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Abstract

The genetic impact associated to the Neolithic spread in Europe has been widely debated over the last 20 years. Within this
context, ancient DNA studies have provided a more reliable picture by directly analyzing the protagonist populations at
different regions in Europe. However, the lack of available data from the original Near Eastern farmers has limited the
achieved conclusions, preventing the formulation of continental models of Neolithic expansion. Here we address this issue
by presenting mitochondrial DNA data of the original Near-Eastern Neolithic communities with the aim of providing the
adequate background for the interpretation of Neolithic genetic data from European samples. Sixty-three skeletons from
the Pre Pottery Neolithic B (PPNB) sites of Tell Halula, Tell Ramad and Dja’de El Mughara dating between 8,700–6,600 cal.
B.C. were analyzed, and 15 validated mitochondrial DNA profiles were recovered. In order to estimate the demographic
contribution of the first farmers to both Central European and Western Mediterranean Neolithic cultures, haplotype and
haplogroup diversities in the PPNB sample were compared using phylogeographic and population genetic analyses to
available ancient DNA data from human remains belonging to the Linearbandkeramik-Alföldi Vonaldiszes Kerámia and
Cardial/Epicardial cultures. We also searched for possible signatures of the original Neolithic expansion over the modern
Near Eastern and South European genetic pools, and tried to infer possible routes of expansion by comparing the obtained
results to a database of 60 modern populations from both regions. Comparisons performed among the 3 ancient datasets
allowed us to identify K and N-derived mitochondrial DNA haplogroups as potential markers of the Neolithic expansion,
whose genetic signature would have reached both the Iberian coasts and the Central European plain. Moreover, the
observed genetic affinities between the PPNB samples and the modern populations of Cyprus and Crete seem to suggest
that the Neolithic was first introduced into Europe through pioneer seafaring colonization.
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Introduction

The term ‘‘Neolithic’’ refers to the profound cultural and

technical changes that accompanied the transition from a hunter-

gatherer subsistence economy to an agro-pastoral producing

system [1]. The first Neolithic societies originated 12 to 10

thousand years ago in a region of the Near East traditionally

known as the ‘‘Fertile Crescent’’ [2]. From this region the

Neolithic technology rapidly expanded to Anatolia reaching the

rest of Europe in less than 3,000 years by following two main

routes linked to different archaeological cultural complexes. The

Danubian route, associated to the Linearbandkeramic (LBK) cultural

complex, brought the Neolithic to the central European plains

and from there to the British Islands and Scandinavia (Funnel

Beaker Cultural Complex) while the Mediterranean one,

associated to the Cardial-Impressa cultural complex, spread it

along the Mediterranean coast up to the Atlantic façade of Iberia

[3].

PLOS Genetics | www.plosgenetics.org 1 June 2014 | Volume 10 | Issue 6 | e1004401

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Diposit Digital de la Universitat de Barcelona

https://core.ac.uk/display/43548366?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pgen.1004401&domain=pdf


The nature of the diffusion of the Neolithic and the possible

demographic input associated to it have been widely debated. In

this regard, two extreme hypotheses representing opposite views

have been formulated: the demic diffusion model (DDM) and the

cultural diffusion model (CDM) [1,2,4,5]. The former stands up

for a ‘‘wave of advance’’ of Neolithic immigrants with subsequent

genetic replacement of the hunter-gatherer (Mesolithic) popula-

tions while the latter proposes a cultural adoption of Neolithic

practices from local populations, implying a genetic continuity

since the Palaeolithic. Moreover, integrationist models that involve

a different extent of interaction between immigrants and local

hunter-gatherers while considering the effect of geographic

barriers and agricultural boundary zones, have been also used to

explain the transition to the Neolithic process at a more local scale

[6].

Genetic analyses from modern and ancient populations have

contributed extensively to this debate providing discordant results.

Principal component analysis and spatial autocorrelation of allele

frequencies of ‘‘classic’’ genetic markers in modern European

populations showed a South East to North West cline compatible

with a Neolithic DDM. The Neolithic contribution to the modern

genetic pool was estimated in this case to be around 27% [7]. The

frequency distribution of Y chromosome polymorphisms displayed

a similar pattern and haplogroups F*, E3b, G and J2, representing

a 22% of extant lineages, were initially identified as the main

contributors of the Neolithic spread [8,9]. However, the analysis of

the geographic distribution of the microsatellite diversity of the

allegedly Paleolithic haplogroup R1b1b2, has been recently

reinterpreted as a signal of substantial demic diffusion [10].

Phylogeographic analyses of another haploid marker, the mito-

chondrial DNA (mtDNA), in Europe and the Near East initially

supported a limited Neolithic genetic contribution of around 9–

12% in the Mediterranean and 15–22% in Central Europe [11].

Molecular dating and founder analyses identified then mtDNA

haplogroups J, T1 and U3 as the main genetic markers of this

expansion, with probable contributions of some other lineages

from clusters H and W [12]. However, recent analysis of complete

mtDNA sequences from the same region has pictured contradict-

ing results depending on the analysis performed, from all mtDNA

haplogroup expansions predating the Neolithic [13] to Neolithic

expansions of mtDNA haplogroup H [14].

In the light of these results, the usefulness of modern genetic

variability to reconstruct the Neolithic dynamics in Europe has

been questioned [15,16]. First of all, a certain level of genetic

differentiation between hunter-gatherers and Near Eastern farm-

ers has to be assumed in order to detect differences between both

groups. Secondly, the existence of SE-NW clinal patterns in

Europe may reflect the accumulation of small migrations entering

the continent rather than a single migratory event [17]. Finally,

original population substructure and subsequent processes of

genetic drift and founder effects can introduce errors into the

estimation of coalescence dates of mitochondrial and Y chromo-

some haplogroups [18]. In this regard, recent diachronic aDNA

analyses of Central European populations have documented a

fluctuation in haplogroup frequencies as a result of population

bottlenecks and post-Neolithic migratory events [19,20]. Besides,

these estimated haplogroup dates do not necessarily correspond to

the time of arrival of the lineages to the region [21]. As a result, the

misidentification of genetic variants associated to the Neolithic

spread and the effect of post-Neolithic expansions in the genetic

make-up of Europe could have introduced important biases in the

estimations of the Neolithic component of the European gene pool

producing misleading conclusions [22].

During the last decade, ancient DNA analyses of Neolithic

populations have provided a more reliable picture of the Neolithic

transition process at a local scale. Studies have concentrated at the

two edges of the two routes of the Neolithic wave of advance:

Central/Northern Europe and the Iberian Peninsula/Southern

France. In Central Europe and Scandinavia a DDM has been

proposed to explain the observed genetic discontinuity between

hunter-gatherers and the first farmer populations [19,23–26].

However, recent analyses have suggested the coexistence of

genetically distinct hunter-gatherer and farmer groups during

several millennia at the same archaeological site, suggesting that

the genetic replacement of hunter-gatherers populations was not

complete [20]. In North Eastern Iberia and Southern France

contradictory interpretations have been proposed to explain the

nature of the Mesolithic-Neolithic transition process. On one

hand, mtDNA studies of Cardial Neolithic remains seem to favor a

pioneer Near Eastern colonization of North Eastern Spain [27,28].

On the other hand, mtDNA results of Epicardial, Middle and Late

Neolithic populations have been interpreted as a signal of pre-

Neolithic legacy [29–31]. Dating and cultural differences between

the studied groups, the effect of genetic drift at the beginning of the

Neolithic and differences in the methods of analysis used (model-

based statistical inference vs assignment of mtDNA haplogroup

dating categories respectively) could be responsible of the observed

differences [12,27]. Moreover, the Y chromosome diversity of the

Epicardial and Late Neolithic datasets has also shown a

predominantly Near Eastern influence, suggesting that males

and females might have played a differential role in the Neolithic

dissemination process [16,30,31].

In this framework, the knowledge of the original Neolithic

genetic pool in the Near East seems essential to correctly identify

the variants associated to the Neolithic spread and also to provide

a more global picture of the Neolithic dynamics in Europe.

In order to examine the genetic background existing in the first

Neolithic communities and its impact over the European genetic

pool, we have studied 3 archaeological sites in Syria located in two

geographic areas in which agricultural practices were first

documented: the middle Euphrates valley and the oasis of

Damascus (Figure 1). These sites are dated back to the Pre-

pottery Neolithic B period (PPNB). It is during this initial Neolithic

Author Summary

Since the original human expansions out of Africa 200,000
years ago, different prehistoric and historic migration
events have taken place in Europe. Considering that the
movement of the people implies a consequent movement
of their genes, it is possible to estimate the impact of these
migrations through the genetic analysis of human popu-
lations. Agricultural and husbandry practices originated
10,000 years ago in a region of the Near East known as the
Fertile Crescent. According to the archaeological record
this phenomenon, known as ‘‘Neolithic’’, rapidly expanded
from these territories into Europe. However, whether this
diffusion was accompanied or not by human migrations is
greatly debated. In the present work, mitochondrial DNA –
a type of maternally inherited DNA located in the cell
cytoplasm- from the first Near Eastern Neolithic popula-
tions was recovered and compared to available data from
other Neolithic populations in Europe and also to modern
populations from South Eastern Europe and the Near East.
The obtained results show that substantial human migra-
tions were involved in the Neolithic spread and suggest
that the first Neolithic farmers entered Europe following a
maritime route through Cyprus and the Aegean Islands.
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phase that animal husbandry first appears, while full-scale

agricultural practices are documented in the whole Levant. At

the PPNB there is also an increase in the size of the settlements,

probably as a response to the population growth derived from the

consolidation of the new food-producing economic system [32].

The obtained results allowed us to put into context ancient

DNA results from available European Early Neolithic populations,

to draft a general model of the Neolithization in Europe and to

propose probable routes of expansion of the first Neolithic

communities.

Results

DNA preservation in ancient Near Eastern Neolithic
samples

DNA preservation at the studied samples was assessed at three

levels: (1) Estimating the number of copies of the target mtDNA in

some of the extracts using a specific Real Time PCR design, (2)

estimating the percentage of reproducible Hypervariable Segment

I mitochondrial DNA (mtDNA-HVS1) sequences out of all the

analyzed samples and (3) computing the miscoding lesions in clone

sequences.

The average number of mtDNA HVS1 copies per amplified

volume of extract was in all cases higher than 1000, with a mean

value of 10.46104 in Tell Halula and 1.16106 in Tell Ramad,

corresponding respectively to 7.4461025 and 7.6061024 ng/ml

(Table S1). Reproducible mtDNA sequences could be recovered

from 24 out of 112 DNA extracts, corresponding to 15 different

skeletons from Tell Halula and Tell Ramad (see Table S2).

Differences in sample recovery success ratios could be a result of

the strict screening approach used –in which samples displaying

more than 2 negative amplification results were discarded (30% of

the aDNA extracts)- and of the differences in efficiency between

the amplification strategy used in both laboratories. The overall

ratio of endogenous DNA recovery for the studied remains was

23.8%.

The average number of miscoding lesions per clone and

nucleotide in the studied samples was 0.0078 in Tell Halula

and 0.0047 in Tell Ramad. Individual sample variability

ranged from 0.0000 (sample H3) to 0.0303 (sample H68) in

Tell Halula and from 0.0006 to 0.0101 in Tell Ramad,

indicating a differential preservation across the samples (Table

S3). Damage values per sample are within the range reported

by other authors in samples with similar chronology from

temperate environments (La Braña: 0.0116–0.0163; Can

Sadurnı́: 0.0054–0.0632; Chaves: 0.0092–0.0872; Sant Pau

del Camp: 0.0000–0.0133).

Haplotype composition
Reproducible mtDNA HVS1 sequences were obtained from

15 out of 63 skeletons from the archaeological sites of Tell

Halula and Tell Ramad (Table 1). The alignments of both the

direct sequences and the clones are presented in Table S3.

Sequences have been deposited in Genbank (http://www.ncbi.

nlm.nih.gov/genbank) with accession numbers KF601411-

KF601425.

Figure 1. Map of the spread of Neolithic farming cultures in Europe. Shadings represent isochronous Neolithic archaeological cultures and
black lines frontier zones between them. Analyzed sites in the Fertile Crescent are also located in the map. All dates are in years B.C.
doi:10.1371/journal.pgen.1004401.g001
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In 10 cases it was possible to reconstruct the complete haplotype

(nucleotide positions, np 16,126–16,369), while the extent of

degradation of the remaining 5 samples only allowed the recovery

of partial haplotypes. Nine different haplotypes were identified.

Two of them were shared between 2 individuals of Tell Halula

(16311C) and among 3 individuals of Tell Ramad (16224C

16311C 16366T). Motif 16293C, though, was present at both

sites, pointing at a pre-existing common genetic pool in the region.

Shared haplotype analysis
The complete haplotypes were compared to a database of 9,821

mtDNA profiles from 59 modern populations from the Near East

and South Eastern Europe and 2 Early Neolithic populations from

Central Europe (LBK-AVK Neolithic, [24]) and North Eastern

Iberia (Cardial/Epicardial Neolithic, [27]) (see Figure S1 and

Table S4). Haplogroup affiliation was also considered in the

haplotype search.

The number and percentage of shared haplotypes between the

PPNB population and the populations in the database plus the

number and percentage of individuals from each population

carrying PPNB are presented in Table S5. Figure 2 displays a

contour map of the latter built using the same data in a subset of

51 populations.

Two out of the 7 different complete PPNB haplotypes (16356C

and 16293C, 28.57% of studied samples) were not represented in

any of the modern and ancient populations of the database. From

the remaining haplotypes only 16224C 16311C, the basal node of

haplogroup K, was shared with the other two ancient popula-

tions, displaying a frequency of 9.52% in the Cardial/Epicardial

dataset and of 23.08% in the LBK-AVK. This haplotype is

distributed nowadays both in South Eastern Europe and the Near

East with an average frequency of 4%. However, some

populations such as Ashkenazi Jews, Csángó and Cyprus exhibit

frequencies of this haplotype higher than 10% (Table S5,

Figure 2).

The remaining haplotypes had a very limited geographic

distribution, being only documented in 1 individual from Bulgaria

(16311C-K); 3 individuals from Turkey, Qatar and Yemen

(16223T-L3); 4 Irani, Karakalpak, Turkish and Bedouin individuals

(16256T-H) and 3 Druze from Israel (16224C 16311C 16366T-K).

Haplogroup composition
MtDNA haplogroups could be assigned to 14 out of the 15

skeletons according to the HVS1 sequences obtained and on the

diagnostic Single Nucleotide Positions (SNPs) typed following

Phylotree rCRS oriented version 15 (Tables 1 and S6).

Haplogroup K was the most prevalent, (N = 6, 42.8%) followed

by R0 (N = 3, 21.42%) and H (N = 2, 14.28%). The observed

haplogroup frequencies were compared to those of 59 modern

populations from the Near East and South Eastern Europe and 2

Early Neolithic populations from Central Europe (LBK-AVK

Neolithic, [24]) and North Eastern Iberia (Cardial/Epicardial

Neolithic, [27]) (N = 11,610) (Table S7).

Haplogroup K was present in almost all populations compared,

and its mean frequency in South Eastern Europe and the Near

East was around 7%. It reached its highest frequencies in certain

populations that have experienced recent population bottlenecks,

such as the Askhenazi Jews and the Csángó in Transylvania,

Romania [33,34] and also among Greek Cypriots. Moreover, it

was also highly represented in both Cardial/Epicardial (15.56%)

and LBK-AVK (23.08%) Early Neolithic datasets. Haplogroup R0

is especially prevalent in the Near East and North Africa with a

mean frequency in both regions around 6%. The maximum

frequencies of R0 were detected in South Arabian populations

such as Bedouin, Oman and Saudi Arabia (Table S7). The rare

European haplogroups U* and N* were also detected in 2

individuals in our ancient sample. The mean frequency of

haplogroup U* is 2% in the Near East, 0.9% in the Caucasus

region and around 1% in Europe, whereas the N* mean frequency

is less than 1% in all three datasets. However, both haplogroups

reach peaks of frequency in certain populations, such as

haplogroup U* in Crete. The case of N* is especially interesting,

because apart from Bulgaria, Crete, Romania and Serbia it was

only represented in Near Eastern populations (Iran, Jordan, Near

Eastern Jews, Oman, Palestine, Saudi Arabia, Syria, Turkmeni-

stan and United Arab Emirates). Moreover, this haplogroup was

Figure 2. Contour map displaying the percentage of individuals of the database carrying PPNB haplotypes. Only populations with
clear geographic distribution were included. Gradients indicate the degree of similarity between PPNB and modern populations (dark: high; clear:
small).
doi:10.1371/journal.pgen.1004401.g002
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also detected in 4 Neolithic specimens from Catalonia, in North

Eastern Spain, associated to the Cardial/Epicardial culture [27].

Carry- over contamination from these samples processed in the

same laboratory can be ruled out, as results were validated in a

second independent laboratory.

Finally, the skeleton H8 belonged to the African L3 lineage, this

being the most prevalent African haplogroup found in present-day

Near Eastern populations.

Principal Component Analysis and Hierarchical Clustering
Principal Component Analysis with Hierarchical Clustering

(PCA-HCA) was used to compare mean haplogroup frequencies of

our dataset (Table S7) with the other populations of the database.

Details about the method can be found in Table S8.

The first six Principal Components (PCs), accounting for a

90.6% of the variance, were selected for Hierarchical Clustering

Analysis. Six clusters (1–6) were defined based on the topology of

the hierarchical tree (Figure S2). The decomposition of the inertia

computed on 6 axes supported this partition, indicating that with a

division in 6 clusters up to an 80% of the data variation could be

explained (Table S8). The main haplogroups contributing to the

cluster separation were Asian (AS: test value = 12.66; P = 0.000),

African (AF: test value = 8.55; P = 0.000), H (test value = 8.96;

P = 0.000) and K (test value = 8.01; P = 0.000).

The two biggest groups detected were Clusters 1 and 3, joining

43 of the 60 populations of the database. Cluster 1 mainly included

European populations and it was distinguished by high frequencies

of haplogroups H, U5, U4 and HV0 and by low frequencies of

Asian and African types (Table 2). Near Eastern and some

Caucasian datasets were grouped in Cluster 3. They were

separated from European populations mainly by high frequencies

of haplogroups J and T and low frequencies of H, HV0 and U5.

Interestingly, LBK-AVK population was also included in this

group. Its similarity with Caucasian populations like Georgia and

Chechnya previously suggested by [24] was also evident in our

analysis.

Cluster 2 included our PPNB sample, grouped together with

Ashkenazi Jews, Csángó, Cyprus and Cardial/Epicardial popula-

tions. High frequencies of haplogroups K and N* characterized

this cluster (Table 2), pinpointing the genetic affinities between the

PPNB and the Cardial/Epicardial Neolithic dataset already

stressed by the qualitative haplogroup and haplotype analyses.

Cluster 4 included populations from Africa or with a strong

African component and it was defined by high frequencies of

African haplogroups (L and U6) and low frequencies of

haplogroup H. Western Asian populations were clearly separated

from Near Eastern datasets in clusters 5 and 6. Both were

distinguished by a high frequency of Asian haplogroups and a low

frequency of European types. The inclusion of Romani population

within cluster 5 is in agreement with its Asian origins [35].

The partition model proposed here supports the existence of

geographic barriers for mitochondrial markers. Major geographic

zones like Europe, the Near East and Eastern Asia are clearly

distinguished. However, populations at boundary zones such as

the Caucasus are clustered both with European and Near Eastern

pools.

The PCA-HCA for the two first PC factors, accounting

respectively for 48.32% and 19.78% total genetic variation, is

represented in Figure 3. On one hand, the first PC distinguished

populations with and without Asian haplogroups, separating

clusters 5 and 6 from 1, 2, 3 and 4. On the other hand, the

second PC separated those populations with African (Cluster 4)

and non-African (Clusters 1, 2 and 3) haplogroups. Cluster 3,

containing Near Eastern and Caucasian populations, occupied an

intermediate position in the plot. According to the two first PCs

the PPNB population, included in Cluster 2, was equidistant to the

centers of this cluster and Cluster 3 and close to modern

populations from the Fertile Crescent, such as Jordan and

Palestine. Affinities of the PPNB population with populations

within Cluster 3 were due to high frequencies of haplogroup R0 in

all of them. The Cardial/Epicardial Neolithic population, also

member of Cluster 2, was in this case closer to Cluster 1 due to its

moderate frequencies of haplogroups H and U5.

Cluster 2 was clearly distinguished from the other 5 clusters by

PC4, which summed up a 6.64% of the global genetic variability

(Table S8). The graphical plot of PC3 and PC4 separated

populations by their frequencies of haplogroups HV, J and T

(PC3) and K (PC4) (Figure S3). This graph situated the PPNB

sample at the edge of PC4 axis, close to Cardial/Epicardial and

Ashkenazi Jew populations.

Genetic distances
Pairwise FST genetic distances were computed between the

PPNB and the other populations of the database (Table S9). Non-

significant pairwise FST values were obtained between PPNB and

Cyprus (FST = 0.013; P = 0.2734), Ashkenazi Jews (FST = 0.028;

P = 0.1087), Csángó (FST = 0.022; P = 0.1087) and Khoremian

(FST = 0.0456; P = 0.0805). These populations also exhibited the

lowest FST values. The highest significant distances corresponded

to Gilaki, Caucasian Jews and Mazandarian populations (FST.

0.2).

When modern populations were grouped in geographic regions,

the PPNB population was genetically closer to Near Eastern and

Caucasian than to Southern European populations (Table 3). The

Cardial/Epicardial and LBK-AVK populations showed low FST

values with the modern Near Eastern pool, as previously stated

[24,27]. It is important to note, however, that the FST index

between LBK-AVK and the pooled Southern European popula-

tions was lower than the one reported by [24].

FST distances between the PPNB and the modern populations

were plotted in a contour map (Figure 4). The map showed

minimum FST values in the Fertile Crescent area (Northern Egypt,

Palestine, Jordan, Syria and Southern Anatolia) and Cyprus. From

this region genetic distances gradually increased westwards across

the Balkans, southwards to the Arabic Peninsula and eastwards

through the northern Zagros to the Caspian Sea. Peaks of low

distance were also detected in the Carpathian basin, Yemen and in

North Uzbekistan, South from the Aral Sea.

Discussion

Methodology and authenticity of the results
One of the inherent limitations of ancient DNA human studies

is the possibility of contamination with exogenous DNA, a risk that

is enhanced when human DNA is studied and a PCR approach is

used. As a result a series of authentication criteria were proposed

early at the beginning of the discipline [36,37]. However, it has

been recognized that on one hand, a complete level of

authentication cannot be achieved in most of the cases and on

the other, the strict application of all the criteria does not provide a

100% proof of the authenticity of the data [38]. The importance of

the retrieved results as a potential comparative framework for

other ancient DNA studies requires the reported data to be solid

and unambiguous. As such, to guarantee the authenticity of our

results we have used a combination of classical criteria of

authenticity and a self-interpretative approach as suggested by

[38]. These criteria include the replication of the results within the

same or in a second laboratory, Real-Time PCR estimation of the

Ancient DNA Analysis of Near Eastern Farmers
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Figure 3. Plot of the two first principal components of the PCA-HCA performed using population haplogroup frequencies. (A)
General plot. (B) Zoom plot of Clusters 1, 2 and 3. Population grouping in 6 clusters after HCA is indicated by colors: Cluster 1 (green), Cluster 2 (red),
Cluster 3 (orange), Cluster 4 (light blue), Cluster 5 (grey), Cluster 6 (dark blue). Population labels are described in Table S4.
doi:10.1371/journal.pgen.1004401.g003
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number of DNA copies in the extracts, bacterial cloning of

amplicons and a self-critical analysis of the obtained results. Trace

contaminant DNA was detected through a detailed analysis of

clone sequences. Phylogenetic sense observed between HVS1

mtDNA fragments and haplogroup specific SNPs at the mtDNA

coding region provided further support to the authenticity of the

obtained results. Sequence artifacts like chimerical haplotypes

arisen by amplification of fragments of multiple origin (i.e

contaminant, endogenous and damaged) could be ruled out

through replication, as they occur at random and are not

reproducible in different amplifications and extractions from the

same or different skeletal samples [37]. Moreover, DNA content in

the amplified extracts provided in all cases a number of starting

copies higher than 1,000, thus making the possibility of displaying

hybrid haplotypes highly improbable. The possibility of contam-

ination between samples displaying the same haplotype (i.e. H4,

H7, H28, H25; H3, R64-4II, R69(2) and R65-14, R65-C8-SEB,

R65-1S) could be also discarded as they were processed in

different extraction and amplification batches and validated

through independent replications, some of them conducted in

two different laboratories.

Even though the success recovery ratio is low (23.8%), this study

demonstrates that it is feasible to recover ancient DNA genetic

information from temperate environments and suggests that other

variables rather than the temperature operate in the DNA

preservation through several millennia.

Ancient DNA preservation in Near Eastern open-air sites has

been previously stated [39–42]. The reported success ratios are

variable, ranging from 4% [40] to 86% [42]. In the case of Tell

Halula, the skeletons were located at opened pits under the main

floor of the house. The pits were sealed using a cover made of mud

brick of about 20 cm that in some cases was also plastered at the

top [43]. This particular burial structure might have protected the

human remains from DNA degradation. The absence of sample

cleaning with water and the storage in freezers shortly after the

excavation, should have also prevented skeletal remains from post-

depositional degradation and contamination [39]. The recovery of

insoluble collagen fractions (.30,000 Da) in the same remains is

also an indicator of their good biomolecular preservation status

[44,45].

Modern mtDNA Near Eastern variability as a proxy of
Near Eastern Neolithic variability

In recent years, the body of ancient DNA data of Neolithic

populations has increased dramatically, providing a more accurate

picture of local Neolithic dynamics. Some of these studies have

also explored the Mesolithic genetic background, interpreting the

results in terms of continuity or genetic break with the predecessor

hunter-gatherer communities of the area [20,23,25,28]. However,

most of the attempts to estimate the Neolithic genetic input in

those populations and/or to reconstruct the routes of dispersion of

the first farmers into Europe have relied on extant data from

modern Near Eastern populations [19,24,27,29–31]. In the

present research, ancient DNA results from the original human

Near Eastern Neolithic communities are presented, to our

knowledge, for the first time.

The present study shows that even though the mitochondrial

variability of the PPNB population is within the limits of modern

Near Eastern, Caucasian and South Eastern European popula-

tions (Table 3), both haplotype and haplogroup PPNB frequencies

clearly deviate from their modern successors (Figures 2 and 3,

Tables S5 and S7). This indicates that the mitochondrial DNA

make-up of modern Near Eastern populations may not reflect
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accurately the genetic picture of the area at the emergence of the

Neolithic.

All the detected haplotypes but one -the basal node of

haplogroup K- have a null or limited distribution in the modern

genetic pool, suggesting that a great bulk of ancient Neolithic

lineages were not integrated into their succeeding populations or

were erased by subsequent population movements in the region.

This is in agreement with previous observations from other Early

Neolithic populations [27,46], and underlines the importance of

genetic drift processes at the beginning of the Neolithic [16].

Nevertheless, the multi-population comparative analyses per-

formed here also suggest that certain population isolates of Middle

Eastern origin, like the Druze, could have retained an ancient

Neolithic genetic legacy through cultural isolation and endoga-

mous practices [47]. Another interesting case are the Ashkenazi

Jews, who display a frequency of haplogroup K similar to the

PPNB sample together with low non-significant pairwise Fst

values, which taken together suggests an ancient Near Eastern

origin. This observation clearly contradicts the results of a recent

study, where a detailed phylogeographical analysis of mtDNA

lineages has suggested a predominantly European origin for the

Ashkenazi communities [48]. According to that work the majority

of the Ashkenazi mtDNA lineages can be assigned to three major

founders within haplogroup K (31% of their total lineages):

K1a1b1a, K1a9 and K2a2. The absence of characteristic

mutations within the control region in the PPNB K-haplotypes

allow discarding them as members of either sub-clades K1a1b1a

or K2a2, both representing a 79% of total Ashkenazi K lineages.

However, without a high-resolution typing of the mtDNA coding

region it cannot be excluded that the PPNB K lineages belong to

the third sub-cluster K1a9 (20% of Askhenazi K lineages).

Moreover, in the light of the evidence presented here of a loss of

lineages in the Near East since Neolithic times, the absence of

Ashkenazi mtDNA founder clades in the Near East should not be

taken as a definitive argument for its absence in the past. The

genotyping of the complete mtDNA in ancient Near Eastern

populations would be required to fully answer this question and it

will undoubtedly add resolution to the patterns detected in modern

populations in this and other studies.

Our PPNB population includes a high percentage (80%) of

lineages with a Palaeolithic coalescence age (K, R0 and U*) and

differs from the current populations from the same area, which

exhibit a high frequency of mitochondrial haplogroups J, T1 and

U3 (Table S7). The latter have been traditionally linked with the

Neolithic expansion due to their younger coalescence age,

diversity and geographic distribution [11,12,49]. In addition to

the PPNB population, haplogroup T1 is also absent in other Early

Neolithic populations analyzed so far [17,22,26,30]. Haplogroup

U3 has been found only in one LBK individual and it has been

suggested that it could have been already part of the pre-Neolithic

Central European mitochondrial background [19].

Haplogroup J is present in moderate frequencies in Central

European LBK-AVK populations (11.75%) and it has been

proposed as part of the Central European ‘‘mitochondrial

Neolithic package’’ [19]. However, it has also been described in

one late hunter-gatherer specimen of Germany, raising the

possibility of a pre-Neolithic origin [23]. Haplogroup J is present

in low frequency (4%) in Cardial/Epicardial Neolithic samples of

North Eastern Spain [27,28,31]. Absence of Mesolithic samples

from the same region prevents making any inference about its

emergence during the Mesolithic or the Neolithic. However, its

absence in the PPNB genetic background reinforces the first

hypothesis.

These findings suggest that (1) late Neolithic or post-Neolithic

demographic processes rather than the original Neolithic expan-

sion might have been responsible for the current distribution of

mitochondrial haplogroups J, T1 and U3 in Europe and the Near

East and (2) lineages with Late Paleolithic coalescent times might

have played an important role in the Neolithic expansive process.

The first suggestion alerts against the use of modern Near Eastern

populations as representative of the genetic stock of the first

Neolithic farmers while the second will be explored in depth in the

following section.

Near Eastern Neolithic genetic contribution to the
European gene pool

The sharing of mitochondrial haplotypes and haplogroups

between pre-pottery farmers from the Fertile Crescent and

Figure 4. Contour map of Fst distances between the PPNB population and modern populations of the database. Only populations
with clear geographic distribution were included. Gradients indicate genetic distance between the PPNB and the modern populations (dark: small;
clear: high).
doi:10.1371/journal.pgen.1004401.g004
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European Neolithic populations, suggests a genetic contribution of

the first Neolithic communities in the European mitochondrial

genetic pool.

Haplogroup composition and PCA-HCA of the three ancient

datasets compared here allow us to identify K and N*-derived

haplogroups as potential Neolithic genetic contributors. Hap-

logroup K is present in all Early Neolithic datasets published so far

with frequencies ranging from 7.7 to 43% (Table S7, [19,28,31]).

Moreover, it is absent in Central European and Northern Iberian

Paleolithic/Mesolithic mitochondrial backgrounds [20,23,28].

The presence of ‘‘rare’’ paragroup N* in both Cardial and

Epicardial samples from North Eastern Iberia and PPNB

populations confirms the connection between both edges of the

Neolithic expansion previously suggested in [27].

Haplogroup N1a, representing 12.75% of LBK-AVK samples

[19,24], is not present in our PPNB sample, making it unlikely that

this cluster was introduced from the earliest PPNB farmers of this

region [23]. A more complex pattern for the LBK-AVK Neolithic

expansion route, involving migration and admixture episodes with

local hunter-gatherers in frontier zones (for example the prede-

cessor populations of Starčevo-Criş-Körös cultures) should be

considered in order to explain the available data for Neolithic

populations of Central and Northern Europe. To solve this

uncertainty, ancient DNA analysis from the Balkans region seems

of vital importance.

The signal of both rare N-derived haplogroups over the

Neolithic genetic pool must have been erased by subsequent

genetic drift events after the consolidation of Neolithic practices, as

it has been suggested in other works [15,27,50].

Routes of Neolithic expansion from the Near East into
Europe

In the absence of ancient genetic data from populations in the

primary and secondary Neolithization areas, a detailed compar-

ison of the genetic composition of the PPNB population with

modern adjacent populations can shed light on possible routes of

Neolithic expansion.

As for modern Near Eastern populations, the frequency

distribution of PPNB mitotypes in modern South Western

European populations is limited (see Tables S5 and S7). However,

strong genetic affinities at different levels of comparison could be

detected with the islands of Cyprus and Crete (Figures 2, 3, 4 and

S2, Tables S5, S7 and S9), pointing out at a survival of ancient

Neolithic genetic stock in these populations probably through

endogamy and geographic isolation.

The absence of an equivalent detectable genetic pattern in

modern South-Western Anatolia suggests a primary role of

pioneer seafaring colonization through Cyprus and the Aegean

islands along the southern coast of Anatolia to the western coast of

Greece.

This observation is supported by three facts:

(i) The archaeological parallels found between the pre-pottery

Neolithic of the Levant and those of Cyprus and the Aegean

islands in terms of radiocarbon dating, settlement architec-

ture, material culture, cereal and domestic animal species

provide evidence for a sea-mediated arrival of Levantine

people to Cyprus soon after the development of the

agriculture, during the late PPNA or early PPNB, and a

further expansion towards the Aegean [51–54].

(ii) The finding of PPNB lineages (U*) together with a high

frequency of haplogroup K (16%) in a recent survey of

Minoan mtDNA indicates a pre-Bronze arrival of these

genetic traits of the island. Moreover, this result is in

agreement with the archaeological information pointing at a

Near Eastern Neolithic origin of the Bronze Age Cretan

culture [55].

(iii) Spatial interpolation of radiocarbon dates has identified the

Middle Euphrates-South Turkey region as the original

centre of Neolithic expansion, and the maritime route

through Cyprus, Crete and the Aegean islands as the

primary route of Neolithic expansion from the Near East

[56].

An alternative scenario of land-mediated expansion through

Western Anatolia would assume a survival of the genetic traits

observed in the PPNB sample until the end of the period, when

Middle-PPNB descendant populations would have expanded to

secondary, adjacent areas of Neolithization around 7,500–7,000

years B.C. [57,58]. This framework is not supported by the

obtained data, but cannot be completely discarded as genetic

drift or post-Neolithic genetic remodeling of the area might

have erased ancient genetic signatures, as already stated from

modern Near Eastern populations. Considering that the

Neolithic expansion process was not uniform [59], the devel-

opment of appropriate, spatially-explicit, model-based, statisti-

cal inference tools could be of great assistance in fully exploring

the probabilities of these and other, competing demographic

scenarios.

In conclusion, the study of ancient DNA from the original

geographic areas of Neolithic expansion performed here suggests a

demic contribution of the first Near Eastern Neolithic in both

main European routes of Neolithic expansion. Moreover, the

population comparative analysis performed here points out at a

leading role of seafaring colonization events in the first Neolithic

expansions reaching the European continent. Further ancient

DNA data from other primary and secondary areas of Neolithiza-

tion and new data from frontier zones will be needed to add more

resolution over the routes of expansion and the extent and nature

of the genetic impact of the Neolithic over the European genetic

pool.

Materials and Methods

Samples
The studied material consisted of 63 ancient human skeletons

from 3 different archaeological sites dating back to the PPNB time

period (Table S10 and Figure 1).

Tell Halula is located in the Middle Euphrates basin, 150 Km

East of the city of Aleppo in the present territory of Syria.

Excavations in the site, 8 hectares in area, have been in progress

for the last 18 years by a Spanish Archaeological Mission in Syria.

The excavations performed over an area of 2,500 m2 documented

more than 40 occupation levels with thousands of stratigraphic

units. A continuous occupation of the site can be assumed between

7,900–5,700 cal. B.C., spanning from the PPNB to the Neolithic-

Chalcolithic transition (Halaf and Obeid periods) [60–63]. PPNB

occupation phases (I-XX) are located at the southern part of the

Tell (sectors 2/4). Each phase is defined by successive human

occupations followed by destruction/construction of habitation

units. The houses were built one beside the other, oriented

southward, and the deceased were buried by digging the graves in

the floor of the house and covering them with a slide that allowed

a clear association between the graves and the occupation floors.

Most of the graves were located at the main entrance of each

house, under a porch area. A total of 21 houses from PPNB levels

have been unearthed to date, although only 14 of them have

documented burial structures [64]. The skeletons analyzed in this
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paper belonged to occupational phases VIII-XIII on PPNB levels

(7,500–7,300 cal. B.C.).

The Tell Ramad archaeological site is located 20 Km south of

Damascus on the slopes of Mount Hermon, in a basaltic plateau

830 m in height at the end of the river Wadi Sherkass, which flows

in the Damascus basin. Human occupation was documented from

early PPNB to ceramic Neolithic [65]. Radiocarbon dating of the

site provided dates from 8,300 to 7,750 years B.P. for the PPNB

levels (7,300–6,650 cal. B.C.) [66]. The burial model found at Tell

Ramad is very similar to that in Tell Halula. The inhumations

consisted of narrow tombs in the floor of the house, but evidence

of common graves has also been documented.

Dja’de El Mughara is located on the left bank of the Middle

Euphrates, also in Syria. The excavations revealed three historical

horizons corresponding to Early PPNB (9,400–8,700 B.P., 8,700–

8,250 cal. B.C.), Pre-Halaf ceramic Neolithic (7,700–7,400 B.P.)

and Early Bronze Age (5,000 B.P.). The burial patterns found at

the PPNB levels are very similar to those documented at Tell

Halula and Tell Ramad with the graves located under the floor of

the houses, but big collective funerary practices were also

documented [67,68]. Most samples from this site were collected

by an experienced researcher in ancient DNA analysis (AP-P). The

same person selected additional samples during the anthropolog-

ical analyses.

All the collected samples were neither washed nor treated after

excavation. After collection, the samples were sent directly to the

laboratory, where they were immediately studied. Contamination

prevention measures were taken during all the selection processes,

including the use of gloves and face shields. All the researchers

involved in the handling of the samples during and after the

excavation were typed for mtDNA (Table S11).

Sample preparation
Whenever possible two samples -preferably teeth- were taken

from each individual. Clean and unbroken samples without visible

fissures were selected, and then deposited in a sterile container

until processed. The surface of all samples was removed with a

sandblaster (Base 1 Plus, Dentalfarm) and subsequently UV-

irradiated (254 nm) for 30 minutes on all sides. Cleaned samples

were finally ground to a fine powder in a cryogenic impact grinder

filled with liquid Nitrogen (Spex 6,700).

Ancient DNA extraction
Approximately 600 mg of the obtained powder was washed a

minimum of 3 times with 8 ml 0.5 M EDTA pH 8, and then

incubated over-night at 37uC in 10 ml of lysis buffer solution

(5 mM EDTA, 10 mM TRIS, 0.5% SDS, 50 mg/ml proteinase K)

in a hybridization oven. Tissue remains were removed by

centrifugation and DNA was extracted from the supernatant with

Phenol/Chloroform. The aqueous phase was concentrated by

centrifugation dialysis using Centriplus 30,000 micro-concentra-

tors (Millipore) and desalted with 15 ml sterile water (Braun) to a

final volume of 300 ml. Extraction controls without powdered

sample were processed in parallel to detect contamination during

the extraction process.

mtDNA amplification and direct sequencing
A region of 305 base pairs (bp) (np 16,095–16,399) of the

mtDNA-HVS1 was amplified in the obtained extracts in two

overlapping fragments. HVS1 fragment amplification was used as

a screening method to detect the presence of amplifiable DNA in

the studied samples. Samples were discarded if two consecutive

amplifications produced no results.

Two strategies were adopted for the HVS1 PCR amplifica-

tion. In the laboratory at the Universitat de Barcelona, nested-

PCR reactions using outer and inner primers (Table S12) were

performed in a final volume of 25 ml with 5 ml of DNA extract,

1X Taq Expand High Fidelity PCR buffer (Roche), 2 mM

MgCl2 (Roche), 0.2 mM dNTP mix (Biotools), 0.4 mM of each

primer and 0.06 U of Taq Expand High Fidelity (Roche).

Nested amplification reactions were subjected to 30 cycles (first

reaction) and 40 cycles (second reaction from the first

amplified DNA solution) in a Perkin Elmer TC1 Thermocycler

(94uC 60 s, 52uC 60 s and 72uC 60 s), with an initial

denaturation step at 94 uC for 5 min and a final elongation

step at 72 uC for 5 min. In the laboratory at Universidad

Complutense de Madrid, one-round PCR reactions were set up

in a final volume of 25 ml using the Multiplex PCR Kit (Qiagen)

(5 ml of DNA extract, 1X Multiplex PCR Kit (Qiagen) and

0.2 mM of each outer primer). This kit has proven to be

extremely efficient for the amplification of ancient DNA

[27,69].

In this case, the cycling conditions using an Eppendorf

Mastercycler consisted of 40 cycles of 30 s at 95uC, 90 s at 54uC
and 60 s at 72uC, with a previous activation cycle of 15 min at

95uC and a final extension cycle of 10 min at 72uC. Amplicons

were visualized in a 2% agarose gel stained with Ethidium

Bromide and purification was performed directly from the

amplification reaction using the Qiagen PCR purification Kit

according to the manufacturer’s instructions.

Sequencing reactions were performed with the Dye-Terminator

Cycle Sequencing Reaction Kit vs 1.2 (Applied Biosystems,

Darmstadt, Germany) with one internal primer (L16125,

H16259, L16257, H16370). Six microlitres of the PCR product

were added to a final volume of 10 ml containing 3 ml of the kit

and 16 pmol of the selected primer. Cycling sequencing was

performed in an Eppendorf Mastercycler according to the

supplier’s recommendations. Amplification products were ana-

lyzed on an automated sequencer ABI PRISMTM 310 (Applied

Biosystems, Darmstadt, Germany).

A detailed account of the extractions and amplifications

performed can be seen in Table S2.

MtDNA coding regions containing diagnostic SNPs were

amplified at the Universidad Complutense de Madrid in

monoplex reactions using primers described in Table S12 and

the Multiplex PCR Kit (Qiagen) (5 mL of DNA, 1X Multiplex PCR

Kit (Qiagen) and 0.2 mM of each primer). The cycling conditions

using an Eppendorf Mastercycler consisted on 40 cycles of 30 s at

94uC, 90 s at 50–54uC (see Table S12) and 60 s at 72uC, with a

previous activation cycle of 15 min at 95uC and a final extension

cycle of 10 min at 72uC. PCR products were purified and

sequenced as it has been described above. Haplogroup diagnostic

SNPs were typed at least in two separate extracts from the

same skeleton in all the cases with the exception of skeleton H53

(Table S6).

Cloning and sequencing
Only consistent HVS1 amplifications displaying the same

mutation pattern between different extractions and PCRs were

cloned using the pGEM-T Easy Vector System (Promega).

PCR products were first incubated for 30 min with 0.2 mM

dATP, 1X PCR buffer, 2.5 mM MgCl2 and 0.1 U/ml Taq

polymerase at 70uC in order to increase the ligation ratio.

Three microlitres of the A-tailed products were ligated into

pGEM-T Easy vector at 16uC overnight following manufac-

turer’s recommendations. Five microlitres of the ligation

product were transformed into 100 ml of competent cells and
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the mixture directly plated on IPTG/X-Gal agar plates.

Clones carrying PCR insert were selected by colony-PCR of

white colonies (1X PCR buffer, 2 mM MgCl2, 0.2 mM dNTPs,

0.4 mM each primer and 1.5 U Taq polymerase, all from

Biotools) using mitochondrial primers (Table S12). The cycling

conditions in an Eppendorf Mastercycler were as follows: 94uC
10 min, followed by 30 cycles of 94uC 60 s, 52uC 60 s and

72uC 60 s, linked to a final extension step of 10 min at 72uC.

Positive clones were grown in liquid Luria-Bertani broth and

plasmidic DNA was purified using the Jetquick Plasmid

Miniprep Spin Kit (Genycell, Granada, Spain). Cloned DNA

was sequenced with universal primer SP6 or T7 as described

above.

Sequence analysis and consensus haplotype
identification

Direct and clone sequences were aligned to the revised

Cambridge Reference Sequence (rCRS, [70]) and differences

were computed using the Mutation Surveyor software (Demo

version 3.24, SoftGenetics, LLC). Carry-over and cross-contam-

ination were examined by comparing cloning results from the

same extraction and amplification batch (Table S3). Consensus

haplotypes were established from clone and direct sequences

considering mutation reproducibility in different extractions/

PCRs, concordance with SNP typing and potential contamina-

tions, following the approach of [27].

Mitochondrial haplogroup inference
Mitochondrial haplogroups were assigned to the amplified

samples considering the information of both the HVS1 and the

coding region SNPs according to the rCRS oriented version of

PhyloTree Build 15 and Haplogrep [71,72].

Estimation of miscoding lesions
The number and type of miscoding lesions per sample were

computed from the clone alignments manually in the PPNB

sample excluding priming sites. The values were normalized by

dividing for the number of clones per PCR and the number of

sequenced base pairs. Mutations and insertions/deletions within

poly-C tracts (positions 16,182–16,193) were not considered.

To provide a frame of comparison for our results, miscoding

lesion values were computed in the same way in the clone

alignments of two datasets of Mesolithic and Early Neolithic

temperate environments [27,73].

mtDNA Real Time PCR quantification
A Taq-Man Real Time assay was used for the specific

quantification of mtDNA HVS1 (np 16,103–16,233) in the

obtained extracts using a Taq-Man-MGB probe 59 - AATACTT-

GACCACCTGTAGTAC (np 16,138-16,159) and primers

L16123 (forward) (59 -ACTGCCAGCCACCATGAATATT, np

16,103–16,123) and H16209 (reverse) (59 - TGGAGTTG-

CAGTTGATGTGTGA, np 16,209–16,233). PCR reactions were

performed using TaqMan Universal PCR Master Mix (Applied

Biosystems). The samples were loaded onto a standard 96-Well

Reaction Plate (Applied Biosystems) and fluorescence detection

was performed in a Sequence Detection System ABI Prism 7700

(Applied Biosystems). Four negative controls were included per

plate. The DNA concentrations of the extracts were derived from

comparison with serial dilutions of a known concentration of

human mtDNA standard (103–109 copies equivalent to

3.5861026 ng/ml and 3.58 ng/ml). All extracts were quantified

twice and the average values were considered.

Precautions and authentication criteria
The following precautions and authenticity standards were

observed for validating the obtained results: (1) Samples were

collected on the field by staff trained in ancient DNA analysis. (2)

Collected samples were unwashed to prevent pre-laboratory

contamination. (3) All the analyses were performed in exclusive

ancient DNA laboratories in which extraction, preparation of PCR

reactions and post-PCR procedures were physically separated. (4)

Access to extraction and PCR laboratories was restricted to two

researchers (EF and CG), who wore clean-room protective clothes,

gloves and facemasks. (5) The laboratories were routinely cleaned

with bleach and UV-irradiated. (6) The samples and reagents were

manipulated in laminar flow hoods, which were previously cleaned

with bleach and irradiated with UV light (254 nm) for 30 minutes.

(7) Exclusive material for ancient DNA analysis was employed in

every experimental process. (8) Before the analysis, plastic material

and pipettes were placed in the cabinet and UV-irradiated for 30

minutes. (9) All individuals were independently extracted at least

twice in two independent laboratories except in two cases (see

Tables S2, S3). (10) Each studied mtDNA fragment was amplified

in separate laboratories at least twice. (11) Only extracts and

amplicons from extraction and amplification groups providing

negative results at the blanks were considered. (12) Reproducible

direct sequences were cloned, and between 10 and 15 clones per

amplicon were sequenced (Table S3). (13) The DNA amount in

the DNA extracts was estimated by Real Time PCR (Table S1),

providing in all cases a number of copies higher than 1,000. This

result is high enough to guarantee sequence reproducibility [74].

(14) Obtained mtDNA sequences were compared to those from all

the archaeologists (MM), anthropologists (AP-P, JA, IO) and

researchers (EF, CG, MT, EP) involved in the retrieval or

manipulation of the studied samples in order to detect pre-

laboratory and laboratory contaminations. For additional security,

staff working at the two laboratories involved in the analysis during

this period was also typed (DT, JG, EA, AL, CB, JA) (Table S11).

(15) Sequences deriving from the same and close extraction and

amplification groups were compared to detect carry-over contam-

inations and non-consistent results were discarded. (16) Phyloge-

netic sense was observed between retrieved consensus mitochon-

drial haplotypes and SNP typing of mitochondrial haplogroups.

These criteria not only meet but exceed in different aspects

other ancient DNA reports from Neolithic populations [23–

25,30,31].

Haplotype and haplogroup databases of mtDNA
haplotypes of Near Eastern and South Eastern Europe

A database of 9821 mtDNA-HVS1 haplotypes from 59 modern

populations from the Near East and South Eastern Europe and 2

Early Neolithic datasets from Central Europe [24] and North

Eastern Iberia [27], belonging respectively to LBK-AVK and

Cardial/Epicardial Neolithic cultures, was constructed using

published data. Sequence alignment tables were transformed into

haplotypes using the program ‘‘Haplotyper’’ designed ad hoc

(Python). Haplotypes were converted into sequences using

Haplosearch [75] and used for calculations.

An additional database of haplogroup frequencies was built

using published haplogroup data of 11,610 individuals. The same

populations used for the haplotype database were included when

haplogroups where known. Haplogroup frequencies from other

populations not including published haplotypes were also used.

A description of the populations included in both databases is

provided in Table S4. Geographic location of the modern

populations of the database is shown in Figure S1.
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The 95% confident interval was calculated for the frequencies of

the mitochondrial haplogroups found in the PPNB sample in the

three ancient population datasets (PPNB, Cardial and LBK), in the

three modern meta-populations (Near East, SW Europe, Africa

and Caucasus) and in the pooled modern population using non-

parametric bootstrap with replacement in SPSSvs21.0 [76].

Shared haplotype analysis
The number and percentage of shared haplotypes between our

PPNB population and the other populations in the database, and

the number and percentage of individuals in the database carrying

PPNB haplotypes, were estimated using the Arlequin software,

version 3.5 [77]. Only information contained in the mtDNA

fraction analyzed in our ancient population (np 16,126–16,369)

was considered.

Genetic distances
Pairwise FST genetic distances [78,79] were computed between

our ancient dataset and the populations included in the haplotype

database using the Arlequin software version 3.5 [77]. Only the

mtDNA fraction analyzed in our ancient population (np 16,126–

16,369) was used for comparison. The significance of the genetic

distances was tested by permuting the individuals between the

populations 10,000 times. P values were adjusted post-hoc to correct

for multiple comparisons with the Benjamini-Hochberg method

[80] as suggested elsewhere [19] using the function p.adjust in R

[81].

Contour maps
The percentage of individuals carrying PPNB haplotypes and

the percentage of shared haplotypes and pairwise FST values

calculated between the PPNB population and the other popula-

tions in the database were graphically plotted in a map using

Surfer version 9 (Golden Software). Ethnic groups with disperse

geographic location were not considered in the analysis (see Table

S4).

Principal Component Analysis and Hierarchical Clustering
A PCA was performed using basal mtDNA haplogroup

frequencies of the populations included in the database (see Table

S7). Haplogroups with frequencies .1% in the studied regions

were considered: H, HV, I, J, K, T, U*, U1, U2, U3, U4, U5, U6,

U7, HV0 (including pre-V, V, HV0b, HV0c), W, X, N*, N1, N2,

R0 (former pre-HV). Rare U and R European haplogroups were

clustered into two groups: U+: U8, U9 and R+: R1, R2. African

and Asian haplogroups were also grouped as follows: African

haplogroups (AF): L0-L7, M1; Asian haplogroups (AS): A, B, C, D,

E, F, G, M*, M3-48, N9, R5, R9, Q, Y, Z.

HCA was performed over the six first principal components

using Euclidean distances and Ward’s linkage algorithm [82].

Cluster partitioning was chosen looking at the shape of the

obtained Hierarchical tree and examining the inertia between

clusters/total inertia ratio. In the present study, a partition in 6

clusters was explored. An analysis of the variance was used to

evaluate the distances between the clusters.

The statistical program SPAD.N Ver. 5.6 (Système Portable

Pour L’Analyse de Donnés), DECISIA, France; [83] was used for

both PCA and HCA analyses.

Accession numbers
The 15 mtDNA sequences reported in this paper have been

deposited in Genbank with accession numbers KF601411-

KF601425.
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Figure S1 Geographic location of modern populations
used for phylogenetic and statistical comparisons. Ethnic

groups with unclear or disperse geographic location are not

represented. Population labels are described in Table S4.

(TIF)

Figure S2 Hierarchical tree built using haplogroup
frequencies from PPNB, modern and ancient popula-
tions from the database. Cluster partitions are indicated in

colors.

(TIF)

Figure S3 Plot of the third and fourth principal
components of the PCA-HCA performed using popula-
tion haplogroup frequencies. Population grouping in 6

clusters after HCA is indicated in colors: Cluster 1 (green), Cluster

2 (red), Cluster 3 (orange), Cluster 4 (light blue), Cluster 5 (grey),

Cluster 6 (dark blue). Population labels are described in Table S4.
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Table S1 Real time PCR quantification results of
extracted ancient DNA. Rn: Normalized Reporter; Ct:
Threshold cycle. SD: Standard Deviation; CV: Coeffi-
cient of Variation.
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Table S2 DNA extractions and HVS1 amplifications
performed. The number of amplifications per mtDNA HVS1 is
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Cloned amplifications. * Reproducible amplifications not cloned.
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Table S3 Sequence alignment of direct sequences and
clones of the studied samples. Direct and clone sequences

have been aligned to rCRS [70]. Sequences of direct amplifica-

tions are presented in bold case and separated from clone

sequences by lines. Names for individual sequences are as follows:

SKELETON (sample number)-extraction number/mtDNA frag-

ment number/PCRnumber/C followed by the clone number. In

direct sequences, the clone number is replaced by ‘‘DIR’’. Boxes in

the reference sequence indicate primer annealing regions.

Different types of DNA molecules are highlighted in colors. Pink:

Endogenous sequence; Grey: Staff contaminant DNA; Yellow,

green and violet: Carry-over contaminant sequences. Miscoding

lesions and Taq polymerase errors are also highlighted as follows:

Blue: Type I miscoding lesions; Green: Type II miscoding lesions;

Orange: Other lesions. The last sheet contains the estimated

number and percentage of miscoding lesions per position and
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Table S4 Description of the 60 modern and 2 ancient
Near Eastern and European populations used for
comparison.
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Table S5 Distribution of the PPNB haplotypes in the
populations included in the haplotype database.
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Table S6 DNA extractions and coding region SNP
amplifications performed.
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Table S7 MtDNA haplogroup frequencies of PPNB and
populations of the database. Sheet 1: Absolute frequencies,

Sheet 2: Relative frequencies, Sheet 3: 95% confident interval

(CI) for haplogroup frequencies found in the PPNB sample,

Sheet 4: Plots of haplogroup frequencies in modern and

ancient populations from the database. Only haplogroups

present in the PPNB, Cardial/Epicardial and LBK populations

are displayed. Population labels are described in Table S4.

(XLSX)

Table S8 Details of the PCA-HCA performed over
haplogroup frequencies of the PPNB sample and the
other populations of the database. Population labels are

described in Table S4.

(XLSX)

Table S9 Pairwise FST values between the PPNB sample
and the populations included in the haplotype database.
Sheet 1: FST values, Sheet 2: P values corrected by the Benjamini-

Hochberg method [80].

(XLSX)

Table S10 Archaeological and anthropological informa-
tion of the studied samples. Tooth samples are labeled

according to FDI World Dental Federation nomenclature when the

type of tooth is known. Other cases are labeled as follows: I: Incisor,

C: Canine, P: Premolar, M: Molar. Definitive teeth are labeled in

upper-case letters and deciduous teeth in lower-case letters. Dental

germs are indicated by ‘‘g’’ before the tooth nomenclature.
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Table S11 HVS1 mtDNA sequences of the research and
laboratory staff involved in sample handling. Only

positions 16,126–16,369 are presented.
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Table S12 Mitochondrial DNA primers used in this
study.
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62.
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