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Abstract: An overview of the Casimir effect is presented. The area of study is historically
introduced, together with a basic presentation on the zero-point energy concept in relation with the
quantization of fields. After this, the Casimir force between parallel plates is calculated under two
different regularization schemes. The brief overview is completed with a compilation of experimental
results and implications of the effect in different fields of physics.

I. INTRODUCTION

It was 65 years ago when Hendrik Casimir published a
short paper [1] on the attraction force between two par-
allel conducting plates due to changes in the quantum
electromagnetic zero-point energy, known as the Casimir
effect.

The concept of zero point energy had been a hot topic
since it appeared in the Planck’s black-body radiation
discussion by Einstein and Stern; a 1913 article on the
energy of an hydrogen gas at low temperature, which con-
cluded that a non-zero residual energy at T = 0 might
exist [2].

In the following decades, the work by Casimir remained
relatively unknown, probably because of controversy on
the value of the ground state of quantum vacuum energy,
which was commonly redefined to zero. It was not un-
til the 70s when experiments started to became precise
enough to measure the Casimir force and assure its exis-
tence as evident.

Nowadays, the Casimir effect together with quantum
vacuum energy is again highly popular in the scope of
QFT, together with a set of different applications and
consequences that may go from cosmology to nanotech-
nology.

In the following sections, the basics of zero-point en-
ergy in QED are introduced, followed by a first calcula-
tion of the Casimir force and a brief overview of infinite
integrals regularization. A bibliographical compilation
of experiments and applications of the Casimir effect is
presented.

II. ZERO-POINT ENERGY AND FIELD
QUANTIZATION

During the first decades of the last century, and in the
beginnings of quantum theory, a paper by Einstein and
Stern [2] on the basis of Planck’s previous work stated
that the energy of a vibrating unit was

ε =
hν

e
hν
kT − 1

+
hν

2
(1)
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for which the energy at lowest temperature was a non-
zero term hν/2. This was the beginning of the concept of
zero-point energy, as the lowest possible energy quantum
state being different from zero.

In ordinary quantum mechanical systems, the not-null
ground state may be seen as a consequence of the Heisen-
berg uncertainty principle, with the energy of the har-
monic oscillator being its clearest example. The term
quantum vacuum, although considered equivalent, was
coined as a result of the concept of ground state energy
within the framework of quantum field theory.

Quantization of fields begins on the postulates of quan-
tum mechanics, replacing the pair [x, p] by the field
ϕ(x, t) and conjugate canonical momentum πi = ∂L/∂ϕ̇i.
In the one-dimensional case (by means of what is known
as second-quantization), a quantized string (0, a) is con-
sidered as a set of quantum harmonic oscillators as

ϕ(t, x) =
∑
n

(
anϕ

−
n (t, x) + a+

nϕ
+
n (t, x)

)
(2)

with ϕ±n being the solutions of the usual wave equa-
tion. The annihilation and creation operators an, a

+
n

are those obeying the commutation relations of QM (or
anti-commutation relations for 1/2-spin particles), and
so the quantum state is defined by an|0〉 = 0. Even
though quantum field theory is a giant and expanding
field of physics, we may particularly center in our one-
dimensional example to study the energy of this vacuum
|0〉 state.

The 00-th component of the energy-momentum ten-
sor is the operator for the energy density, and so what
we are basically looking for in the present article is to
understand

Evacuum0 =
∫
〈0|T00(x)|0〉dx. (3)

By looking at appendix VI.A, we observe the form of
〈0|T00(x)|0〉 in free or bounded states. It is important to
remark that this expressions are in terms of sums or in-
tegrals over all possible frequency values, which we must
not confuse with the integrals among space. The results
for bounded and free-space energies are

Ebounded0 (a) =

a∫
0

〈0|T00(x)|0〉dx =
~
2

∞∑
n=1

ωn, (4)
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Efree0 (−∞,∞) =
~L
2π

∞∫
0

ωkdk, (5)

(where L → ∞), and their respective frequencies (for
a massless field)

ωboundedn = c
πn

a
, n = 1, 2, ..., (6)

ωfreek = ck, −∞ < k <∞. (7)

This is, at a basic point, enough information to ap-
proach the comprehension of the vacuum energy of the
electromagnetic field.

III. THE CASIMIR EFFECT

A. The quantized electromagnetic field between
plates

As mentioned in the introduction, the Casimir effect
results from the changes of the presented QED zero-point
energy due to external conditions. In this case, the pres-
ence of two perfectly conducting parallel plates deter-
mines a boundary condition, and so the frequencies of
the radiation between the plates are restricted to a dis-
crete set of values.

On the surface S of a perfect conductor, both polar-
izations E‖ and H⊥ are zero, and so the existence of two
plates with area S →∞ and separation z = a quantizes
the possible frequencies in the three dimensional case to

ω = ωk⊥,n = c

√
k2
1 + k2

2 +
(πn
a

)2

n = 0, 1, 2... (8)

.
Now, by the same process done in II and appendix

VI.A, we just need to take the three-dimensional case to
obtain the vacuum energy

E0 =
∫∫∫

d3x
~

(2π)2

∫∫
dk1dk2

1
2a

∞∑
n=1

ωk⊥,n. (9)

Integrating dxdy in area S and dz in [0, a],

E0(a) = S
~
2

∫∫
dk1dk2

(2π)2

∞∑
n=−∞

ωk⊥,n, (10)

where the sum has been extended as to account the
two photon polarizations when n 6= 0.

This expression diverges for large photon momentum
k. This ultraviolet divergence is a common problem in
QFT, and it is treated through regularization. In the
following I will introduce two different regularizations to
achieve the Casimir force result. These are the damping
function (as originally used by Casimir [1]) and the zeta
function regularizations. In addition, I will present the

equivalence between using the Euler-Maclaurin and the
Abel-Plana formulae to proceed with the damping regu-
larization, together with the usefulness of the Abel-Plana
formula to understand the independence of the damping
function.

B. Regularizations of the ultraviolet divergence

The damping function regularization appears by a
physical intuition process. As the conducting plates be-
come transparent to high-frequency waves, the contribu-
tion of these to the physical result may be supressed by
the use of a damping exponential function

E0(a, δ) = S
~
2

∫∫
dk1dk2

(2π)2

∞∑
n=−∞

ωk⊥,ne
−δωk⊥,n . (11)

The expression is finite for δ > 0 and regularization
will give the correct result in the limit of δ → 0.
If we remove the plates, the regularized vacuum energy in
the same interval (0, a) accounts from changing L → ∞
to L = a

Efree0 (a, δ) = aS
~

(2π)3

∫∫∫
d3kωke

−δωkS. (12)

With these, we may write the regularized potential en-
ergy of the system, i.e. the energy to bring the plates
from a large separation to a, as

U ren
0 (a) = lim

δ→0

(
Ebounded0 (a, δ)− Efree0 (a, δ)

)
(13)

As in [3], we use k2
⊥ = k2

1 + k2
2 and t = ak3/π. The

expression to evaluate is then

U ren
0 (a) = S

c~π
a

lim
δ→0

∫∫
dk1dk2

(2π)2

( ∞∑
n=0

F (n)e−δωk⊥,n

−
∞∫
0

dtF (t)e−δωk − k⊥a

2π

)
(14)

with

F (x) =

√√√√(k⊥a
π

)2

+ x2. (15)

We can now recognize the difference between the sum
and the integral as a common and useful expression. We
may first evaluate it by the Abel-Plana formula, and
through this recognize the independence of the damp-
ing function f(ωk⊥,n, δ) used in Casimir’s assumption to
compute (13) by the Euler-Maclaurin formula.

Applying the Abel-Plana formula on (14) and using

Treball de Fi de Grau 2



Quantum Vacuum Energy and the Casimir Effect Guim Aguadé Gorgorió

y = k⊥a/πwe obtain (see Appendix VI.B)

U ren
0 (a) = −S c~π

2

a3

∞∫
y

dt

e2πt − 1

t∫
0

y
√
t2 − y2dy

= − c~π2

720a3
S. (16)

The force between the plates is the derivative of the
potential energy with respect to their distance

F (a) = −∂U
ren
0 (a)
∂a

= − π2

240
~c
a4
S. (17)

This is the Casimir force between two parallel conduct-
ing plates due to QED vacuum energy. We used the Abel-
Plana formula, but many authors use Casimir’s original
calculation ([4]). In the mentioned original paper, instead
of introducing an exponential function, Casimir asked for
a more general f(k/km), unity for k << km and tending
to zero for (k/km) → ∞. With this, he calculated (13)
by the means of the Euler-Maclaurin summation formula

S − I =
p∑
k=2

Bk
k!

(
fk−1(m)− fk−1(0)

)
(18)

where m → ∞, S states for the sum and I for the in-
tegral that appear on (14). The terms F k(m → ∞) are
zero for the assumptions on f(k/km). In our calculations,
F (n)(x) ∝ (π/akm)K , with K > 0, for n ≥ 4. With this,
the calculations ask for akm >> 1 to meet the correct
result. See Appendix VI.C for an insight on Casimir’s
calculation.

At last, what is important to understand, at the mo-
ment we choose one or another regularization, is that the
final result should be independent of the exact shape of
f(δk). This is a direct conclusion taken from the form
of the Abel-Plana formula (Appendix VI.B). Under the
assumptions of f being analytic in the positive reals of
C, and that

lim
y→∞

∣∣f(x± iy)
∣∣e−2πy (19)

goes to zero uniformly in x, the Abel-Plana formula
holds and its right-hand side integral converges, and so
the general damping function may just be driven to zero
by the limit δ → 0. It is imporant to remark that the
Euler-Maclaurin formula does not ask for an analytic
function, but it does need some constraints in the results
of the derivatives fk−1 in both limits of integration.

Together with the independence of f , the regulariza-
tion process is also independent of the summation for-
mula. This is, in fact, because under the mentioned con-
straints of f the Abel-Plana and the Euler-Maclaurin for-
mulae are equivalent [5]. The demonstration of this is not
trivial, but it clearly runs through the approximation the-
orem of Weierstrass to connect the analytic constraints
of Abel-Plana and the f ∈ C(2)[0,∞] constraint of Euler-
Maclaurin.

Before going on to conclusions, a completely different
regularization process is presented. This is the zeta func-
tion regularization. It is a much modern, commonly used
process in QFT, based on the analytic continuation of the
Riemann zeta function ζ(s).

We rewrite (10) with a new regularization parameter
s as

E0(a, s) = S
~
2

∞∑
n=−∞

∫∫
dk1dk2

(2π)2
ω1−2s

k⊥,n
. (20)

As in [3], we use polar coordinates and k⊥ = y(πn/a)
to obtain (Appendix VI.D)

E0(a, s) = S
~c
2π

∞∫
0

dyy
(
y2+1

) 1
2−s

∞∑
n=1

(
πn

a

)3−2s

. (21)

From here, we must observe the Riemann zeta function

ζR(t = 2s− 3) =
∞∑
n=1

1
nt
. (22)

However, we need the value ζR(−3) in order to remove
the regularization and obtain the unique physical result.
Apparently, this value diverges, but we may obtain (see
[6]) the analytic continuation to the whole complex plane,
described by the functional equation

ζ(s) = 2sπs−1 sin
(πs

2

)
Γ(1− s)ζ(1− s) (23)

at s = 4. This gives us the value ζR(−3) = 1/120.
Performing the integral and removing the regularization
by putting s = 0 (see Appendix VI.D) we obtain the ex-
pected expression (16) for the energy, and applying (17)
we obtain the expected Casimir force.

It appears as we did not start on the basic notion of
calculating the difference between two energies, but eval-
uating the energy expression at a given point or distance,
which is not what we would physically understand. Be-
sides the ad hoc character of the zeta function regulariza-
tion, a deeper insight - away from the scope of this work -
would recall on how the analytic continuation (23) has an
additive positive infinity, which accounts for the energy
outside the plates and so may give the physical intuitive
answer we were expecting.

IV. EXPERIMENTS AND APPLICATIONS

In the preceding section we have seen the particu-
lar situation of the effect between two parallel conduct-
ing plates. Many further calculations have been done
in many different geometries and boundary conditions,
together with continuous developments on QFT diver-
gences.

Together with these, experimental tests have been go-
ing on and gaining more and more precision since the
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Casimir effect started gaining greater importance around
the 1970s.

It is important to remark the technical difficulties of
measuring this effect. For these, early experiments did
not obtain remarkably precise results, but a rather qual-
itative evaluation. It was not until 1997 when an exper-
iment by S.K. Lamoreaux [7] measured the direct force
between plates and was precise enough to consider it,
somehow, conclusive.

The difficulties lay on the quantum dimensions of the
macroscopic effect to measure, together with complica-
tions on obtaining parallel, high conducting, free of impu-
rity plates. By (17), we observe how the force is strongly
dependent on the distance and only considerable at val-
ues a ∼ 1µm, where it becomes dominant. The force is
around 10−7N for two plates with surface of 1cm2 area
and a = 1µm.

More recent experiments (around year 2000) using the
atomic force microscope have become definitive on the
measurement of the Casimir force, with claims of a 1%
statistical precision [8].

The modern implications of the Casimir effect, to-
gether with general developments on quantum fluctua-
tions, occupy a wide spectrum of physics fields, from deep
theoretical physics consequences on quantum field theory,
nucleon models [4], cosmology and gravitation to modern
advances on applied physics and technological uses, such
as in modern nanotechnology chips trying to harness the
power of the Casimir effect [9].

One of the most remarkable implications of the Casimir
effect and the quantum vacuum energy would be its possi-
ble relation with Einstein’s cosmological constant in gen-
eral relativity, as to explain the mechanism for the ac-
celerated expansion of the universe. As in the Casimir
effect calculation, the difference between the zero-point
energy of the expanding universe and the one of the flat
Minkowski space cancels the common large term and
leaves a finite and small contribution, perhaps associa-
ble to the Cosmological Constant [10].

V. CONCLUSIONS

• The Casimir effect, and in particular the Casimir
force between two parallel conducting plates, exists as
proposed, and is nowadays experimentally confirmed
with high precision techniques. It is a macroscopical
quantum effect, and it is considered a strong pilar for
the evidence of zero-point energy in quantum field the-
ory.
• Some important concepts with general use in quan-

tum field theory have been discussed, such as different
regularization schemes to calculate divergent integrals.
Besides these, the idea of measuring energy differences
has been settled as the starting point for a broad range
of physical problems.
• Although it was stated originally in 1948, the Casimir

effect is a hot topic in nowadays physics, and continuous

experimental advances enlighten the paths of a growing
number of theoretical developments on the effect. This
rapid growth expands to different areas of modern phys-
ical science, making the Casimir effect an interesting,
mysterious and significant physical phenomenon. In the
scope of theoretical physics, its possible implications on
the Cosmological Constant problem may be of extraor-
dinary value.

VI. APPENDIX

In order to avoid extense calculations in the text, I
remitted to the appendix some important steps on each
calculation done. The basics of second-quantization arise
from [3] and my university courses. Both damping and
zeta function regularizations calculations follow the in-
dications from [3]. Casimir’s original Euler-Maclaurin
process is calculated from [1]. The connection between
the Abel-Plana and the Euler-Maclaurin summation for-
mulae is stated by the author using [5].

VI.A In the standard quantization of the scalar field,
starting by the usual equation (for a massive field)

1
c2
∂2
t ϕ− ∂2

xϕ+
m2c2

~2
ϕ(t, x) = 0 (24)

we obtain the bounded and free solutions by means of
contour conditions as

ϕ±n (t, x) =
( c

aωn

)1/2

e±iωnt sin knx (25)

ϕ±k (t, x) =
( c

4πω

)1/2

e±i(ωt−kx) (26)

with respective expressions for their frequencies (6)
and (7). Now, the 00-th component operator

T00(x) =
~c
2

(
1
c2

(∂tϕ)2 + (∂xϕ)2
)

(27)

brings us, for both bounded and free expressions of (2),
to the expressions

〈0|T00|0〉bounded =
~
2a

∞∑
n=1

ωn−
m2c4

2a~

∞∑
n=1

cos 2knx
ωn

, (28)

〈0|T00|0〉free =
~

2π

∞∫
0

ωdk. (29)

The integration of this expressions in [0, a] results in (4)
and (5) (The second term of the first expression doesn’t
contribute to the integral for both massive and massless
fields).

VI.B The first change of variables to rewrite equations
(11) and (12) in the terms of F (x) is direct. The main
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step of the damping function regularization presented is
on the use of the Abel-Plana formula

∞∑
n=0

f(n)−
∞∫
0

f(t)− 1
2
f(0) = i

∞∫
0

(
f(it)− f(−it)

)
dt

e2πt − 1

(30)
where we identify f(x) = F (x)e−δω(x).
The convergence of the right-hand side integral lets us

apply the limit δ → 0 directly. What we need to un-
derstand is evaluation of F (it) − F (−it) by the means
of complex calculus. The square roots will have branch-
ing points ±iy to be rounded, and so F (it) − F (−it) =
2i
√
t2 − y2.

The intermediate step of equation (16) runs through
(x = 2πt). What remains is the evaluation of a integral
by parts and a well known integral to be evaluated by
means of complex calculus or the gamma function and
the Riemann zeta function.

∞∫
0

dxx3

ex − 1
= Γ(4)ζ(4) =

π4

15
. (31)

VI.C The actual expression used by Casimir was

∞∑
(0)1

F (n)dn−
∞∫
0

F (x)dx = − 1
12
F ′(0) +

1
720

F ′′′(0) + ...

(32)
where the subindex (0) accounts for the non polariza-

tion of the n = 0 mode, and so contains the first term
(1/2)F (0). Casimir took into account the space integrals
and so used an already integrated expression for F

F (u) =

∞∫
0

dx(x+ u2)(1/2)f(n2π/akm) (33)

with km being in fact the inverse regularization pa-
rameter. With this, the only non-vanishing derivative

is F ′′′(0) = −4, as higher derivatives are in terms of
(π/akm), and go to zero as akm = a/δ >> 1. From here,
obtaining the Casimir force (17) is direct.

VI.D The first step in the zeta function regulariza-
tion is to rewrite (20) in order to obtain ζ(2s − 3). We
use again the polar coordinates (k⊥, ϕk), and the change
k⊥ = y(πn/a). We may see(

k2
⊥ +

(πn
a

)2
) 1

2−s

=
(
y2 + 1

) 1
2−s(πn

a

)1−2s

. (34)

The other (πn/a)2 come from dk1dk2 = k⊥dk⊥ =
(πn/a)y(πn/a)dy. The demonstration of the functional
or reflection equation (23) is not trivial nor short [6]. The
key observation of the extension of ζ to the whole com-
plex plane is the observation that in 0 < Re(s) < 1, ζ(s)
has a symmetry in relation with ζ(1 − s), and together
with the expansion of Γ in the complex plane and many
other developments we obtain (23).

Once implemented the ζR(−3) value, the sum returns
(π/a)3(1/120). The remaining integral converges under
the limit as

lim
s→0

∞∫
0

dyy(y2 + 1)(1/2)−s = −1
3

(35)

and so the final result for the energy is (16), as ex-
pected.
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