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Abstract: In this report we make a detailed derivation of Friedman Equations, which are the dy-
namical equations of a homogeneous and isotropic universe. First, we derive them in the framework
of the General Relativity keeping the relativistic expressions as a reference for the rest of the report.
Then, using the Newtonian formalism and solving some fundamental problems, we reach some dy-
namical equations for the universe and compare the results with the relativistic ones, focusing our
attention on the meaning of the expressions and on the cosmological constant.

I. INTRODUCTION

We study the universe that follows from the cosmolog-
ical principle. The cosmological principle states that the
universe is isotropic and homogeneous at a large scale.
Due to the symmetries that this principle implies, we
can set a cosmological time which allows us to have a
reference time to study the universe dynamics.

The Friedman equations, the dynamical equations of
a homogeneous and isotopic universe, were first derived
using General Relativity, so the question is, why had not
Newton found the dynamical equations for the universe
at his time? The problem was that classical mechanics is
a global theory that involves the gravitational potential
which diverges in a homogeneous and isotropic universe.

Einstein also had problems when he tried to apply his
equations to the universe even though General Relativity
is a local theory as it uses differential geometry, instead
of differential calculus. At his time it was believed that
the universe was static but he found dynamical equations
that involved acceleration terms. Thus, the only solution
he found to impose a static universe was to add a con-
stant term called the cosmological constant. In the end,
when he accepted the non-static universe because Fried-
man reached that conclusion, he said that the cosmologi-
cal constant was the biggest mistake of his life. However,
nowadays the cosmological constant has been introduced
again to study the effect of exotic components, for in-
stance the dark energy. Because of that, we are going to
add the cosmological constant to the Newtonian deriva-
tion to see what it implies.

II. RELATIVISTIC FRIEDMAN EQUATIONS

Our aim in this chapter is to derive the general dy-
namic equations of a homogeneous and isotropic uni-
verse. Working in the framework of General Relativity
it is essential to achieve that purpose, as General Rela-
tivity is the accepted gravitational theory nowadays. In
fact, what we are going to do is to adapt a nature law, as
Einstein equations are, to a universe that follows the cos-
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mological principle. We are going to work in the frame
where c = 1 and use Einstein notation.

A. Einstein equations

Einstein equations are

Rµν −
1

2
gµνR− Λgµν = 8πGTµν (1)

The left-hand member of (1) is the Einstein tensor
(Gµν) in which we have plugged an extra term that in-
cludes the cosmological constant. This extra term only
gathers importance when we are working in the cosmol-
ogy field, which is the case.

In the right-hand member G is the universal gravita-
tional constant and Tµν is the energy-momentum tensor,
its explicit expression is

Tµν = (ρ+ p)uµuν − pgµν (2)

gµν is the metric of the manifold where the equations
apply and uα is the macroscopic speed of the medium.

B. Robertson-Walker metric

Notice that in Einstein tensor (Gµν) there is a Ricci
tensor and a Ricci escalar. The metric with which we
are going to calculate them is the one that we need to
particularise our final expressions for the homogeneous
and isotropic universe. Therefore now we have to find
a metric (gµν) that includes all the different aspects of
the cosmological principle. The answer is the Robertson-
Walker metric

ds2 = dt2 − a2(t)

(
1

1− r2

K2

dr2 + r2dθ2 + r2 sin2 θdϕ2

)
(3)

We see that the Robertson-Walker metric describes an
isotropic universe, because it does not have crossed terms
between time and space so there is not any privileged
direction. And it also describes homogeneous universe
because of the spherical symmetry.

The factor a(t) is called the scale factor and it is the
temporal dependence between the relative distance of two
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points of the universe. The scale factor is defined to be 1
in the present time. From now on the time dependence
of the scale factor can be implicit, so a(t) ≡ a.
K−2 is directly related to the curvature radius of

the spatial hypersurface. Notice that if K−2 = 0 and
a2(t) = 1 we have the usual euclidean metric for spher-
ical symmetry. It can be seen that if K−2 > 0 we have
a close universe (the volumic integral converges) and if
K−2 < 0 we have an open universe (the volumic integral
diverges).

C. Calculation of the Ricci tensor and the Ricci
scalar

Remember that we need the Ricci tensor and the Ricci
scalar to particularise Einstein equations for a homoge-
neous and isotropic universe.

First we need to calculate the Christoffel symbols of
Robertson-Walker metric (3).

Γlji =
1

2
glm(∂jgmi + ∂igmj − ∂mgij) (4)

Fortunately, Robertson-Walker metric is diagonal and
has a symmetric connection, so the majority of the
Christoffel symbols will be symmetric or null. The ones
which are different from zero are

• Γtrr = aȧ

1− r2

K2

• Γtθθ = r2aȧ

• Γtϕϕ = r2aȧ sin2 θ

• Γrtr = Γrrt = Γθtθ = Γθθt = Γϕtϕ = Γϕϕt = ȧ
a

• Γrrr = r

K2(1− r2

K2 )

• Γrθθ = −r(1− r2

K2 )

• Γrϕϕ = −r(1− r2

K2 ) sin2 θ

• Γθrθ = Γθθr = Γϕrϕ = Γϕϕr = 1
r

• Γθϕϕ = − sin θ cos θ

• Γϕϕθ = Γϕθϕ = 1
tan θ

Once the Christoffel symbols have been calculated, we
can calculate the Riemann tensor

Rlkji = ∂iΓ
l
kj − ∂jΓlki + ΓmkjΓ

l
mi − ΓmkiΓ

l
mj (5)

In fact, we are only interested in the Riemann tensor
components that have the same top index as the middle
bottom one. These components are enough to calculate
the Ricci tensor (Rmimj). The only components of the
Ricci tensor that are different from 0 are

• Rtt = Rmtmt = Rrtrt +Rθtθt +Rϕtϕt = −3 äa

• Rrr = Rmrmr = aä

1− r2

K2

+ 2ȧ2

1− r2

K2

+ 2

K2(1− r2

K2 )

• Rθθ = Rmθmθ = r2aä+ 2r2ȧ2 + 2 r2

K2

• Rϕϕ = Rmϕmϕ = r2aä sin2 θ + 2r2ȧ2 sin2 θ +

2 r2

K2 sin2 θ

We can see that the Ricci tensor is diagonal, to sum-
marize the result we can state

Rtt = −3
ä

a
(6)

Rii =
−gii
a2

(aä+ 2ȧ2 + 2K−2) (7)

Finally we can get the Ricci scalar:

R = gikRik = −6
ä

a
− 6

(
ȧ

a

)2

− 6
1

K2a2
(8)

D. Energy-momentum tensor for a perfect fluid

By definition a perfect fluid is the one that is isotropic,
which means that it has to look equal to us in every
direction we can move. Then, the macroscopic speed of
the fluid cannot have a privileged direction, so it has only
temporal component: uα = (1, 0, 0, 0).

Notice that ut = 1 because of the restricted relativity.

(uα)2 = gαβu
αuβ = c2 = 1⇒ gtt(u

t)2 = c2 ⇔ ut = 1

Now, taking into account the expression (2), we can
find the energy-momentum tensor for a perfect fluid. We
see that it is diagonal and its components are

Ttt = ρgtt (9)

Tii = −pgii (10)

We see that for our derivation we can think about the
universe being filled by a perfect fluid as this kind of fluid
follows the cosmological principle.

E. Friedman Equations

In the previous sections we have calculated and derived
all the elements that we need to reach our goal. Now we
only have to plug all the elements to Einstein equations
(1).

The only equations that will be different from the null
one are those which have the same indexes, since our
metric is diagonal.

Therefore we start with the temporal part.

Rtt −
1

2
Rgtt − Λgtt = 8πGρutut
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−3
ä

a
+ 3

ä

a
+ 3

(
ȧ

a

)2

+ 3
1

K2a2
− Λ = 8πGρ(t)

We arrive at(
ȧ(t)

a(t)

)2

=
8πG

3
ρ(t) +

Λ

3
− 1

K2a2(t)
(11)

Now we can study the spacial part. For each spacial
component we reach the same equation

−gii
a2(t)

(
aä+ 2ȧ2 +

2

K2

)
− 1

2
Rgii − Λgii = 8πG(−p)gii

Removing the metric from both sides we obtain

− ä
a
−2

(
ȧ

a

)2

− 2

K2a2
+3

ä

a
+3

(
ȧ

a

)2

+
3

K2a2
−Λ = −8πGp

ä(t)

a(t)
+

1

2

(
ȧ(t)

a(t)

)2

= −4πGp+
Λ

2
− 1

2

1

K2a2(t)
(12)

If we pay attention, we realize that making a linear
combination between (11) and (12) we can get an equa-
tion without the ( ȧa )2 term, whose meaning will be easier
to interpret. If we do 2 · (12)− (11) we reach

ä(t)

a(t)
= −4πG

3
(ρ(t) + 3p) +

Λ

3
(13)

Notice that there are only two independent Friedman
equations. The ones we are going to take as the reference
are (11) and (13).

In conclusion we can state that Friedman equations
say that in general conditions the universe is not static.
To know the physical meaning of these equations first we
have to make the Newtonian derivation comparing both
results.

III. NEWTONIAN FRIEDMAN EQUATIONS

In this chapter we want to derive again Friedman Equa-
tions but now following Newton mechanics. We want to
adapt a global theory, in this case classical mechanics, to
the cosmological principle. To reach our goal we are go-
ing to solve different fundamental problems that we have
not had with General Relativity, which is a local theory.

A. Divergence of the Newton potential

From classical mechanics we know that the Newton
potential using spherical symmetry for a differential piece
of mass (m) in a homogeneous space has the following
expression:

V = −G
∫
M

1

r
dm = −G

∫
V

ρ

r
dv (14)

We see that we have to make the integral over all the
homogeneous matter distribution, which brings us to find
a singularity. The total mass and volume of a Newtonian
homogeneous universe has to be infinite so that the uni-
verse does not collapse, therefore necessarily any imag-
inary matter sphere of the universe has to have more
matter outside it, to offset the internal attractive force.

To solve that problem we have to take into account that
all the points of an homogeneous universe are equivalent,
so with that we can study the relative movement between
two random points of the universe.

We consider one point as the origin and we describe an
sphere passing through the other point. It is clear that
the external shell of the sphere only feels the internal
force because the external one is compensated by the
spherical symmetry, as the Gauss theorem states.

Now we can integrate the potential.

V = −4πG

∫ R(t)

0

ρ(t)r2

r
dr = −4πGρ(t)

R(t)2

2
(15)

Where R(t) is the relative distance between the two
points of the universe.

B. Necessity of a reference frame

In the previous section we have talked about distances
so, like in any system in classical mechanics, we need a
reference point and a reference frame to define the dis-
tances.

If a continuous system is given, the essential reference
point to describe the distances within the system itself is
the center of mass

~rCM =

∫
M
~rdm∫

M
dm

(16)

Notice that, if we try to calculate the center of mass, we
are going to have a problem with a divergence again be-
cause we are working with an infinite system. Therefore
it implies that every point of the universe is the center of
mass itself.

Classical mechanics use the far stars as an inertial ref-
erence system, we are going to generalize this concept
as the cosmic fluid, which contains the far galaxies. The
observations state that locally the universe moves in con-
junction with the cosmic fluid, so there is no any peculiar
speed between them.

Finding the relativistic Friedman equations we have
found that the universe is not static, therefore the cos-
mic fluid could be in expansion. This means that we
have to reject the idea of finding an inertial frame for our
problem, as defining something external to the universe
to refer the universe itself does not make any sense.

We know that we can only use Newtonian cosmology
if we do not go far in space and time because then the
relativistic effects show up. Thus, to refer our system
distances we can use the the cosmic fluid but bearing in
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mind that it is not an inertial frame. Therefore to apply

the Newton law in its common form (~F = m~a) we have
to take into account that our reference point could be
changing. Because of this, we have introduce the known
scale factor (a(t)) which will absorb all temporal changes
that affect our reference frame.

In conclusion, from now we are going to denote the
relative distances as R(t) = a(t)R.

C. Conservation of mass

In the relativistic derivations we have seen that the
fundamental physics principle, the energy conservation,
must be fulfilled like in all the physical models. Now we
are working within the classical mechanics which means
that the mass and the energy are independent concepts.
So, apart from the energy conservation principle, another
principle have to be fulfilled: the mass conservation.

We know that the mass (M) that is inside a shell of
radius R(t) is

M =

∫
M

dm =
4π

3
ρ(t)a3(t)R3 (17)

Now we impose that the mass inside the shell cannot
vary with the time.

dM

dt
= 0 =

4π

3
(ρ(t)3a2(t)ȧ(t)R3 + a3(t)R3 dρ(t)

dt
)

Simplifying all the terms that we can, we find the next
relation:

ρ̇(t) = −3ρ(t)
ȧ(t)

a(t)
(18)

We have found the Newtonian Friedman equation of

the conservation of mass. Notice that if we do ˙(11)−(13)
for the relativistic part we reach to

ρ̇(t) = −3(ρ(t) + p)
ȧ(t)

a(t)
(19)

For the Newtonian part we have found the same ex-
pression but for a pressure-less material called the dust
gas. This result makes sense because in classical mechan-
ics the field does not carry energy, so the gravitational
field cannot make pressure.

D. Acceleration equation

Having fixed the fundamentals problems we can pro-
ceed to apply the Newton equations. Thanks to the
spherical symmetry we will be able to work with the mod-
ulus of the different vectorial magnitudes.

The gravitational force that a piece of mass m is going
to suffer is:

~F = −m~∇V = −GMint

R2(t)
mr̂ (20)

So plugging the force to the second Newton’s law:

m
d2a(t)R

dt2
= −Gm Mint

a2(t)R2
= −Gm4π

3

a3(t)R3

a2(t)R2
ρ(t)

Notice that m and R can be removed. So at the and
we get:

ä(t)

a(t)
= −4πG

3
ρ(t) (21)

We have reached to the acceleration Newtonian Fried-
man equation which implies a non-static universe again.
If we compare this equation with (13) we see that it is
very similar to the relativistic one but, again for a dust
gas (p = 0). Furthermore, we see that there is not the
term of the cosmological constant, which means that the
cosmological constant does not come from the gravita-
tional force.

The acceleration equation and the conservation of mass
equation are independent so, again we see that we have
only two linear independent Friedman equations.

E. Energy conservation

With the equations we have already found we have the
necessity to see that in this equations there is hidden the
energy conservation principle. We take the acceleration
equation (21) and we integrate it to obtain expressions
with only the first temporal derivatives of the scale factor,
to see if we find the kinetic energy.

R̈(t) = −G4π

3
ρ(t)R(t) = −GMint

R2(t)

Now we multiply by Ṙ(t) and we integrate the equation.

Ṙ(t)R̈(t) = G
Mint

R2(t)
Ṙ(t)

1

2
Ṙ2(t) = G

Mint

R(t)
+ U (22)

We see that we have reached an expression that have
clearly the form of the energy conservation equation. It
is possible to distinguish the terms of the kinetic energy
and the potential energy, but we see that a wild integra-
tion constant have appeared so we have to interpret its
meaning. If we manipulate the equation, we can compare
the found expression with the relativistic one (11).(

ȧ(t)

a(t)

)2

=
8πG

3
ρ(t) +

2U

R2a2(t)
(23)

Like in the other equations, we see that we have the
same relativistic expression but for the dust gas and with-
out the constant cosmological constant term. But the
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interesting term to analyse is the last one, the one that
contains a−2(t).

Comparing both equations, (11) and (23), we see that
the last term is related to the curvature term in the rel-
ativistic case, but in the Newtonian one we cannot talk
about curvature because we are working with the eu-
clidean metric. We see that we can associate U to some
kind of mechanical energy, because it is the sum of the
kinetic energy and the potential one, and also it is a dy-
namic constant.

So by analogy with the curvature term, we can distin-
guish different types of universe in function of the U sign
(notice that the last term of (11) and (24) have different
sign). If U > 0 the equations are going to a universe that
re-collapses. If U < 0 the universe is going to expand
forever. For U = 0 we have the intermediate case, the
universe is going to expand to infinity but reaching a null
speed.

F. Newtonian Friedman equations adding a
cosmological constant

In the previous chapter we have seen that the cosmo-
logical constant does not appear in a natural way in the
Newtonian Friedman equations, this implies that we have
to see how we have to change the potential so as the cos-
mological constant appears. Nowadays, thanks to the
astronomical observations, we know that the cosmologi-
cal constant term acts as a repulsive force proportional
to the radial distance (in classical terms) that suffers a
mass m . So we add that new force to the second Newton
law.

m
d2a(t)R

dt2
= −Gm4π

3

a3(t)R3

a2(t)R2
ρ(t) +

Λ

3
a(t)Rm

We are able to put a factor 1
3 in the cosmological con-

stant term as it is an arbitrary constant. With this we
are going to compare easily the obtained result with the
relativistic expressions.

After some algebra, the previous expression we reach
the acceleration equation.

ä(t)

a(t)
= −G4π

3
ρ(t) +

Λ

3
(24)

Now, following the same steps that in the previous
chapter, we can derive the energy conservation expres-
sion. The meaning of the integration constant (U) is

going to be still the same, the mechanical energy.(
ȧ(t)

a(t)

)2

=
8πG

3
ρ(t) +

Λ

3
+

2U

R2a2(t)
(25)

Furthermore, we can find the mass conservation equa-
tion in the same way that in the previous chapter, so now
we are going to find the equation (18) again.

We see that we have obtained the same equations that
in the last chapter, indeed the relativistic Friedman equa-
tions for a pressure-less fluid, but this time with the cos-
mological constant term as expected.

IV. CONCLUSIONS

• In both, relativistic and Newtonian Friedman equa-
tions derivation, we have arrived to dynamical ex-
pressions that describe a non-static isotropic and
homogeneous universe in general conditions.

• For a homogeneous and isotropic universe there are
only two independent Friedman equations.

• The Newtonian Friedman equations are the same
as the relativistic ones but for a pressure-less fluid
called the dust gas. In the energy conservation ex-
pression we have found a sort of curvature term
which we have seen that it contains implicitly the
mechanical energy of the Newtonian universe.

• Comparing the relativistic expressions with the
Newtonian ones, we have seen that the relativis-
tic expressions fulfill the energy conservation and
the mass conservation principles.

• The cosmological constant does not appear in a
natural way in the Newtonian derivation of the
Friedman equations derived only from the gravi-
tational potential. For the cosmological constant
term to appear, we have to add an extra term to
the Newtonian potential acting as a repulsive force
proportional to the radial distance.
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