t;) = tegl(g}g)[l — P(t)].
istj

La mesura de Joslyn

En Joslyn et al. ([84], [85], [83]) van proposar les mesures de les pseudo-
distancies. Una pseudo-distancia és una funcié que assigna un nimero d;;
a una parella de nodes comparables p; i p; de manera que aquest valor esta
afitat per les longituds dels camins més curt i més llarg entre aquests dos
nodes. En la seva primera aproximacié, Joslyn et al. ([85]) van suggerir
quatre pseudo-distancies:

1. La longitud de la cadena minima

Om = hy.

2. La longitud de la cadena maxima

0, == h".

3. La mitjana de les longituds de les cadenes estremes

ar ‘= 5 .

4. La mitjana de les longituds de totes les cadenes

5 L Zheh(pi,p]’) h
ap - T

8.3.1.7 sims: Un paquet R per a calcular similaritats semantiques
d’una ontologia

sims és un paquet desenvolupat en R ([126]) amb el suport de funcions es-
pecifiques dels paquets: AnnotationDbi ([119]), expm ([64]), GOstats ([54]),
plyr ([161]), Matrix ([11]), igraph ([37]), methods (][126]), plotrix ([94]),
Rgraphviz ([71]) i vegan ([118]).



8.3. ESTUDI DE DUES MESURES DE SIMILARITAT SEMANTICA PER A EXPLORAR
CATEGORIES GO 252

8.3.2 Resultats

Els resultats d’aquesta part de la tesi s’han dividit en dos tipus de contribu-
cions: menors i majors. El motiu d’aquesta estructuracié sén dos fets. El
primer és que, durant el procés de desenvolupament del paquet sims vam
observar que algunes de les parts de les funcions implementades podien ser
utilitzades com a demostracions alternatives d’algunes propietats de la teoria
de grafs. El segon és que, de vegades a la literatura bioinformatica s’observa
una relaxacio en la formalitzacié dels conceptes i aixo pot induir a males in-
terpretacions o errors, que alhora poden ser passats per alt. Per tant, per tal
de suavitzar aquest segon fet i amb la idea d’apuntar alguna idea alternativa
hem cregut apropiat presentar aquestes formalitzacions com a contribucions
menors.

8.3.2.1 Contribucions menors

A la secci6 3.1.3 es va definir un graf simetric com a un graf tal que les arestes
connectaven els seus nodes en ambdues direccions. Per tant, gairebé de
forma evident, és facil veure que la matriu d’accessibilitat associada al graf
és una matriu simetrica. Per tant, en totes les funcions implementades en
el paquet sims que maneguen matrius simetriques, només es va considerar
la matriu triangular inferior ([125]) i es va reorganitzar com a vector,
reduint aixi el nombre de la quantitat d’informacié que s’ha de manegar
computacionalment.

Una de les qiiestions més importants en el procés de calcul de les mesures
per a mesurar la similaritat entre els termes és coneixer el nombre de nodes
i arestes del DAG. Per exemple, en el calcul dels IC és necessari coneixer
el nombre de vegades que un terme ha estat assolit des d’un objecte que el
referencia. Per tant, saber el nombre d’arestes incidents en ell és condicid
sine qua mon. En aquest sentit, hi han diferents metodes per portar a
terme aquests calculs. Dues d’elles son el Teorema de Handshaking i el seu
corol.lari ([155], [155], [17]) de la teoria de grafs ([43]). Ara bé, durant el
proces de desenvolupament del paquet sims vam optar per implementar
formes de calcul basades en matrius. Aixo ens va fer notar que algunes de
les funcions implementades suggerien una forma alternativa per a demostrar
el citat teorema i el seu corol.lari a partir de la matriu d’incidéencia del
DAG. Fet no observat en la literatura consultada ([155], [155], [17]). En
aquest sentit es presenta com a resultat les proves corresponents (veure
versio estesa de la tesi 4.1 1 4.1).
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Respecte a les mesures de similaritat semantica, s’ha observat que, com hem
comentat a 8.3.2, de vegades hi ha una relaxacié en el formalisme a 1'hora
d’introduir conceptes nous, fet que pot induir a interpretacions inapropiades
o mal enteses. Per tant, com veurem en les contribucions majors 8.3.2.2 hem
provat dos resultats associats al calcul dels IC. La primera qiiestié que hem
matisat és reintrepretar i demostrar el teorema de la propietat monotona
de la teoria de probabilitats ([55]), en termes de l'’enfoc d’en Carey. Es
a dir, donats dos termes de la GO t; i t;, si t; és-un (o part-de), llavors
P(t;) < P(t;). Aquest fet déna lloc a enunciar i demostrar que donat que el
node arrel ¢y d’una ontologia és el node menys refinat, llavors el 1C associat
és nul, ja que per la propietat monotona P(tg) = 1.

8.3.2.2 Contribucions majors

La primera idea que es vol destacar com a una contribucié major és que,
tot i que els formalismes d’en Carey 8.3.1.3 i en Joslyn et al. 8.3.1.4 estan
fonamentats en dues teories completament diferents (és a dir, la Teoria de
Grafs ([43]) i la Teoria de POSET ([39], [135])), 'OOC i la POSO presenten
un cert nivell d’analogia en les seves concepcions respectives. Notis al
respecte, que la Ontologia de ’OOC és el concepte equivalent al POSET,
I’Objecte és el conjunt d’objectes de la POSO i la matriu de mapejat de
I’O0C és l'analeg a la funcio de mapejat entre el conjunt d’objectes i els
posets. Per tant, donada una llista de gens generada en un experiment
omic, ’'OOC ila POSO sén dues estructures que permeten atribuir significat
biologic.

Una qiiestié important per a coneixer la similaritat semantica entre dos ter-
mes ¢és la quantitat d’informacié que tenen en comu que comparteixen el
termes, que ve donada pels termes que els subsumen. En aquest sentit, en
Lord et al. ([98]) argumenten que la mesura de similaritat proposada per en
Resnik i basada en el MICA ([128]), només té en compte un tnic ancestre
comu i proposen com a alternativa mesura 8.3.1.6. Ara bé, donat que la
funcié del logaritme és una funcié monotona creixent, es té que

—loaP — i P
tegl(i};j)[ logP(?) logteg(ltlﬁj)[ (®)

i en conseqiiéncia,

simReS(ti, tj) = simLord(ti, tj).

S’ha observat que per a calcular els IC dels termes de la ontologia es
pot utilitzar el producte matricial de la matriu del nombre de camins de



8.3. ESTUDI DE DUES MESURES DE SIMILARITAT SEMANTICA PER A EXPLORAR
CATEGORIES GO 254

qualsevol longitud entre les parelles dels termes per la matriu de mapejat i
aixi obtindre el nombre de vegades que cada terme o qualsevol de les seves
especialitzacions apareix a la ontologia. Per tant, presentem la segiient
proposicié (la demostracié es pot veure a la versi6 estesa de la tesi 4.4):

Proposicié: Sigui (7,T,92,M) un OOC, on T és un conjunt de s termes
d’un vocabulari, I' és la matriu de refinaments codificant la ontologia basada
en 7,  és el conjunt de p identificadors d’objectes i M és la matriu de
mapejat de  a 7. Aleshores la matriu del nombre de vegades que cada
terme t; o qualsevol de les seves especialitzacions referencia a un ancestre
especific ¢; es pot calcular com

N, =MI-T)"!
Corol.lari: Sigui (7,T,Q,M) un OOC. Aleshores, el nombre de vegades

que un terme t; o qualsevol dels seus refinaments apareix en ’'OOC es pot
calcular sumant les columnes de la matriu Vg,

S
nj = ni
i=1
on s és el nombre de termes en T.

En Cuadras ([38]) va suggerir que una distancia metrica es pot calcular
en termes d’una similaritat amb via d;; = 1 — sim,;. Per tant, basant-nos
en aquest fet proposem els segiients resultat (les demostracions es poden
consultar a la versié estesa de la tesi 4.5 1 4.6, respectivament):

Proposicié: Donats dos termes ¢; i ¢; de T tals que t; és-un t; aleshores,
d(tl, tj) =1- Simp(t)(ti, tj)

és una distancia metrica.

Proposicié: Siguin p;,p; € P dos nodes comparables tals que p; < p;.
Aleshores, la pseudo-distancia de la longitud de la cadena minima és una
distancia metrica.

El paquet sims és un paquet per a calcular similaritats semantiques entre els
termes d’una ontologia arbitraria. Té implementades 14 tipus de mesures
diferents de les aproximacions basades en nodes i de les basades en arestes.
La taula 4.2 mostra les mesures implementades.
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sims esta disponible lliurament, sota una llicencia GPL-2 (http:
//wwu.r-project.org/Licenses/GPL-2), i es pot descarregar des del
repositori de GitHub https://github.com/jlmosquera/sims.

El paquet proporciona un total de 51 funcions, que es poden consultar a la
taula 4.1, on estan organitzades segons el tipus de possibilitats que ofereixen.
Breument:

1. Funcions per a manegar una ontologia (és a dir un OOC).

2. Funcions per a calcular similaritats semantiques entre els termes de la
ontologia

3. Funcions per a calcular perfils de similaritat semantica de la GO asso-
ciats a una llista de Entrez Ids.

4. Funcions per a comparar perfils de similaritat semantica de la GO as-
sociats a una llista de Entrez Ids.

De vegades un investigador necessita comparar dues llistes de gens. Una opcid
és fer aquesta comparacié a través de les anotacions dels gens. En aquest
sentit, en el sims s’han implementat unes funcions especifiques per a portar
a terme aquesta tasca en base al que hem anomenat perfils de similaritat
sematica. La idea basica és que donades dues llistes de Entrez Gene Ids
es cerquen al domini de la GO corresponent tots els termes anotats per
ambdues llistes, es reconstrueix el graf induit i es calculen totes les similaritats
semantiques del graf induit, tant per a una llista com per a I’altra, en base a
alguna mesura de similaritat semantica seleccionada (veure figura 8.3).

e ~ DAG of a GO Domain

Pairs Sem. Sim. 1 Sem. Sim. 2

G02:601 sin (go2, gol)

. G03:GO1 =im (go3, gol)

GO10:GO1  =im (g010, gol) sim_(go10, gol)

Figure 8.3: Esquema per a comparar dos perfils de similaritat semantica
associats amb dues llistes de gens respectivament.
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Aleshores, donats els perfils, el sims té implementades algunes funcions que
permeten comparar-los a través de:

1. Una descriptiva per a cada perfil de similaritat semantica.

2. Un test de Mantel per a avaluar 'associacié entre les matrius de
distancies associades als perfils.

3. La similaritat del cosinus ([147]) per a determinar la similaritat entre
els dos perfils.

4. Un histograma que mostra les dues distribucions dels perfils sobre la
mateixa figura.

5. Un diagrama de barres, on les barres estan associades a cada parella
de termes.

6. El graf induit del domini de la GO associat a una (o les dues) llista(es)
de gens.

A T'apendix A es proporciona una vinyeta del paquet a on es poden trobar
exemples de les principals possibilitats del sims.

8.3.3 Discussio

La primera part de la tesi estava centrada en dues mesures de similaritat
semantica per a avaluar termes de la Gene Ontology (GO) ([148], [149],
[150]), amb l'objectiu de donar una interpretacié biologica als resultats gen-
erats en experiments omics amb dades d’alt rendiment. La recerca intentava
mostrar que ambdues aproximacions estan relacionades amb el concepte de
distancia metrica, aixi com desenvolupar un paquet R per calcular mesures
de similaritat semantica entre termes ontologics i proporcionar una manera
de comparar perfils de similaritat semantica.

Hem vist que hi han diverses metodologies per atribuir significat biologic
a una llista de gens ([72]) i que la forma en que es sintetitza el mapejat
dels gens a la GO és una peca important per a la formalitzacié de les
aproximacions ([23], [84]).

La primera aproximacié estudiada ha estat una mesura de similaritat
semantica proposada per en Lord et al. ([98]). Es tracta d'una aproximacié
basada en l'estudi del nodes i fonamentada en la Teoria de grafs ([43]).
En canvi, la segona aproximacid, emmarcada en la Teoria de Conjunts
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Parcialment Ordenats (POSET) ([135], [39], and [51]), és una mesura de
pseudo-distancia proposada per Joslyn et al. ([84], [85], [83]), i és una
aproximacié basada en l'estudi de les arestes.

Per a centrar-nos en I'estudi de la mesura de similaritat semantica proposada
per Lord et al., vam recérrer a una estructura anomenada Object-Ontology
Complex (OOC), proposada per en Carey ([23]). L’OOC permet relacionar
una llista d’objectes (els gens) amb el vocabulari d’una ontologia (els termes
GO) d’una ontologia a través d’una matriu de mapejat que assigna a cada
objecte els termes organitzats en un Graf Dirigit Aciclic (DAG) ([43])
associat amb la ontologia (el DAG d’un domini de la GO).

La literatura ofereix una llarga llista de mesures de similaritat semantica
per a estudiar les relacions entre el termes d’una ontologia ([72], [122],[85],
[127]). Moltes d’elles recauen en la longitud del cami més curt entre dos
termes ([127]). En canvi, la mesura de similaritat semantica d’en Lord et
al. es basa en el concepte de Contigut de la Informacié (IC) proposat per
Resnik ([128]). L'IC és una mesura basada en la probabilitat d’aparicié d’'un
terme de la ontologia. Vam detectar que algunes de les propietats associades
a la mesura de I'IC mostraven una perdua de claredat. En aquest sentit
vam demostrar la propietat monotona de la probabilitat ([55]) en termes de
la concepcié d’en Carey i que el node arrel d’una ontologia és el terme amb
I'IC mes baix, i que de fet és nul.

D’altra banda, en Resnik va proposar una mesura que depen de I’Ancestre
Comu Més Informatiu (MICA) ([128]), perd Lord et al. van argumentar
que aquesta mesura mesura només té en compte un unic ancestre comu, i
van suggerir com a alternativa la seva mesura que depen de la probabilitat
minima d’un terme quan hi ha més d’'un pare compartit. Ara be, nosaltres
vam demostrar que de fet ambdues mesures sén la mateixa mesura de
similaritat semantica.

Durant el procés de desenvolupament del paquet sims vam observar que
podiem calcular matricialment el nombre de vegades que un terme o
qualsevol dels seus refinaments era referit. Aquest fet es va recollir en forma
d’una proposicié i un corol.lari que van demostrar formalment.

En Renik va proposar una segona mesura que només depenia de la proba-
bilitat d’'un terme en comptes de I'IC. Basats en aquesta nova similaritat
semantica, vam provar que si la redefiniem en termes de distancia, de fet es
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tractava d’una distancia metrica.

Les mesures d’estudi proposades per en Joslyn et al. sén diametralment
oposades a la d’en Lord et al. per quatre motius basics. Primer, és tracten
d’aproximacions basades en I'estudi de les arestes. Segon, no sén similaritats
semantiques, es tracten de “distancies”. Tercer, la mesura d’en Lord et al.
es basa en un punt de vista probabilistic, mentre que les d’en Joslyn et al.
es basen en un punt algebraic. I quart, les pseudo-distancies només es poden
calcular per a nodes comparables.

Joslyn et al. van proposar un formalisme diferent al d’en Carey per a definir
el mapejat dels objectes en els termes de la ontologia, perd no exempt de
moltes semblances. Basat en el concepte Conjunts Parcialment Ordenats
(POSET), Joslyn et al. introdueixen 'estructura de la Ontologia POSET
(POSO) ([85]). Al respecte vam observar que un POSET és una estructura
combinatoria basicament equivalent a un DAG. Aquest fet ens va fer notar
que els conceptes usats en la definici6 d'un POSO poden ser facilment
enllacats amb les nocions de I’OOC. De fet, el POSET és el vocabulari
de la ontologia, el conjunt d’objectes del POSO és l'objecte de 'OOC i
la funcié6 de mapejat és el mapejat entre la ontologia i la llista d’objectes
en 'OOC. Per tant, ambdues estructures defineixen una manera de com
atribuir significat biologic

Les pseudo-distancies son mesures tutils per calcular com de “diferents” sén
dos termes en POSET. No obstant, només tenen sentit quan es tracten
de termes comparables. Ara bé, considerant la pseudo-distancia de la
longitud de la cadena minima, vam demostrar que si ens centrem en el
termes comparables, aleshores de fet es tracta d’una distancia metrica i vam
apuntar que aquesta proba es podria estendre a les altres pseudo-distancies.

El segon objectiu especific va ser desenvolupar un paquet R ([126]), anom-
enat sims, pensat per a calcular similaritats semantiques entre els termes
d’una ontologia arbitraria. Es van implementar 14 mesures d’aproximacions
basades en 'estudi dels nodes i basades en ’estudi de les arestes. Tanmateix,
es van implementar algunes funcions especifiques per a treballar amb la
GO. Les més notables permeten comparar dues llistes de gens basats en els
perfils de similaritat semantica, que vam definir com les llistes de similaritats
semantiques entre totes les paralles dels termes del graf induit per les dues
llistes.
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Durant el procés de desenvolupament del paquet, vam observar que algunes
parts dels algorismes emprats en les funcions programades podien ser util-
itzades per a demostrar matematicament algunes propietats matematiques
de la teoria de grafs com son la matriu simetrica associada a un graf simetric,
el Teorema de Handshaking i el seu corol.lari ([155], [155], [17]).

Hi han altres paquets de R disponibles a la web del Bioconductor ([63])
per mesurar similaritats semantiques entre els termes GO, concretament, el
GOSim ([59]) i el GOSemSim ([165]). Ara be, primer, només poden calcular
mesures de similaritat entre termes GO, en canvi el sims permet fer-ho per
a qualsevol ontologia. Segon, les mesures de similaritat semantica oferides
per ell son moltes menys que les implementades al sims. Tercer, les seves
similaritats semantiques es centren només en ’aproximacié basada en nodes.
Quart, quan un usuari vol comparar dues llistes de gens o de termes GO
ho pot fer aplicant funcions que calculen mesures de similaritat entre les
llistes de termes i proporcionen un nimero que resumeix tota la informacié.
Des del nostre punt de vista, creiem que aixo fa perdre la visié6 de conjunt
de les relacions entre les anotacions. Al respecte el sims ho soluciona
proporcionant resums analitics i grafics del perfil de similaritat semantica,
que permeten a l'usuari veure com soén de similars o diferents aquestes
relacions.

Les extensions naturals d’aquesta recerca es poden dividir en dues grans
linies de treball. D’una banda, 'estudi que hem fet sobre la relacié en-
tre les mesures proposades i la distancia metrica es podria estendre a les
aproximacions hibrides. Tanmateix, seria interessant intentar trobar una
teoria que unifiqués les diferents aproximacions, i que permets canviar d'un
tipus d’aproximacié a l’altre. D’altra banda, hem observat que el sims té
un comportament de calcul molt interessant. Hem notat que calcula molt
rapidament les mesures de similaritat semantica. Creiem que aix0 pot ser
donat perque hem programat les funcions usant un enfoc matricial. En canvi,
una inspeccié rapida de les funcions dels altres paquets semblen suggerir que
han adoptat una posicié més informatica, basant-se en els bucles. No s’ha
fet ni un estudi empiric, ni un estudi teoric basat en 'ordre de calculs, per
tal de provar que el sims és realment més rapid. Es doncs, evident, que seria
interessant portar a terme aquesta comparacié. Tanmateix, a diferencia dels
altres paquets, el sims no proporciona les mesures de similaritat semantic
normalitzades. En conseqiiéncia, si es vol comparar els resultats de dues
mesures, i fins i tot combinar-les no es podria fer en I'estat actual del paquet.
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Per tant, una extensié en aquest sentit seria molt valuosa.
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8.4 Classificacio i estudi de les eines GO per
a I’analisi d’enriquiment.

8.4.1 Material i metodes
8.4.1.1 La seleccio d’eines GO

Es va portar a terme una revisi6 d'una llarga llista d’eines
disponibles a la pagina web la GO ([148]). Degut a la gran het-
erogeneitat entre els diferents tipus d’eines es va decidir centrar-
se només en les FEines per a [lanalisi d’expressio/microarrasy
http://www.geneontology.org/G0.tools.microarray.shtml). Cal
tindre present que la presencia d’aquestes eines a la web de la GO ni
garanteix l'aprovacié del The GO Cornsortium ([152]), ni tampoc que
s’hagin testat o que 'us de la informacié sigui acurat. La taula 6.1 mostra
la llista d’eines seleccionades, les entitats promotores, i les referencies
bibliografiques associades a aquestes.

8.4.1.2 La definicié del Conjunt de Funcionalitats Estandard i la
classificacio de les eines GO

Com a resultat de la revisio de les eines es va obtindre un alt nombre
de caracteristiques heterogenies. Després de diverses iteracions, les carac-
teristiques seleccionades es van depurar per a ser convertirdes en una llista
de 205 funcionalitats especifiques estandard.

Les capacitats de les eines avaluades es van classificar in situ d’acord amb el
Conjunt de Funcionalitats Fstandard en base a tres criteris:

1. La funcionalitat estava disponible a la I'eina GO.

2. La funcionalitat havia estat mencionada a les referencies, pero no es va
poder validar.

3. La funcionalitat ni es va trobar a la publicacié ni a ’eina.

8.4.2 SerbG0: cerca de la millor eina GO

El SerbG0 és un aplicatiu web dissenyat per a:

1. Facilitar als usuaris la tasca de determinar quina/es de les eines exis-
tents és/sén les més apropiades per les seves necessitats.


http://www.geneontol ogy.org/GO.tools.microarray.shtml
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2. Possibilitar una comparacio entre algunes de les eines disponibles.

La figura 6.1 mostra el flux de treball del SerbGO.

El SerbGO és un aplicatiu web desenvolupat en PHP ([1]) utilitzant el suport
de llibreries ADOdb per a PHP ([96]) i millorat amb el lleguatge Javascript
([108]) per a augmentar la seva interactivitat. L’aplicatiu funciona de
manera acurada en la majoria de navegadors web, i ha estat testat,
concretament, en els navegadors Mozilla Firefox, Internet Explorer,
Konqueror, Chromium i Opera.

La informacié sobre les eines esta emmagatzemada en una base de dades
relacional implementada amb el sistema MySQL ([76]).

8.4.2.1 Estudi de ’evolucié i agrupament de les eines GO

La base de dades del SerbGO ha estat revisada periodicament, pero no
regularment. Aquesta revisié ha consistit en eliminar eines que han deixat
d’estar disponibles, actualitzar les millores fetes pels promotors, i afegir nous
registres corresponents a la classificacié de noves eines. Aquesta tasca ens
va fer notar que hi havia un cert grau d’evolucié en les eines classificades i
emmagatzemades al SerbG0. Per tant, es va decidir fer un estudi estadistic

basat en el seguiment de totes les eines incloses a la primera versié de la
base de dades.

L’analisi de les dades esta basat en el nombre de funcionalitats estandard
que tenien les 26 eines inicials. KEs van fer tres talls transversals en el
temps (2005, 2007 i 2009) (veure taula 6.1). Per aquestes eines es van
descarregar sis taules (tipus, espécies, dades, anotacions, estadistiques i
sortides) de la base de dades (veure secci6 8.4.3.2), corresponents a cada any.

Les taules descarregades es van sotmetre a un procés d’homogeneitzacié de
les dades amb 'objectiu d’eliminar redundancies existents. Aquest procés va
consistir en:

1. Homogeneizar alguns noms de camps de les taules de I'any 2005 amb
els noms dels camps dels anys 2007 i 2009.

2. Reetiquetat dels valors d’algunes funcionalitats mencionades a les re-
ferencies pero no validades situ.

3. Reducci6 de les funcionalitats que eren massa especifiques, les quals no
aportaven informacié extra i que podien afegir soroll a I'analisi.



263

El procés d’homogeneitzacié va deixar un total de 178 funcionalitats
analitzables.

En base a les taules homogeneitzades es van construir tres matrius de dades
binaries, una per a cada any, on a les files hi havien les eines GO, a les
columnes les funcionalitats, i a les cel.les hi havia un 1, si ’eina tenia una
capacitat concreta o un 0 altrament.

L’analisi estadistica es va dividir en tres parts complementaries: un estudi
descriptiu, un analisi inferencial i un analisi multivariant. Tot l'analisi es
va desenvolupar amb el programari estadistic R ([126]), el suport d’alguns
paquets R extra, i algunes funcions programades explicitament. Aquestes
funcions i tots els materials d’analisi es poden consultar al repositori del
GitHub https://github.com/jlmosquera/gotoolsevolution.

Analisi descriptiu

Es va portar a terme per a obtenir un resum analitic sobre les dades i va
consistir en generar:

e Taules de contingencia per a mostrar les freqiiencies de les funcionali-
tats estandard per any, tant a nivell global com desagregades per grups
de funcionalitats anomenats seccions.

e Diagrames de barres per a mostrar les distribucions de les freqiiencies
per any.

Analisi inferencial

Es va fer per a testar si existien diferencies entre les freqiiencies de les fun-
cionalitats dels diferents anys, tant a nivell global com desagregades per
seccions de funcionalitats. Concretament es va portar a terme el Test de
Khi-quadrat d’Homogeneitat ([115]) per a veure si les freqiiencies absolutes
de les eines GO estaven distribuides identicament a través dels anys. Aquests
tests es van acompanyar de:

e Bozxplots per a mostrar graficament el nombre de funcionalitats de les
eines GO per anys.

e Scatterplots per a mostrar graficament les eines GO representades com
a punts en un diagrama Cartesia a on cada eix estava associat a les
freqiiencies de les funcionalitats d’un any especific.


https://github.com/jlmosquera/gotoolsevolution
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e La regressid local (Loess) ([30], [31], [33]) per a proporcionar un resum
grafic de la relaci6 entre les freqiiencies de funcionalitats disponible en
les eines GO per a cada parell d’anys. Les corbes suavitzades i les
bandes de confianca associades es van representar a cada scatterplot.

Analisi multivariant

Es va portar a terme per a explorar el comportament de les eines GO d’acord
amb les seves capacitats al llarg del temps. Aquest analisi va consistir en:

e La construccio de dues Matrius de dissimilaritats per cada any, una,
basada en el coeficient de Jaccard ([81]), i l’altre, basada en el coeficient
de Matching ([143]).

e L’analisis de Clusters jerarquics aglomeratius ([103], [52], [53], [73])
per a identificar grups d’eines GO per a cada any. Les metriques de
distancies utilitzades es van basar en els coeficients de Jaccard i de
Matching, i el metode de clustering seleccionat va ser 1’ Average Link
([143]). Per determinar el nombre de clusters “optim” es va portar a
terme la representacio dels:

— Dendrogrames ([103], [52], [53], [73]) associats a cada cluster
jerarquic.

— Silhouette Plots ([53], [87]) basats en el metode no jerarquic del
Partitioning Around Medoids([53], [87]).

I es van calcular els Silhouette Coefficients ([87]).

e El Multidimensional scaling (MDS) ([36], [18], [20], [18]) per a obtenir
una representacié espacial en dimensions reduides, de cada matriu de
dissimilaritat associada a cada any, i ajudar amb la tasca d’identificacio
de clusters potencials. Per a cada matriu de dissimilaritats i any es va
portar a terme dos MDS:

— Un MDS classic ([153], [154], [65]). Per avaluar el grau de con-
sens de la dimensionalitat es va usar la mesura P2 de Mardia et
al. ([103]) i es van representar diagrames de barres mostrant la
“variablilitat explicada” per cada dimensio.

— Un MDS no-métric de Kruskal ([91], [138], [139]). Per a mesurar
la perdua d’ajust es va calcular la mesura de Stress-1 de Kruskal
([91]) 1 es van representar tant els Scree plots com els diagrames

de Shepard ([18], [69]).
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e El Test de Mantel ([101], [102], [142], [92], [93], [100]) per a estudiar
I’associacié entre cada parella de matrius de dissimilaritat, i el Test
Parcial de Mantel ([142], [92], [93], [100]) per avaluar la correlaci6 entre
dues de les matrius condicionade per una tercera per tal de controlar
efectes espuris.

8.4.2.2 DeGOT: Una ontologia per a desenvolupar eines GO

L’estudi de ’evolucié de les eines GO va suggerir que la majoria de les ne-
cessitats associades a l’analisi d’enriquiment tradicional ja estaven cobertes.
Tot i aixi, la comunitat cientifica ha seguit o be introduint millores a les
eines existents, o be desenvolupant noves eines.

El desenvolupament d'un programari nou no és una tasca senzilla. Hi han
molts factors i qiiestions que cal tenir molt present durant el periode de
disseny del programa. Qiiestions com:

e Per a quins tipus d’usuari va dirigida 1’eina?

e A quines qiiestions ha de donar resposta la informacié emmagatzemada
a la base de dades?

Quines especies cobreix l’eina? O ha de ser independent de 1’especie?

Quin tipus de metodes estadistics incloura?

e ctc.

Els conceptes basics d’'una ontologia

Les ontologies son la columna vertebral dels Webs Semantics ([14], [74]). Hi
han moltes maneres de definir i construir una ontologia ([67], [68]).

En general, les ontologies s’utilitzen per a capturar els conceptes d’un domini
de coneixements amb la idea de facilitar la comunicacié entre els usuaris i
els computadors per a multiples finalitats.

Un domini de coneizements és una forma de coneixement utilitzada per
a fer referencia a una area de l’esfor¢ huma, una activitat computacional
automatitzada, o qualsevol altra disciplina especialitzada ([77]) (p.e. els
dominis de la GO 8.1.2).
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La manera en que una ontologia intenta descriure els conceptes d'un domini,
aixi com les relacions entre aquests conceptes, es fa a partir d’una descripcio
formal i explicitada. Aquestes formalitzacions sén les components de la in-
formacid i son:

Les classes d’objectes, que denoten els conceptes del domini.

Les propietats que desciuen caracteristiques i atributs de cada concepte
(son les relacions).

Les facetes que sén restriccions sobre les propietats.

Els individus que son els casos o exemples d'una classe. No totes les
ontologies tenen aquesta component.

Implementacié del DeGOT

Amb la idea de facilitar la tasca als desenvolupadors d’eines GO, s’ha
construit una ontologia anomenada DeGOT, que pot donar resposta a algunes
d’aquestes preguntes que s’han plantejat anteriorment 8.4.2.2.

DeGOT ha estat programada en el llenguatge OWL ([6]) usant el recurs Protégé

([117]).

8.4.3 Resultats
8.4.3.1 Definicié del conjunt de funcionalitats estandard

El conjunt de funcionalitats estandard es va organitzar en 9 seccions (veure
taula 8.1).

Seccions Nombre de Funcionalitats
Tipus d’eina 2
Tipus d’experiment 7
Interficie 7
Disponibilitat 4
Espécies suportades 26
Dades 40
Anotacions 70
Analisi Estadistic 26
Sortida 23

Table 8.1: Nombre de funcionalitats estandard definides per cada seccié.
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8.4.3.2 Classificacio de les eines GO en base al conjunt de fun-
cionalitats estandard

En base al conjunt de les funcionalitats estandard organitzat en nou seccions,
es van construir sis taules que contenien la classificacié de les 26 primeres
eines GO avaluades (veure taules 7.8 a 7.13). Aquestes taules contenien la
seglient informacié:

1. Taula amb els tipus d’eina, el tipus d’experiments/tecnologies, les in-
terficies i el tipus de disponibilitat.

2. Taula amb les especies suportades.
3. Taula amb els tipus de dades i els identificadors d’entrada.

4. Taula sobre les fonts d’informacié d’on cada eina es nodreix, el tipus
d’anotacions funcionals que proporciona o suporta i les possibilitats que
ofereix per a manegar les anotacions.

5. Taula amb els metodes estadistics que implementats.

6. Taula associada als diferents tipus de sortides que ofereix cada eina

GO.

8.4.3.3 Un aplicatiu web per a seleccionar i comparar eines GO
(SerbG0)

El SerbGO és una eina web que esta lliurament disponible i no re-
quereix un login. Es pot accedir directament al servidor (http:
//estbioinfo.stat.ub.es/apli/serbgo) del Grup de Recerca Estadistica
i Bioinformatica liderat pel Dr. Alex Sanchez. Tanmateix I'eina es va sot-
metre i vas ser acceptada per estar disponible a la web del consorci de la GO
(http://www.geneontology.org/G0.tools.microarray.shtml#serbgo).
La figura 7.1 mostra la imatge de benvinguda del SerbGO.

L’eina consisteix en una serie de formularis que permeten accedir a la infor-
macio classificada i emmagatzemada en una base de dades relacional. Aque-
sta base de dades conté set taules. Sis d’aquestes taules son les esmentades a
la seccié anterior 8.4.3.2 i la setena és la taula principal que conté: els noms
de les eines, els promotors de les eines, les referencies consultades i diferents
index interns, que faciliten 'accés a les altres taules quan es fan les consultes
via els formularis web.


http://estbioinfo.stat.ub.es/apli/serbgo
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Fluxe de treball de P’aplicatiu

El SerbG0 ofereix dues possibilitats d’execucié:

1. Seleccionar una llista de capacitats del conjunt de funcionalitats
estandard (figures 7.2 a 7.7), per a cercar les eines GO que satisfan
aquestes caracteristiques .

2. Seleccionar una llista d’eines GO (figura 7.8) per a ser comparades.

En el primer cas, la cerca déna lloc a un taula amb dues columnes (figura
7.8) a on a la primera columna hi ha el nom de les eines GO que compleixen
els requisits i a la segona columna les dades del promotor de I'eina. Els noms
de les eines sén enllacos directes a les adreces corresponents. Al final de
la taula, hi han un boté (Find) que en ser clicat mostra una nova taula a
on a les files hi ha les funcionalitats, a les columnes els noms de les eines
(també enllagades als llocs web respectius) i a les cel.les esta indicat si una
eina disposa o no d’una capacitat especifica (figura 7.10). En el segon cas, es
genera una taula com la segona que acabem de descriure, pero en comptes
de mostrar la comparacié resultant de la cerca del robot del SerbG0, hi han
les capacitats de les eines GO seleccionades.

Periode de probes de 1’eina

El periode de probes de la versié beta del SerbGO es va portar a terme
considerant només les 26 eines classificades 6.1. En aquest procés hi van par-
ticipar persones de diferents centres i organitzacions arreu del mén amb les
que es va anar contactant a mesura que s’anava presentant ’eina a diferents
esdeveniments. També hi van participar alguns desenvolupadors d’aquestes
eines (p.e. com els del FatiGO ([3]), el GARBAN ([105]) o el BiNGO ([99]),
qui van suggerir algunes millores que es van incorporar i validar a posteriori.

El SerbGO ha estat funcionant des del Juny de 2006 i I'article associat va ser
publicat a I'any 2008 a la revista indexada Nucleic Acids Research. L’eina
ha estat actualitzada en diverses ocasions, pero no periodicament per motius
de recursos. Al final d’aquesta tesis, la base de dades del SerbGO conté
emmagatzemada la classificacié de 50 eines.

8.4.3.4 Evolucié i clustering de les eines GO

L’analisi global descriptiu suggereix que hi va haver un augment del nombre
de capacitats que oferien les eines al llarg del temps. I sembla indicar que el
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canvi més substancial es va produir a 'any 2007 (taula 7.14). Aquest canvi
es pot apreciar clarament al diagrama de barres (figura 7.11).

A la taula 7.15 es pot veure el nombre de funcionalitats per seccid. Les
freqiiencies absolutes i relatives de les funcionalitats disponibles per secci
associades a cada eina GO es poden consultar a les taules 7.16, 7.17 1 7.17.
I els diagrames de barres associats a cadascuna d’elles es poden veure a la
figura 7.12.

Es facil veure en aquestes representacions que les funcionalitats per seccions
han experimentat un augment en el nombre de funcionalitats proporcionat
per les eines GO al llarg del temps. Sembla pero, que els promotors de les
eines han invertit més esforcos en les capacitats d’anotacions i el nombre
d’especies suportades. Tanmateix, sembla que 'augment produit en les
funcionalitats de les altres seccions sigui més “homogeni”.

A nivell global, I'analisi inferencial mostra que considerant un nivell de sig-
nificacié del 0.05, els canvis observats descriptivament son significatius entre
els anys 2005 i 2007, i entre els anys 2005 i 2009 (taula 7.19). Es a dir,
rebutgem la hipotesi nul.la de que la distribucié de les freqiiencies entre les
parelles d’anys indicats és la mateixa, pero no tenim suficient evidencia com
per rebutjar la hipotesi nul.la associada a la comparacié 2007 vs2009. En
altres paraules, a nivell global, els tests d’homogeneitat de la Khi-quadrat
ens esta dient que I'augment observat en el nombre de funcionalitats, és sig-
nificatiu entre els anys 2005 i 2007, i els anys 2005 i 2009, perd no podem
assegurar que l'augment observat entre el 2007 i el 2009 sigui significatiu.

Comparison Chi.Square | df PValue Adj.Pvalue
2005 ws. 2007 95.29502 | 25 | 3.842300e-10 | 5.763450e-10
2007 ws. 2009 33.87294 | 25 | 1.106518e-01 | 1.106518e-01
2005 wvs. 2009 100.18731 | 25 | 5.834561le-11 | 1.750368e-10

Table 8.2: Resultats dels test de Khi-quadrat d’homogeneitat entre les dis-
tribucions de les freqiiencies de les funcionalitat per a cada parella d’anys
contrastada.

L’augment significatiu en el nombre de funcionalitats proporcionades per
les eines també es pot notar les representacions grafiques dels boxplots i els
scatterplots (figura 7.13).

En canvi, quan desagreguem per seccions es pot observar que només séon
significatius aquests canvis entre els anys 2005 vs 2007 i 2005 vs 2009 en la
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seccid d’especies suportades i totes les comparacions associades a la seccid
d’anotacions (taula 7.20). Observat les figures associades (7.14 to 7.19) es
pot apreciar una clara tendencia cap amunt en els boxplots al llarg del temps.
En el cas dels scatterplots, les figures associades al 2007 vs 2009 semblen
mostrar un creixement “lineal”, no essent el cas dels anys 2005 vs 2007 i 2005
vs 2009, on els nuvols de punts tenen una forma que tendeix a ser més cir-
cular, suggerint un aument en el nombre de funcionalitats no tant homogeni.

En la seleccié del nombre de clusters, basant-nos en els valors dels Silhouette
Coefficients (SC), s’observa una perdua substancial de les estructures dels
clusters, en ser aquests inferior al 0.25. Aix0o suggereix que els models
d’eines GO que es determinin via clusters basats en aquestes matrius de
dissimilaritats podrien no estar ben caracteritzats (taula 8.3).

Year Jaccard Coefficient Matching Coefficient
Num. Clusters SC Num. Clusters SC
2005 2 0.13 3 0.2
2007 9 0.09 16 0.1
2009 2 0.1 5 0.12

Table 8.3: Taula resum del nombre optim de clusters d’acord amb els calors
SC basats en els coefficients de Jaccard i de Matching.

Tanmateix, depenent de I'any i del tipus de coeficient el nombre de clusters
és variable. Aquest fet, de dificil interpretacié, podria estar associat en
algun sentit amb les les millores introduides a les eines entre els anys 2005 i
2007.

Observant els diagrames de barra dels average silhouette widths (figures
7.20 1 7.21), independentment de I’any, del coeficient usat i dels valors SC,
sembla que un nombre baix de clusters poden explicar una gran part de
la informacié sobre els grups d’eines GO. Per tant, basats en aquest fet i
en ordre a discutir ’evolucié de les funcionalitats de les eines, s’ha decidit
considerar 3 clusters que s’han destacat tant en els dendrogrames associats
als cluster jerarquics com en les representacions dels MDS.

Globalment parlant, els clusters jerarquics mostren un la gran nombre
d’eines que cauen en un grup majoritari i la resta d’eines es reparteixen
en dos grups menors (figures 7.22; 7.23 1 7.24). Aquest fet és molt notable
quan observem els dendrogrames associats al coefficient de Jaccard, on a
I’any 2009 el cluster majoritari aglutina quasi totes les eines. Notis, que
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aquest comportament d’“homogeneitzacié” esta va en consonancia amb la
perdua d’estructura suggerida anteriorment pels valors de SC. En el cas
del coeficient de Matching, el comportament és diferent. Tot i mantenir-se
la idea global comentada abans, les representacions dels clusters jerarquics
semblen suggerir que les eines del grup majoritari es van repartir en els
grups minoritaris. Es a dir, semblen “especialitzar-se”. Aquest fet a priori
contradictori es podria atribuir a la definicié de les formules dels coeficients
de Jaccard i de Matching, on el primer, només té en compte quant dos
eines tenen una capacitat en comd, i el segon també considera quan no
tenen una capacitat en comu. En qualsevol cas, deixant de banda els
valors de SC, en el coeficient de Matching sembla haver-hi un subconjunt
d’eines GO que sempre semblen “anar” juntes i sén: el CLENCH [137],
I'erminelJ, el FuncAssociate [16], el GOArray, el GoSurfer [169], I'OntoGate
(OntoBlast) [167], l'ontology Traverser [164], i el SeqExpress [19].
Notis que aquestes eines son els punts dels scatterplots, de la figura 7.13,
que cauen aproximadament a la bisectriu imaginaria, és a dir, les eines que
semblen no haver experimentat grans canvis.

Les representacions en dues dimensions de les solucions dels MDS es mostren
a les figures 7.22, 7.23, i 7.24. Un inspeccié general a través del temps
suggereix que les distancies entre els punts sén lleugerament més grans en
les solucions basades en el coeficient de Jaccard que en les del coeficient
de Matching. Tanmateix, independentment del coeficient, no s’observa un
efecte de separacié evident entre grups d’eines, pero si es fa notar que els
punts de les solucions no metriques tenen un comportament més homogeni,
que els punts de les solucions classiques. Ara be, els nuvols de punts
mostren un comportament molt subtil i curids. Les representacions dels
MDS a l'any 2007 mostren una tenue contraccié del gran nivol de punts,
per després experimentar una lleugera expansié de les distancies entre els
punts, més emfatitzada en la primera dimensié. Aquest fet no és de facil
d’“interpretacio”, pero creiem que podria estar lligat a algun efecte associat
amb les millores introduides pel desenvolupadors que hem observat tant a la
descriptiva com en e les comparacions significatives.

En xifres, els percentatges de les mesures de consens d’adequacy (figura
7.25) associades a les solucions metriques basades en el coeficient de Jaccard
sén 61.23%, 52.67% 1 53.64%, i els associades al coeficient de Matching sén
63.39%, 73.93% i 71.63%. Es a dir, en el primer cas la variabilitat explicada
suggereix que la representacié en dues dimensions no és bona, pero tampoc
¢és dolenta. En canvi en el segon cas, les variabilitats explicades sén bastant
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més bones. Les representacions de les solucions no metriques mostren uns
valors de Stress associats al coeficient de Jaccard del 18.48%, 16.74% i
15.63% , i els valors associats al coeficient de Matching sén del 17.98%,
17.14% 1 20.94%. Per tant, en base als criteris suggerits per en Kruskal
(taula 6.4) ([91]), la bondat d’ajustament en ambdds casos es entre feble i
pobre.

Els valors de Stress ha estat ampliament criticats per ser sobre-simplistes o
ser molt influenciables per outliers ([160], [18]) Per aquest motiu, aquests
valors s’han acompanyat de les representacions dels Scree plots i dels
diagrames de Shepard (figures 7.26 i 7.27). Resumint, els Scree plots sug-
gereixen que les representacions en dues dimensiones no sén suficientment
fiables i per tant és dificil identificar el clusters d’eines GO. D’altra banda,
els diagrames de Shepard suggereixen que les distancies i les disparitats
entre les eines GO a les representacions dels MDS no metrics aproximen
be les proximitats originals. Ara bé, cal tenir present que els punts del
diagrama de Shepard no son estrictament projeccions de les proximitats,
si no una projeccié de les matrius de dissimilaritat en unes dimensions
reduides. Aixi doncs, combinant els resultats dels Scree plot i els diagrames
de Shepard, suggereixen que caldria augmentar la dimensionalitat de la
configuracié dels MDS no metrics (a aproximadament 7) per a explicar la
informaci6é de forma més fiable. En conseqiiéncia, els “models” potencials
o especialitzacions de grups d’eines observats a priori no son del tot creibles.

La taula 8.4 mostra els resultats dels tests de Mantel, simples i parcials.
Considerant un nivell de significacié del 0.05, en el test simple de Mantel,
les correlacions entre cada parell de matrius de dissimilaritats, independent-
ment del coeficient considerat, sén estadisticament significatives. Pero, els
coeficients no sén suficientment alts, amb ’excepcio de la correlacié entre les
matrius associades al coeficient de Jaccard entre els anys 2007 i 2009. Pel que
fa als tests de Mantel parcials, no tenim suficient evidencia estadistic com
per a rebutjar la hipotesi nul.la. Es a dir, independentment del coeficient,
quan estudiem la correlacié entre les matrius de dissimilaritats del 2005 i del
2009 controlant ’efecte del 2007, no s’observa una relacié “lineal”. En altres
paraules, les similaritats entre les eines GO no semblen ser les mateix al llarg
del temps

8.4.3.5 Una ontologia per a desenvolupar eines GO (DeGOT)

DeGOT és una ontologia simple dirigida a proporcionar als desenvolupadors
d’eines GO un vocabulari estructurat que els ajudi a dissenyar una nova eina



273

(Partial) Mantel Test  rp PValue

W(DQO05 Ddo07) 0.450  0.0001
rar (D 2007, Do) 0.803  0.0001
rM(D2005, Do) 0.276  0.0033
TM(DQOOE), DionolDdgg7)  -0.160  0.9727
rar (D53 2005 D) 0.479  0.0002
rM(D2007, Do) 0.588  0.0001

(D2005, DM o) 0.283  0.0001
rM(D2005, DM o|DM,.)  0.003  0.4863

Table 8.4: Mantel and Partial Mantel Tests.

or a introduir millores en una eina ja existent. Aquesta ontologia esta lliure-
ment disponible al servidor (http://estbioinfo.stat.ub.es/apli/degot)
del Grup de Recerca FEstadistica i Bioinformatica liderat pel Dr. Alex
Sanchez.

En el web del DeGOT es pot consultar la documentacié (generada amb LODE
([121])) i la descripcié de tots els elements de la ontologia i descarregar-se
el codi de la ontologia. Al respecte, per a navegar i explorar les anotacions
del DeGOT és necessari utilitzar un navegador d’ontologies OWL. Es recomana
utilitzar el programari Protégé descarregar-se i instal.lar-se del web http:
//protege.stanford.edu/.

Domini de coneixement del DeGOT

El domini de coneixement del DeGOTesta centrat en les caracteristiques de
les eines GO. Els termes de la ontologia permeten compartir i reutilitzar
coneixement comu de les estructures de les funcionalitats entre els usuaris
i els desenvolupadors, fer assumpcions explicites sobre el domini, separar el
coneixement del domini del coneixement funcional o operatiu de les eines GO
i explotar el domini de coneixement per tal de ser usat com a complement
de cerques i comparacions am el SerbGO0.

La organitzacié jerarquica del DeGOT permet fer actualitzar i afegir carac-
teristiques de manera molt facil i rapida.

Els constructors de la ontologia
Actualment, el DeGOT esta format per 314 classes, 18 propietats i 4 individus.


http://estbioinfo.stat.ub.es/apli/degot
http://protege.stanford.edu/
http://protege.stanford.edu/
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Les classes El node arrel de la ontologia es diu GOTool_Domain_Con-
cept’. Aquesta classe té quatre fills que es van especialitzant a mesura
que aprofundim en la ontologia. Aquestes subclasses sén: Awvailability (ti-
pus d’interficies, llicencies, sistemes operatius de de leina GO), File_Format
(formats dels arxius que utilitza o proporciona 'eina), Functionality (tipus
d’entrades, analisis i sortides permeses per I'eina GO) i Resource (bases de
dades, eines i altres recursos que estan associats am ’eina).

Les propietats Les propietats del DeGOT sén relacions binaries entre els
individus. La taula 7.25 proporciona la llista de les propietats implementades
a la ontologia, juntament amb el seu domini (origen) i rang (termini), i les
propietats inverses respectives.

No s’han definit restriccions sobre les propietats del DeGOT.

Els individus Els individus anotats a la ontologia sén noms d’eines GO
existents. Els individus poden pertanyer a més d’una classe. En el DeGOT s’ha
anotat quatre individus (agriG0 ([49]), BinGO (][99]), CateGOrizer (]78]), and
CLENCH ([137])).

8.4.4 Discussid

La segona part d’aquesta tesi estava dirigida a respondre els sis objectius
especifics associats amb 'estudi de les eines GO per a I’analisi d’enriquiment.

Donada la gran quantitat d’eines GO per a l’analisi d’enriquiment ([47],
[79]), el primer dels objectius d’aquesta tesi va ser definir un Conjunt de
Funcionalitats Estandard que permetes classificar les eines GO en base a les
seves capacitats. Aixi doncs, per a crear aquest conjunt de funcionalitats es
van examinar una llarga llista de referencies literaries associades a eines GO,
disponible al web del The GO Consortium ([152]). Fruit d’aquesta revisié es
va construir una llista amb 205 caracteristiques organitzades en 9 seccions
diferents, i en base a aquest Conjunt de Funcionalitats Estandard es van clas-
sificar 26 eines GO. Aquesta classificacié va donar lloc a la construccié d’unes
taules que recollien les capacitats que proporcionaven cadascuna de les eines.

LA les ontologies OWL, i en general totes, el node arrel s’anomena Thing, perd per interés
propi en la descripcié del DeGOT, hem decidit descriure com a node arrel el seu unic fill,
GOTool_Domain_Concept.
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Amb l'objectiu d’explotar tota aquesta informacié es va decidir desenvolupar
un aplicatiu web anomenat SerbGO [111] dissenyada per a ajudar als usuaris
a seleccionar i comparar les eines GO i aixi puguin trobar quines d’elles son
les que millor s’adapten als seu objectius.

La base de dades del SerbGO ha anat sent actualitzada periodicament des
de la seva versié. Aquest fet va fer-nos notar que a banda de les noves
eines classificades segons el Conjunt de Funcionalitats Estandard, molts
promotors introduien noves capacitats en les eines existents o milloraven
algunes de les seves capacitats. En base a aquest monitoratge, ens vam
preguntar si s’estaria produint una especialitzacié de les eines existent, o si hi
hauria una certa redundancia en les capacitats de les eines i en conseqiiencia
s’estarien invertint esforcos i recursos en donar resposta a qiliestions que ja
estaven solucionades. Per tant, vam decidir de fer un analisi estadistic amb
I'objectiu d’estudiar I'evolucié i clustering, si és que hi era, de les primeres
26 eines GO classificades al SerbG0.

L’analisi estadistic es va plantejar en tres parts: una descriptiva, una analisi
diferencial i una analisi multivariant, pensats per a descriure els percentat-
ges de les capacitats oferides per les eines, observar si aquests hi havien
diferéncies significatives, tant a nivell global com per (seccions (o grups) de
funcionalitats, i veure si les similaritats entre les eines evolucionava al llarg
del temps permetent identificar models d’eines GO. Els resultats de les tres
I’analisi suggerien que efectivament els promotors havien invertit esforgos en
augmentar el nombre de capacitats de les eines, i van ser significativament
diferents en les capacitats d’anotacio i d’especies suportades per les eines.
Tanmateix, no es va poder identificar amb claredat agrupacions d’eines
degut a una perdua d’estructura de clusters. Tanmateix, ’exploracié
multivariant sembla suggerir que a mesura que pasa el temps les eines van
homogeneitzant les seves capacitats.

A la vista monitoratge de les eines, dels resultats obtinguts i del fet de
que la comunitat cientifica segueix invertint esforcos en millorar les eines
existents o construir-ne de noves, ens vam plantejar la idea de crear un
recurs que donés suport als desenvolupadors quan es troben amb la tasca
de dissenyar una nova eina GO. Aquesta reflexié va ser materialitzada amb
el desenvolupament d’una ontologia, que vam anomenar DeGOT. El DeGOT
és una ontologia que proporciona un vocabulari sobre el coneixement de
les funcionalitats de les eines GO, i que esta pensada tant per a ajudar als
desenvolupadors quan es troben amb la tasca dissenyar una nova eina, com
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per a ser utilitzada com a suport de cerques fetes amb el SerbG0. Aquesta
ontologia esta formada per 314 classes, 18 propietats d’objectes i 4 individus,
i facilment pot ser estesa a noves caracteristiques.

Durant els darrers anys el creixement d’estudis d’integracié de dades omiques
i/o la combinacié de metodes per a millorar el coneixement biologic és ha
experimentat un canvi notable a ’ala. En aquest sentit, una de les extensions
més interessants que es podria portar a terme en futures linies de recerca,
seria investigar la possibilitat de combinar diferents metodes i eines per tal
de proporcionar un analisi d’enriquiment molt més plausible i/o informatiu.
Tanmateix, tot i que el procés de classificacio i posterior seguiment és una
tasca d’envergadura considerable en termes de recursos i de temps, seria
interessant construir una eina com el SerbG0 que ens permetés classificar a
la nova moda d’eines per a fer analisis d’enriquiment, que es basa en I’analisi
de xarxes biologiques.
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8.5 Conclusions

Aquesta tesi s’ha centrat en els metodes i eines per assignar interpretacio
biologica basada en la Gene Ontology a dades generades en experiments
omics. La recerca ha explorat dos aspectes principals:

1. L’estudi de dos tipus de mesures de similaritat semantica per explorar
les categories de la GO.

2. La classificacié i estudi de les eines GO per a 'analisi d’enriquiment.

e Respecte al primer punt:

1. S’ha demostrat que:

(a)

(2)

La matriu d’accessibilitat associada a un graf simetric, és
simetrica.

El Teorema de Handshaking i el seu corol.lari poden ser de-
mostrats en base a la matriu d’incidencies.

La propietat monotona de la probabilitat pot ser verificada
en termes del formalisme proposat per en Carey.

El node arrel d'una ontologia és el terme amb el Contingut
d’Informacié més baix, que de fet és nul.

Per a calcular el Contingut d’Informacio, es pot utilitzar el
producte matricial de la matriu dels nombres de camins de
qualsevol longitud entre cada parell de termes per la matriu
de mapejat i obtindre el nombre de vegades que cada terme o
qualsevol de les seves especialitzacions apareix a la ontologia.

La segona mesura de Resnik redefinida en termes de distancia
és una distancia metrica.

Quan ens restringim a termes comparables, la pseudo-
distancia de la longitud de la cadena minima és una distancia
metrica.

2. S’ha vist que:

(a)
(b)

Hi ha un cert nivell d’analogia entre el concepte de 1’ Object-
Ontology Complex ila Partially Ordered Sets Ontology.

La mesura de Lord et al. és la de fet la mesura per Resnik.

3. S’ha desenvolupat un paquet R anomenat sims que:

(a)

Esta dirigit per a calcular similaritats semantiques.
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(b) S’ha implementat un gran nombre de mesures de dues aprox-
imacions diferents.

(¢) Proporciona un punt de vista alternatiu per a comparar dues
llistes de gens basat en els perfils de similaritat semantica.

(d) Esta disponible lliurement al repositori de GitHub https://
github.com/jlmosquera/sims.

e Respecte al segon punt:

1. S’ha vist que la definicié d’un Conjunt de Funcionalitats Estandard
permet classificar les eines GO per analisi d’enriquiment.

2. S’ha desenvolupat una eina web anomenada SerbGO0 que:

(a) Esta dirigida per a seleccionar i comparar eines GO per
I’analisi d’enriquiment.

(b) Esta disponible lliurement al servidor del Grup de Re-
cerca en Estadistica i Bioinformatica de la UB (http:
//estbioinfo.stat.ub.es/apli/serbgo) i al web del
The GO Consortium (http://www.geneontology.org/G0.
tools.microarray.shtml#serbgo).

3. L’estudi de eines GO ha revelat que:
(a) Els promotors han introduit millores en el eines GO per a
I’analisi d’enriquiment al llarg del temps.
(b) Les eines GO han evolucionat homogeniament i no s’han tro-
bat grups ben definits d’eines GO.

4. S’ha desenvolupat una ontologia anomenada DeGOT que:

(a) Proveeix un vocabulari organitzat per ajudar a desenvolu-
padors quan necessiten disenyar una nova eina GO o millorar
una ja existent.

(b) Pot ser utilitzada per a suportar cerques i comparacions
d’eines GO portades a terme amb el SerbG0.

(c) Esta disponible lliurement al servidor del Grup de

Recerca  en  Estadistica 1  Bioinformatica de la UB
(http://estbioinfo.stat.ub.es/apli/degot)


https://github.com/jlmosquera/sims
https://github.com/jlmosquera/sims
http://estbioinfo.stat.ub.es/apli/serbgo
http://estbioinfo.stat.ub.es/apli/serbgo
http://www.geneontology.org/GO.tools.microarray.shtml#serbgo
http://www.geneontology.org/GO.tools.microarray.shtml#serbgo
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The Quest for Biological Significance

Alex Sanchez! and Josep Lluis Mosquera®

Departament d’Estadistica. Universitat de Barcelona. Facultat de Biologia. Avda
Diagonal 645. 03028 Barcelona. Spain. ausj Ledu

1 Introduction

With the advent of genomic technologies it has become possible to perform, in
a routinely manner, new types of experiments to analyze simultancously the
behavior of thousands of genes or proteins in different conditions. A common
trait in these type of studies is the fact that they generate huge quantities of
data what has lead to using the term “high-throughput” to describe them.
There are different types of high-throughput experiments, but we will refer
from now on to the most well known ones: microarray experiments.

A typical microarray experiment is one who looks for genes differentially

eapressed between two or more conditions. That is, genes which behave differ-
ently in one condition, for instance healthy or untreated cells, than in another,
for instance tumor or treated cells. Such an experiment will result very often
in long lists of genes which have been selected using some criteria, such as a
t-test, to assign them statistical significance.
Most of the times the biological interpretation of the list is not obvious.
Sometimes the number of items selected as being statistical significant is very
high and it seems reasonable to (try to) synthesize them looking at what the
list means from the biological point of view. Sometimes, instead, the selected
items do not show any statistical significance, but even so, it is expected -or
it seems clear- that, biologically, they “mean something”, probably related to
the process being analyzed.

In whatever of the previous situations we find, the usual way to proceed
is to shift the focus from “statistical” to “biological” significance. There is a
clear agreement about what does statistical significance mean. However there
is no definition of biological signi at all. Although everyone
talks about it...
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1.1 So, what does Biological Significance mean?

Interestingly what many authors do to define biological significance is to re-
define it in terms of statistical significance. This can be clearly seen in [1] who
describes it as:

. to understand the bwloqwal relewnoe of Statlstl(‘al differences in

gene expression data by in the dis-
tribution of (GO) terms related to biological processes or molecular
function.

This is not however the only possible definition. For instance GeneSifter
(h::p //vwww.genesifter. net/ueb/) a compam prcscntmg their goals as to
make it easier to und the of your microarray

ata” does not give any definition of the term. The nearest explanation of what
they mean by this is the following:

. to characterize the biology involved in a particular experiment, and
to identify particular genes of interest ... combining the identification
of broad biological themes with the ability to focus on a particular
gene ..

Tn any case, it is clear that whatever they mean by Biological Significance
they do not relate this to Stdthtlcal Slgmﬁc.mce

In short. Establishing the biological i of high ol exper-
iments is an important step for their success and many efforts are addressed
to this. Less efforts, it scems, than to clarifying what the term exactly means.

1.2 The Gene Ontology

Attempts to perform a biological interpretation of high throughput experi-
ments are often based on the Gene Ontology (GO), an annotation database
created and maintained by a public consortium, the Gene Ontology Consor-
tium!, whose main goal is, citing their mission, to produce a controlled vocab-
ulary that can be applied to all organisms even as knowledge of gene and pro-
tein roles in cells is accumulating and changing. The GO is organized around
three principles or basic function (MF), which de-
scribes tasks performed by individual gene products;(2) Biological process
(BP), which describes broad biological goals, such as mitosis (cell division)
and (3) Cellular component (CC) describing subcellular structures, locations,
and macromolecular complexes such as nucleus, or other organelles. A given
gene product may represent one or more molecular functions, be used in one
or more biological processes and appear in one or more cellular components.
Each ontology (MF, BP or CC) consists of a high number of terms or cat-
egories hierarchically related from least (top) to most (bottom) specialized

!www.geneontology.org
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characteristics. Ontologies are indeed direct acyclic graphs (DAG) and graph
theory is clearly one possible, although not yet generalized, approach for their
study. Most genes are annotated in one or more categories. Annotations are
made as specific as possible. As a consequence a gene is associated not only
with its annotations but also with all the less specific terms associated with
them. This altogether configures a network of terms for each gene integrated
in the bigger network which is the GO (see figure

oo
ey y
D ® T
s am————

Fig. 1. A hypothetical example of GO for the gene “INNER NO
OUTER”. Every gene is annotated in the three ontologies, MF, BP and CC.

2 From Biological to Statistical Significance: Gene
Enrichment Analysis

Tn recent years there have been developed many methods intended to quantify
Biological Significance (BS from now on) in terms of Statistical Significance
(S from now on). Draghici et al. ([2]) consider as many as 15 related appli-
cations which perform in different but related ways. In this paper we will not
even attempt to compare or offer a panoramic view of the existing methods,
although in the appendix we describe a tool that we have developed precisely
with this goal in mind. Instead we will center on what is possibly the most
well-known and most used approach to obtaining BS from SS.

Assume that we have the results of a typical microarray experiment where
we have selected K “interesting” genes from a wider population or Universe,
of size N. Each gene is annotated to one or more GO categories so that we end
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up with a subset {A;, Az,..Ag} of categories. Gene Ei
Analysis (GEA) consists of performing a statistical test separately for cach
category Ai, i = 1,..G to decide if the proportion of genes in the sample
which have been annotated in category A; is the same as those in the Universe
Dbelonging to the same category. If this is so one can interpret that this category
is not related to the biological phenomenon that led to select the genes in the
sample. Oppositely if the proportion of genes in the sample appearing in
category A, is greater (enriched) or smaller (impoverished) that those in the
Universe one can assume that this category is Biologically Significant. GEA
can easily be fc d in terms of hyp ic sampling allowing to use
the hypergeometric distribution to compute p-values for the test having null
hypothesis: Hy The GO category A; is equally represented in the Universe
than in the group of differentially regulated genes. Details of this test can be
found for instance in [2]

3 Discussion: Drawbacks and limitations

Keeping in mind that, for the sake of centering on the difference between
88 and BS, we have adopted a simplified view it is clear that the previous
approach shows some limitations.

By one side, and this is applicable mainly to GEA, the method selects cat-
egories separately, without explicitly caring for relations between them. This,
jointly with the fact that it relies on a statistical filtering criteria, suggests
that is useful to highlight biologically relevant “hot spots” but it does not offer
a global picture of what is happening in the biological side of the experiment.

Instead of looking at more and more methods checking their virtues and
defaults (but see the appendix and [4]) it is good perhaps to remark another
important flaw: When we rely in SS to define BS we depend on p-values at one
or two levels, that is those p-values that have been used to select the genes, and
those p-values to check the signifi of the gories. However
p-values are not free from criticisms (see [3]). They depend on underlying
probability models and are often subject to misinterpretation as well as used
to justify otherwise unjustifiable cutoffs. In short using p-values to define BS
we risk to translate into it the abuse that has sometimes been observed with
its use to define SS.

3.1 Towards a new ition of Bi: i

Our goal in the previous lines has been mainly to emphasize that simply
relying on stati i to define biologi can be as
misleading as _]Ilst using but not defining the term. And the interesting point
is precisely this: biological significance is not an entelechy. An expert in a
given blological field will often be able to distinguish between two sets of re-
sults and chose those that can be considered more relevant. The challenge
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for mathematicians, statisticians and other scienti working in parallel with
those experts is to develop an approach which tells a story which is, at the
same time, as objective as possible, but also as near to the biologist’s choice
as can be obtained. Probably it will requires approaches that integrate in-
formation from several sou and are able to combine weak non significant
evidences with more objective results into relevant conclusions that can be
considered biologically significant, not because somewhere a p-value is tiny,
but because they really mean something.

Appendix

In this work we have explicitly avoided making comparisons between the ex-
isting methods or tools. It is not an easy task because there exists dozens of
them and they are not free of redundance at all.

This is in itself a barrier for a potential user because even if she understands
clearly what she is looking for she will be faced to choose between many similar
tools.

To help users in this decision process we have developed SerbG0 (for
Searching the best GO tool). It is a free web based tool that can be used in
any two directions: One can ask for the desired functionalities and find out
which are the programs that include them or one can simultancously analyze
several tools to find out which functionalities are implemented and which are
missing.

SerbGO is available at http://estbioinfo.stat.ub.es/apli/serbgo/.

The program has proven useful not only to users who wish to find the tool
they need or who want to compare several tools. It has helped also to classifi
the tools by their functionalities showing some interesting results such as,
for example, the fact that in spite of the apparent redundance between tools
most of them perform slightly different tasks, suggesting that they all may be
useful, or at least that redundance is more apparent than real.
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ABSTRACT

In recent years, the scientific community has pro-
vided many tools to assist with pathway analysis.
Some of these programs can be used to manage

of gene p , others are
oriented to exploring and analyzing data sets and
many allow both possibilities. Potential users of
these tools are faced with the necessity to decide
which of the existing programs are the most
appropnate for their needs. SerbGO is a user-
L It
can be used (i) to search for specific functlonalltles
and determine which applications provide them and
(i) to compare several appl cations on the basis of

ing an appropriate tool. Data required by SerbGO is
either the desired capabilities within a defined
Standard Functionalities Set or the list of the tools
to be compared The analysis performed carries out
that pi an easily read-

able output with the list of tools that implement the
capabilities demanded or a table with the categor-
ization of the GO tools that one wishes to compare.
SerbGO is freely available and does not require a
login. It can be accessed either dlrectly at our server
i tat.ub. go) or at the

knowledge from the data. For example, in gene-expression
microarray studies, it is very common for the statistical
analysis to yield long lists of genes and one of the main
challenges is how to give these lists a biological inter-
pretation (2). It might be reasonable to expect that this
could be done relying on the information stored in the
existing biological databases, which can help to relate the
experimental results with previously existing biological
knowledge.

A useful resource to achieve both the goal of inter-
pretation and the need of automation is the Gene Ontology
(GO) (3). The GO is a cooperative project, which was set in
motion in the late 90s, developed and maintained by the
GO Consortium. Briefly, it is an annotation database
originated ‘to provide a controlled vocabulary to describe
gene and gene product attributes in any organism’. It con-
sists of three independent ontologies: Biological Process
(BP), Molecular Function (MF) and Cellular Component
(CC). Each of them is represented as a directed acyclic
graph (DAG) (4) with two kinds of relationships (‘is-a” and
‘part-of*) and whose nodes are the GO terms arranged
from the most specific ones at the bottom to the only one at
the top which is the most general term. The gene products
may be linked to one or more GO terms in these
ontologies. Thus, when a given gene has been annotated
to a GO term it is also linked to its related nodes.

In recent years, many tools have been developed to
assist analysis of experimental results based on the GO.
Some of these tools are intended to manage functional
while others are specific for analyzing gene

GO Consortlum website (hnp /1
org/GO.tool:

INTRODUCTION

Modern experimental technologics, such as DNA micro-
arrays (1), have become both popular and affordable over
the last decade, leading to a considerable increasc in
experiments and publicly available functional genomic
data sets. These high-throughput methodologics pose dif-
ferent challenges: the experiment itself, the statistical
analysis of the data and the obtention of biological

lists and many allow both possibilities (5). The scientific
community has rapidly moved from lacking the appro-
priate GO tools to having a wide range of applications
with, seemingly, very similar capabilities. It seems reason-
able to ask ourselves whether it is worthwhile to keep
developing new variants of the same programs. We may
have reached the point where most needs may be solved by
an already existing tool and the problem is simply deciding
between those tools available.

This article presents a web-based application called
SerbGO (Searching for the best GO tool), intended to help
users to select the tools which best suit their needs as well

*To whom correspondence should be addressed. Tel: +34 93 402 15 60; Fax: +34 93 411 17 33; Email: jlmosquera@ir.vhebronnet

jimosquera@gmail.com
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as to easily compare the capabilities of various applica-
tions in the context of their experiments.

GO TOOLS AND THE STANDARD
FUNCTIONALITIES SET

Due to the high heterogeneity among different types of

tools it was decided to focus only on ‘“Tools for Gene
Expression/Microarray Analysis™ (http://www.geneontol
ogy.org/GO.tools.microarray.shtml).
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Table 1. Number of standard functionalities per section

Section No. of functionalities
Tools for 2
Type of experiment 7
Interface 7
Availability 4
Supported species 26
40
Annotation 70
Statistical analysis 26
Output 2

To build SerbGO, a long list of available at
the GO website (microarray tools) was reviewed from the
existing literature. These tools use either the ontologies or
the gene associations provided by the GO Consortium to
facilitate the analysis of gene expression data.

The review yielded a substantial number of hetero-
gencous features, which were grouped into a potential set
of functionalities. After several iterations, the features
initially selected were converted into specific functionalities
once redundancies were excluded. This process resulted in
a set of features arranged in 205 standard functionalities.

The capabilities of the GO tools analyzed were ¢l fie
in situ according to the Standard Functionalities Set and
taking the following criteria into account:

(1) The fum.llonahly was available in the GO tool.

@ T in the
bul it could not be w\hdd ed.

(3) The functionality was not found in the paper or the
application.

The list of applications which was finally included with
their references is provided as Supplementary Material.

These tools use either the ontologies or the gene asso-
ciations provided by the GO Consortium to facilitate the
analysis of gene expression data. It must be noted that
inclusion in the GO website does not imply approval by the
GO Consortium and does not mean the tool has been
tested or has been found to use information accurately.
It can be said that this list ‘is provided to promote an
exchange of information between users and software
developers’.

APPLICATION OUTLINE
Inputs

SerbGO is a web-based application designed to (i) facili-
tate researchers the task of determining which of the
existing tools are appropriate for their needs and (ii) to
enable a comparison between some of the available tools.

(1) The input needed to selecl those tools with_the

Tools analyzed were classified according to a set of 205 standard
functionalities arranged in nine sections

Tool selection

The Query Form menu option at the top of the page
allows the user to select different functionalities and to get
the most appropriate tools to provide them. This form
contains the Standard Functionalities Set arranged in nine
sections (Table 1) and spread out over six pages.

the ‘right tool’ a user selects the desired
functionalities by checking the appropriate fields at the
specific sections (Figure 1A-C). Once the choices have
been made for a page it is required to validate the query by
clicking on the “Next’ button at the bottom of the page,
which allows the user to move on the following one. The
next page will show the new sections and the remaining
tools will appear at the top-right corner. At the last
selection page a ‘Find’ button will appear instead of ‘Next’
button. This new button allows users to move on to the
outputs after validation.

Nonavailable features are shown as shaded colors. They
can be activated by switching the corresponding radio
button. In such cases, the user could have access to this
option by switching on the previous radio button.

Queries are implemented with the logical operator
AND. That is, the more capabilities are selected, the less
tools will be available.

During the process of navigation over the pages, and
at any time, it is possible to start a new query if the user
clicks on the Query Form menu option at the top of
the page.

Tool comparison

By checking any of the tools in the Compare Tools form,
a list of their capabilities according to the Standard
Functionalities Set can be obtained (Figure 1F).

Outputs

The output for the Query Form is a table with an alpha-
betically sorted list of the tools performing the function-
alities the name of the developer and the name

desired set of a list of
from the Standard anclmna]mes Set.

(2) The input needed to compare several tools is the list
of programs to be compared.

Both actions can be performed interactively using the
Query Form or the Compare Tools menu options
(Figure 1).

of the tool linked to its corresponding site (Figure 1D).
The programs shown can be compared by clicking the
Find button at the bottom of the results page (Figure 1E).

The output page for the Compare Tools form shows a
table where rows contain the categorized functionalities
and columns contain the GO tools names, which are
linked to their respective sites (Figure 1E).
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igure 1. SerbGO workflow. (A) First page of the Query Form shows the Standard functionalities for the following sections: TOOL FOR, TYPE OF
EXPERIMENT. INTERFACE and AVAILABILITY (B) After the first validation a user selects the SUPPORTED SPECIES required and follows
with the query until the last page. On the top-right corner is shown the number of tools available. (C) By clicking on the *Find” button at the bottom
of the page. the programs that fit the capabilities selected will be shown. (D) This screenshot shows the output for a list of tools and their developers.
They can be compared if a user clcks on the “Find” buton. (E) A cross-tabultion for funtionaies avalable in each too i shown when the
researcher requires a comparison of them. It can be attained cither by comparing the output list of a Query Form or by selecting a set of tools at
the Compare Tools form. () This page shows the entire collection of tools included in SerhGO. These programs can be compared by selecting the
desired ones which query has to be validated on the button displayed at the bottom of the page.
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Example

To illustrate the concept of how to determine which GO
tools for gene-expression analysis provide the features
required by a potential user the following example can be
considered.

A potential SerbGO user has a list of Drosophila
melanogaster genes. Hefshe would like to know which
tools are available to (i) do a GO enrichment analysis
(ii) that allow FlyBase Ids and (iii) correction for multiple
testing for hypergeometric distribution tests. In such a
situation, the user should click on the Query Form menu
option and selects ‘Exploration’ at the TOOLS FOR
section (Figure 1A). After that, move on the next page and
selects *Drosophila melanogaster’ option (Figure 1B).
When validation is made, there are 19 tools available. In
DATA section, the user checks ‘FlyBase ID” identifiers.
He/she has to follow until the STATISTICAL ANALYSIS
section, where will select ‘Enrichment of GO Terms’,
‘Hypergeometric™ test and ‘Correction for Multiple Tests’.
When the user gets the last query page. after clicking on the
Find button the outputs are shown (Figure 1C). The
researcher can see that there are two tools i
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available, it has long seemed reasonable for researchers to
implement their own tools to “provide’ biological meaning
for their experiments. This has resulted in many, and
often very similar programs, which has surfaced the need
for an application such as SerbGO that can be used to
explore and differentiate amongst the ever-growing set of
GO tools.

Thanks to the Standard Functionalities Set, a GO
tool can be easily classified to determine which capabil-
ities it implements. This greatly facilitates the task of
choosing a tool that adapts to the specific interest of a
user. SerbGO is intended to be used by experimental
biologists without any previous training in bioinformatics.
However, it should be taken into account that the best
search approach is to start by checking few capabilities
and in subsequent iterations gradually increase the fea-
tures of interest until a satisfying list of tools is obtained.
In other words, the main idea is not to check all the
capabilities required at once, since this may result in a null
output.

SerbGO is the only web tool to proceed in such a way
and after 2 years we have observed that it is highly flexible

the capabilities desired: GENECODIS and GeneMerge
(Figure 1D). Now, if he/she wishes to compare the tools, it
can be done by simply clicking on the new ‘Find" button.
This comparison wiil show a cross-tabulation of the
capabilities available in GENECODIS and GeneMerge
(Figure 1E)

IMPLEMENTATION AND AVAILABILITY

SerbGO is a web tool developed in PHP 4.3.3 on Windows
using the ADOdb Database Abstraction Library for PHP
and the Javascript language increased interactivity. It runs
accurately on Mozilla Firefox, Internet Explorer and
Konqueror browsers.

The information about tools and their functionalities

to obtain an oraset of a s that allow
the researcher to attain their goals. In order to keep
SerbGO useful, it is updated periodically (twice a year at
least) and accurately. Users, especially GO tool devel-
opers, are welcome to help us implement improvements to
SerbGO.

SUPPLEMENTARY DATA
Supplementary Data are available at NAR Online.
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1 Introduction

An ontology is a way for annotating concepts of a certain domain. It allows
the comparison between entitics through their associated concepts, and which
otherwise would not be comparable. The structure of the vocabulary of an
ontology is arranged as a rooted directed acyclic graph (DAG). That is, an
ontology is a hierarchy with a single “highest” term called the roof. All other
descendant terms are connected by cither one or a several directed links (i.e.
the links point upwards) to the root, an these links are acyclic (i.e. cycles are
not allowed in the graph).

One of the most successful ontologies for annotating biological vocabularies
is the Gene Ontology (GO). It is an annotation resource created and main-
tained by a public consortium, http://gencontology.org/page/go-consortium-
contributors-list [18]. The main goal of the consortium is citing their mission,




to produce a controlled vocabulary that can be applicd to all organisms cven as
knowledge of gene and protein roles in cells is accumulating and changing. Tt is
organized covering three domains: Cellular Component (CC), Biological Pro-
cess (BP), and Molecular Function (MF). Each ontology domain consists of
a high number of terms or categories hierarchically related from least (top) to
most (bottom) specialized characteristics.The GO has two types of relationship
(i.e. links)between GO terms: the is-a and the part-of.

Usually, an ontology is used for the interpretation of sets of objects mapped
to this ontology. For example, the GO allows annotating genes and their prod-
ucts. Most genes are annotated in one or more GO terms. Annotations are
made as specific as possible. As a consequence a gene is associated not only
with its annotations but also with all the less specific terms associated with
them. Furthermore, a given gene product may represent one or more molecular
functions, be used in one or more biological processes and appear in one or more
cellular components.

Many applications using ontologies require to determine the relationship
between pairs of terms [11, 12]. An appropriate measure of such relationship
is the semantic similarity between the terms. Generally speaking, a semantic
similarity between two terms is as a function of distance between the terms
in the graph corresponding to the underlying ontology [3]. There are different
methods a approaches [4], but mainly they are classified into (1) methods based
on node-based approaches, (2) methods based on edge-based approaches, and
(3) methods based on hybrid-based approaches.

sims package provides functions for dealing with arbitrary ontologies, com-
puting semantic similarities between their and comparing lists of objects anno-
tated in these ontologies, particularly focused on the GO.

The present present document is just an introduction to the use of sims
package.

To start with sims package, write the following code

Library("sins")
help("sims")

Functions available in the package are

1s("package:sins")

## [1] "ancestors" "commonAncestors"
## [3] "cosSim" "depth"

## [5] "distRada" "getA"

## [7] "getCk" "getGr"

## [9] "GOANCESTORS" "go00C"

## [11] "GOPARENTS" "gosims"

## [13] "gosimsAvsB" "gosimsProfiles"
## [15] "ICA" "inverseIminusG"
## [17] "is.00C" "LCAs"



## [19] "mapEG2G0" "mappingMatrix"

## [21] "Nt "pdHap"

## [23] "pdHax" "pdHm"

## [25] "pdHx" "plotGODAG"

## [27] "plotHistSims" "pseudoDists"
## [29] "refinementMatrix" "resnikSummary"
## [31] "simFaith" "simJC"

## [33] "simLin" "simNunivers"
## [35] "simPsec" "simRada"

## [37] "simRel" "simRes"

## [39] "simRes.eb" "simsBetweenGOIDs"
## [41] "sims.eb" "simsMat"

## [43] "sims.nb" "summaryMICA"
## [45] "sumnmaryPaths" "summarySims"
## [47] "sunmarySimsAvsB" ‘"termPairs"

## [49] "toMat" "£000C"

## [61] "toPairs"

2 Semantic Similarities Between Terms of an
Arbitrary Ontology Mapped by a List of Ob-
jects

To illustrate the usage of basic structures and the computation of semantic
similarities between terms of an arbitrary ontology with sins package, we are
going to make use of an example proposed by Joslyn et al [6]. It consists of a
10 object identifiers mapping to terms of an ontology with 12 concepts. Figure
1 shows a n of the example considered

In order to deal with the structure we make use of a concept called Object-
Ontology Complex (0OC) introduced by Carey [1], that we will see in next
section 2.1, But, previously we need to “translate” the graph structure described
above in terms of matric

For the inpatient user, load the following dataset into memory in order to
compute semantic similarities and goes to subsection 2.2

data(joslyn)
help("joslyn")

Otherwise, next coding lines provides the process for building the matrix
forms associated with the each component of the structure presented above

vocabulary <- ¢
pv, Dy



Figure 1: Representation of an ontology with 12 terms and 10 object identifiers
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## 2. Links between terms (structure of the a'ntalagy)
origin < c('g", *

terminus <- c ( i

mat.g <- toMat(df =

e,

g,

cnames

G",
links <- data.frame(origin, terminus)
links, rnames = vocabulary,

vocabulary)

print (mat.
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fiers that are annotates in
object.ids <- letters[1:10]

to

## 4. Mapping from
object <- c("b", "d", "E, "br,
gy

term <= c(UE", WEW, WTU, WM, wgn, ugu, wgn g wpe wpnouge
D7)

map <- data.frame(object, term)

mat.m <- toMat(df = map, rnames = object.ids, cnames = vocabulary)

print (mat.m)

##
##

RBCK HA
0000 01
0000 01
0000 01
0000 00
0000 10
0000 00
0000 00
0000 00
0000 00
0000 00

#
i

e )

Hooooooocoou

2.1 Object-Ontology Complex (OOC) Container

An 00C is a formalism for working with ontologies for statistical purposes. It
combines the four clements described in previous section 2. That is, (1) the
terms of the ontology, (2) the structure of the directed acyclic graph (DAG),
(3) the list of objects annotated in the ontology, and (4) how the objects map
to the terms.

sims package has a class 00C, that is used as a general container for Object-
Ontology Complexes (OOC).

help("00C")

The function £000C facilitates the construction of an object of class 00C. This
object is merely used as a container of the elements of the OOC. It has four slots
T (the list of terms or vocabulary of the ontology), G (the matrix accessibility
matrix or the matrix of l-step refinement associated with DAF structure of the
ontology), 0 (the list of object identifiers), and M (the mapping matrix between
objects and terms).



joslyn.00C <- £o0O0C(T = vocabulary, G = mat.g, 0 = object.ids,
M = mat.m)
print (joslyn.00C)

## An object of class "00C"
## Slot "T'
## [1] "R "BN nCU MKM WFW MGH M WEW nJn ugn ngu apu

## Slot "G":
## RBCKFGIEJHAD
#R000000000000
#B100000000000
#C100000000000
#K100000000000
#F010000000000
#G010000000000
# 1011000000000
#E001100100000
# 3001100000000
# H000000100000
# 4000011000100
#D000000011000
#

## Slot

## (1] e "f"
#

## Slot "M

## RBCKFGIEJHAD
#2000000000010
#b000010010010
# 000000000010
#d000010000000
# 000000000100
#£000000100000
#g000000001000
#h000000001000
#1000000001000
#£ 3000000000001

2.2 Comptutation of Semantic similarities

In sins package there are implemented a total of fourteen measures from differ-
ent The following fons describe main functions to compute
semantic similarities between all the pairs of terms of the induced graph (from
the ontology) by a list of object identifiers.




2.2.1 Methods of Node-Based Approach

There are implemented seven semantic similarity measures proposed by Resnik
[13], Lin (7], Schlicker et al. [15], Jiang and Conrath [5], Mazandu and Mulder
[9], Pirr6 and Seco [11], and Pirré and Euzenat [10]. All the methods are based
on the concept of Information Content (IC) proposed by Resnik [13], and the
shared information between the two terms being measured is proportional to
the IC of the Most Informative Common Ancestor (MICA) in the rooted DAG.

Semantic similarities measures of node-based approach are computed by call-
ing the wrapper function sims.

help("sims")

Three arguments are required by this function: a 1ist with the ancestors of
cach selected term (at), a numeric vector with the IC of each term (ic), and
the method required (sce possibilitics in the help).

To obtain the list of ancestors we need to build the accessibility matrix
associated with the DAG structure by performing the following computation

## Accessibility matriz
inv.IminusG <- inverseIminusG(joslyn.00C)
A.mat <- getA(inv.IminusG)

print (A.mat)

## J
## R FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## B TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## C TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## K TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## F TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## G TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## I TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE
## E TRUE TRUE TRUE TRUE FALSE FALSE TRUE FALSE FALSE
## J TRUE FALSE TRUE TRUE FALSE FALSE FALSE FALSE FALSE
## H TRUE TRUE TRUE FALSE FALSE FALSE TRUE FALSE FALSE
## A TRUE TRUE TRUE FALSE TRUE TRUE TRUE FALSE FALSE
## D TRUE TRUE TRUE TRUE FALSE FALSE TRUE TRUE TRUE
## H A D

## R FALSE FALSE FALSE

FALSE FALSE FALSE
FALSE FALSE FALSE
FALSE FALSE
FALSE FALSE FALSE
FALSE FALSE FALSE
FALSE FALSE FALSE
FALSE FALSE FALSE

#
i
MHamxAQwD
]
=
]
%
<1



## J FALSE FALSE FALSE
## H FALSE FALSE FALSE
## A TRUE FALSE FALSE
## D FALSE FALSE FALSE

## Ancestors
at <- ancestors(A.mat)
print(at)

## SR
## [1]
##t

## $B
## [1] "R" "B"

#

## $C

## [1] "R" "C"

it

## $K

## [1] "R" "K"

#

## $F

## [1] "R" "B" "F"
#t

## $G
## [1]
#

## $T
## [1] "R" "BM g M
#t

## SE
## [1]
##

## $J
## [1] "R" "C" K" "J"
#

## $H

## [1] "R" "B" "C"
#t

## $A

o5 [0 TR TE0 TP 050 O TH0 0RO
#

## $D

## [1] "R" "BY "CM MKW WIW WEW wIn apw

wn wE

g

Function resnikSummary builds a data. frame providing the number of times



that cach term or any of its refinements appears in the OOC (i.e. n(t,)), the
probability of finding the term (i.e. p(t;)), and the Information Content of the
term (i.e. IC(t;)). Thus, we can calculate the IC’s of each term very easily by
performing

resnik.sum <- resnikSummary(x = joslyn.0OC)
print (resnik. sum)

# nt pt ic
## R 34 1.00000 0.0000
## B 15 0.44118 0.8183
## C 13 0.38235 0.9614
## K 6 0.17647 1.7346
## F 5 0.14706 1.9169
## G 3 0.08824 2.4277
## I 7 0.20588 1.5805
## E 2 0.05882 2.8332
## J 4 0.11765 2.1401
## H 4 0.11765 2.1401
## A 3 0.08824 2.4277
## D 1 0.02941 3.5264

ic <- resnik.sum[, "ic"]

Finally, to compute the semantic similarity we just only indicate the method
required

## Computation of semantic similarity of Resnik
## (node-based approach)

sims.Res <- sims.nb(at, ic, method = "Res")
head(sims.Res)

## Resnik

coocooo

## Computation of all semantic similarities of
## edge-based approach

sims.all <- sims.nb(at, ic, method = "all")
head(sims.all)

## Resnik Lin Rel JC Nunivers  Psec Faith
## B-R 0 0 0 0.5500 0 -0.8183 [



## C-R 0 0 0 0.5098 0 -0.9614 0
## K-R 0 0 00.3657 0 -1.7346 0
## F-R 0 0 00.3428 0 -1.9169 0
## G-R 0 0 00.2917 0 -2.4277 0
## I-R 0 0 00.3875 0 -1.5806 0

The following function provides a summary of the measures

sunmarySins (sims.all)

## n NAs Min Num.Min  Max Num.Max  Mean
## Resnik 66 0 0.0000 24 2.8332 1 0.7998
## Lin 66 0 0.0000 24 1.0000 1 0.3723
## Rel 66 0 0.0000 24 0.9118 1 0.2661
## JC 66 0 0.1796 1 1.0000 1 0.3662
## Nunivers 66 0 0.0000 24 0.8034 1 0.2268
## Psec 66 0 -4.5678 1 2.4277 1 -1.3518
## Faith 66 0 0.0000 24 1.0000 1 0.2804
#it Std.Dev Median
## Resnik 0.7399 0.8183
## Lin 0.3210 0.4146
## Rel 0.2609 0.2393
## JC 0.1582 0.3271
## Nunivers 0.2098 0.2321
## Psec 1.6449 -1.4746
## Faith 0.2707 0.2616

2.2.2 Methods of Edge-Based Approach

With regard to the edge-based approach there are implemented two semantic
similarity measures proposed by Resnik [13] and Rada et al. [12]. But also, it is
a distance measure proposed by Rada [12], and four pseudo-distances proposed
by Joslyn et al [6].

Semantic similarities measures of edge-based approach are by call-
ing the wrapper function sims.eb.

help("sims.eb")

This function depends on four arguments: the 00C object (x), the name of
the oot term of the ontology (root), the List of the ancestors of each selected
term (at), and the method required (see possibilities in the help).

## Computation of sems
## (edge-based approach)
Resnik.eb <- sims.eb(x = joslyn.00C, root =

of Resnik

", at,

10



method = "Rada")
head (Resnik.eb)

## Rada
## B-R 0.5000
## C-R 0.5000
## K-R 0.5000
## F-R 0.3333
## G-R 0.3333
## I-R 0.3333

## Computation of all semantic similarities of

## edge-based approach

sims.eb.all <- sims.eb(x = joslyn.00C, root = "R", at,
method 11")

head(sims.eb.all)

## Rada Resnik.eb
## B-R 0.5000
## C-R 0.5000
## K-R 0.5000
## F-R 0.3333
## G-R 0.3333
## I-R 0.3333

P~~~

## Summary of semantic similarities
sunmarySims (sims.eb.all)

## n NAs Min Num.Min Max Num.Max Mean Std.Dev

## Rada 66 00.2 8 0.5 18 0.3399 0.1084

## Resnik.eb 66 0 4.0 8 7.0 18 5.7576 0.9932
Median

## Rada 0.3333

## Resnik.eb 6.0000

Distance measure of Rada can be computed by calling the function distRada.
help("distRada")

The function requires a 1ist of numeric vectors with the lengths (in terms of
depth) of the number of paths between each pair of terms (sun.paths), and the
list of the ancestors of each selected term (at). To obtain the first argument

we make use of the function summaryPaths

sun.paths <- summaryPaths(x = joslyn.00C, root = "R", len = TRUE)
head (sum.paths, 10)



## 0,11 [,2] [,3] [,4]
R o 0 o0
## B
## C
## K
## F-

G
## T
## E
#tJ
## H

coocooomrme
ocvmMNMNNOOO
wowoooooo
cocooococococoo

Then, distance is calculated by

Rada <- distRada(sum.paths, at)
head (Rada)

# sp.Rada
## B-R
## C-R
## K-R
## F-R
## G-R
## I-R

IO ST

sunnarySins (Rada)

#H n NAs Min Num.Min Max Num.Max Mean Std.Dev Median
## sp.Rada 66 O 1 18 4 8 2.242 0.9932 2

Pseudo-distances implemented in sims package can be computed by calling
the function pseudoDists.

help("pseudoDists")

This function needs to be fed with the 00C object (x), the name of the root
term of the ontology (root). and the method required (see possibilities in the
help).

## Computation of the pseudo-distance of
## the minimum chain length

pd.hm <- pseudoDists(x = joslyn.00C, root = "R", method = "hm")
head(pd.hm)

## h.m
## B-R 1



tance

of all pseudo-
pd.all <- pseudoDists(x = joslyn.00C, root = "R", method = "all")
head (pd.all)

it h.m h.x h.ax h.ap
#B-R 1 1 1 1
#CR 1 1 1 1
#KR 1 1 1 1
#FR 2 2 2 2
#GR 2 2 2 2
#I-R 2 2 2 2

## Summary of pseudo-distances

summarySims (pd.all

## n NAs Min Num.Min Max Num.Max Mean Std.Dev Median
## h.m 66 30 1 18 3.0 5 1.639 0.7232 1.50
## h.x 66 30 1 17 4.0 21.806 0.9202 2.00
## h.ax 66 30 1 17 3.5 2 1.722 0.8057 1.756
## h.ap 66 30 1 17 3.5 21.722 0.8057 1.75

3 Semantic Similarities Associated with the GO

The package can manage any ontology, but it is especially focused on the Gene
Ontology. In this regard, there are some functions that are particularly adapted
for allow building the refinements matrix (i.e. the 2 ibility matrix) and the
mapping matrix (i.e the matrix that maps from Entrez Gene IDs to GO IDs),
performing comparisons between lists of semantic similarities, and yield different
types of plots (e.g. histograms, diagram bars and DAG’s of the induced graphs).
Moreover, sims package can manage Entrez Gene IDs and GO TDs from any R
organism package.

In order to explore and compare semantic similarities the package takes
advantage of two experimental datasets from two prostate cancer experiments
[19] and [16], provided by the R package goProfiles [14]. Thus, first of all, a
dataset with several lists of genes, from two different studies, selected as being
differentially expressed in prostate cancer is loaded into memory




data(prostatelds)
help("prostatelds")

## No documentation for 'prostatelds' in specified packages and libraries:
## you could try '??prostatelds’

Then, two subsets of Entrez Gene ID’s are selected from two different lists

of genes respectively.

##

## Entrez Gene ID's
eg.sg <- smghOIEntrezIDs[l 10]

And finally, provide the name of human R organism package

pckg <- "org.Hs.eg.db"

3.1 Semantic similarities between GO IDs ancestors of
terms that have been mapped by Entrez Genes

Function gosims allows to compute semantic similarities between all the pairs
of GO ID ancestors of terms that annotate the selected Entre Gene ID’s.

help("gosims")

The function requires the list of genes (eg), the ontology domain (ontology),
the name of the organism package (pckg), the type of approach (type), and
the measure used (method). In this example are considered all the measures
from node-based approach to compute semantic similarities between GO ID’s of
Molecular Function (MF) associated with the subset of genes selected from the
Welsh et al. study

## ALl semantic simila

ities of node-based app
all.nb <- gosims(eg = eg.we, ontology = "MF", pckg pekg,
type = "mb", method = "all")

## Loading required package: org.Hs.eg.db

summarySims (all.nb)

## n NAs Min Num.Min  Max Num.Max Mean
## Resnik 6903 0 0.00000 4469 4.7005 10 0.45654
## Lin 6903 1 0.00000 4468 1.0000 42 0.11142



## Rel 6903 1 0.00000 4468 0.9909 10 0.08649

## JC 6903 0 0.09614 452 1.0000 43 0.14564
## Nunivers 6903 0 0.00000 4469 1.0000 10 0.09713
## Psec 6903 0 -9.40096 462 4.7005 10 -6.45551
## Faith 6903 1 0.00000 4468 1.0000 42 0.07772
## Std.Dev Median
## Resnik  0.84936 0.0000
## Lin 0.21059 0.0000
## Rel 0.19429 0.0000
## JC 0.09717 0.1202
## Nunivers 0.18070 0.0000
## Psec 2.64582 -7.3216
## Faith 0.17062 0.0000

3.2 Semantic similarities profiles

The following functions are though for performing comparisons between two
semantic similarity profiles generated according two list of gen

The reason for comparin two lists of semantic similarities may be to un-
derstand functional gene similarities. In order to perform this type of com-
parison, existing packages (e.gs GOSim [2] and GOSemSim [20]) propose different
approaches based on similarities that yield judgments of orientation, but not
magnitudes. sims package considers alternative strategies that rely on a more
statistical approach. Some functions allow building summaries with magnitude
measures and plots for highlighting differences between profiles. The following
subsections illustrate the main ideas with an example that considers the two
lists of genes subsetted from the studics of Welsh ef al. and Singh et al.

321 C ion of the ic similarity profiles

To compute the semantic similarity profiles associated with each list of Entrez
Gene ID’s we use the function gosimsAvsB. It looks for the induced graph given
by two lists of Entrez Gene ID’s annotated in the ontology domain, and then
calculates the semantic similarities between all the pairs of GO ID ancestors
associated with the GO ID’s that are annotating each list of genes. Figure 2
shows the schematically the idea of this step

h Resn

## Seman

## from

d approach

WEvsSG.nb <- gosimsAvsB(egl = eg.we, eg2 = eg.sg, ontology = "MF",
pckg = pckg, type = "mnb", method = "Res")



= coscor e e

Figure 2: Schema for computing the two semantic similarities profiles associated
with the two lists of genes respectively.

3.2.2 Comparison between the semantic similarity profiles

Statistical analysis is performed with the function summarySimsAvsB. It yields
a summary that consists of (1) an statistic descriptive for each profile of seman-
tic similarity measures, (2) a Mantel’s Test [§] for examining the association
Dbetween the distance matrices (i.e. the similarity matrices), and (3) a Cosine
Similarity [17] for determining the similarity between the two semantic similarity
profiles.

sunmarySimsAvsB(WEvsSG.nb)

## $Summary

##t n NAs Min Num.Min  Max Num.Max
## Res.EntrezGenes.1 13861 59 0 9550 4.700 44
## Res.EntrezGenes.2 13861 73 0 9550 4.431 107
# Mean Std.Dev Median

## Res.EntrezGenes.1 0.4267 0.8552 0

## Res.EntrezGenes.2 0.4204 0.8713 0

#t

## $Mantel

##  Mantel.r PValue
## 1 0.9698 0.001

## $Similarity

## [1] 0.9757

3.2.3 Plots for the semantic similarity profiles

In sims package there are three types of plots implemented. They support the
statistical summary provided by the function summaryAvsB.

16



First plot is an histogram of the semantic similarity profiles. Tt shows both
“curves” in the same plot.

plotHistSims(x = WEvsSG.nb, freq = TRUE,

main = "Histogram of Semantic Similarities",
xlab = "Semantic Similarity")

Histogram of Semantic Similarities

Semantic similarities between GO ID's associated with

O ResEntrezGenes.1 O Res.EntrezGenes.2

8.
8
8 |
8
g

3

£g]
§
g |
&
o

r T T T 1
0 1 2 3 4

Semantic Similarity

Second image plots a vertical bar diagram, whose bars are associated with
the semantic similarities between each pair of terms. Bars on the left side are
the bars corresponding to the first list of genes and bars on the right side are
the bars corresponding to the second list of genes.

gosimsProfiles(x = WEvsSG.nb,
col = c("tomato", "blue"), cex = 0.4,
top.labels = c("Welsh", "PAirs of GO IDs", "Singh"),
main = "Semantic Similarity Profiles
Between Welsh and Singh Studies",

17



Semantic Similarity Profiles
Between Welsh and Singh Studies

Resnik

## [1] 5.1 4.1 4.1 2.1

Function plotDAG plots the induced subgraph from the GO domain associ-
ated with one or two lists of Entrez Gene Identifiers. The subgraph shows two
types of shapes for each node. Circles are GO ID’s not mapped directly by the
genes and rectangles are GO ID’s that are mapped directly by the genes. The
color of nodes indicate the type of relation with the Entrez Gene IDs. That is,
when argument eg2 is NULL, there are two possibilities: nodes mapped directly
are shown in red color and their ancestors are shown in yellow color. But, if
argument eg2 is not NULL, then there are six different colors. Nodes mapped
directly from the first list of Entrez Gene IDs are shown in red color and their
ancestors are shown in yellow color. Nodes mapped directly from the second
list of Entrez Gene IDs are shown in lightblue color and their ancestors are
shown in blue color. Nodes mapped directly from both lists of Entrez Gene IDs

18



are shown in magenta color and their ancestors are shown in violet color.

## Induced subgraph associated with the list of gemes from

## Welsh study
PLotGODAG (egl

[0

= pckg, ontology =

eg.we, eg2 = NULL, pckg

b
g
il

L S

) 'S
—= b S b .
e e e I
A )
b—b—p—o—b—b i
e
(s

## [1] "A graph with 118 nodes."

## Induced subgraph associated with the list of gemes from

## Singh study
PplotGODAG (egl

gEn)

= pckg, ontology =

eg.sg, eg2 = NULL, pckg
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## [1] "A graph with 105 nodes."

## Induced subgraph associated with both lists of genes

plotGODAG(egl = eg.we, eg2 = eg.sg, pckg = pckg, ontology = "MF")

20



## [1] "A graph with 167 nodes."
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Abstract The prostate tumor overexpressed-1 (PTOV1)
was first described overexpresse
but not detected in normal prostate. PTOVI expression is
associated 1o increased cancer proliferation in vivo and in
vitro. In prostate biopsy, PTOV1 detection is helpful in the
carly diagnosis of cancer. The purpose of this study was to
analyze the relevance of PTOVI expression to identify

4 October 2010 /Revised: 22 November 2010/ Accepted: 23 November 2010 /Published online:

23 December 2010

aggressive tumors derived from 12 different histological
Tissue microarrays (TMAs) containing 182 biopsy
samples, including 168 human tmors, were analyzed for
PTOVI and Ki67 expression by immunohistochemistry.
Tumors of low and high histological grade were selected
from lung, breast, endometrium, pancreas liver, skin, ovary,
colon, stomach, kidney, bladder, and cerebral gliomas. One
TMA with tissues without cancer (14
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samples) was used as control. PTOVI expression was
analyzed semiquantitatively for the intensity and percentage
of positive cells. Ki67 was evaluated for tumors prolifera-
tive index. Results show that PTOV T was expressed in over
95% of tumors examined. s expression was significantly
associated to high-grade tumors (p=0.014). This associa-
tion was most significant in urothelial bladder carcinomas
026). Overall, the expression of Ki67 was assaciated
igh-grade tumors, and it was significant in several
twmor types. PTOVI and Ki67 were significantly co-
all tumors (p=0.001), and this association
was significant in clear cell renal carcinoma (p=0.005). In
conclusion, PTOVI expression is associated to more
aggressive human carcinomas and more significantly to
bladder carcinomas suggesting that this protein is a
potential new marker of aggressive discase in the latter
tumors..

Keywords PTOV - Immunohistochemistry - Human
tumors - Low and high grade of malignancy - Bladder
cancer- Renal carcinoma

Introduction

Prostate tumor overexpressed-1 (PTOV1) was identified as
a novel gene and protein during a differential display

2 Springer
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The Jejunum of Diarrhea-Predominant Irritable Bowel
Syndrome Shows Molecular Alterations in the Tight
Junction Signaling Pathway That Are Associated With
Mucosal Pathobiology and Clinical Manifestations

Cristina Martinez, PhD', Maria Vicario, PhD'?, Laura Ramos, MD", Beatriz Lobo, MD?, Jose Luis Mosquera, BSc?, Carmen Alonso, MD, PhD',
Alex Sanchez, PhD*#, Mar Guilarte, MD*?, Maria Antolin, PhD*?, Inés de Torres, MD, PhD?, Ana M. Gonzélez-Castro, PhD!,
Marc Pigrau, MD', Esteban Saperas, MD, PhD', Fernando Azpiroz, MD, PhD'? and Javier Santos, MD, PhD'?

OBJECTIVES: Diarrhea-predominant irritable bowel syndrome (IBS-D) patients show altered epithelial permeability
and mucosal micro-i mﬂammallon in both proximal and distal reglons of the intestine. The objective
of this study was to the events and and the clinical role of upper
small intestinal alterations.

METHODS: Clinical assessment and a jejunal biopsy was obtained in IBS-D patients and healthy subjects.
Routine histology and immunohistochemistry was performed in all participants to assess the number
of mast cells (MCs) and mtraepllhellal Iymphocyles RNA in tissue samples was isolated to identify
genes showing i by analysls followed by pathway and
network analysis in order to identify the biologit ions of the genes
in IBS-D. Gene and protein expression of tight junction (TJ) components was also assessed by
quantitative real-time polymerase chain reaction and confocal microscopy to evaluate the pathways
identified by gene expression analysis.

RESULTS: The analysis reveals a strong iation between the ipt signature of the jejunal mucosa of
IBS-D and intestinal permeability, MC biology, and TJ signaling. The expression of zonula occludens
1 (Z0O-1) was reduced in IBS-D at both gene and protein Ievel with protein redistribution from the
TJ to the our analysis ion between ZO proteins,
MC activation, and clinical symptoms.

CONCLUSIONS: IBS-D i ions are linked to i involving MC-related dysregulation of
TJ functioning in the jejunal mucosa.

SUPPLEMENTARY MATERIAL is linked to the online version of the paper at http:/www.nature.com/ajg

A ] Gastroenterol advance online publication, 13 March 2012; doi:10.1038/ajg 2011472

INTRODUCTION bowel syndrome (IBS) manifestations. However, a pathophysio-
‘There is convincing epidemiological evidence to support the rela-  logical connection has not been elucidated. Our general hypo-

is s the breakdown
infections (4), and the onset, persistence, and severity of irritable  of intestinal epithelial barrier’s surveillance. This is inferred from

tion between psychosocial determinants (1-3), gastrointestinal ~ thesis is that a leading event in IBS pathogenesi
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Abstract

Myasthenia gravis (MG) is an autoimmune disease characterized by the presence of autoantibodies, mainly against the
acetylcholine receptor (AChR). The mechanisms triggering and maintaining this chronic disease are unknown. MiRNAs are
regulatory molecules that play a key role in the immune system and are altered in many autoimmune diseases. The aim of
this study was to evaluate miRNA profiles in serum of 61 AChR MG patients. We studied serum from patients with early
onset MG (n=22), late onset MG (n=27) and thymoma (n=12), to identify alterations in the specific subgroups. In a
discovery cohort, we analysed 381 miRNA arrays from 5 patients from each subgroup, and 5 healthy controls. The 15
patients had not received any treatment. We found 32 miRNAs in different levels in MG and analysed 8 of these in a
validation cohort that included 46 of the MG patients. MiR15b, miR122, miR-140-3p, miR185, miR192, miR20b and miR-885-
5p were in lower levels in MG patients than in controls. Our study suggests that different clinical phenotypes in MG share
common altered mechanisms in circulating miRNAs, with no additional contribution of the thymoma. MG treatment
intervention does not modify the profile of these miRNAs. Novel insights into the pathogenesis of MG can be reached by
the analysis of circulating miRNAs since some of these miRNAs have also been found low in MG peripheral mononuclear
cells, and have targets with important roles in B cell survival and antibody production.
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which may be high or low independently of the
patient’s clinical status [17]. These findings suggest that the
a pathogenic mechanisms involved in each patient subgroup are
fluctuating muscle weakness and fatigability !’mu--m with MG gifferent, No biomarkers are available, however, 0 predict such
have been reported to have to

receptor (AChR), to MuSK or to LRP4 proteins [| o 3], Most MG
paients, however, have circulating antibodies to AChR [4]. Th
antibodies are of the IgG \ul)u‘pv and their synthesis requires
interaction between activated T and B cells [3]. Suggested
mechanisms leading to m..omuﬂmd\, production include crrors
in antigen presentation or recognition [6,7,8], tolerance against

antibody titer

Introduction

Myasthenia gravis (MG) is an autoimmune disease leading to

MiRNAs are small,
modify gene expression by binding o the 3’ untranslated region
of their target messenger RNAs [18]. These molecules are key
1 cellular functions, and changes in their expression patterns
1 discases [19,20,21,22]. miRNAs
em, participating in immune

non-coding regulatory molecules  that

seve
have been associated with severa
play a divers
cell development, germinal center respons

e role in the immune

generation of Ig class-

f-antigens [9], and proliferation/apoptosis regulation of these
immunc cells [10,11]

MG patients with AChR antibodies are clinically hetcrogencous
[12]. Age at onset varies, and patients can be divided into early
onset MG (EOMG), when symptoms appear before 50 years of
age, or in late onset MG (LOMG), when they appear afier 50
rs [13]. Thymic involvement s also variable, more than 80% of
EOMG paticnts have thymic hyperplasia [14] and 10-15% of
MG patients have thymoma [15]. Thymectomy is used as a
therapeutical intervention in EOMG [16] and in patients with
thymoma. Response 1o treatment is also diverse. Most. patients
ors, but some patients
he heterogencity is not
the AChR

respond to steroids or other immunes
are refractory to standard therapy [1
It may also involve

only clinical and therapeutic.

PLOS ONE | www.plosone.org

switched plasma cells, and response to toll-like receptor simulus
[23]. All of these mechanisms are potentially involved in the
development of AChR antibodies. MiRNA expression profiles
have been previously studied in peripheral blood mononuclear
cells of MG patients [24,23] and let-7c and miR320 have been
found downregulated. Functional studies have shown that these
two miRNAs can contribute to MG induction or progression by
A recent study has

regulating the expression of some cytokines.
shown that miR146a is upregulated in patients, and it can be
regulating genes as CD40, CD80, TLR4 and NFKB [26].
Circulating miRNAs have been extensively studied from their
discovery [27.28], as they have been found altered in different
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Appendix B

Examples Associated with
Semantic Similarities

In this appendix some examples associated with chapter of Material and
Methods 3 of second part of the thesis II are illustrated just for pedagogical
purposes. These examples are presented in order of appearance in the text
with the corresponding section reference.
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B.1 Examples of Basic Graph Concepts Sec-
tion

Example B.1. Figure B.1 depicts a graph Gi = (Vi,E1) where V; =
{Ulav25U3av47U57U6} and By = {61276137623762476367 656}

Figure B.1: Representation of graph Gy = (V1, E1).

Example B.2. Figure B.1 depicts a multigraph Gy = (V1, Ey) where V} =
{v1,v2,v3, 04, 05,06} and Ey = {12, €13, €23, €23, 24, €36, Cas, €56}

Figure B.2: Representation of multigraph Go = (V4, E»).
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B.2 Example of Subgraphs Section

Example B.3. Figure B.3 shows a subgraph Sy from the graph Gy (see ez-
ample B.1) induced by Vs, = {v1,va,v3, 04,05} and Es, = {e12, €13, €24}

Figure B.3: Representation of subgraph S;.

B.3 Example of Directed Graphs Section

Example B.4. Consider the following incidence function that defines a set
of “directions” on the undirected graph G,

v B
€12
€13
€23
€24
€32
€36
€44
€56

[ A A

Vo x Vy
12
13
a3
1/}24
P32
36
aa
Ps6

So, by applying this incidence function, a digraph Dy = (Va, Es) arises from

it

1/J(E2) = {%2, ¢13, 2023, 77D247 ¢32a ¢36a ¢44a ¢56}'

Figure B.4 shows the associated representation.
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Figure B.4: Representation of digraph D;.

Notice that Dy is an orientation of Gs.

B.4 Example of Paths and Connection Sec-
tion

Example B.5. In the directed graph Dy, P = (v, vq,v3,v6) S a path between

the origin vy and the terminus vg, and ve,vs are internal nodes. That is, vg

1s reachable from vl, and this path consist of three arcs eis,es3,€36. Thus,
we say that P = P? is a path of length 5.

B.5 Example of DAG and Rooted DAG Sec-
tion

Example B.6. Let i) be an incidence function applied on the undirected
graph G such that

where E3 = {e12, €13, €24, €32, €36, €56} and Vi = {v1, 2, 3,04, 05,06} Then,
the resulting digraph Do is a DAG whose representation is shown in figure
B.5
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Figure B.5: Representation of DAG Dy = (Vi, E3).

B.6 Examples of Matrices and Graphs Sec-
tion

Example B.7. Consider DAG Dy (see example B.6). Then, its associated
adjacency matrix is

n/0 1 1 0 0 0
w0 0 0 1 0 0

vsl O 1 0 0 0 1 A
wl 0 0 0 0 0 o TP
vs] O 0 0 0 0 1

w\0 0 0 0 0 0

Example B.8. The incidence matriz associated with DAG Do (see example
B.6) is

€1 €9 €3 €4 €5 €6
vy 1 1 0 0 0 0
vo | —1 0 1 -1 0 0
vl 0 =1 0 1 1 0 B
vl 0 0 -1 0 0 0| TP
vs| 0 0 0 0 0 1
v\ 0 0 0 0 -1 -1

Example B.9. Consider the adjacency matriz Ap, (see example B.7).
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v | d (v) dt(v)
U1 0
(%) 2
V3 2
(] 2

0

2

Us
Ve

.
N = o R N

O~ = NN

Table B.1: Degree measures for each node v in digraph D;.

Then, its accessibility matriz is

RDQZId()@ADQ@@A%Q:

OO OO O
O OO = ==
OO O~ O
O O = ==
O = OO OO
— O = O

B.7 Examples of Order and Degrees Section

Example B.10. The order of graphs Gy and Gy is |G1| = |G| = 6, but while
the degree for node vs in graph Gy is d(vs) = 3 and in graph G is d(v3) = 4,
because their adjacent nodes are vy, vq,vg and vy, Vo, Vo, Vg, TESPECtively.

Example B.11. Consider digraph Dy. Then, its average degree is

24444 1+2 -
+AFA434142 o o

d(D1> = 6 = 4

and the different degree measures for each node in Dy are shown in table B.1
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B.8 Examples of Refinement of Relationships
Section

Example B.12. Let T = {1,B,C,..., D} be a set of 12 terms in a small
ontology described in figure B.6.

Figure B.6: DAG of a small ontology with 12 terms

The associated refinement matrixz of this rooted DAG is

1 B ¢C K F G I £ J H A D
1,0 0 0 O O O O O O O O O
Bf1 0 0 0 O O O O O 0 0 O
c¢cfr o 0 0O O 0O O O O 0 0 O
K1 0 o0 0 0O 0 0 0 0 0 0 O
Flto 1 0 0 0O 0O 0O 0 0 0 0 O
GOlOOOOOOOOOO_F
/10 1.1 0 O O O O O O O O ’
Efo o0 1 1 0 0 1 0 0 0 0 O
J10 0 1.1 0 O O O O O 0 O
Hf0 0 0 0 0 0O 1 0 0 0 0 O
Al0 0 0 0 1 1.0 0 0 1 0 O
D\0O 0 0O O O O O 1 1 0 0 O
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The accessibility matriz associated with DAG depicted in

Example B.13.
figure B.6 is

1 B ¢C K F G I E J H A D

0
0
0
0
0
0
0

0
0
0
0
0
0
0

0O 0 0 O

0
0
0
0
0
0
0

0
0
0
0
0
0
0

e}

e}

e}

0 0 0 O

e}

o

i

0 0 0 0

o

o

—

0 0 0 O

e}

e}

—

0 0 0 O

e}

i

i

0O 0 0 O

e}

i

—

0O 0 0 O

i

i

i

i

—

0

0O 0 0 0 O

0

1

i

=}

—

i

i

i

—

i

i

RO KEU~R~STE<A
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B.9 Examples of Mapping Genes to GO Sec-
tion

Example B.14. Let Q = {a,b,c,...,j} be a list of ten objects that are
annotated in the ontology depicted in example B.12. Figure B.7 shows the
Object-Ontology Complex associated with the relation between the objects and
the ontology terms. This relation is made by mapping each object to the most
refined term. For instance, object b maps to terms A, F and E. Thus, this
object b is associated with the mentioned terms and its ancestors, but neither
with term D because it is a refinement of term E, nor term J because it is

not a target of b.

Ontology Terms

0000000000

Query Object

Figure B.7: Representation of an OOC with 10 objects annotated in an
ontology with 12 terms.
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Example B.15. The mapping matrix of the OOC depicted in figure B.7 is

1 B ¢C K F G I E J H A D
af0 0 O O O O O O O O 1 O
b{0O 0 0 0 1 0 O 1 0O O 1 O
cl0O 0 0 O O O O O O 0 1 O
a]0 0 0 0 1 0 0 O O O 0 O
eOOOOOOOOOlOO_M
ffo 0 06 o 0 0 1 0 0 0 0 O '
gf0 0 0 0O O O O O 1 0 0 O
hfo O 0O O O O O O 1 0 0 O
¢{0 0 0 O 0 0 0O 0 1 0 0 0
j\O O O O O O O O 0 0 0 1

Example B.16. The coverage matriz associated with the Object-Ontology
Complex depicted in figure B.7 is

e e T = T e e e S T e T T
R o ook~ R, RHKFHRFR O
e e e e = N N )
PR, RO 000 RO X
el eNoNoNe el s
coocococooo R~ Q)
— O OO R H O KF FH = ~N
=N e NeleleN ool oy
el el =l ==l e R e R s B an RN
CoOO0 OO RO~~~ X
OO ODODO D - = N
R o ococococococooy

ST 0 Q0 R

B.10 Example of POSET Ontology Section

Example B.17. The POSO structure O = (P, X, F) and its labelled poset
associated with figure B.7 can be defined by assuming that P is a finite poset,
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X ={a,b,...,j} is the set of labels, and
F: X — 2F
a +— F(a)={A}
b — F(b)={AE F}
¢c = F(¢)={A}
d — F(d)={F}
e +— F(e)={H}
foo= F(f)=Al}
g = F(g)={J}
h +— F(h)={J}
i = F()={J}
i F()=A{D}

1s the the “mapping” function.

B.11 Examples of Lord’s Measure Section

Example B.18. Table B.2 shows a summary about the Information Con-
tent associated with each term of the Object-Ontology Complex depicted in
example B.1J

n(t)

P(t)

i(t)

UrDum~Qm=xXQr—|«+

34
15
13

(@)

=W R RN W Ot

1.00000000
0.44117647
0.38235294
0.17647059
0.14705882
0.08823529
0.20588235
0.05882353
0.11764706
0.11764706
0.08823529
0.02941176

0.0000000
0.8183103
0.9614112
1.7346011
1.9169226
24277482
1.5804504
2.8332133
2.1400662
2.1400662
24277482
3.5263605

Table B.2: IC’s of each term in the OOC depicted in figure B.7

Example B.19. Table B.3 shows a matriz where each element is the Resnik’s
similarity for each pair of terms of the ontology depicted in figure B.7.
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't B ¢ K F G I E J H A D
10
B0 0
clo 0 0
K[0 0 0 0
F |0 0818 0 0 0
G |0 0818 0 0 0818 0
I 10 0818 0961 0 0818 0818 0
E |0 0818 0961 1,735 0818 0818 1580 0
Jl0 0 0961 1735 0 0 0961 1735 0
H|0 088 0961 0 0818 0818 158 158 0961 0
A0 0818 0961 0 1917 2428 1580 1.580 0961 2.140 0
D |0 0818 0961 1,735 0818 0818 1.58 2.833 2.140 1580 1.580 0

Table B.3: Measures calculated with the semantic similarity of Resnik be-
tween all terms of the OOC depicted in figure B.7

B.11.1

Example of Joslyn’s Measure Section

Example B.20. Table B.4 shows the matriz with the minimum chain length
between each pair of terms in the Object-Ontology Complex. Note that, these
values are equal to the length of the shortest path if and only if terms are
comparable. Non-comparable term are indicated with hyphen.

1 B ¢C K F G I £E J H A D

Drowsm~QmxQm+-
W W WNDNDNDNDN = =O

DO =

W DN N

N W DN = = =

= = 0

)

O DO =
1

Table B.4: Minimum chain length between each pair of terms in the OOC
depicted in figure B.7
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In order to understand better how this pseudo-distance matrix is built, the
computation of the minimum chain length between comparable nodes D and
K is illustrated. To calculate

Sm(D, K) = ho(D,K) = min |C|

CeC(D,K)

the set of all chains between nodes D and K,C(D, K) is required. So, ele-
ments of such a set are:

C(D7K) :{{D7E7K}>{D’J’K}}: {01702}:“01) :l(CQ) =2

Therefore, the minimum chain length between D and K is §,,(D, K) = 2.

B.12 Example Associated with the Results
Section of the Information Content
Concept

Example B.21. Consider the OOC depicted in figure B.7. Then, the asso-
ciated mapping matrix is

CODODDODDODDODDODOO O
coocococoocoocoocooco @
coocococoococooco O
eNolooNoNoNoNeNeRolPN
OO0 oo, O RO M
Coococoococoo o Q)
DO OO ODDDDODOD N
Coocococoocooro ™M
O R PR OO0 OO Y
e e R R L == =Y Ry
SO0
— o oo ocoococoocoly

S ST N 0 Q0 R

The matrixz with the number of paths of any length between each pair of terms
is T+ T+ T2+ ... +1T", where r is the depth of the ontology, that is, the
length of the longest path from the root term to the most specific refinement.
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In this example r = 4. Thus,

|\ B C K F GIZEJH AD
1 /10 0 0 0000000 0
Bl1 1 0 0 0 00000 0 0
cli1 01 0 000000 0 0
Kl1 0 0 1 0 00000 0 0
Fl1 1 0 0 100000 0 0
¢li 1 0 0 010000 0 0 ) s
rl2 11 0 001 00 0 o o] M,
gla 1 2 1 00110 0 0 0
Jl2 01 1. 0000 10 0 0
gl2 1 1. 0 0 01 00 1 0 0
Al4 31 001 1100 1 1 0
p\6 1 3 2 0 011 1 0 0 1

The product of these two matrices allows to compute a matriz that each
element of it is the number of times that a term t € (t) has been referenced
by both itself (column) and the refinements of an specific descendant (row).
For instance, term K has been referenced 5 times. This is, because object j
references term D, from this term to its ancestor K there are 2 paths, and
objects g, h, and i references each of them term J that is a 1-step refinement
of term F.

Now, if Ny = M(I+T+T%+134T11) is the matriz of the number of times that
each term t; or any of its specializations references to an specific ancestor t;,

Just by summing the columns of such a matriz, n(t)’s associated with each
term t; € (T') is calculated (see table B.5).
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t | n(t)
1] 34
B 15
C 13
K 6
F 5}
G 3
1 7
FE 2
J 4
H 4
A 3
D 1

Table B.5: Number of times that each term ¢; or any of its refinements
appears in the OOC depicted in figure B.7

B.13 Example Associated with the Results
Section of Lord’s Measures

Example B.22. Consider the Object-Ontology Complex described in figure
B.7. If we are interested in estimating the semantic similarity between terms

E an J, then S(E,J) ={K,C,1)} and

simpes(F,J) = max{i(K),i(C),i(1)}
= max{1.7346011,0.9614112,0.0000000 }
= 1.7346011
= min{0.17647059, 0.38235294, 1.00000000}
= min{P(K), P(C),P(1)} =
= —logPs(E,J)
= simpora(E,J).
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