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1 Introduction

The study of charmonium production provides an important test of the underlying mech-

anisms described by quantum chromodynamics (QCD). In pp collisions charmonia can be

produced directly, or indirectly via the decay of higher excited states (feed-down) or via

the decay of b hadrons. The first two are referred to as prompt production. The mecha-

nism for the production of the prompt component is not yet fully understood, and none

of the available models adequately predicts both the transverse momentum spectrum and

the polarization of the promptly produced charmonium states [1].

At the LHC, cc pairs are expected to be produced at leading order (LO) through gluon-

gluon interactions, followed by the formation of bound charmonium states. The production

of the cc pair is described by perturbative QCD while non-perturbative QCD is needed

for the description of the evolution of the cc pair to the bound state. Several models have

been developed for the non-perturbative part, such as the Colour Singlet (CS) model [2–4]

and the non-relativistic QCD (NRQCD) model [5]. The CS model assumes the cc pair is

created in a hard scattering reaction as a colour singlet with the same quantum numbers as

the final charmonium state. The NRQCD model includes, in addition to the colour singlet

mechanism, the production of cc pairs as colour octets (CO) (in this case the CO state

evolves to the final charmonium state via soft gluon emission). These two models predict

different ratios of the χc2 to χc1 production cross-sections.
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The study of the production of χc states is also important since these resonances

give a substantial feed-down contribution to prompt J/ψ production [6] through their

radiative decay χc → J/ψγ and can have a significant impact on the J/ψ polarization

measurement [7]. Measurements of χc1 and χc2 production cross-section for various particle

beams and energies have been reported in refs. [8–12].

In this paper we report a measurement of the ratio of prompt χc2 to χc1 production

cross-sections σ(pp → χc2X)/σ(pp → χc1X) at a centre-of-mass energy of
√
s = 7 TeV in

the rapidity range 2.0 < y < 4.5 as a function of the J/ψ transverse momentum (pT) from 3

to 20 GeV/c. The data sample corresponds to an integrated luminosity of 1.0 fb−1 collected

during 2011 by the LHCb detector. The radiative decay χc → J/ψγ is used, where the J/ψ

is reconstructed in the dimuon final state and only photons that convert in the detector

material are used. The converted photons are reconstructed using e+ and e− tracks, which

allows a clean separation of the χc1 and χc2 peaks, due to a better energy resolution of

converted photons than for those that are identified with the calorimeter (referred to as

calorimetric photons in the following).

The measurement performed by LHCb using calorimetric photons with 2010 data [12]

was limited by the fact that the two χc peaks were not well separated. The measurements

with calorimetric [12] and converted (as presented in this study) photons are largely uncor-

related since the photon reconstruction is based on different subdetectors. Furthermore,

this is the first measurement using converted photons in LHCb. The χc0 state has been

previously observed in pp collisions at threshold [13], but this letter reports the first ev-

idence at high-energy hadron colliders. Its production rate relative to that of the χc2 is

also reported.

2 The LHCb detector and dataset

The LHCb detector [14] is a single-arm forward spectrometer covering the pseudorapidity

range 2 < η < 5, designed for the study of particles containing b or c quarks. The

detector includes a high precision tracking system consisting of a silicon-strip vertex de-

tector (VELO) surrounding the pp interaction region, a large-area silicon-strip detector

located upstream of a dipole magnet with a bending power of about 4 Tm, and three sta-

tions of silicon-strip detectors and straw drift tubes placed downstream. The combined

tracking system provides a momentum measurement with relative uncertainty that varies

from 0.4% at 5 GeV/c to 0.6% at 100 GeV/c, and impact parameter resolution of 20µm

for tracks with high transverse momentum. Charged hadrons are identified using two

ring-imaging Cherenkov detectors. Electron and hadron candidates are identified by a

calorimeter system consisting of scintillating-pad (SPD) and preshower detectors, an elec-

tromagnetic calorimeter (ECAL) and a hadronic calorimeter. The SPD and preshower are

designed to distinguish between signals from photons and electrons. The ECAL is con-

structed from scintillating tiles interleaved with lead tiles. The reconstruction of converted

photons that are used in this analysis is described in section 3. Muons are identified by a

system composed of alternating layers of iron and multiwire proportional chambers. The

total radiation length before the first tracking station is about 0.25X0 [14].
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The LHCb coordinate system is defined to be right-handed with its origin at the

nominal interaction point, the z axis aligned along the beam line towards the magnet and

the y axis pointing upwards. The magnetic field is oriented along the y axis.

The trigger [15] consists of a hardware stage, based on information from the calorimeter

and muon systems, followed by a software stage, which applies a full event reconstruction.

Candidate events used in this analysis are first required to pass a hardware trigger, which

selects muons with pT > 1.48 GeV/c or dimuon candidates with a product of their pT
larger than 1.68 (GeV/c)2. In the subsequent software trigger, both muons are required to

have pT > 0.5 GeV/c, total momentum p > 6 GeV/c, and dimuon invariant mass greater

than 2.5 GeV/c2.

In the simulation, pp collisions are generated using Pythia 6.4 [16] with a specific

LHCb configuration [17]. The NRQCD matrix elements are used in Pythia 6.4. Decays of

hadronic particles are described by EvtGen [18], in which final state radiation is generated

using Photos [19]. The interaction of the generated particles with the detector and its

response are implemented using the Geant4 toolkit [20, 21] as described in ref. [22]. The

simulated samples consist of events in which at least one J/ψ → µ+µ− decay takes place.

In a first sample used for background studies there is no constraint on the J/ψ production

mechanism. In the second sample used for the estimation of signal efficiencies the J/ψ is

required to originate from a χc meson.

3 Event reconstruction and selection

Photons that convert in the detector material are reconstructed from a pair of oppositely

charged electron candidates. Since photons that have converted in the VELO have lower

acceptance and worse energy resolution, only γ → e+e− candidates without VELO hits are

considered. This selection strongly favours conversions that occur between the downstream

end of the VELO and the first tracking station upstream of the magnet.

Candidate e+e− pairs are required to be within the ECAL acceptance and produce

electromagnetic clusters that have compatible y positions. A bremsstrahlung correction

is applied to each electron track: any photon whose position in the ECAL is compatible

with a straight line extrapolation of the electron track from the first tracking stations is

selected and its energy is added to the electron energy from the reconstructed track. If

the same bremsstrahlung candidate is found for both the e+ and the e− of the pair, the

photon energy is added randomly to one of the tracks. The e+ and e− tracks (corrected for

bremsstrahlung) are then extrapolated backward in order to determine the conversion point

and a vertex fit is performed to reconstruct the photon. The photon’s invariant mass is

required to be less than 100 MeV/c2. Combinatorial background is suppressed by applying

a cut on the e+e− invariant mass (Me+e−) such that Me+e− < 0.04 × zvtx + 20 MeV/c2

where zvtx is the z coordinate of the conversion in mm. Converted photons are required to

have transverse momentum (pγT) greater than 0.6 GeV/c.

The J/ψ candidate is reconstructed in its decay to µ+µ−. Each track must be identified

as a muon with pT > 0.65 GeV/c, p > 6 GeV/c and a track fit χ2/ndf smaller than 5, where

ndf is the number of degrees of freedom. The two muons must originate from a common
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Figure 1. Distribution of the mass difference ∆M ≡ M(µ+µ−γ) −M(µ+µ−) for χc candidates

with 3 < p
J/ψ
T < 20 GeV/c.

vertex with vertex fit χ2
vtx/ndf smaller than 20. In addition the µ+µ− invariant mass is

required to be in the range 3058–3138 MeV/c2.

The J/ψ and γ candidates are associated with the primary vertex (PV) to which they

have the smallest impact parameter. These J/ψ and photon candidates are combined to

form a χc candidate. Loose requirements are applied in order to reject combinatorial back-

ground and poorly reconstructed candidates using the following variables: the difference

in z-positions of the primary vertices associated with the J/ψ and γ, the χ2 of the χc
candidate vertex fit and the difference between the χ2 of the PV reconstructed with and

without the χc candidate. These cuts remove about 20% of the background and 5% of the

signal. Contributions from b → χcX are suppressed by requiring that the χc decay time

is smaller than 0.15 ps. This removes about 85% of non-prompt events and 0.5% of the

prompt χc signal. Figure 1 shows the distribution of the difference in the invariant masses

of the χc and J/ψ selected candidates ∆M ≡M(µ+µ−γ)−M(µ+µ−) for candidates with

J/ψ transverse momentum (p
J/ψ
T ) in the range 3–20 GeV/c.

4 Determination of the ratio of cross-sections

The production cross-section ratio of the χc2 and χc1 mesons is measured in ten p
J/ψ
T bins

of different width (the bin limits are given in table 1) with

σ (χc2)

σ (χc1)
=
Nχc2

Nχc1

εχc1

εχc2

B (χc1 → J/ψγ)

B (χc2 → J/ψγ)
, (4.1)

where σ(χcJ) is the prompt χcJ production cross-section, NχcJ is the prompt χcJ yield

(J = 1, 2), and B(χc1 → J/ψγ) = (34.4 ± 1.5)% and B(χc2 → J/ψγ) = (19.5 ± 0.8)% [23]

are the known branching fractions. The efficiency ratio is expressed as

εχc1

εχc2

=
ε
J/ψ
χc1

ε
J/ψ
χc2

εγχc1

εγχc2

, (4.2)

where ε
J/ψ
χcJ is the efficiency to trigger, detect, reconstruct and select a J/ψ from a χcJ decay

and εγχcJ is the efficiency to detect, reconstruct and select a photon from a χcJ decay once
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the J/ψ has been selected and then to select the χcJ meson. The efficiency εγχcJ includes

the probability for a photon to convert upstream of the first tracking station (about 20%).

The ratio σ(χc0)/σ(χc2) is also measured with appropriate substitutions in eqs. 4.1

and 4.2 and using the known value B(χc0 → J/ψγ) = (1.17±0.08)% [23]. Due to this small

branching fraction, the number of reconstructed χc0 mesons is also small and therefore

the ratio of production cross-sections is only measured in one wide p
J/ψ
T bin, 4–20 GeV/c.

The χc0 cross-section is measured relative to the χc2 cross-section rather than to the χc1
cross-section because the pT dependence is expected to be similar inside this pT range for

χc0 and χc2 [24].

4.1 Background studies

There are two sources of background: a peaking component from non-prompt χc (from

b-hadron decays) production and a non-peaking combinatorial contribution.

The peaking background is estimated by fitting the decay time distribution of the χc
candidates with decay time larger than 0.3 ps with an exponential shape and extrapolating

into the signal region (0 − 0.15 ps). The combinatorial background from b-hadron decays

lying under the peak is evaluated using the lower or upper mass sidebands. The two

estimates agree and the average is used to subtract its contribution. The simulation predicts

that χc mesons from b-hadron decays tend to be more energetic than prompt χc mesons.

The fraction of peaking background is therefore estimated in two regions of p
J/ψ
T , below

and above 9 GeV/c, and the maximum deviation from the mean value inside each range

(as predicted by simulation) is taken as a systematic uncertainty. For the χc1 meson

the remaining peaking background is (0.9 ± 0.3)% of the signal for p
J/ψ
T below 9 GeV/c

and (1.8 ± 0.4)% above this value. As expected [23, 25] the number of non-prompt χc2
candidates is smaller. The relative yield of non-prompt χc2 and χc1 mesons is obtained from

a fit to the ∆M distribution of the events rejected by the cut on the χc decay time (using

the method described in section 4.3). The ratio of branching fractions is determined to be

B (b→ χc2)× B (χc2 → J/ψγ)

B (b→ χc1)× B (χc1 → J/ψγ)
= 0.184± 0.025 (stat)± 0.015 (syst),

where the systematic uncertainty is obtained by varying the fit function parameters. The

remaining number of non-prompt χc2 candidates is then determined as the number of

remaining non-prompt χc1 mesons multiplied by this ratio of branching fractions. For

the χc0 peak it is not possible to estimate the non-prompt contribution from the data

but this is expected to be at most 2%. This assertion is based on the similar values for

B(b → χc1X) and B(b → χc0X) [23] and the small contamination of b → χc1X decays as

shown above. Another peaking background arises from the decay of prompt ψ(2S) to a χc
meson. According to simulation and cross-section measurements [26] this background can

be safely neglected.

The shape of the combinatorial background is estimated using the selected data sample

by generating “fake photons” to mimic the candidate photon spectra in data. For each

χc → J/ψγ candidate, two fake photons are generated: one where the photon energy is

set equal to twice the e− energy, and a second where twice the e+ energy is used. In this
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way, a spread of fake photon energies are produced, all with the same angular distribution

as the candidate photons in the data. Each of these photons is then combined with the

J/ψ candidate to form the fake χc candidate. The contribution from the χc signal region

is normalized to the estimated background contribution in the same invariant mass region

(this procedure converges with few iterations). The procedure was tested on simulated

events and reproduces the ∆M distribution of the combinatorial background in the region

of the χc1 and χc2 signal peaks.

4.2 Efficiency corrections

The ratio of the overall efficiencies for the detection of J/ψ mesons originating from the

decay of a χc1 meson compared to a χc2 meson, ε
J/ψ
χc1 /ε

J/ψ
χc2 , is estimated from simulation

and is compatible with unity for all p
J/ψ
T bins.

Since the kinetic energy released in the χc1 decay (Q-value) is smaller than that of the

χc2 decay, the photon pT spectrum differs for the two decays. As a result, the photon pT
requirement (pγT > 0.6 GeV/c) has a lower efficiency for the χc1 decay. Moreover the recon-

struction efficiency of the converted photon decreases as the photon pT decreases. This is

due to the fact that low energy electrons escape the detector before reaching the calorime-

ter and are therefore not identified as electrons. Thus, the efficiency ratio is expected to

be smaller than unity. The value obtained from simulation is εγχc1/ε
γ
χc2 = 0.95 ± 0.01 and

shows no significant dependence on p
J/ψ
T .

The conversion probability and total efficiency for converted photons is cross-checked

using π0 mesons, reconstructed either with two calorimetric photons or with one calori-

metric photon and one converted photon. The ratio of efficiencies of converted photons to

calorimetric photons is measured in data and simulation as a function of pγT and is shown in

figure 2(a). The total efficiency for calorimetric photons is described well by simulation [25]

therefore these measurements give a direct comparison of the converted photon efficiency

in data and simulation. The efficiency with which converted photons are reconstructed in

simulation is consistent with data (within about 15%). The results obtained from this study

are used to correct the simulation. The corrected εγχc1/ε
γ
χc2 ratio is shown as a function of

p
J/ψ
T in figure 2(b). This ratio is still compatible with a constant: εγχc1/ε

γ
χc2 = 0.96± 0.01.

For the χc0 to χc2 ratio the corrected efficiency ratio is εχc2/εχc0 = 1.69 ± 0.18. The

departure from unity is due to the different Q-values of the two decays, as discussed above.

4.3 Determination of the yield ratios

The ∆M spectrum is fitted to determine the signal yields. The χc1 and χc2 signal peaks

are each parametrized with a double-sided Crystal Ball (CB) function [27]

fi(x) ∝ exp

(
−1

2

(
x−∆Mi

σi

)2
)

for −αL <
x−∆Mi

σi
< αR

fi(x) ∝
(nL/αL)nL exp

(
−1

2α
2
L

)
(nL/αL − αL − (x−∆Mi) /σi)

nL
for

x−∆Mi

σi
< −αL (4.3)

fi(x) ∝
(nR/αR)nRexp

(
−1

2α
2
R

)
(nR/αR − αR + (x−∆Mi)/σi)

nR
for

x−∆Mi

σi
> αR,
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Figure 2. (a) Efficiency of converted photon reconstruction and selection relative to the calorimetric

photon efficiency for data (red circles) and simulated events (blue triangles) as a function of pγT.

(b) Ratio of photon efficiencies εγχc1
/εγχc2

as a function of p
J/ψ
T from simulation (blue triangles) and

after correcting the simulation for the converted photon efficiency measured in data (red circles)

taken from plot (a).

where the index i = 1 (2) refers to the χc1 (χc2) CB function. The left tail accounts

for events with unobserved bremsstrahlung photon(s) while the right tail accounts for

events reconstructed with background photons. Simulation shows that the same α and n

parameters can be used for both the χc1 and χc2 peaks and that the χc2 mass resolution,

σ2, is 10% larger than the χc1 mass resolution, σ1. These constraints are used in all the fits.

A χc0 contribution is also included and is modelled by the convolution of a CB and a Breit-

Wigner distribution with the width set to the χc0 natural width (10.4 ± 0.6 MeV/c2 [23])

and with the peak position fixed from simulation. For the χc0 CB shape, the same tail

parameters are used as for the χc1 and χc2 CB functions.

The full data sample (3 < p
J/ψ
T < 20 GeV/c) after background subtraction is fitted with

the sum of these three functions. The peak positions ∆M1 and ∆M2, the χc1 resolution

σ1 and the CB n parameters obtained from this fit are then used for the individual fits

in each p
J/ψ
T bin. The same fit is performed on simulated χc events (without background)

and the value of the n parameter is found compatible with the data for the left tail while

slightly smaller for the right tail. These values are used when studying systematic effects.

The χc mass resolution is also found to be significantly smaller in simulation due to better

energy resolution in the reconstruction of converted photons.

For each p
J/ψ
T bin the combinatorial background shape is determined using the can-

didates reconstructed with the fake photons. The ∆M distribution of these candidates is

fitted with an empirical function

fbkg(∆M) ∝ arctan

(
∆M −m0

c

)
+ b

(
∆M

m0
− 1

)
+ a, (4.4)

where m0, a, b and c are free parameters. This function is then used to parametrize

the combinatorial background with all parameters fixed except for the normalization. In

total there are six free parameters for each fit: the CB function α parameters (left and

right tails), the height of the χc1 and χc0 peaks, the ratio of χc2 to χc1 heights and the

background normalization. Figure 3 shows the ∆M distribution and the fit results for two

ranges: 4 < p
J/ψ
T < 5 GeV/c and 11 < p

J/ψ
T < 13 GeV/c.
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Figure 3. Distribution of ∆M = M(µ+µ−γ)−M(µ+µ−) for p
J/ψ
T in the range (a) 4–5 GeV/c and

(b) 11–13 GeV/c. The results of the fit are also shown, with the total fitted function (blue solid

curve), the χc1 signal (green dashed curve), the χc2 signal (red dot-dashed curve) and the χc0 signal

(purple long-dashed curve).
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Figure 4. Distribution of ∆M = M(µ+µ−γ)−M(µ+µ−) (blue histogram) for 4 < p
J/ψ
T < 20 GeV/c.

(a) The background estimated using fake photons (green) is superimposed on the ∆M distribution,

together with the function used to parametrize it (black solid line). (b) The same ∆M distribution

after background subtraction (using the shape shown in (a) and its fitted normalization): total

fitted function (blue solid curve), χc1 signal (green dashed curve), χc2 signal (red dot-dashed curve)

and χc0 signal (purple long-dashed curve).

The χc0 yield is not significant in the individual bins and is therefore only measured

over the integrated range 4 < p
J/ψ
T < 20 GeV/c. The region 3–4 GeV/c is excluded because

for this particular p
J/ψ
T bin the background is high and not well modelled below 300 MeV/c2,

close to the χc0 peak. Figure 4(a) shows the total ∆M distribution superimposed with the

background estimate using the fake photons and the fit to this background distribution.

The χc0 contribution is visible just above 300 MeV/c2. Figure 4(b) shows the result of the

fit for 4 < p
J/ψ
T < 20 GeV/c after background subtraction.

5 Systematic uncertainties

The fit is performed for each p
J/ψ
T bin as explained in section 4. The χc1 and χc2 peak

positions, the CB width and the left and right tail n parameters are fixed to those found in

the fit to the whole dataset. In order to assess the stability, the fit is also performed with

all parameters left free except for the peak positions or using the n parameters obtained
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with simulated events. The fit is also repeated in a smaller range (∆M > 290 MeV/c2) in

order to assess the uncertainty coming from the imperfect modelling of the background at

small ∆M . It is also repeated on the distribution with the background subtracted. The

largest variation from these alternative fits is taken as a systematic uncertainty. The fit

quality is usually good (the p-values of the fits are greater than 1%) except for the first

p
J/ψ
T bin where the background is not well modelled for low ∆M . However the ratio of χc2

and χc1 yields is stable, indicating it is relatively insensitive to the modelling in this low

∆M region. For the χc0 yield this systematic uncertainty is 20% and is dominated by the

variation of the nL parameter. This large uncertainty is incurred because the χc0 lies in

the low mass tail of the χc1 mass spectrum, and is sensitive to the modelling of the χc1
signal shape.

The bias due to the fitting procedure is studied using simulated events. This study

indicates a bias of (−4.8 ± 1.8)% and (−2.4 ± 2.0)% for the first and second p
J/ψ
T bins,

respectively, and therefore the data are corrected for these biases. The other bins show

no significant bias within the 3% uncertainty of the test. Conservatively, a systematic

uncertainty of 3% is assigned to all bins.

Imperfect modelling of the combinatorial background may introduce a bias. This is

studied with simulated events by comparing the results obtained using the ∆M distribution

of true background events and the distribution of the background estimated with the fake

photons. The bias is found to be within 1%, which is assigned as a systematic uncertainty

to all the bins. For the χc0 yield the impact of an imperfect modelling of the background

can be absorbed in the variation of the nL parameter of the χc1 CB function. This is

therefore already accounted for in the fit systematic uncertainty.

The peaking background (χc from b hadrons) is estimated in section 4.1 and is sub-

tracted from the number of χc1 candidates: (0.9 ± 0.3)% for p
J/ψ
T below 9 GeV/c and

(1.8± 0.4)% above. The number of χc2 candidates is 0.18± 0.03 times the number of χc1
candidates (see section 4.1). The ratio of prompt χc mesons is corrected for this back-

ground and a systematic uncertainty of 0.3% (0.4%) is assigned for the p
J/ψ
T bins below

(above) 9 GeV/c. No peaking background correction is applied for the ratio of χc0 to χc2
yields. This correction is estimated to be at most 2% (see section 4.1) which is taken as

the systematic uncertainty.

The photon efficiency is discussed in section 4.2: the simulation is corrected using the

efficiency measured using π0 decays in data. The systematic uncertainty is estimated by

varying independently for each pγT bin the converted photon efficiency within the measure-

ment uncertainty and computing the corrected ratio of efficiency εγχc1/ε
γ
χc2 for each p

J/ψ
T bin.

The systematic uncertainty is defined as the maximum variation observed. The correction

and the systematic uncertainty due to the J/ψ selection and reconstruction efficiency are

found to be negligible.

The efficiency can be affected by the choice of the simulated χc pT spectrum (pχc

T ):

since the photon transverse momentum is correlated with the J/ψ transverse momentum,

the efficiency for each p
J/ψ
T bin can vary depending on the p

J/ψ
T spectrum inside this bin.

In order to assess the uncertainty due to the pT spectrum shape, the simulated χc2 (χc1)

spectrum is changed to be identical to the simulated χc1 (χc2) pT spectrum. The generated
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p
J/ψ
T bin (GeV/c) 3-4 4-5 5-6 6-7 7-8 8-9 9-11 11-13 13-16 16-20 4-20

Fit bias 1.8 2.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0

Fit 2.6 4.0 2.2 2.0 2.0 2.2 2.0 2.8 5.5 4.0 2.0

Comb bkg 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Peaking bkg 0.3 0.3 0.3 0.3 0.3 0.3 0.4 0.4 0.4 0.4 0.4

Photon efficiency 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 2.0

pχc

T spectrum 2.6 2.4 2.2 2.1 2.0 1.8 1.6 1.3 1.0 0.7 6.4

Total 5.8 6.5 6.0 5.9 5.8 5.8 5.7 6.0 7.6 6.5 8.2

Table 1. Systematic uncertainties on the ratio of χc2 and χc1 yields for each p
J/ψ
T bin (in percent).

The total systematic uncertainty is defined as the quadratic sum of all the systematic uncertainties.

χc2 and χc0 decays have the same pT dependence. For the ratio of χc0 to χc2 cross-sections

the systematic uncertainty is assessed using the pT spectrum of the χc1 mesons instead

(alternatively for χc2 or χc0 mesons): the efficiency ratio varies by ±13%.

All of the systematic uncertainties are uncorrelated among bins, except those related

to the pT spectrum shape. Table 1 summarises the systematic uncertainties on the ratio

of yields for each p
J/ψ
T bin.

The ratio of cross-sections is also affected by the uncertainties on the branching fraction

of χc → J/ψγ leading to an additional systematic uncertainty of 6.0% (8.0%) on the

cross section ratio σ(χc2)/σ(χc1) (σ(χc0)/σ(χc2)). For each p
J/ψ
T bin the total systematic

uncertainty is defined as the quadratic sum of all the systematic uncertainties detailed here.

6 χc polarization

The prompt χc polarization is unknown. The simulated χc mesons are unpolarized and all

the efficiencies given in the previous sections are therefore determined under the assumption

that the χc1 and the χc2 mesons are produced unpolarized. The photon and J/ψ momentum

distributions depend on the polarization of the χc state and the same is true for the ratio

of efficiencies. The correction factors for the ratio of efficiencies under other polarization

scenarios are derived here.

The angular distribution of the χc → J/ψγ decay is described by the angles θJ/ψ , θχc

and φ where: θJ/ψ is the angle between the directions of the positive muon in the J/ψ rest

frame and the J/ψ in the χc rest frame; θχc is the angle between the directions of the J/ψ

in the χc rest frame and the χc in the laboratory frame; φ is the angle between the J/ψ

decay plane in the χc rest frame and the plane formed by the χc direction in the laboratory

frame and the direction of the J/ψ in the χc rest frame. The angular distributions of the

χc states depend on mχcJ , which is the azimuthal angular momentum quantum number of

the χcJ state. The general expressions for the angular distributions are independent of the

choice of polarization axis (here chosen as the direction of the χc in the laboratory frame)

and are detailed in ref. [9]. For each simulated event in the unpolarized sample, a weight

is calculated from the values of θJ/ψ , θχc and φ in the various polarization hypotheses and
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p
J/ψ
T [ GeV/c ]

(|mχc1 |,|mχc2 |) 3-4 4-5 5-6 6-7 7-8 8-9 9-11 11-13 13-16 16-20

(unpol,0) 1.07 1.04 1.00 0.96 0.93 0.94 0.91 0.87 0.89 0.86

(unpol,1) 0.99 0.99 0.98 0.98 0.98 0.98 0.97 0.96 0.95 0.98

(unpol,2) 0.97 0.98 1.02 1.05 1.08 1.07 1.13 1.16 1.16 1.16

(0,unpol) 1.03 1.01 0.98 0.97 0.94 0.92 0.94 0.91 0.89 0.90

(0,0) 1.10 1.05 0.98 0.93 0.88 0.86 0.85 0.79 0.79 0.77

(0,1) 1.02 1.00 0.96 0.95 0.92 0.90 0.90 0.88 0.84 0.88

(0,2) 1.00 0.99 1.00 1.01 1.02 0.98 1.06 1.05 1.03 1.05

(1,unpol) 1.00 1.01 1.02 1.02 1.03 1.03 1.04 1.06 1.05 1.07

(1,0) 1.07 1.05 1.02 0.98 0.96 0.97 0.94 0.92 0.93 0.92

(1,1) 0.99 1.00 1.00 1.00 1.01 1.01 1.00 1.02 1.00 1.05

(1,2) 0.97 0.98 1.04 1.06 1.11 1.11 1.17 1.22 1.22 1.25

Table 2. Correction factors to be applied to the final σ(χc2)/σ(χc1) results for each p
J/ψ
T bin for

different combinations of χc1 and χc2 polarization states |J,mχcJ
> with |mχcJ

| = 0, ..., J (“unpol”

means the χc is unpolarized). The polarization axis is defined as the direction of the χc in the

laboratory frame.

the ratio of efficiencies is deduced for each (mχc1 ,mχc2) polarization combination. Table 2

gives the correction factors to apply to the final σ(χc2)/σ(χc1) results for each (mχc1 ,mχc2)

polarization combination.

These corrections are different from those found in the analysis using calorimetric pho-

tons [12]. This is due to the fact that the acceptance efficiency of converted photons highly

depends on the polar angle of the photon: for large angles there is a higher probability

that one of the electrons escapes the detector before the calorimeter. The systematic un-

certainties estimated in the case where both χc1 and χc2 mesons are produced unpolarized

also apply to the other polarization scenarios.

7 Results

For each p
J/ψ
T bin the ratio of χc2 to χc1 yields, obtained from a least squares fit described

in section 4.3, is corrected for the peaking background (see section 4.1), by the efficiency

ratio (see section 4.2) and by the ratio of branching fractions of χc → J/ψγ (see section 4).

Figure 5 (left) shows the ratio of the χc2 to χc1 production cross-sections as a function of

p
J/ψ
T under the assumption that the χc mesons are produced unpolarized. The overall sys-

tematic uncertainty (6.0%) due to the branching fraction of χc → J/ψγ is not shown here.

Table 3 gives the ratio of cross-sections with their statistical and systematic uncertainties

for each p
J/ψ
T bin including that originating from the unknown polarization of the χc states.

Figure 5 (right) shows a comparison of this measurement with the next to leading order

(NLO) NRQCD calculation of ref. [5] and with the LO NRQCD calculation of ref. [24].

A χc0 signal is observed for 4 < p
J/ψ
T < 20 GeV/c with a statistical significance, de-

termined from the ratio of the signal yield and its uncertainty, of 4.3 σ and the extracted

yield is N(χc0) = 705 ± 163. The ratio of χc0 and χc2 yields obtained from the fit is
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1

1.5 LHCb, 2<y<4.5

NLO NRQCD

LO NRQCD

Figure 5. (left) Ratio of χc2 to χc1 cross-sections at
√
s = 7 TeV for 2.0 < y < 4.5. The statistical

uncertainty is shown with a red error bar and the systematic uncertainty with a hashed rectangle.

(right) Comparison of the LHCb results (with total uncertainty) with the NLO NRQCD calculation

from ref. [5] (blue shading) and the LO NRQCD calculation of ref. [24] (solid green). The LHCb

results are obtained assuming the χc mesons are produced unpolarized.

corrected by the efficiency ratio (see section 4.2) and the ratio of branching fractions in

order to obtain the ratio of cross-sections (under the hypothesis of unpolarized states) and

integrated over p
J/ψ
T

σ(χc0)/σ(χc2) = 1.19± 0.27 (stat)± 0.29 (syst)± 0.16 ( pT model)± 0.09 (B),

where the first uncertainty is statistical, the second is the systematic uncertainty dominated

by the photon efficiency, the χc1 tail parameters and background modelling, the third from

the choice of pT spectrum and the fourth from the branching fraction uncertainty. For

comparison, the ratio of χc2 to χc1 production cross-sections for the same p
J/ψ
T range is

σ(χc2)/σ(χc1) = 0.787± 0.014 (stat)± 0.034 (syst)± 0.051 ( pT model)± 0.047 (B).

8 Conclusion

The ratio of prompt production cross-sections of χc2 and χc1 is measured in a rapidity

range 2.0 < y < 4.5 as a function of p
J/ψ
T from 3 to 20 GeV/c at

√
s = 7 TeV using the

decays χc → J/ψγ where the photon converts in the detector material.

This ratio was also measured by LHCb using calorimetric photons [12], by the CMS

experiment [11] in the rapidity range |y| < 1 using converted photons at
√
s = 7 TeV and

by CDF [10] using converted photons at
√
s = 1.96 TeV in the range |η(J/ψ )| < 1 and

pT(γ) > 1.0 GeV/c. These measurements are compared in figure 6. The ratios are expected

to be similar for pp and pp collisions since χc mesons are produced predominantly via gluon-

gluon interactions and depend only weakly on the centre-of-mass energy and y coverage [5,

28]. The results from this analysis are compatible with the CMS and CDF results. The

statistical and systematic uncertainties can be safely assumed to be uncorrelated between

the analysis presented here and the LHCb analysis using calorimetric photons, since the

data samples are different, the photon reconstruction is based on different subdetectors

(calorimeter or tracker) and the background modelling is performed in a different way. The
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Figure 6. Comparison of the ratio of χc2 to χc1 cross-sections obtained by LHCb using calori-

metric photons [12] (green open squares), CMS result [11] (blue filled squares), CDF result (purple

filled triangles) [10] and the result presented here (red open circles) under the assumption (left)

of unpolarized states and (right) under the assumption (mχc1
,mχc2

) = (0, 0) in the helicity frame.

The uncertainty due to the limited knowledge of the branching fractions of χc → J/ψγ, which is

common to all the measurements, is not included here.

p
J/ψ
T [GeV/c ] σ(χc2)/σ(χc1)

3− 4 1.037± 0.033(stat)± 0.060(syst)± 0.062 (B) +0.10
−0.03(pol)

4− 5 0.923± 0.029(stat)± 0.060(syst)± 0.055 (B) +0.05
−0.02(pol)

5− 6 0.795± 0.028(stat)± 0.048(syst)± 0.048 (B) +0.03
−0.03(pol)

6− 7 0.746± 0.032(stat)± 0.044(syst)± 0.045 (B) +0.05
−0.05(pol)

7− 8 0.692± 0.039(stat)± 0.040(syst)± 0.042 (B) +0.08
−0.08(pol)

8− 9 0.699± 0.044(stat)± 0.041(syst)± 0.042 (B) +0.08
−0.10(pol)

9− 11 0.625± 0.035(stat)± 0.036(syst)± 0.038 (B) +0.11
−0.09(pol)

11− 13 0.600± 0.057(stat)± 0.036(syst)± 0.036 (B) +0.13
−0.13(pol)

13− 16 0.675± 0.067(stat)± 0.051(syst)± 0.040 (B) +0.15
−0.15(pol)

16− 20 0.581± 0.096(stat)± 0.038(syst)± 0.035 (B) +0.15
−0.15(pol)

Table 3. Measurements of the ratio of χc2 to χc1 production cross-sections for the given p
J/ψ
T range

assuming unpolarized χc production. The first uncertainty is statistical, the second is systematic,

the third is from the branching fractions used and the last gives the maximum correction due to

the unknown polarization.

measurements are in agreement but the results of the analysis using converted photons are

systematically lower. As underlined in section 6 analysis-dependent corrections have to

be applied to these ratios depending on the polarization hypothesis (see table 2). When

correcting the results assuming the χc states are polarized with (mχc1 ,mχc2) = (0, 0), all

the results are in better agreement as shown in figure 6 (right).

The χc0 meson prompt production is also studied and its production cross section ratio

relative to the χc2 meson is measured in the range 4 GeV/c < p
J/ψ
T < 20 GeV/c. This is the

first evidence for χc0 meson production at a hadron collider. Our result is in agreement with
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the NLO NRQCD prediction of σ(χc0)/σ(χc2) = 0.62± 0.10 (4 < p
J/ψ
T < 20 GeV/c) [5] and

with the LO NRCQD prediction of σ(χc0)/σ(χc2) = 0.53±0.02 (4 < p
J/ψ
T < 20 GeV/c) [24].
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9 Fakultät Physik, Technische Universität Dortmund, Dortmund, Germany

10 Max-Planck-Institut für Kernphysik (MPIK), Heidelberg, Germany
11 Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
12 School of Physics, University College Dublin, Dublin, Ireland
13 Sezione INFN di Bari, Bari, Italy
14 Sezione INFN di Bologna, Bologna, Italy
15 Sezione INFN di Cagliari, Cagliari, Italy
16 Sezione INFN di Ferrara, Ferrara, Italy
17 Sezione INFN di Firenze, Firenze, Italy
18 Laboratori Nazionali dell’INFN di Frascati, Frascati, Italy
19 Sezione INFN di Genova, Genova, Italy
20 Sezione INFN di Milano Bicocca, Milano, Italy
21 Sezione INFN di Padova, Padova, Italy
22 Sezione INFN di Pisa, Pisa, Italy
23 Sezione INFN di Roma Tor Vergata, Roma, Italy
24 Sezione INFN di Roma La Sapienza, Roma, Italy
25 Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences, Kraków, Poland
26 AGH - University of Science and Technology, Faculty of Physics and Applied Computer Science,

Kraków, Poland
27 National Center for Nuclear Research (NCBJ), Warsaw, Poland
28 Horia Hulubei National Institute of Physics and Nuclear Engineering,

Bucharest-Magurele, Romania
29 Petersburg Nuclear Physics Institute (PNPI), Gatchina, Russia
30 Institute of Theoretical and Experimental Physics (ITEP), Moscow, Russia
31 Institute of Nuclear Physics, Moscow State University (SINP MSU), Moscow, Russia
32 Institute for Nuclear Research of the Russian Academy of Sciences (INR RAN), Moscow, Russia
33 Budker Institute of Nuclear Physics (SB RAS) and Novosibirsk State University,

Novosibirsk, Russia

– 18 –



J
H
E
P
1
0
(
2
0
1
3
)
1
1
5

34 Institute for High Energy Physics (IHEP), Protvino, Russia
35 Universitat de Barcelona, Barcelona, Spain
36 Universidad de Santiago de Compostela, Santiago de Compostela, Spain
37 European Organization for Nuclear Research (CERN), Geneva, Switzerland
38 Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
39 Physik-Institut, Universität Zürich, Zürich, Switzerland
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