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1. SUMMARY 

For the time being bacterial resistance has become one of the most important problems for 

public health. A large number of microorganisms have been developed, by natural selection, 

random mutations that have caused many of the antibiotics used previously are no longer 

effective. Therefore there is an urgent need for new drugs which can control these resistant 

bacteria.  

Some cyclopeptides as polymyxin B and E (colistin) show good antibacterial activity against 

gram-negative resistant microorganisms. Even so, its administration is limited due to they can 

cause neuro and nephrotoxicity. 

In the present work the synthesis of three polymyxin analogs has been carried out, with the 

aim of improving the pharmacological activity of this cyclopeptide in gram-positive and negative 

bacteria, and additionally to reduce its toxicity when being administered.  

The analogs synthesis has been carried out by the solid phase peptide synthesis and the 

Fmoc/tBu strategy as amino acids protecting groups, and its cyclization has made by oxidation 

between two cysteine residues, forming a disulfide bond. The peptides obtained with high purity 

have been characterized by HPLC and ESI mass spectrometry. 

Moreover, the antibiotic activity of the synthesized analogs has been determined through its 

minimal inhibitory concentration (MIC). We obtained good results and good selectivity against 

gram-negative bacteria (0.25 – 2 μg/ml) and better activity than polymyxin against gram-positive 

bacteria. 

 

Keywords: peptide antibiotics, chemical synthesis, solid phase, microbiological activity  
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2. RESUM 

Actualment la resistència bacteriana s’ha convertit en un dels problemes més importants 

per a la salut pública. Un gran nombre de microorganismes ha desenvolupat, per selecció 

natural, mutacions a l’atzar que han provocat que molts dels antibiòtics utilitzats anteriorment ja 

no siguin efectius. Per aquest motiu hi ha una gran necessitat de desenvolupament de nous 

fàrmacs que puguin combatre aquests bacteris resistents. 

Els ciclopèptids com la polimixina B i E (colistina) presenten una bona activitat 

antibacteriana contra microorganismes resistents gramnegatius. Tot i això, la seva 

administració es veu limitada per la neuro i nefrotoxicitat que provoquen. 

En aquest treball s’ha dut a terme la síntesi de tres anàlegs de la polimixina amb l’objectiu 

de millorar l’efectivitat farmacològica d’aquest ciclopèptid, tant en bacteris grampositius com 

gramnegatius, i de reduir la toxicitat que presenta en ser administrat. 

La síntesi dels anàlegs s’ha dut a terme mitjançant la síntesi de pèptids en fase sòlida i 

l’estratègia de Fmoc/tBu com a grups protectors dels aminoàcids, i la seva ciclació s’ha realitzat 

per oxidació entre dos residus de cisteïna, formant un pont disulfur. Els pèptids obtinguts amb 

alta puresa s’han caracteritzat per HPLC i espectrometria de masses (ESI). 

A més, s’ha determinat l’activitat antibiòtica dels anàlegs sintetitzats mitjançant la seva 

concentració mínima inhibitòria (CMI). S’ha obtingut bons resultats, amb bones selectivitats 

enfront bacteris gramnegatius (0.25 – 2 μg/ml) i millor eficàcia que la polimixina contra bacteris 

grampositius. 

 

Paraules clau: pèptids antibiòtics, síntesi química, fase sòlida, activitat microbiològica 
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3. INTRODUCTION 

In recent years, the effectiveness of some antibiotics is gradually decreasing due to the 

emergence of multidrug resistance bacteria. Many of the antibiotic currently used act by 

mechanisms capable of developing resistance. This means that bacteria which were sensitive to 

the antibiotic, experience mostly irreversible changes and become resistant. Levels of 

resistance had been increasing at an alarming rate, so this has become a serious problem for 

public health, therefore there is an urgent need for new antibiotics to overcome this problem 

[1,2]. 

3.1. PEPTIDES AS ANTIBIOTICS 

Peptides are usually considered poor therapeutic candidates due to many factors, including 

their low oral bioavailability, the fact that they are easily removed from the circulatory system 

and its low ability to cross the physiological membranes. However, in last years pharmaceutical 

companies have increased their interest in peptides as potential therapeutic candidates 

because of their high effectiveness, which compensates the mentioned drawbacks [3,4]. 

3.1.1. Laboratory synthesis (SPPS) 

A peptide is a chain of amino acids linked together by amide bonds. Peptides are 

synthesized rapidly within living cells, but until recently could only be artificially synthesized in 

very long, slow processes that had poor yields and gave impure products [5,6]. In 1969 Bruce 

Merrifield described a new method for peptide synthesis, known as solid phase peptide 

synthesis (SPPS). This technique results in high yields of pure products and works more quickly 

than classical synthesis [7], and is based on attaching the first AA to a water-insoluble polymer 

and on protecting the reactive groups of the other AA following an orthogonal scheme, in order 

to ensure the only formation of the desired peptide. 

The general process for synthesizing peptides on a resin starts by attaching the first amino 

acid, the C-terminal residue, to the resin. To prevent the polymerization of the amino acid, the 

alpha amino group and the reactive side chains are protected with a temporary protecting 
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group. Then the resin is filtered and washed to remove byproducts and excess reagents. Next, 

the N-alpha protecting group is removed in a deprotection process and the resin is again 

washed to remove byproducts and excess reagents. Then the next amino acid is coupled to the 

attached amino acid. This is followed by another washing procedure, which leaves the resin-

peptide ready for the next coupling cycle. The cycle is repeated until the peptide sequence is 

complete. Then typically, all the protecting groups are removed, the peptide resin is washed, 

and the peptide is cleaved from the resin [8]. 

Figure 1. General SPPS cycle. 

The side chains of many AA are reactive and may form side products if left unprotected. For 

successful peptide synthesis, these side chains must remain protected despite repeated 

exposure to N-alpha deprotection conditions. Ideally, the N-alpha protecting group and the side 

chain protecting groups should be removable under completely different conditions, such as 

basic conditions to remove the N-alpha protection and acidic conditions to remove the side 

chain protection. This scheme is called ―orthogonal‖ protection [8]. 

3.1.2. Uses of synthetic peptides 

Synthetic peptides have two main uses: as peptide drugs and as peptides for diagnostic 

purposes [5,9]: 

 Peptide drugs are either naturally-occurring peptides or altered natural peptides. 

Many natural-occurring peptides are biologically active, such as polymyxins or 

some ADEPs. But in addition, the amino acids of an active peptide can be altered 

to make analogs of the original peptide. If the analog is more biochemically active 
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than the original peptide it is known as an agonist, and if it has the reverse effect 

is known as an antagonist. 

 Peptides can be designed that change color under certain conditions, and these 

can be used for diagnostic purposes. 

Antimicrobial peptides (AMPs) such as polymyxins provide a possible solution to the 

problem of bacterial resistance to conventional antibiotics. AMPs are a class of antibiotics that 

rarely spur the development of resistant microorganisms, because their main target is the lipid 

bilayer and their mechanism of action relies on ionic and hydrophobic interactions between this 

membrane (rich in anionic phospholipids) and the cationic character of most AMPs [10]. 

3.2. POLYMYXINS 

As explained earlier, there is an urgent need for new antibiotics to overcome the problem of 

the resistance, particularly those active against gram-negative bacteria, such as P. aeruginosa. 

Therefore, polymyxins are increasingly being used as last-time therapy to treat infections 

caused by this kind of bacteria [11]. 

3.2.1. General aspects 

Polymyxins are antimicrobial lipopeptides that were discovered more than 50 years ago. 

Polymyxin B (PxB) is a secondary metabolite produced by the bacterium Bacillus polymyxa 

(which is a gram-positive bacterium), with selectivity against gram-negative bacteria. These 

cationic peptides are mostly being used as last-resort antibiotics for otherwise untreatable 

serious infections, due to they can cause effects of neurotoxicity and nephrotoxicity. But even 

so, as explained above, PxB has an amphipathic nature and a cationic character (with five 

positive charges due to the amino acid Dab) that rarely cause the development of resistant 

bacteria [11,12]. 

So in view of the generally good antimicrobial activity of PxB and the low prevalence of 

resistance that exists, it is not surprising that there has been interest to design new polymyxin 

analogs which improve the microbiological, pharmacological and toxicological profiles of PxB 

[11]. 
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3.2.2. Structure 

The general structure of polymyxin B comprises a cyclic heptapeptide (with three positive 

charges due to the amino acid Dab) bound to a linear tripeptide, with two positive charges due 

to the same AA. As shows figure 2, the γ-amino group of 4-Dab is linked by an amide bond to 

the C-terminus of 10-Thr, while its α-amino group is connected to 3-Dab of the linar tripeptide. 

The α-amino group of 1-Dab is acylated with a hydrophobic chain (different for PxB1 and PxB2) 

[13]. 

Figure 2. Chemical structure of PxB, where the functional segments are colored as follows: fatty acid 

chain (red) which is formed by (S)-6-methyloctanoic acid in polymyxin B1 and by 6-methylheptanoic acid in 

polymyxin B2; linear tripeptide segment (green); heptapeptide (pink); hydrophobic motif in the ring (blue). 

The presence of positively charged residues, as well as the amphiphilic nature of PxB are 

crucial for its activity against gram-negative bacteria. These properties make polymyxins good 

candidates as antibiotics for therapeutic purposes. However, the severe toxicity to humans has 

limited their clinical use. This hurdle might be cleared by the development of non-toxic 

analogues [13]. 

4. OBJECTIVES 

The main objectives of this present work are: 
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 Protection of the amino acid H-(D)-Cys-OH with the groups p-Npys and Boc in 

order to find a good synthesis strategy for obtaining the compound Boc-(D)-Cys(p-

Npys)-OH. 

 Synthesis of three polymyxin analogs to obtain new antibacterial agents. These 

bioactive peptides have to improve the activity of polymyxin. The Fmoc/tBu solid 

phase peptide synthesis (SPPS) will be used for this purpose. 

 Purification and characterization of the peptides obtained by HPLC and ESI mass 

spectrometry. 

 Evaluation of the antimicrobial activity of the synthesized analogs with MIC test, in 

gram-positive and gram-negative bacteria. 

5. EXPERIMENTAL SECTION 

5.1. MATERIALS AND METHODS 

5.1.1. Solvents, reagents and products 

5.1.1.1. Solvents 

Acetic acid Pure quality, 99% Sigma-Aldrich 

AcOEt Synthesis quality Scharlau 

Acetone Synthesis quality Scharlau 

ACN HPLC quality Fischer 

CHCl3 Synthesis quality Scharlau 

DCM Synthesis quality Scharlau 

DMF* Synthesis quality SDS 

EtOH 99.5% quality Panreac 

Et2O* Synthesis quality Scharlau 

H2O* Milli-Q  

MeOH HPLC quality VWR 
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* The anhydrous DMF is prepared over molecular sieve and passed nitrogen stream before its use. 

* The dried Et2O is kept over Na. 

* The deionised water is filtered with a Milli-Q Plus (Millipore) system. 

5.1.1.2. Reagents 

Resin, RL and amino acids  

Bachem 

Iris Biotech 

Novabiochem 

PolyPeptide 

Fischer Scientific 

DIC Pure quality, 99% Sigma-Aldrich 

DIEA Quality Reagent Plus ®, 99% Sigma-Aldrich 

DMSO Synthesis quality Acros Organics 

DTNP Synthesis quality Merck 

HCl Aqueous 37% Scharlau 

Hexanoic acid Quality 99.0% Aldrich 

HOBt Pure quality, 99.0% Fluka 

MgSO4 anhydrous  Jescuder 

Na2CO3  Jescuder 

Ninhydrin Pure quality Koch-Light 

Octanoic acid Quality ≥ 98.0% Aldrich 

Piperidine Quality Reagent Plus ®, 99% Sigma-Aldrich 

TFA Quality Reagent Plus ®, 99% Sigma-Aldrich 

TIS  Sigma-Aldrich 

5.1.1.3. Products for biological assays  

Mueller Hinton-Broth (MHB) Oxoid 

PxB Sigma-Aldrich 
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5.1.2. General instrumentation 

Autoclave AUTESTER-E 

Centrifuge Hettich ROTOFIX 32 A 

Liquid chromatography Specified in section 5.4.1. 

Lyophiliser 
Virtis sentry 2.0. Freezemobile 

25EL 

Mass spectrometry Specified in section 5.4.2. 

pH measurement Strips with colour scale, Panreac 

Polyethylene filter Applied Separations 

Quartz cuvette Helma Analytics 

Rotary evaporator Heidoph Laborota 4000 

Sonicator Selecta MEDI-II 

Spectrophotometer Shimadzu UV-2401 PC 

Syringes Terumo 

Thin layer chromatography Merck 

5.1.3. Analytic methods 

5.1.3.1. Ninhydrin test (Kaiser test) 

It is a very sensitive test for primary amines, usually used in solid phase peptide synthesis to 

determinate if coupling reactions are complete. Ninhydrin reacts with free or deprotected amines 

producing an intense blue color (positive essay). 

As shows figure 3, ninhydrin (1, which is a yellow compound) reacts with a primary amine 

of an amino acid (2) forming an imine (3), in a nucleophilic addition-elimination and reversible 

reaction. This is followed by a descarboxylation reaction, and after that the imine 5 reacts with 

H2O in a hydrolysis reaction to form an aldehyde and a free amine again (6). Compound 6 

reacts with another equivalent of ninhydrin forming 7 and finally 8, which is the blue compound 

[7]. 

To perform the test two solutions are required: 
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 Reagent A: a solution with phenol (40 g) in absolute EtOH (10 ml) is prepared in 

hot. Following, 100 ml of destilled pyridine are added to 2 ml of a solution with 

KCN (65 mg) in H2O (100 ml). These two solutions are stirred separately with 4 g 

of Amberlite MB-3 resin for 45 minutes. Then, are filtered and the filtrates are 

mixed. 

 Reagent B: a solution of ninhydrin (2.5 g) in absolute EtOH (50 ml) is prepared. 

This solution must be protected from light. 

Figure 3. Reaction mechanism of ninhydrin test. 

To carry out the essay, a little sample of peptide-resin (washed with DCM and dried with a 

vacuum pump) is introduced in a small test tube. Six drops of reagent A and two drops of 

reagent B are added. The tube is heated at 110ºC for 3 minutes. 

After that, the solution remains yellow (negative assay) if no free primary amines are 

present. This means the coupling reaction is completed at least 99.5%. Contrary, the solution 

turns dark blue when primary amine is present (positive assay), so a recoupling step will be 

necessary. 
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5.1.3.2. Thin layer chromatography 

Thin layer chromatography is performed on aluminium sheets which are coated with a thin 

layer of silica gel. Two mixtures are used as eluents: CHCl3/MeOH/AcOH in proportion 89:10:1 

(non-polar solvent) and the same components in proportion 59:40:1 (polar solvent). To visualize 

the TLC results, UV light at 254 nm and a ninhydrin solution are used. 

 Ninhydrin stain solution: a solution of ninhydrin (3.33 g) in absolute EtOH (100 ml). 

The mixture should be kept protected from light. To visualize the TLC, this solution 

is spraying and after heat up a colour change is viewed. 

The separation of amino acids by TLC is based on their polarity. When the solvent ascends 

the stationary phase by capillary action, it drags amino acids. Depending on their polarity, they 

have different affinities for the stationary and mobile phases, ascending the silica gel at different 

rates. This is measured by the Rf value. More polar AA are adsorbed more strongly to the sheet 

(which is relatively polar), and less polar AA ascend the sheet faster because they have more 

affinity for the mobile phase. Therefore, when the sheet is revealed with ninhydrin, the stain 

which is closer to the origin corresponds to the most polar AA [7]. 

 

 

 

 

 

Figure 4. TLC separation of amino acids. 

 

5.2. (H)-(D)-CYS-OH PROTECTION WITH P-NPYS AND BOC 

1.058 g of DTNP (3.4 mmol, 3 eq.) are dissolved in 14 ml of AcOH/DMF (5:95, v/v) at 45 ºC 

for 4 h. When it is completely dissolved, 200 mg (1.1 mmol, 1 eq.) of H-(D)-Cys-OH·HCl·H2O 

are added very slowly (for 6 h) at RT, with stirring and in an inert atmosphere. The mixture is 

stirred overnight at the same conditions, and the end of the reaction is checked by TLC. The 

solution is concentrated in vacuo and to the residue anhydrous Et2O is added, in order to 

precipitate the product and to remove the excess of DTNP and other reaction byproducts. The 
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residue is washed, sonicated and centrifuged with Et2O. Finally Et2O is decanted to obtain the 

product H-(D)-Cys(p-Npys)-OH. 

 

 

 

Brown solid. Yield: 406 mg, 129% (as evidence by TLC, it has not been 

possible to eliminate all DTNP and the byproduct 2-mercapto-5-

nitropyridine). RF = 0.46 (CHCl3/MeOH/AcOH, 59:40:1, v/v), RF = 0.08 

(CHCl3/MeOH/AcOH, 89:10:1, v/v). 

The crude product obtained in the above reaction is dissolved in 5 ml of ACN, and 392 μl of 

DIEA are added to ensure the pH is 8. The mixture is stirred under N2 atmosphere in order to 

avoid the oxidation of cysteine into cystine. Then a solution of 248 mg of Boc2O in 2.2 ml of 

ACN is added. The mixture is stirred for 4 h at 45 ºC, and overnight at RT. After removal of most 

of the ACN in vacuo, the mixture is poured into 10 ml of H2O. Na2CO3 is added until pH is 8. 

Then the mixture is washed with Et2O and acidified to pH 2 with 37% HCl. After that it is 

extracted with AcOEt, and the extracts are washed with water, dried with MgSO4, filtered and 

evaporated again to give the desired crude product, Boc-(D)-Cys(p-Npys)-OH. 

The obtained product was not characterized correctly since, as explained in section 7.2.3., 

it was not pure (as evidence by TLC and HPLC). For that reason it was only characterized by 

ESI mass spectrometry and HPLC. The product was not purified because the final yield would 

be really low. 

 

 

 

 

Yellow oil. Yield: 187 mg, 44%. TLC: RF = 0.92 (CHCl3/MeOH/AcOH, 

59:40:1, v/v), RF = 0.65 (CHCl3/MeOH/AcOH, 89:10:1, v/v). HPLC: tR 

= 28.03 min (lineal gradient from 5% B to 95% B for 30 min, at a flow 

of 1 ml/min; UV detection at 220 nm and 330 nm). Purity: 69%. 

HRMS (ESI+): m/z calc. for C13H17N3O6S2
+; 375.7 (41% [M+H]+), 

772.9 (8% [2M+Na]+). HRMS (ESI-): m/z calc. for C13H17N3O6S2
-; 

373.6 (58% [M-H]-), 748.8 (99% [2M-H]-). 

 

5.3. SOLID PHASE PEPTIDE SYNTHESIS 

5.3.1. General aspects 

The solid phase peptide synthesis is carried out manually, using polypropylene syringes 

from Terumo (variable volume depending on the quantity of resin used in each case) with a 

porous polyethylene filter from Applied Separations. The reagent mixture is manually stirred 
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using a Teflon wand. After each coupling, the excess of reagents, solvents and other 

byproducts are eliminated by vacuum filtration. 

5.3.2. Loading the resin 

Peptide synthesis is performed using the resin BHA (f = 0.69 mmol/g). The analogs are 

prepared starting from 153.9 mg of resin (0.106 mmol, 1 eq.). Initially is necessary to do a pre-

treatment, because it is stored in a compact form. The objective of this treatment is solvating the 

resin and washing the impurities. The protocol used for the resin BHA is described in table 1: 

Step Reagent Operation Time [min] 

1 DCM* Wash 5 x 0.5 

2 40% TFA/DCM Wash and solvate 1 x 1.0 

3 40% TFA/DCM Wash and solvate 2 x 10 

4 DCM Wash 5 x 0.5 

5 5% DIEA/DCM Neutralization 3 x 2.0 

6 DCM Wash 5 x 0.5 

7 DMF Wash 5 x 0.5 

* DCM used is filtered through a column of silica. 

Table 1. BHA resin loading protocol. 

5.3.3. Synthesis (Fmoc/tBu strategy) 

5.3.3.1. Reference amino acid incorporation 

105 mg of Fmoc-Ala-OH as a reference amino acid (0.318 mmol, 3 eq.), 43 mg of HOBt 

(0.318 mmol, 3 eq.) and 49 μl of DIC (0.318 mmol, 3 eq.) are added to the BHA resin for 60 

min, using anhydrous DMF as solvent. The reference amino acid is useful to do the amino acid 

analysis and to facilitate the solid phase peptide synthesis. The coupling is confirmed by the 

ninhydrin test. If it is incomplete (positive assay, blue beads) a recoupling step is necessary (1.5 

eq. of reagents for 30 min). 
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5.3.3.2. Rink linker incorporation 

To incorporate the Rink linker is necessary to deprotect the reference amino acid removing 

Fmoc, as shows table 2: 

Step Reagent Operation Time [min] 

1 DMF Wash 5 x 0.5 

2 20% piperidine/DMF Deprotection 1 x 1.0 

3 20% piperidine/DMF Deprotection 2 x 10 

4 DMF Wash 5 x 0.5 

Table 2. Fmoc deprotection protocol. 

To the BHA resin with reference amino acid, 172 mg of Fmoc-Rink linker (0.318 mmol, 3 

eq.), 43 mg of HOBt (0.318 mmol, 3 eq.) and 49 μl of DIC (0.318 mmol, 3 eq.) are added, using 

the minimum quantity of anhydrous DMF as solvent. After 60 min, the coupling is tested by the 

ninhydrin assay. If it is positive, a recoupling is necessary with 1.5 eq. of each reagent during 30 

min. 

5.3.3.3. First amino acid incorporation 

First the Rink linker must be treated with a solution of 20% piperidine/DMF (1 x 1 min, 2 x 10 

min), washing the resin with DFM before and after the reaction. Removing of the Fmoc is tested 

by positive result in ninhydrin assay. Then the first amino acid is incorporated, using an excess 

of amino acid: 187 mg (0.318 mmol, 3 eq.) of Fmoc-(D)-Cys(Trt)-OH, 43 mg (0.318 mmol, 3 eq.) 

of HOBt and 49 μl (0.318 mmol, 3 eq.) of DIC in the minimum amount of anhydrous DMF during 

60 min. 

5.3.3.4. Elongation of the peptide chain 

Peptide synthesis is performed manually following standard Fmoc procedures in the 

minimum amount of anhydrous DMF, with DIC as activate agent of the carboxylic acid and 

HOBt as an additive to minimize the racemization of amino acids and to improve the efficiency 

of peptide synthesis. As shown in table 3, every coupling is verified by ninhydrin assay. If the 

test is positive (blue colour), the coupling is repeated from the stage 4, adding 1.5 eq. of the 

reagents for 30 min. When the synthesis is finished, the peptide-resin is washed with DMF and 

DCM and dried in vacuum. 
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Step Reagent Operation Time [min] 

1 DMF Wash 5 x 0.5 

2 20% piperidine/DMF Deprotection 1 x 1.0 

3 20% piperidine/DMF Deprotection 2 x 10 

4 DMF Wash 5 x 0.5 

5 

3 eq. Fmoc-AA-OH* 

3 eq. DIC 

3 eq. HOBt 

Coupling 60 

6 DMF Wash 5 x 0.5 

7 DCM Wash 5 x 0.5 

8 Ninhydrin assay Test coupling 3 

* It refers to: Fmoc-Dab(Boc)-OH, Fmoc-Xxx-OH, Fmoc-(D)-Yyy-OH, Fmoc-Thr(tBu)-OH. 

Table 3. Elongation protocol of peptide chain in Fmoc/tBu synthesis strategy. 

Once the last amino acid is incorporated in the sequence, the Fmoc protecting group is 

removed by treatment with a solution of 20% piperidine/DMF (1 x 1 min, 2 x 10 min). The resin 

is washed with DMF and DCM and divided into three parts for coupling the last amino acid (only 

in analogs 1A and 1B) and the corresponding fatty acid, as shows table 4. 

Analog 
Wet peptidyl-resin 

[mg] 

Equivalent of dry 

resin [mg] 

Last amino 

acid 
Fatty acid 

1A 134.5 45.55 
Fmoc-

Dab(Boc)-OH C6 

1B 156.0 52.83 
Fmoc-

Dab(Boc)-OH C8 

1C 163.9 55.51 
Fmoc-

Thr(tBu)—OH Cx 

Table 4. Last couplings of the three synthesized peptides. 

5.3.3.5. Last amino acid and fatty acid coupling 

In analogs 1A and 1B the last amino acid coupling is carried out following the same 

procedure of the peptide chain elongation (table 3, step 4 – 9). 
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When the peptide sequence is finished, the corresponding fatty acid is coupled in the three 

analogs following the protocol described in table 5. 

Step Reagent Operation Time [min] 

1 DMF Wash 5 x 0.5 

2 20% piperidine/DMF Deprotection 1 x 1.0 

3 20% piperidine/DMF Deprotection 2 x 10 

4 DMF Wash 5 x 0.5 

5 

5 eq. fatty acid 

5 eq. DIC 

5 eq. HOBt 

Coupling 60 

6 

2.5 eq. fatty acid 

2.5 eq. DIC 

2.5 eq. HOBt 

Coupling 30 

7 DMF Wash 5 x 0.5 

8 DCM Wash 5 x 0.5 

9 Ninhydrin assay Test coupling 3 

Table 5. Fatty acid coupling protocol. 

5.3.4. Cleavage from the resin 

When the synthesis is finished, lateral chains of amino acids are deprotected and the 

peptide is cleaved from the resin. This procedure is carried out by acidolysis with 5 ml 

TFA/TIS/H2O (95:3:2, v/v) for 90 min. Then the peptidyl-resin is washed with 95% TFA/H2O. 

TFA is removed by evaporation with N2 stream, and the oily residue obtained is treated with 25 

ml of dry Et2O to obtain the peptide precipitate. The solid peptide is isolated by centrifugation at 

60 r.p.m. for 10 min and the supernatant is poured off. The peptide crude is dissolved in 

H2O/ACN (1:1, v/v), lyophilized and analyzed by analytical HPLC and by ESI mass 

spectrometry. 

 Cleavage yield: analog 1A: 49% (18.07 mg of crude peptide), analog 1B: 62% 

(27.30 mg of crude peptide), analog 1C: 43% (18.51 mg of crude peptide). 
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5.3.5. Cyclization 

The linear peptide is added to a solution of 40 ml of 5% DMSO/H2O (the concentration is 0.5 

mg/ml). The peptide cyclization is carried out in solution to form a disulfide bond between the 

two Cys residues, by an oxidation reaction. It is left to react for 8 h, and controlled by HPLC. 

When the oxidation reaction is finished, the solution is lyophilized. 

 Cyclization yield: analog 1A: 94% (17.00 mg of crude oxidized peptide), analog 

1B: 100% (27.30 mg of crude oxidized peptide), analog 1C: 95% (17.60 mg of 

crude oxidized peptide).  

5.3.6. Purification and characterization 

The crude oxidized peptides are purified by Semipreparative High Performance Liquid 

Chromatography using the following conditions of purification: lineal gradient from 20% of B to 

50% of B for 30 min, at flow of 2 ml/min; UV detection at 220 nm. 

 Purification yield: analog 1A: 38% (6.40 mg of purified peptide), analog 1B: 25% 

(6.80 mg of purified peptide), analog 1C: 19% (3.40 mg of purified peptide). 

The pure fractions are put together and lyophilized, and then the characterization of the 

products is carried out by RP-HPLC and HRMS ESI+.  

Analog Synthesis yield Purity RP-HPLC* (tR) HRMS ESI+* 

1A 18% >99% 27.8 min 

m/z 1176.6 (4% 

[M+H]+), 588.7 (46% 

[(M+2H)/2]2+), 392.7 

(100% 

[(M+3H)/3]3+), 294.6 

(100% [(M+4H)/4]4+) 

1B 16% >99% 33.6 min 

m/z 1204.6 (10% 

[M+H]+), 602.8 (98% 

[(M+2H)/2]2+), 402.1 

(100% [(M+3H)/3]3+) 

1C 8% >99% 33.5 min 

m/z 1119.5 (12% 

[M+H]+), 560.3 

(100% 

[(M+2H)/2]2+), 373.7 

(78% [(M+3H)/3]3+) 
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* RP-HPLC: lineal gradient from 20% of B to 50% of B for 30 min, at flow 1 ml/min; UV detection at 220 nm. The 

chromatograms are shown in appendix 5. HRMS ESI+: spectra are shown in appendix 6. 

Table 6. Final yield and characterization of the synthesized products. 

5.4. CHARACTERIZATION AND PURIFICATION METHODS 

5.4.1. High Performance Liquid Chromatography 

5.4.1.1. Analytical scale 

This technique is used to separate, identify and quantify the components in a mixture. It 

relies on pumps to pass a pressurized liquid solvent containing the sample mixture through a 

column filled with a solid adsorbent material. Each component in the sample interacts slightly 

differently with the adsorbent material, causing different flow rates for the different components 

and leading to the separation of the components as they flow out the column. 

The purity of peptides is assessed using a Nucleosil C18 reverse-phase column (0.4 x 25 

cm) packed with octadecylsiloxane of 5 μm particle diameter and 120 Å pore size, and the 

elution is carried out at 1 ml/min flow with mixtures of 0.045% TFA/H2O (A) and 0.036% 

TFA/ACN (B). Due to that reverse phase has a non-polar stationary phase and an aqueous 

(polar) mobile phase, retention time is longer for molecules which are less polar, while polar 

molecules elute more readily. The UV detection is carried out at 220 nm, because the 

wavelength of absorbance for a peptide bond is 190-230 nm. 

The apparatus used is Shimadzu Serie 20 Prominence which consists of two pumps LC-

20AD model, autosampler SIL-20A, photo-diode Array detector SPD-M20A and System 

Controller CBM-20A. 

5.4.1.2. Semipreparative scale  

This is a technique to isolate and purify compounds from a mixture. The goal is to get the 

single compounds at a certain purity level. It is different from analytical HPLC because of the 

amount of sample applied to the column. In analytical HPLC the applied sample amount is very 

small compared to the amount of stationary phase in the column. Therefore very good 

separations can be achieved. To purify higher amounts of sample in a single run the loadability 

of a column has to be increased [14]. 
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Peptides are purified by preparative HPLC using a Phenomenex® C18 column (25 x 1 cm, 5 

μm diameter). Elution is carried out at 2 ml/min flow with 0.1% TFA/H2O (A) and 0.1% TFA/ACN 

(B), and UV detection at 220 nm. The apparatus used is a Waters Delta Prep 3000 (Preparative 

Chromatography System) which consists of a controller and a pump Waters 600 E model, a 

manual sample injector Waters 712, a detector of variable wavelength Waters 484 and a chart 

recorder Pharmacia Biotech REC 101.  

5.4.2. Electrospray Ionization Mass Spectrometry 

ESI is a technique used in mass spectrometry to produce ions using an electrospray in 

which a high voltage is applied to a liquid to create an aerosol. It is a soft ionization technique 

typically used to determine the molecular weights of proteins, peptides and other biological 

macromolecules. It is useful because its process does not fragment the macromolecules into 

smaller charged particles; rather it turns the macromolecule being ionized into small droplets. 

These droplets will then be further desolvated into even smaller droplets, which creates 

molecules with attached protons. These protonated and desolvated molecular ions will then be 

passed through the mass analyzer to the detector, and the mass of the sample can be 

determined.  

This quantitative analysis is done by considering the mass to charge ratios of the various 

peaks in the spectrum. This spectrum shows the m/z ratio on the x-axis and the relative intensity 

(%) on the y-axis. In positive mode, the ions observed are created by the addition of a hydrogen 

cation (denoted [M+H]+), or of another cation such as sodium ([M+Na]+) or potassium ([M+K]+). 

In addition, multiply charged ions such as [M+nH]n+ are often observed [15,16]. 

The samples analyzed are solutions of peptides in H2O/ACN (1:1 v/v), and mass spectra are 

obtained in positive mode using the spectrometer ZQ-Micromass (Waters). 

5.5. EVALUATION OF ANTIMICROBIAL ACTIVITY 

5.5.1. Preparation of material and medium 

Material and growth medium of bacteria must be sterilized to ensure the elimination of any 

form of life. Pipette tips, glass bottles, flasks and MilliQ-water are autoclaved (subjecting them to 

high pressure saturated steam at 121ºC for 15-20 min). 
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Different culture mediums are prepared and also autoclaved: 1 x concentrated MHB (9.6 g 

in 400 ml MilliQ-water), 2 x concentrated MHB (19.4 g in 400 ml MilliQ-water) and 1 x 

concentrated MHB with Agar (6g) for plates. 

5.5.2. Growth and inoculation of bacteria 

The microorganisms used are: 

 Gram-negative bacteria: Escherichia coli ATCC 25922, Pseudomonas aeruginosa 

ATCC 9027. 

 Gram-positive bacteria: Enterococcus faecalis ATCC 29212, Staphylococcus 

aureus ATCC 29213. 

Four bacteria suspensions are prepared following the protocol of Amsterdam, D. [17,18]. 50 

μL of each suspension in MHB adjusted according to McFarland standard is added to the 

microtiter wells, so the final concentration of each bacterium in every well is 106 UFC/ml. 

5.5.3. Preparation of peptides solutions 

About 1 mg of each peptide is needed to prepare the solutions in MilliQ-water. The starting 

concentration of microplates for MIC testing is 128 μg/ml, so the wished concentration of 

peptide solutions is 512 μg/ml (128x4). 

Peptide Weight [mg] Real weight* [mg] 
Volume of MilliQ-

water [μl] 

1A 1.1 0.77 1504 

1B 0.9 0.63 1230 

1C 1.0 0.70 1367 

PxB 0.9 0.76 1494 

*Real weight of the synthesized peptides is 70% of their total weight, because they contain the counterion 

CF3COO- from TFA. Real weight of PxB is 86% of its total weight, because commercial product contains 2·H2SO4. 

Table 7. Peptides solutions for the MIC test. 

5.5.4. Determination of MIC 

To carry on MIC test four microtitres of 96 wells are needed (8 rows x 12 columns, figure 5). 

In each microplate one peptide will be analyzed (PxB and the three synthesized analogs). 
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 50 μl of 2xMHB are added to column 1. 

 50 μl of 1xMHB are added to columns 2-11. 

 100 μl of 1xMHB are added to column 12. 

 50 μl of peptide solution are added to column 1. With a multichannel pipette, the 

mixture in column 1 is stirred and 50 μl are added to column 2. The mixture in 2 is 

also stirred and 50 μl are added to column 3. Thus successively through column 

10, so we get peptide concentration diluted by half. So that the final 

concentrations of the peptides ranging from 28 μg/ml (column 1) to 0.25 μg/ml 

(column 10). 

 Finally, the four bacterial suspensions are added to microtitres. Each bacterium 

only takes two rows. Microplates are incubated at 37 ºC for 20 – 22 h. 

 Column 11 is the positive control. It only contains 50 μl of bacteria and 50 μl of 

medium, so we can ensure the growth of bacteria without peptide solution. 

 Column 12 is the negative control. It only contains MHB growth medium, so we 

can ensure there is no bacteria growth because the medium is sterilized. 

 

 

 

 

 

 

 

 

 

 

Figure 5. Preparation of the microplates for the MIC test. 
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6. (D)-CYS PROTECTION 

One of the objectives of this present work was to find an effective method to synthesize the 

compound Boc-(D)-Cys(p-Npys)-OH, since, as explained later, the compound para-nitro-2-

pyridinesulfenyl (p-Npys) has certain advantages over other protecting groups. 

6.1. P-NPYS AS AN ACTIVATING AND PROTECTING GROUP 

To form an asymmetric disulfide bond between two lateral chains of cysteine, the activation 

of the thiol function of one of the AA is required, followed by the addition of the second AA in the 

free thiol form. One of the most successful and widely used method employs aromatic sulfenyl 

protecting/activating groups, such as Nps, PyrS and Npys. The formation of the disulfide bond is 

driven by the low pKa of the aromatic thiol, and hence the reaction can be performed under 

acidic conditions. However, the Npys and other activated Cys derivatives are not compatible 

with the Fmoc/tBu strategy, as they are not stable to the strongly basic conditions required for 

the removal of the Fmoc group. Consequently, the activation of Cys in peptides assembled by 

Fmoc/tBu strategy is often performed with Npys-Cl, but sulfenyl chlorides have limited stability 

and can react with other groups. 

 

 

 

Figure 6. Protecting groups Npys and p-Npys, and reagent DTNP. 

The Npys group (9) not only acts protecting the thiol function of Cys, but also the Npys-

modified cysteine can react selectively with the free thiol group of another cysteine molecule to 

afford a new disulfide bond. This group is easily removed under neutral conditions using tertiary 

phosphine and water, by a reduction reaction, but it is sufficiently resistant to acids such as 

TFA, HCl and HF. 

The use of 2,2’-dithiobis(5-nitropyridine) or DTNP (11) as an activating reagent for the thiol 

function of cysteine generates the protecting/activating group p-Npys (10), which is an isomer of 

Npys. This compound facilitates the synthesis and increases the acidity of the thiol because of 

the para nitro group, making it a better leaving group than Npys [19,20]. 
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6.2. BOC PROTECTING GROUP 

Boc protecting groups are used to temporarily protect the N-alpha nitrogen groups of the 

amino acids. This group is usually used in a Boc/BzI synthesis strategy, which is not a true 

orthogonal protection scheme, because both groups are acid labile [8]. 

Boc group is orthogonal to p-Npys group, because they are removable under completely 

different conditions. While Boc is removed under moderate acid conditions (50% TFA/DCM), p-

Npys requires reduction conditions (DTT, tertiary phosphine). In addition, Boc group can be 

introduced with the reagent Boc2O to a p-Npys-protected AA, because this reaction requires 

medium basic conditions (pH 8) as shows figure 7.  

 

 

 

 

 

 

Figure 7. Reaction mechanism of Boc protection, in a nucleophilic substitution of an acyl group where a 

carbamate (Boc protected amino acid) is formed. 

6.3. SYNTHESIS AND CHARACTERIZATION OF BOC-(D)-CYS(P-NPYS)-OH 

As explained in section 5.2.2., the lateral chain of H-(D)-Cys-OH (12) was initially protected 

with the group p-Npys. The amino acid was added very slowly to a solution of DTNP to ensure 

the no-formation of a dimer of cysteine (cystine) in an oxidation reaction. For the same reason 

the reaction took place in an inert atmosphere, without oxygen. The reaction was followed by 

TLC, using a relatively polar mobile phase formed by CHCl3/MeOH/AcOH in proportion 59:40:1, 

v/v. The final product obtained was a brown solid formed by the synthesized p-Npys-AA (13) 

and for a small part of the non-reacted AA, the excess of DTNP and the byproduct 2-mercapto-

5-nitropyridine (14), which could not be removed, as evidence by TLC (figure 8, 9). 
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Figure 8. Synthesis of Boc-(D)-Cys(p-Npys)-OH. 

 

 

 

 

 

 

Figure 9. TLC sheet where (a) corresponds to DTNP and (b) to the synthesized product H-(D)-

Cys(pNpys)-OH. All stains were revealed in UV light at 254 nm. The AA and the synthesized product were 

revealed with ninhydrin and without heating, since they contain a primary amine. The 

mercaptonitropyridine was recognized by its yellow color, and commercial DTNP was used as a standard. 

In a second part of the synthesis, the N alpha group of H-(D)-Cys(p-Npys)-OH (13, figure 8) 

was protected with the Boc group, with the reagent Boc2O in a nucleophilic substitution reaction, 

using DIEA as a base. The reaction took place in an inert atmosphere and was followed by TLC, 

using a relatively non-polar mobile phase formed by CHCl3/MeOH/AcOH in proportion 89:10:1, 

v/v. Figure 10 shows the TLC sheet when the reaction was completed and the product Boc-(D)-

Cys(p-Npys)-OH (15, figure 8) was obtained. 
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Figure 10. TLC sheet where (a) corresponds to the commercial product Boc-(D)-Cys(pNpys)-OH, (b) to 

DTNP and (c) to the synthesized product Boc-(D)-Cys(pNpys)-OH. All stains were revealed in UV light at 

254 nm, excepting the Boc-(D)-Cys-OH stain. The synthesized product was revealed with ninhydrin, HCl 

vapors and heating. Nitropyridine was recognized by its yellow color, and commercial DTNP was used as 

a standard. 

Boc group is not visible with UV light at 254 nm, because it does not absorb at this λ. 

Moreover, N-alpha protected amino acids cannot be revealed with ninhydrin because their 

amine groups are not free. Therefore, to reveal the stains of compounds which have Boc group 

it’s necessary to apply HCl vapors and to heat, in order to deprotect them. The mechanism of 

this reaction is showed in figure 11. 

 

 

 

 

 

 

 

Figure 11. Boc deprotection mechanism in an acidic hydrolysis with HCl. 

Finally, the work up of the product was made by extractions. Initially water was added and 

the product was washed with diethyl ether. Thus the initial reagents DTNP and Boc2O and the 

byproduct 2-mercapto-5-nitropyridine stayed in the organic phase, as evidence by TLC. The 

aqueous phase was acidified with HCl and extracted with AcOEt. The free AA and the Boc-

protected AA stayed in the aqueous phase, while the synthesized product moved to the organic 

phase. AcOEt was evaporated, dried and filtered to obtain the product Boc-(D)-Cys(p-Npys)-

OH. 
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As shows TLC sheet (CHCl3/MeOH/AcOH in proportion 89:10:1, v/v, figure 12) the obtained 

product was not pure, and that is why a good characterization was not made. The product 

synthesized with a yield of 44% was characterized by ESI mass spectrometry and HPLC, and it 

was not purified because the yield would be very low. 

 

 

 

 

 

Figure 12. TLC sheet where (a) corresponds to the diethyl ether phase, (b) to the aqueous phase and (c) 

to the AcOEt phase. The byproduct in phase (c) could not be determined; therefore the desired product 

was not purified. 

7. SYNTHESIS OF POLYMYXIN ANALOGS 

7.1. DESIGN 

The main objective of this present work was to obtain analogs of PxB which conserve or 

improve its efficiency against gram-negative microorganisms, or that expand its range of action, 

being active against gram-positive microorganisms and, if possible, reducing the toxicity of PxB. 

As shows figure 13, the differences between PxB and the synthesized analogs are: 

 Substitution of the amide bond between residues Dab-4 and Thr-10, which forms 

the cyclic heptapeptide, for a disulfure bridge between the residues that are in the 

same position, Cys-4 and (D)-Cys-10. This modification keeps the size of the 

cycle and simplifies the synthetic process. 

 Substitution of the residues 6 and 7, which represent the hydrophobic part of the 

cycle, for the amino acids Xxx and (D)-Yyy. These residues cannot be public for 

reasons of confidentiality.  
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 Variation of the acid (S)-6-methyloctanoic for different fatty acids in analogs 1A 

and 1B, and substitution of Dab-1 for the fatty acid Cx in analog 1C. These 

modifications, along with substitution of residues 6 and 7, vary the hydrophobicity 

of the molecule. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

* In analog 1C the AA 1-Dab is substituted for the fatty acid Cx. 

Figure 13. Comparison between PxB and the synthesized analogs. 

The sequence of the synthesized peptides is shown in table 8: 

Peptide Sequence 

1A Hexanoyl-Dab-Thr-Dab-cyclo-[Cys-Dab-(D)-Yyy*-Xxx*-Dab-Dab-(D)-Cys] 

1B Octanoyl-Dab-Thr-Dab-cyclo-[Cys-Dab-(D)-Yyy*-Xxx*-Dab-Dab-(D)-Cys] 

1C Cx*-Thr-Dab-cyclo-[Cys-Dab-(D)-Yyy*-Xxx*-Dab-Dab-(D)-Cys] 
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*Xxx = NH2CH(R1)COOH; Yyy = NH2CH(R2)COOH; Cx = (R3)COOH. Amino acids and fatty acid structure can’t be 

disclosed for reasons of confidentiality 

Table 8. Sequences of the synthesized PxB analogs. 

7.2. SYNTHESIS 

7.2.1. Synthesis strategy 

The analogs of polymyxin were synthesized following the Fmoc/tBu protection strategy. In 

this protection scheme, the alpha nitrogen of the amino acids is protected with the base labile 

Fmoc group, while the side chains are protected with acid labile groups based either on the tert-

butyl protecting group or the trityl (triphenylmethyl) group. This is an orthogonal protection 

system, since the side chain protecting groups can be removed without displacing de N-terminal 

protection and visa versa. It is advantageous when side chains need to be selectively modified, 

as when the peptide is selectively labeled or cyclized through the side chain [8]. 

The solid phase peptide synthesis was carried manually and performed using the resin 

BHA, which had to be pre-treated as explains section 5.3.2. 

Initially, Fmoc-Ala-OH was coupled to the resin BHA as a reference amino acid, facilitating 

the SPPS because it avoids steric and electronic problems. The reaction was carried out using 

DIC and HOBt, for 1 hour in anhydrous DMF. 

 

 
 
 
 
 
 
 

Figure 14. Coupling of the first amino acid to the resin BHA. 

 

Carbodiimides are commonly used to prepare amides, esters and acid anhydrides from 

carboxylic acids, so diisopropylcarbodiimide (DIC) was used as an activate agent of the 

carboxylic acid of the amino acid. This reagent and its urea byproduct are more water soluble, 

so the byproduct and any excess reagent are removed by aqueous extraction. Carbodiimide 

activation of AA derivatives often causes a partial racemization of the AA, so in peptide 
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synthesis, adding an equivalent of 1-hydroxybenzotriazole (HOBt) minimizes this problem, 

improving the efficiency of the SPPS [8]. The mechanism of this coupling is shown in figure 15. 

 

 

 

 

 

 

 

 

 

 

 

Figure 15. Activation of the AA. The attack of HOBt is based on a reaction of addition-elimination. 

After this coupling, the Fmoc group of the reference amino acid was removed with a solution 

of 20% of piperidine in DMF, as is explained in section 5.3.3.2. (table 2). The Fmoc group is 

removed when a base abstracts the relatively acidic proton from the fluorenyl ring system, 

leading to a β-elimination and the formation of dibenzofulvene and carbon dioxide, as shows 

figure 16. Dibenzofulvene is a reactive electrophile and would readily attach irreversibly to the 

deprotected amine unless it was scavenged. Secondary amines such as piperidine add to 

dibenzofulvene and prevent deleterious side reactions. Hence piperidine is typically used to 

remove the Fmoc group and also scavenge the dibenzofulvene by-product. 

After Fmoc removal, Fmoc-Rink linker was coupled to the reference amino acid, following 

the procedure shown in section 5.3.3.2. Linkers are chemical entities used to ―link‖ a compound 

to a resin bead during SPPS. The nature of the linker determines the kind of chemistry that can 

be performed, and the conditions under which products can be cleaved from the resin [8]. The 

RL used was a benzhydrylamine functionalized with two methoxy groups at ortho and para 

positions. This enables the cleavage of the peptide-RL bond with a solution of TFA in H2O, and 

obtaining the peptide with the C-terminal end in carboxamide form. 
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Figure 16. Fmoc deprotection mechanism. 

 

 

 

 

 

 

 

 

 

 

 

Figure 17. Rink linker incorporation to the peptidyl-resin. 

For the elongation of the peptide chain, each AA coupling was carried out with 3 eq. of 

Fmoc-AA-OH, 3 eq. of DIC and 3 eq. of HOBt in anhydrous DMF for 1 h. The efficiency of the 

reactions was controlled by ninhydrin test (section 5.1.3.1.).  

As explained above, lateral chains of AA were protected with acid labile groups. The 

protecting group of the lateral chain of Cys residues was Trt, in order to obtain a fully 

deprotected linear precursor after the cleavage from the resin, and allowing the disulfide bond 
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formation in aqueous solution by oxidation. Regarding other trifunctional amino acids, Dab was 

protected with Boc group and Thr was protected with tBu group. 

Once the last amino acid was incorporated in the sequence, fatty acids were coupled in the 

three analogs following the protocol described in section 5.3.3.5. 

 

 

 

 

 

 

 

 

 

Figure 18. Formation of the linear peptidyl-resin with Fmoc/tBu SPPS. 

Then the cleavage of the peptide from the resin and de removing of the lateral chains 

protecting groups were carried out by acidolysis, with a treatment of TFA/TIS/H2O (95:3:2, v/v). 

Triisopropylsilane (TIS) function is to reduce carbocations. 

So finally, totally unprotected linear precursors were obtained. 

7.2.2. Cyclization 

The cyclization of the synthesized peptides was performed by oxidation of the thiol groups 

of Cys residues to form a disulfide bond, as shows figure 19. Lineal peptides were added to a 

solution of 5% DMSO/H2O, therefore its concentration was 0.5 mg/ml. Under conditions of high 

dilution formation of cyclic dimers and oligomers is avoided. 

 



38 Soler Maspons, Aina 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 19. Cyclization by an oxidation reaction of the linear peptides to form the definitely analogs. 

The oxidation reaction was followed by RP-HPLC. The peptides were cyclisized after 8 h. 

 

 

   

t = 1 h     t = 8 h 

Figure 20. Oxidation process of the analog 1B. At t=1h the percentage of the cyclic peptide was 44%, 

and after 7 hours it increased to 95%. The samples were analyzed with a lineal gradient from 20% to 50% 

of B for 30 min. (Solution A: 0.045% TFA/H20, solution B: 0.036% TFA/ACN; UV detection at λ 220 nm). 

In all cases a fast disappearance of the chromatographic peak of the linear peptide and the 

subsequent emergence of a new peak corresponding to the cyclic peptide is observed. 

Cyclization yields were 94 – 100%; therefore it is an optimal methodology for a complete 

peptide cyclization. 

Finally the solutions were lyophilized to obtain the crude oxidized peptides. 
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7.2.3. Purification and characterization 

The crude peptides obtained after cyclization were purified by RP-HPLC in a 

semipreparative scale. Final peptides were obtained with good purities (>99%), as is shown in 

RP-HPLC and ESI spectra (appendices 5, 6). The yields are shown in table 9: 

Peptide ɳ cleavage ɳ cyclization ɳ purification ɳ synthesis 

1A 49% 94% 38% 18% 

1B 62% 100% 25% 16% 

1C 43% 95% 19% 8% 

Table 9. Cleavage, cyclization, purification and final yields of the synthesized analogs. 

The cleavage yield was calculated from the weight of crude peptide after TFA treatment, 

using as a theoretical value the calculated from the initial dry resin and its functionalization. The 

cyclization yield was calculated from the weight of peptide obtained after cyclization and the 

weight obtained after TFA treatment. The purification yield was obtained from the weight of the 

final pure peptide and the weight of the cyclic peptide. Finally, the total yield was expressed as a 

combination of the cleavage, cyclization and purification yields. 

Synthesis yields are quite low, especially in analog 1C. Due to it was the first time these 

peptides were synthesized, it was necessary to make a large number of mini-cleavages in order 

to control if the chains were elongating correctly.  

8. DETERMINATION OF MINIMUM INHIBITORY 

CONCENTRATION 

8.1. GENERAL ASPECTS 

One of the main objectives of this present work was to determinate the antimicrobial activity 

of the synthesized peptides.  

This activity is expressed with minimum inhibitory concentrations, which are defined as the 

lowest concentration of an antimicrobial that will inhibit the visible growth of a microorganism 
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after overnight incubation. MICs are used by diagnostic laboratories mainly to confirm 

resistance, but most often as a research tool to determinate the in vitro activity of new 

antimicrobials [21]. 

The MIC of the synthesized PxB analogs was determined following the protocol described 

for Amsterdam, D. [17,18]. As explained in section 5.5, four bacteria suspension were prepared 

(with a concentration of 106 UFC/ml). A stock solution of each peptide in MilliQ-water was also 

prepared, from which we obtained a range of concentrations from 0.25 μg/ml to 128 μg/ml. 

Peptides and bacteria were incubated with the growth medium MHB at 37 ºC for 20 – 22 h. 

8.2. BACTERIA 

To carry on these assays the microorganisms used were: 

 Gram-negative bacteria: Escherichia coli ATCC 25922, Pseudomonas aeruginosa 

ATCC 9027. 

 Gram-positive bacteria: Enterococcus faecalis ATCC 29212, Staphylococcus 

aureus ATCC 29213. 

In the following section there is a brief description of these bacteria [22]: 

8.2.1. Gram-negative bacteria 

 Escherichia coli is the typical standard model of gram-negative bacteria. It is a rod-

shaped bacterium that is commonly found in the lower intestine of warm-blooded 

organisms. Most E. coli strains are harmless. These strains are part of the normal 

flora of the gut, and can benefit their hosts by producing vitamin K and preventing 

colonization of the intestine with pathogenic bacteria. But there are also harmful 

strains which can cause many excretory system infections, such as cystitis, urethritis, 

meningitis, mastitis, pneumonia… In recent years the resistance of this bacterium to 

antibiotics has increased. 

 Pseudomonas aeruginosa is a model of gram-negative resistant bacteria. It is a 

pathogen microorganism which can cause chronic infections, and has a low 

susceptibility to antibiotics. It may cause pneumonia, excretory system infections… 
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Because it thrives on moist surfaces, this bacterium is also found on and in medical 

equipment, so can cause cross-infections in hospitals and clinics. 

8.2.2. Gram-positive bacteria 

 Staphylococcus aureus is at present the main cause of nosocomial infections. This is 

favored by the fact that it is found in the skin and mucous membranes of humans, 

allowing through surgical wounds can enter the patient’s bloodstream. This bacterium 

can produce a wide range of diseases, ranging from skin infections and relatively 

benign, such as folliculitis, until disease life-threatening, such as osteomyelitis, 

meningitis, sepsis, endocarditis and pneumonia. Resistant strains of this bacterium 

are resistant to penicillin, and they are treated with aminoglycosides or oxacillin. 

 Enterococcus faecalis is found in the intestine of humans and other warm-blooded 

organisms. It indicates fecal contamination, so its present in foods indicates poor 

hygiene or poor conservation, but it is also present on some foods like cheese, where 

acts as natural bacteria flora. It may be resistant to all antibiotics in use. 

8.3. RESULTS AND DISCUSSION 

After overnight incubation, MIC of the synthesized peptides was determined visually using 

an amplifier. Polymyxin B (PxB) was used as a standard. 

The results of this qualitative test are shown in table 10.  

                     Peptides 

           Bacteria                                    

MIC [μg/ml] 

PxB 1A 1B 1C 

Gram - 

E. coli <0.25 2 – 4 2 2 

P. aeruginosa <0.25 <0.25 <0.25 0.25 

Gram + 

S. aureus 32 32 4 4 

E. faecalis >128 >128 16 – 32 64 – 128 

Table 10. MIC results for PxB and the three synthesized analogs. 
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The results of MIC test show that the analog 1B presents the best antimicrobial activity. In 

addition of being effective against gram negative bacteria, has a good selectivity against gram 

positive bacteria, actually better than polymyxin. Therefore, comparing with the analog 1A 

(which does not improve the effectiveness of PxB), it can be concluded that the 8C fatty acid 

chain has provided more antibacterial activity than the 6C chain. The analog 1C also shows a 

good effectiveness against gram positive bacteria, especially into the bacterium S. Aureus. 

9. CONCLUSIONS 

The final conclusions of this present work are: 

 The synthesis methodology using the solid phase peptide synthesis, the resin 

BHA and the Fmoc/tBu strategy allows obtaining the desired peptides with high 

purities (>99%). Although synthesis yields have not been very high, it is a simple 

and effective methodology. 

 The determination of minimum inhibitory concentration (MIC) of the synthesized 

analogs has led to good results, with high selectivity against gram negative 

bacteria and acceptable activity against gram positive bacteria. MIC values are 

comparable and even better, in some cases, than polymyxin B. The best obtained 

results correspond to the analog 1B, which has a residue of Dab in position 10 

and a fatty acid of eight carbons. 

 The synthesis of the protected amino acid Boc-(D)-Cys(p-Npys)-OH has not been 

successful, due to the low purity of the crude compound obtained and the 

expected low yield after purification. 
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11. ACRONYMS 

AA   Amino acid 

ACN   Acetonitrile 

ADEPs  Acyldepsipeptides 

AMPs  Antimicrobial peptides 

ATCC  American Type Culture Collection 

BHA   Benzhydrylamine resin 

Boc   tert-butyloxycarbonyl 

tBu   tert-butyl 

DCM   Dichloromethane 

DIEA   N,N-Diisopropylethylamine 

DIC   N,N’-Diisopropylcarbodiimide 

DMF   N,N’-Dimethylformamide 

DMSO  Dimethyl sulfoxide 

DTNP  2,2’-Dithiobis(5-nitropyridine) 

Eq.   Equivalents 

f   Functionality 

Fmoc   Fluorenylmethyloxycarbonyl 

HOBt   1-Hydroxybenzotriazole 

HPLC  High Pressure Liquid Chromatography 

m/z   Mass-to-charge ratio 

MHB   Mueller Hinton-Broth (culture media) 

MIC   Minimum inhibitory concentration 

Min   Minutes 
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Nps   3-nitrophenyl 

Npys   3-nitro-2-pyridinesulfenyl 

Npys-Cl  3-nitro-2-pyridinesulfenyl chloride 

p-Npys  5-nitro-2-pyridinesulfenyl 

PxB   Polymyxin B 

PyrS   2-pyridinesulfenyl 

RL   Rink linker 

r.p.m.   Revolutions per minute 

SPPS  Solid phase peptide synthesis 

TFA   Trifluoroacetic acid 

TIS   Triisopropylsilane 

TLC   Thin layer chromatography 

Trt   Triphenylmethyl (trityl) 

UFC   Colony-forming unit 

UV   Ultraviolet 
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APPENDICES 
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APPENDIX 1: SYNTHESIZED ANALOGS STRUCTURE 

 

Name Structure 

1A 

 

 

 

1B 

 

1C 

 

*Xxx = NH2CH(R1)COOH; Yyy = NH2CH(R2)COOH; Cx = R3COOH. Amino acids and fatty acid structure can’t be 

public for reasons of confidentiality
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APPENDIX 2: AMINO ACIDS USED 

 

Amino acid Type Structure 

 

C 

Cysteine 

(Cys) 

 

 

Proteinogenic 

 

 

L-(2,4)-Diaminobutyric acid 

(Dab) 

 

Non-proteinogenic 

 

 

T 

Threonine 

(Thr) 

Proteinogenic 

 

APPENDIX 3: COUPLING AGENTS AND ADDITIVES 

 

Abbreviation Name Structure 

 

DIC 

 

N,N’-Diisopropylcarbodiimide 
 

 

HOBt 

 

1-Hydroxybenzotriazole 
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APPENDIX 4: PROTECTING GROUPS 

 

Abbreviation Name Structure Lability 

 

Boc 

 

Tert-butyloxycarbonyl 
 

TFA 

 

tBu 

 

Tert-butyl  TFA 

 

 

Fmoc 

 

 

 

Fluorenylmethyloxycarbonyl 
 

Piperidine 

 

p-Npys 

 

 

para-5-nitro-2-
pyridinesulfenyl 

 
Tertiary phosphine, 

DTT 

 

 

 

Trt 

 

 

 

Triphenylmethyl (trityl) 

 

TFA 
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APPENDIX 5: CHROMATOGRAMS OF PURE PEPTIDES 

 

 

 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 21. HPLC chromatograms of pure peptides: 1A, 1B and 1C. Lineal gradient from 20% to 50% for 

30 min; UV detection at 220 nm.
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APPENDIX 6: ESI SPECTRA OF PURE PEPTIDES 
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Figure 22. ESI-HRMS spectra of pure peptides: 1A, 1B and 1C. 


