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ABSTRACT 

The work presented in this thesis comprises the synthesis and 

examination of several series of azo dyes of general structure (I) 

where Y incorporates the terminal nitrogen atom in a five- or six-membered 

,, 
CH 

Ar-N=N-Ph-N 
2Y 

(I) 
\CH2J 

saturated heterocyclic ring system, and Ar is an aromatic carbocyclic or 

heterocyclic residue, often containing substituent groups. Results are 

interpreted in terms of the effect of Ar and Y. (electronic and steric) on the 

conjugation of the lone pair of electrons of the terminal nitrogen atom 

with the rest of the system. Thus, -the pyrrolidinoazo dyes (Y=-CH2CH2-) 

absorb at similar wavelengths to their NN-diethyl analogues whilst the 

corresponding piperidino dyes (Y=-CH2CH2CH2-) show hypsochromic shifts 

of max" The* presence, of a Y-heteroatom in a six-membered saturated ring 

increases this hypsochromic effect. 

Absorption bands of the mono-protonated chromogens have also been 

examined; in the azobenzene series it is found that variation of the 

terminal amino group produces a change from almost exclusive protonation 

at the ß-azo nitrogen atom (azonium'ion) to nearly quantitative protonation 

at the terminal nitrogen atom (ammonium ion). 

Trends in the p. m. r. spectra'of the dyes have been noted. Fast- 

ness properties of the dyes'on polyester are given. Light fastness 

ratings are generally low, although the presence of a Y-heteroatom in 

the six-membered terminal amino ring is advantageous, resulting in values 

approaching those of the NN-diethyl counterparts. The light fastness 

properties of monoazo dyes are discussed generally. 
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Basicity values have been obtained for selected dyes of each 

series; pKa is generally found to decrease as the donor capacity 

of the terminal nitrogen atom decreases. Somewhat surprisingly, the 

basicities of the 4'-substituted pyrrolidinoazobenzene types appear 

to be insensitive to the substituent, whereas measurements on related 

piperidino compounds suggest that for this series pKa falls as the 

electron withdrawing strength of the 4'-substituent increases. 

Pariser-Parr-Pople (PPP) molecular orbital calculations have been 

carried out for dyes of the pyrrolidino series. Good results are 

obtained for chromogens where Ar is carbocy clic, and also where Ar is 

heterocyclic after modification of certain parameters relevant to the hetero- 

atoms of this system(it is possible that these parameters may not be 

of general use in other dye systems). Additional information available 

from this type of calculation, such as prediction of oscillator 

strengths, electron densities, dipole moments and transition moments, 

is briefly discussed. 
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1. INTRODUCTION 
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I. I. Early History of the Synthetic Dye Industry' 

The azo dyes, characterised by the presence of one or more azo 

(-N=N-) groups? are by far the most important of all the groups of 

colouring matters. These compounds span all the various dye application 

classes, and consequently are utilised in one form or. another"on all the 

commercial fibres in use at the present time. The history of the azo 

dyes dates back to the origins of the synthetic dyestuffs industry 

which, it is universally accepted, was launched in 1856 when William 

Henry Perkin, 
3 

attempting to synthesize quinine by the action 

of potassium dichromate on aniline sulphate, isolated from the unattractive 

black product a small amount of a violet colouring matter which dyed 

silk directly. Perkin called this product Mauveine; it is perhaps 

better known today as Perkin's Mauve(1). 
4 

2 

H 

CH3 

(1) 

S04 2 

Perkin's Mauve was not-the first colorant to be synthetically 

produced, however; as early as 1771, Woulfe prepared picric acid by 

the action of nitric acid on indigo and showed that it dyed silk in 

bright yellow shades and, five years later, Scheele prepared a dye known 

as Murexide by the action of nitric acid and ammonia on uric acid. 

Also, in 1834 Runge obtained rosolic acid, but none of these products 

attained any commercial significance. Perkin, however, recognised the 
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commercial importance of his product and was able to develop its 

synthesis so that the dye-could be used in large scale production; 

this began in 1857. Thus, Perkin's Mauve was the first synthetic 

dye to be manufactured in bulk and used for practical dyeing. The 

brilliant violet hue on*silk immediately attracted much attention and 

stimulated research in the dyestuffs field. 

It was in 1858 that Peter Griess5'6 discovered the diazotisation 

reaction. 
7'8 As the use of sodium nitrite as a source of nitrous 

acid was unknown until Martius'discovery in 1866,9 Griess generated 

nitrous fumes by the reduction of nitric acid and reacted these with 

picramic acid, obtaining an unexpected product which he called a 

diazo compound. This material proved to be 4,6-dinitrobenzene-2,1-diazo 

oxide(2). 
7 

NO2 

(2) 

In 1859, Griess obtained aminoazobenzene by a rearrangement reaction 

but this was not in fact the., first azo compound. Three years earlier, 

Perkin and Church, investigating the reduction of dinitronaphthalene, 

isolated 4-aminoazonaphthalene(3). These workers also reduced this 

compound completely, so obtaining the first naphthalenediamine and 

introducing what ultimately became a standard method of determining the 

constitution of azo compounds. Consequently, this reaction was the 

first definite example of the preparation of an azo compound. 
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N=N 

(3) 

NH2 

Griess eventually discovered the coupling reaction, 
10 during 

1861 and 1862, the first dye prepared in this way being p-phenylazo- 

naphthylamine, which is still in use today. About this time Griess 

also prepared p-hydroxyazobenzene (the first hydroxyazo dye) 

indirectly by treating diazobenzene with barium carbonate, and dis- 

covered the first dis-azo dye, 2,4-bisphenylazophenol. In 1870, 

Kekul6 also prepared p-hydroxyazobenzene, this time by coupling 

diazotised aniline to phenol, and at the same time determined the 

constitution of the azo compounds. Earlier, in 1863, Roberts, Dale & 

Co. had marketed the first really successful azo dye, Bismark Brown (4), 

but the initial manufacture of an azo dye by Griess' method of 

(4) 
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diazotisation and coupling had to wait until 1876 when Witt discovered 

the important basic dye Chrysoidine(4a), made by coupling benzene 

diazonium chloride with m-phenylenediamine. 

N=N 

(4a) 

+ NH3 CI 

The decisive work of Kekuld on the quadrivalence of carbon (1858) 

and the constitution of benzene (1865) opened up the way for the 

planned preparation of synthetic dyes. Towards the end of the nineteenth 

century, the azo dyes flourished as the range of intermediates grew11 

and, by 1885, nearly 10,000 individual coloured azo compounds were 

covered by patents, most of them German. 

1.2. Development and Improvement of Azo Disperse Dyes 

Before the First World War, almost all dyes were applied from 

solution in an aqueous dyebath to cotton, wool, silk and other natural 

fibres. The introduction of a man-made fibre, cellulose acetate, with 

an inherent hydrophobic nature, created a situation in which few of the 

then available dyes had affinity for the new fibre. As the result of 

an examination into the dyeing properties of cellulose acetate, Green 

and Saunders in 1922 discovered the Ionamines12 (BDC) which were 

w -sulphonic acids of N-alkylaminoazo compounds, such as (5), and of 

aminoanthraquinone derivatives. These water soluble dyes were 

hydrolysed in the aqueous dyebath to form the insoluble free base which 

underwent absorption by the fibre. Once this fact was realised, the 

opportunity of dyeing cellulose acetate with water insoluble dyes became 
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N=N 

(s) 

/Et 
N 
\CH2SO3Nä 

apparent, provided that these dyes were sufficiently dispersed in the 

dyebath. The first group of dyes of this type were the Dispersols 

(ICI), such as Dispersol Fast Red R(6) and Dispersol Diazo Black AS(7), 

so called because diazotisation of the dye on the fibre and develop- 

ment with hydroxynaphthoic acid gives a full blue-black coloration. 

The Celliton (IG) range included blue monoazo dyes, obtained both 

from poly-substituted anilines and also by incorporating the benzthiazole 

ring system as in Celliton Discharge Blue 5G(8). 

(6) 

MeO 

N=N 

c>> 

N=N 

NH 2 

(s) 
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The development of nylon, first manufactured commercially in 1938 

in the USA, and of acrylic fibres, developed during the 1940s, both 

types possessing hydrophobic characteristics, further increased the use 

of the disperse dyes. However, the advent of polyester fibres, 

discovered in 1941 and introduced commercially in 1948, prompted a 

particularly intensive research effort. Polyester is much more hydrophobic 

than cellulose acetate and is only slightly swollen by water up to the 

atmospheric boil which, for practical. purposes, in 1950 was the maximum 

temperature available for dyeing. Waters13 showed that only dyes of 

very low aqueous solubility had appreciable substantivity for the 

fibre. Hence, disperse dyes were recognised as the main type for the 

dyeing of this particular fibre. 

The earliest recommendations were dominated by the need for 

acceptable colour yields in practicable dyeing times (ca. 90 min) at 

the atmospheric boil. Unfortunately, the fastness properties of these 

types were low, and the compounds were consequently superseded by dyes 

which had much better application properties; the dye-build-up on the 

fibre was increased to acceptable limits by the use of carriers at 

the boil and also by high-temperature dyeing at pressures such as 

201b in 2. 

These azo disperse dyes are of general structure (9); this type 

of structure has continued in use up to the present time. 
14 Much 

of the research work carried out by dye manufacturers is concerned with 

ringing the structural changes in dyes of formula (9), and related 

compounds, in order to extend the colour range and to meet application 

and fastness requirements. 
15-17 

It has long been realised that structural 
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(9) 

X, Y, Z =H or electron withdrawing groups 

A, B =H or electron donating groups 

R1, R2 = alkyl or substituted alkyl groups 

variations can improve one property at the expense of another and 

that inter-relationships are often complex. 

The colour of the simplest azo disperse dyes is usually yellow, 

as with (10). 6 Deeper colours can be obtained by variation in the 

number and type of substituents present, as in the case of dyes (11)18 

and (12)19 which are red and blue, respectively, or by replacing one 

or both of the carbocyclic aromatic systems by heterocyclic analogues. 

N=N NMe2 

(10 ). " 

ýC2H4CN 
N=N---(-' \)-N 

\C2H 

4OAC 

(ii) 
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SO2NHEt 

(ii) 

Most commonly, in the latter group, the diazo component is an 

appropriately substituted sulphur heterocycle, especially benzthiazole, 

thiazole and thiophene types, exemplified by (13), 20 (14)21 and (15), 19 

respectively. Other diazo components cited in the patent literature 

include those based on 3-aminopyrazoles, 5-aminoimidazoles, 

amino-1,2,4- and -1,3,4-thiadiazoles, 2-aminoisothiazoles and 

N=N 

(13) 

O NN 

ýN-N 

2s 

(14) 

NHAc 

/C2H4CN 
N 

Et 

/CH2CH(OH)CH2OH 

\ 
Et 

N 

(15) 

3-aminoisobenzthiazoles (16). The latter type, particularly those 

containing a 5-nitro group, give blues with simple coupling components, 

thereby exhibiting a remarkable bathochromic effect. 
22 Fewer 

examples are known of dialkylamino heterocyclic coupling components 

and dyes derived therefrom; an example is provided by dye (17)-which 

23 is green. 
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NH2 

(ý6) 

Compared with their benzene analogues, these heterocyclic 

systems give rise to dyes which are more bathochromic, possess higher 

tinctorial strength and often exhibit better fastness properties. 

('7) 

The fact that as yet relatively few of these dyes are in commercial 

use is mainly due to a lack of economically viable synthetic procedures. 

This problem will no doubt be overcome in the relatively near future. 

The fastness properties of azo disperse dyes can also be changed 

considerably by modification of structure (9). The structure of the 

substrate is also a factor, and it has been found that in general the 

highest lightfastness occur on polyester, and the lowest on nylon, 

with cellulose acetate and triacetate intermediate. 24,25 

From available data it appears (Table 1.1) that lightfastness on 

polyester increases as the para substituent is made more electronegative. 
20 
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Similar behaviour occurs when the ortho substituent of the p-nitro 

dye (18) is varied, 
16 

although o-nitro is an exception, being 4-5 points 

lower than o-cyano even though the two substituents have similar 

electronegativities. The general trend is essentially reversed on 

nylon. 

Table I. I. Lightfastness Ratings of some Azo Dyes (18)16.20 

N=N 

(18) 

Substituents Lightfastness 

R1 R2 R3 Polyester Nylon 

HH Me 

OMe H Me 

S02NEt2 H Me 

COMe H Me 

SO2Me H Me 

2 

2 

3 

4 

4 

NO2 H Me 5- 

NO2 NO2 H21 

NO2 OMe H 3-4 4 

NO2 Me H 4-5 4-5 

NO2 HH54 

NO2 Cl H6 3-4 

NO2 CN H 6-7 1-2 
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It is also apparent that the nature of the terminal alkyl groups 

in dyes of this type (19) is important (Table 1.2). 16 High 

fastness to light on polyester can be associated with the presence 

of one or more N- ß-cyanoethyl groups, whilst the corresponding 

hydroxyethyl group is detrimental. It is interesting that acylation 

of the free hydroxy group in alkyl chains of this type causes a 

marked increase in the lightfastness of the dyes. 26 The introduction 

of an N-trifluoroethyl terminal group has recently been shown to be 

advantageous; dye (20; X=CF3) was rated at lightfastness 6-7 on 

polyester whereas the parent dye (20; X=Me) had a value of 3.27 

Table 1.2. Lightfastness Ratings of some Azo Dyes (19) on Polyester. 16 

N=N 

(19) 

Rý R2 

H OH 

HH 

OH CN 

/CH2CH2R1 
N 

CH2CH2R2 

Lightfastness 

3 

3-4 

4 

H CN 6 

OCOMe CN` 7 

CN CN 7 

Dyes containing the benzthiazole ring system generally have 

slightly higher lightfastness ratings on polyester compared with 

their benzene analogues. 
20 

The incorporation of a nitro group in 
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the 6-position of the benzthiazole ring leads to greatly improved 

figures, but in the 4-position the same group has less effect. 

Incorporation of a thiazole ring into azo dyes appears to lower the 

lightfastness slightly; a 5-nitrothiazole derivative showed a drop 

of I point relative to its 4-nitrophenyl equivalent. 
28 

The 

3-nitro-5-acyl-2-thienylazo dyes are reported as having similar 

lightfastness properties to the corresponding 5-nitrothiazole dyes. 19 

N=N 

(20) 

Although the photochemical degradation of aminoazobenzene disperse 

dyes is not a simple process, certain correlations have been 29 

established. Photodecomposition rates in ethanolic solution have been 

linearly related to pKa values, 
30 

which are claimed to be a measure of 

the electronegativity of the ß-nitrogen of the azo group. A relationship 

has also been observed between the mass spectral behaviour of certain 

ago dyes and their lightfasness, 31 
suggesting a link between the two 

modes of fission, electron impact and photochemical. 

In addition to improving lightfastness properties, a trend has 

developed towards increased fastness to heat (sublimation fastness), 

a property which became important as new dyeing processes, such as high- 

temperature dyeing and thermofixation, were introduced. Heat fastness, 

like rate of dyeing, is dependent on the diffusion rate of the dye 

through the fibre infrastructure. Hence, in general, heat fastness 

increases with increasing relative molecular mass or polarity of the dye. 

The presence of hydroxy groups, which are able to form hydrogen bonds 
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with appropriate fibres, can also be important in higher fastness to 

heat. 32 N- ß-Cyanoethyl groups are beneficial to both heat and 

lightfastness properties. 
16 The influence of nuclear substituents is 

less marked, although electron withdrawing groups appear to be 

16 
advantageous. An acylamino substituent in the 2-position is often 

associated with improved heat fastness, 17 
as is the presence of various 

heterocyclic rings 9such as in the benzthiazolylazo dyes. 20 Attainment 

of good fastness to light and thermofixation requires a careful choice 

of substituents. 

The full range of colours and acceptable fastness properties of the 

azo disperse dyes are undoubtedly contributory factors in their. dominance 

of the disperse dye market. Other equally important economic factors 

are: 

i) the dyes are relatively cheap and generally do not require many 

intermediate production stages, 

ii) new manufacturing plant is more versatile and requires a lower 

capital investment than in the case of other disperse dye classes. 

The introduction of a completely new hydrophobic fibre requiring 

specialised disperse dyes is rather unlikely. Nevertheless, research 

activity will probably continue at its present pace in the near future 

to tailor dyes for particular application processess such as the 

coloration of polyester-cellulose blends 
34 

and transfer printing. 
33 

It 

is interesting to note that the latter process requires the dye to 

sublime and as such will partly reverse the underlying trend towards 

high sublimation fastness. Solvent dyeing34 may or may not be 

commercially developed in the near future, but it is likely that research 

will continue into the modifi 
Ä ion of disperse dye molecules to suit any 
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proposed solvent dyeing techniques. The increasing importance of liquid 

crystal technology should also encourage research into azo disperse 

dyes35 and-it is clear that there are still many challenges left for 

the azo chemist. 

1.3. Early Theories of Colour and Constitution Relationships 

Relationships between the colour of dye molecules and their con- 

stitution have been sought by chemists ever since the beginnings of 

the synthetic dye industry. 

The first major generalisation was made in 1868 by Graebe and 

Liebermann36 who attributed the colour of organic molecules to their 

unsaturation, since all the coloured compounds then known became 

colourless on reduction. In 1876, Witt introduced the concept of 

the chromophore, chromogen and auxochrome. 
37 

The chromophore is 

defined as a group of atoms in a molecule which is responsible for the 

colour, such as -NO, -N02 , -N=N-,, C=C\ and )C=b; molecules containing 

chromophores are referred to as chromogens. Although some chromogens 

such as azobenzene are themselves coloured, a chromophoric group does 

not necessarily confer colour on a molecule, but rather gives it a 

potentiality for colour. An auxochrome is best regarded as an electron 

donor group, 
38 

and includes any substituent which possesses lone pair 

electrons in conjugation with ar electron system, exemplified by ÖR and 

NR2. Whilst being incapable of conferring colour on a substance by 

itself, the introduction of an auxochromic group into a chromogen develops 

the colouring power of the latter and, in general, shifts its absorption 

to longer wavelengths and increases the intensity. The presence of an 

electron donor group is an essential prerequisite for the chromogen to 

exhibit dyeing properties. 
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In 1892, Schütze39 first used the terms bathochromic and hypso- 

chromic to signify shifts of absorption bands towards longer and 

shorter wavelengths, respectively. Increases and decreases in the 

intensity of an absorption band are sometimes referred to as hyper- 

chromic and hypochromic effects, respectively. 

Armstrong, 40 in 1888, suggested that a quinonoid constitution is 

important in organic dyes. In 1907, Hewitt and Mitchell41 noted 

the association between colour and conjugation. Drude, 
42 in 1904, 

linked visible and ultraviolet absorption with the electrons in a 

molecule and, thirty-five years later, Lewis and Calvin43 put forward 

the concept that the energy absorbed by a molecule on interaction with 

radiation is taken up by electronic oscillations. Previously, 

Dilthey and Wizinger44 had expanded Witt's ideas by utilising the 

colour and constitution relationships suggested by Hantzsch, 
45 

von Baeyer, Watson and others. A dye molecule was regarded as 46 47 

an electron releasing, relatively basic group (the electron donor 

group) connected to an electron attracting, relatively acidic residue 

(the chromophore) by a system of conjugated double bands. The greater 

the respective releasing and accepting powers of the two groups and 

the longer the unsaturated chain joining them together, the more 

bathochromic is the absorption band. 

In 1935, Bury48 in considering dyes of the cyanine-type (21) 

suggested that the colour was due to bond oscillations between 

the two equivalent (degenerate) Kekule structures (21a) and (21b) of 

equal energy but different charge distribution. In 1939, Pauling49 

++ 
22 22 RN-(CH=CH)ri-CH=NRE-> R N=CH-(CH=CH)n-NR 

(21a) (21b) 
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extended this argument to include neutral dyes, proposing that resonance 

involving high-energy, charge-separated structures such as (22b) would 

account for the colour of the merocyanines(22a). 

R2N- (CH=CH)n -CH=CH-C' 

(22a) H 

/ 
R2N=CH-(CH=CH)n-CH= 

(22b) H 

During these developments, a better understanding of the relation- 

ship between colour and chemical constitution was dependent upon the 

realisation that absorption in the ultraviolet, visible and infrared 

regions of the electromagnetic spectrum must be treated as a single 

topic, coloured compounds appearing so only because the molecules happen 

to absorb in the region in which the human eye is sensitive (the visible 

region). Thus, in terms of electronic transitions, the visible absorption 

bands of coloured organic compounds correspond to the ultraviolet bands 

of colourless compounds. 

1.4. Valence Bond Resonance Theory 

The rapid development of quantum mechanics in the years following 

the pioneering work of Schrödinger in 1926 enabled the valence bond method 

to be used in the calculation of the electronic propertiesýof polyatomic 

molecules. This method uses the concept of chemical bonds between atoms, 

involving electron pairs, and was first applied by Heitler and London 
49a in 

1927 to the hydrogen molecule. A rigorous application of the method 

would entail consideration of all the possible limiting resonance structures 

for the molecule, of both high and low energies. However, in a simplifi- 

cation, only the lowest energy resonance forms are used. 
50 

z + 

ýo 

' 0 A 
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For instance, Michler's Hydrol Blue, a cyanine-type dye, can be 

regarded as a resonance hybrid of. the two equivalent structures (23a) 

and(23b), ignoring other possible arrangements. As illustrated in 

Fig. 1.1(a), the wave functions of (23a), 0a and (23b), 0 b, then interact 

(23a) (23b) 

to give two new molecular wave functions of different energy, ýO, by 

symmetric combination of t and *b (1.1), and by antisymmetric 

combination of ýa and % (1.2). The lower energy wave function *o 

ýo -a+ 
ý 

(1.1) 
(1.2) 

can be equated with the ground state of the system, and has less energy 

than either of the contributing resonance forms, whilst P is equated 

with the first excited state, and has more energy than either of the 

contributing resonance canonicals. The wavelength of the first absorption 

band is then given by AE, the energy between the two states. 

When the molecule is represented by resonance structures of differing 

energies, such as in (24), in which structure (24a) is more stable than 

(24b) due to the higher electronegativity of oxygen relative to nitrogen, 

interaction gives two states which have a larger separation energy, 

Fig. 1.1(b), than in the first instance so that a hypsochromic shift is 

predicted. This effect is found to obtain with (23) absorbing maximally 

in 98% acetic acid at 607.5 nm compared with (24) at 498 nm. 
51 
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Fig. I. I. The interaction between two classical resonance structures 

(a) of equal energy, and (b), (c) of unequal energy. 
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In azo-type chromogens, the two major resonance canonicals differ 

appreciably in energy. The neutral structure, as illustrated by (25a), 

is more stable than that involving charge separation (25b). This 

situation is illustrated in Fig. 1.1(c). If X is replaced by another 

group which serves to destabilise the charge-separated form, then the 

resonance picture suggests that a hypsochromic shift will result; this 
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N=N 

(25a) 

N 

lllý 

(25b) 

prediction has been confirmed experimentally. For example, when X is 

an amino group the chromogen absorbs at approximately 440 M. whereas 

replacement with the more electronegative hydroxy group causes a shift 

to about 380 nm. It can be seen from Fig. 1.1(c) that the wave functions 

ýa and ýo for (25) are relatively close in energy terms, compared 

with (23) and (24), so that the resonance form (25a) can be regarded as 

the ground state of the molecule. Similarly, (25b) is taken to represent 

the excited state. 

Use of these structures can account qualitatively for the solvato- 

chromic effects of azo dyes in different solvents. An increase in solvent 

polarity will tend to stabilise the charge-separated excited state more 

than the neutral ground state (Fig. 1.2) resulting in a bathochromic 

shift. 
52 Thus, for example, dye (25; X=NEt2) absorbs at 460 nm in 

cyclohexane and 490 nm in ethanol, exhibiting a characteristic positive 

solvatochromism. 

The depiction of (25a) and (25b) as ground state and excited state 

structures, respectively, in azo dyes is vindicated somewhat by the results 

of dipole moment measurements on a series of para-substituted 

4-NN-dimethylaminoazobenzene dyes, which indicate that the contribution 

of charge-separated structures such as (25b) to the ground state of the 

53 dyes does not exceed 7%. 
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.1 
ES 

i AEb 

(a) (b) 

GS 

(AEa > AEb) 

Fig. 1.2. Change in energy levels on moving from (a) a non-polar to (b) 

a polar solvent for a system in which the ground state (GS) is 

less polar than the excited state (ES). 

1.5. Substituent Effects in Aminoazo Dyes. 14,54 

Azo dyes have been classified as donor-acceptor chromogens54 (26) 

D-A-N=N-B 

(26) 

where A and B are carbocyclic residues and D is the donor group. As all 

azo dyes exist preferentially in the trans configuration under normal 

conditions, all discussions and data will pertain to the trans isomers, 

unless otherwise specified. Tables 1.3-1.5 show that changes in D, A 

and B give rise to considerable variations in maximum wavelength of 

absorption ( Amax ). Closer examination reveals general trends which 

can often be explained qualitatively by reference to structures (27a) 

and (27b) which, as already pointed out with (25) in section 1.4, 'correspond 

AEa 

N=N 

(27a) 

-N 

(27b) 
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to the ground state and excited state of the chromogen, respectively. 

Factors which bring the two structures closer together in energy terms 

lead to bathochromic shifts of A. Consequently, the stronger 

the electron donor group D and the electron withdrawing group X, the 

more stabilised is the excited state relative to the ground state, and 

the more bathochromic is the shift. In 4,4'-disubstituted systems of 

type (27), it is usually found that, for a given series of dyes, the 

wavelength shift produced by an acceptor substituent X is approximately. 

related to the appropriate Hammett a constant. 
18,54-57 The deepest 

coloured dyes have electron donor substituents in ring A and electron 

withdrawing substituents confined to ring B. 

Resonance considerations suggest that structures of the type (27b), 

in which the negative charge is delocalised onto the electron acceptor 

group X, should only be important when X is ortho or Para to the azo 

linkage; meta-substituents should act only through inductive effects 

which will stabilise the excited state less leading to hypsochromic 

shifts relative to ortho- and Para-analogues. This situation is observed 

experimentally, for example, with the cyano-substituted 4-NN-diethyl- 

aminoazobenzenes (Table 1.5). The 2'- and 4'-cyano derivatives have 

similar Amax values whereas. the 3'-isomer shows a hypsochromic shift 

of about 20 nm; the dicyano-substituted chromogens also show the 

expected order of shifts. The cyano group is particularly suitable for 

this type of measurement, since its rod-like shape minimises any steric 

interference of the type shown in Fig. "1.3.65a Such steric effects are 

apparent when two substituents are present ortho to the azo group in the 

same ring and are maximised by spherical substituents. 
66 

In general, steric crowding in a molecule is most often relieved by 

bond rotation to give a non-planar system. Rotation is much easier 
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Table 1.3. Visible Absorption Spectra of some 4'-Substituted 

Derivatives of 4-NN-Dimethylaminoazobenzene (28) in 

Neutral and Acidic Solutions. 55 

N=N 

(28) 

NMe2 

No. XX 
max/nm 

X 
max/nm 

Aa/nm opb 
(ethanol) (ethanölic. HC1a) 

I NMe2 450 664 214 -0.83 
2 NH2 410 610 200 -0.66 
3 OMe -407 555 148 -0.27 
4 OEt 405 552 147 -0.24 
5 SMe 420 555 135 0.00 

6 Me 407 533 126 -0.17 
7 C6H5 422 544 122 +0.01 
8H 407 518 111 0.00 

9F 407 518 111 +0.06 

10 I 422 528 106 +0.18 
11 Cl 417 522 105 +0.23 
12 Br 419 523 104 +0.23 
13 OCF3 419 512 93 +0.35 
14 SCN 433 516 83 +0.52 

15 SCF3 432 514 82 +0.50 

16 CF3 427 505 78 +0.54 

17 Ac 447 517 70 +0.52 

18 S02Me 445 505 60 +0.72 

19 NO2 475 508 33 +0.78 
20 SO2CF3 476 500 24 +0.93 

a Two' volumes of ethanol and one volume of hydrochloric acid, d. 1.19 

b 
Ref. 58 
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Table 1.4. Visible Absorption Spectra of some Donor-substituted 

Azobenzene (29) Derivatives in Ethanol. 

I 

Substituents 

None 

2-NH2 

3-NH2 

4-NH2 

4-OH 

4-OMe 

4-SMe 

4-NHAc 

4-NHMe 

4-NHEt 

aRe f . 59 

bRef 
. 60 

=N 

(29) 

Xmax/nm(10 4e) 

318(2.14)a 

417(0.63)b 

417(0.13)b 

385(2,45)a 

349(2.63)a 

343(-)C 

362(2.40)a 

347(2.34)a 

402(2.57)a 

405(2.63)a 

Measured by author.. 

Ref. 18 

Substituents X 
max/=(10-4E) 

4-NMe2 408(2.75)a 

4-NMeEt 411(2.82)a 

4-NEt2 415(2.95)a 

4-N(C2H4CN) 
2 382(i. 95)d 

4-N(C2H4C1)2 397(2.57)e 

4-N(C2H40H)2 407(2"95)d 

2,4-diNH2 411(2.09)f 

2,4-di0 473(-)g 

3,4-di0 501(-)g 

2,5-di0 572(-)g 

eRef. 61 

fRef. 62 

gRef. 63 

energetically about an essential single bond than about an essential 

double bond. It is generally true that a bond of low ff-bond order 

(essential single bond) in the ground state of a molecule has a high n-bond 

order (essential double bond) in the excited state. Hence, steric hindrance 
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Table 1.5. Visible Absorption Spectra of some Cyano- Derivatives of 

4-NN-Diethylaminoazobenzene (30) in Ethanol. 
64 

4 

(30) 

Substituents IX max/nm(10-4E) 
Substituents A 

max/nm(10-4E) 

4'-CN 466(3.24) 3', 5'-diCN 478(3.39) 

3'-CN 446(2.82) 2', 5'-diCN 495(3.63) 

2'-CN 462(3.02) 3', 4'-diCN 500(3.89) 

2', 4'-diCN 513(3.98> 2', 4', 6'-triCN 562(4.68) 

2', 6'-diCN 503(3.31) 

(a) (b) 

Fig. 1.3. Alternative conformations' for an ortho-substituted 

azobenzene. 
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will destabilise the excited state more than the ground state, thereby 

causing a hypsochromic shift. 
65b 

This situation is invariably the 

case in azo dyes, as illustrated in Tables 1.6 and 1.7. One spherical 

substituent has little effect on Xmax (although a small drop in intensity 

may be observed) since the dye can assume conformation (a), Fig. I. I. 

In the case of a planar group, such as nitro, the substituent can itself 

rotate out of the molecular plane, thereby preserving the overall 
66 

planarity of the benzene rings of the dye. Thus, although a hypsochromic 

shift is observed, the loss of absorption intensity is not great (for 

example, Table 1.6; 2'-N02). Similar arguments to explain the mild 

steric effect apply in cases where two planar groups are present in 

ortho positions (for example, Table 1.7; X=Y=N02). However, the 

introduction of a second spherical substituent causes a dramatic 

hypsochromic shift and marked loss of intensity (for example, Table 1.7; 

X=Y=Me) due to the enforced crowding between this group and the lone 

pair of electrons of the a-azo nitrogen atom. 

Two cyano groups positioned ortho to the azo group show no obvious 

steric interaction and, in fact, each CN group added (in an ortho or 

Para position) increases the Amax value by a similar amount; other 

workers have noted this additivity relationship. 
64,68 

The effects of electron donor groups in the acceptor ring are not 

easily explained by resonance theory. It is found that both bathochromic 

and hypsochromic shifts can occur as illustrated by the closely related 

julolidine (32)56 and lilolidine (33)57 dyes. The methoxy-substituted dye (34b) 

shows little change from the parent'dye; when X=NMe2 (34c), however, a 

marked bathochromic shift is observed, but such substitution leads to a 

symmetrical contrapolarised system. 
69 

It appears that an electron donor 

in a conjugating position (ortho and/or Para) modifies the overall 
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Table 1.6. Visible Absorption Spectra of some ortho-Substituted 

Azo Dyes (in Ethanol) to Illustrate the Effect of One 

ortho-Substitueet. 

5' 6' 

Substituent Type R2 X 
max/nm 

10-4 c 
max 

2'-OMe Spherical Mea Mea 413 - 
4'-OMe Me Me 407 -- 
2'-Me Spherical Me Me 410 - 
4'-Me Me Me 407 - 
2'-Br Spherical EtCNb EtoHb 415 2.55 

4'-Br EtCN EtoH 410 2.96 

2'-CF3 Spherical EtCN EtoH 416 2.77 

4'-CF3 EtCN EtoH 418 2.95 

2'-C02Et Planar EtCN EtoH 405 2.72 

4'-C02Et EtCN EtoH 422 2.90 

2'-Ac Planar EtCN EtoH 415 2.56 

4'-Ac EtCN EtoH 429 2.91 

2'-CN Rod-like 'EtCN EtoH 433 3.09 

4'-CN EtCN EtoH 433 3.16 

2'-SO 2Me Spherical EtCN EtoH 433 2.86 

4'-S02 Me EtCN EtoH 435 3.00 

2'-NO2 Planar EtCN EtoH 424 2.76 

4'-NO2 EtCN EtoH 451 3.16 

a Where R1=R2=Me; ref. 55 

b 
Where R'=EtCN, R2=EtOH; ref. 67 
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Table 1.7. Visible Absorption Spectra of some ortho-Substituted Azo 

Dyes (31) (in Ethanol) to Illustrate the Effect of Two 

ortho-Substituents. 

N=N 

(31) 

%YX 
max/ 

nm 10-4 c max 

HH 453 4.40b 

'CH3 H 454 4.20 

CH3 CH3' 383 2.40 

CN H 504 4.50 

CN CN 549 3.80 

NO2 H 491 3.80 

NO2 NO2 520 4.80 

a Relative to X=Y=H 

b 
Bridgeman and Peters18 obtained 104emax= 3.09 

N=N 

(32) 

X=H; A 
max = 442 nm 

Aa/nm 

+1 

-70 

+51 

+96 

+38 

+67 

N=N 

(33) 

X=H; A 
max = 425 nm 

X=OMe; X 
max = 452 nm X=OMe; Xmax = 417 nm 
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N=N 

(34) 

NMe2 

(a) X=Y=H; 55 
'1 max a 408 nm 

(b) X=OMe, Y=H; 55 Amax ' 407 nm 

(c) X=NMe2, Y=H; 55 X 
max a 451 nm 

(d) X=H, Y=OEt; 55 X 
max ' 412 nm 

electronic distribution. On the other hand, a donor in the non- 

conjugating meta position, as with (34d), brings about a bathochromic 

movement of Amax ' Presumably by a -I inductive effect. The PPP method 

of molecular orbital calculation is capable of accommodating these 

variations (cf. Section 1.9). 70 

A simple resonance approach to the effects of substituents in the 

donor ring suggests that donor groups placed in conjugating positions 

to the azo linkage will give rise to bathochromic shifts, whereas in 

the meta position inductive withdrawal should bring about a hypsochromic 

shift. However, experimetal data do not uphold this view. Of the 

three aminoazobenzenes (Table 1.4), all absorb at longer wavelengths 

than azobenzene but the 4-substituted isomer is the least bathochromic, 

contrary to resonance theory but in accordance with PPP calculations. 
71 

It"can also be seen from the spectra of the ionised dihydroxyazobenzenes 

that the 2,4-derivative is the least bathochromic, again contrasting with 

resonance ideas. Donor groups in a 2,5-arrangement are seen to be 

particularly advantageous and display a synergistic effect (Table 1.8). 72 



29 

Table 1.8. Cumulative Effect of Electron Donors in 2- and 5-Positions. 

02N 

X 

(35) 

N 

Y 
max/nm 

72 
Aa /nma 

HH 

OMe 

H 

OMe 

527 

H 545 +18 

NHAc 547 +20 

NHAc 580 +53 

a Relative to X=Y=H 

In derivatives of 4-aminoazobenzene, and in the absence of steric 

effects, electron donor groups in the donor ring always cause a 

bathochromic shift of the first absorption band, whereas acceptor groups 

have the opposite effect (Table 1.9). It must be stressed that for 

true electronic substituent effects to be observed, steric effects must 

not be present. 

An extreme example of steric crowding is shown in the chromogen 

(37) in which both the donor and acceptor groups are deconjugated, 75 

producing a hypsochromic shift of 97 nm and an intensity drop of 22,800 

when measured in ethanol. 

Azo dyes analogous to (27) in which the carbocyclic acceptor ring 

is replaced by an aromatic heterocyclic system give rise to 
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t We 

X-Y-H; 'max 479 nm, Emax - 31,300 

X=Y= Me; X 
max = 382 nm, emax - 8,500 

Table 1.9. Electronic Effects of Substituents in the Donor Ring of 

Dye (36). a 

N=N 

(36) 

NR2 

XABCR ýmax/nm 10_3Emax 

NO2 HHH Et 

NO2 CH3 HH Et 

NO2 FHH Et 

NO2 HHHH 

NO2 H CH3 HH 

NO2 H CH3 CH3 H 

HHHHH 

486b 34.0 

497b 33.2 

469b 28.8 

445c - 

450c - 

454c - 

385d 24.5 

HHFFH 377e 28.8 

a Solvent ethanol 
d Ref-59 

b Ref. 73 e Ref-74 
C 

Ref . 70 
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marked bathochromic shifts and increases in intensity relative to their 

benzene counterparts. A measure of the colour changes involved is given 

by the list of azo dyes (38) in Scheme 1.1, arranged in order of increasing 

Xmax (given where known); the colour is that observed on polyester. 

It is difficult to obtain blues with fully benzenoid azo dyes with- 

out increasing the number of substituents in the acceptor and donor rings, 

whereas many heterocyclic derivatives, notably those of thiazole, 

isobenzthiazole and thiophene, give blues with relatively simple 

substitution patterns. 

It is of interest that the difference between parent and nitro- 

substituted forms of the thiazole, and presumably the thiophene, types 

is much greater (N90nm)21 than the corresponding benzthiazoles (N40nm), 20 

probably because in the latter compounds the rest of the chromophore 

is somewhat insulated from the electron withdrawing power of the nitro 

group by the benzene ring; PPP calculations suggest that the increased 

diene character of the thiophene ring, and presumably of other related 

heterocycles, is responsible for the inherent colour shift of this 

system. 
79 

Extinction coefficients for the simple heterocyclic azo dyes are 

of the order of 30,000-70,000 compared with 20,000-35,000 for the 

corresponding benzene analogues. 

Although numerous examples of heterocyclic azo disperse dyes appear 

in the patent literature, relatively few investigations have been reported 

elsewhere. 
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R-N=N 

(38) 

R: 

Colour: 

A 
maxInm: 

(ethanol) 

ti ý C S b 
Orange-pink 

< 
Bluish-redd 

Blue 

598e 

509 e 

Orange-pink 

ca. 483c 

Violet 

Blue-greenb 

CValue quoted is that of the 3-Me derivative - see ref. 76 

Reddish-violet 

548 e 

Blue Green-blue 

582 g 587e(571? )h 

aRef. 59 
bLikely 

position 

dSuggested 
position - see ref. 76 eRef. 76 

f Ref. 55(ref. 76 quotes 5.75. nm) 9Ref. 77 
hRef. 78 

Ac 

02N 

Yellow 

408a 

Red 

4859 

Violet 

f 
548 

N 

2S 

Yellowb 

N-N 

`S/ 

Bluish-red d 

NMe2 

02N 

Orange-red 

478a 

Bluish-red 

Scheme 1.1. Order of bathochromicity of some acceptor residues. 
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1.6. Dipole Moment Studies 

The dipole moments of derivatives of 4-aminoazobenzene give an 

indication of the conjugative effects between the terminal nitrogen 

lone pair and substituents located elsewhere in the molecule. Measure- 

ments on E-substituted 4-NN-dime thylaminoazobenzenes (Table 1.10)80 show 

that the dipole moment increases with the acceptor strength of X. The 

large differences (Au) between observed and calculated values for the 

nitro and thiocyanate groups have been explained by the so-called 

enhancement of resonance effect, due to the contribution of structures 

Table 1.10. Dipole Momentsa of p-Substituted Derivatives of 

NN-Dimethylaminoazobenzene (39). 80 

N=N 

(39) 

NMe2 

X (obs. ) 11 (ca1c) 
All 

OCH3 2.77 3.15 -0.38 

CH3 2.75 2.89 -0.14 

H 3.22 -- 

Cl 4.0 4.68 +0.21 

I 4.76 4.40 +0.36 

SCN 6.65 5.98 +0.67 

NO2 8.16 7.01 +1.15 

a Solvent benzene 
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such as (41) to the ground state, in addition to (40). The halogens 

are also capable of this effect to a smaller extent. 

N- 

(4o) 

NMe2 

('ei) 

NMe2 

Apparent dipole moments of a series of 2-substituted 9-phenylazo- 

julolidines and their NN-diethylaminoazobenzene analogues have recently 

been determined (Table 1.11). 81 Vector interaction moments, u(int)' in 

the direction of the major axis of the molecules (Fig. 1.4) were cal- 

culated in order to explain these moments. The values of u(int)' for the 

9-phenylazojulolidines are all greater than those for the corresponding 

NN-diethylaminoazobenzenes. It is suggested that ring closure leads to 

improved conjugation between the lone pair of electrons on the terminal 

nitrogen atom and the n-electron system of the aromatic ring to which 

it is attached. This delocalisation increases the it-electron density 

at the phenylazo group so that u(int) reflects the extent to which this 

electronic distribution is perturbed by the Para-substituent. In 

explanation, it is proposed that the terminal nitrogen atom in the 

Fig'. 1.4. Significance of u(int)' 92 

a P(int) for electron withdrawing substituent X 

d= p(int) for electron donor substituent X 
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Table 1.11. Comparison of Dipole Momentsa of 9-Phenylazojulolidine (J) 

and NN-Diethylaminoazobenzene (D) Derivatives. 81 

N=N 
N=N 

(J) (D) 

g p/D u(int)/D Au(int) op 

JDJD 

OMe 3.00 . ý. 

Me 2.99 - 2.88 1.70 1.55 0.15 -0.17 

H 3.57 3.40 1.93 1.72 0.21 0.00 

F 5.08 4.82 1.99 1.69 0.30 0.06 

Cl 5.14 5.01 1.95 1.79 0.16 0.24 

Br 5.27 5.15 2.10 1.95 0.15 0.27 

I 5.23 5.01 2.22 1.97 0.25 0.28 

CF3 6.82 6.44 2.66 2.25 0.41 0.54 

CN 8.41 8.17 2.79 2.53 0.26 1.00 
b 

NO2 8.68 8.43 3.08 2.81 0.27 1.27b 

NEt2 

a Solvent benzene b Enhanced v values 
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9-phenylazojulolidines is more nearly sp2-hybridised than that in the 

NN-diethylaminoazobenzenes and suggested that the hybridisation may be 

influenced by strongly electron withdrawing substituents. 

In both series of dyes, u(int) increases with increase in the Hammett Op 

constant, although there is no consistent trend in the differences between 

u(int) for the two series; U(int) may arise by interaction of the 

Para-substituent only with the n-electron distribution of its adjacent 

aromatic ring. 

1.7. Protonation Equilibria of Aminoazo Dyes 

Many E-aminoazo dyes (42) undergo a pronounced change in colour on 

addition of acid (halochromism). This phenomenon is well documented in 

the literature and a useful review has appeared. 
83 Solutions of the 

mono-acid salts of derivatives of 4-aminoazobenzene generally show two 

absorption bands, corresponding to an equilibrium mixture of two tautomeric 

forms, 84 
the azonium cation (43) in which the proton is attached to 

the ß-azo nitrogen atom 
85 (absorbing at 500-550 nm) and the ammonium 

cation (44) where protonation at the terminal nitrogen atom86 prevents con- 

jugation of its lone pair, thus shifting the absorption band to shorter 

wavelengths (about 320 nm) near to that of azobenzene itself. 

The tautomeric equilibrium constant, KT, is defined as K, r=[azonium]/ 

[ammonium]; 86-88 it should be noted, however, that some workers have 

used KT= [ammonium /[azonium]. 89-92 It would seem preferable to use the 

former equation, since addition of acid to the equilibrium mixture causes 

an increase in the amount of azonium cation present (i. e. the azonium 

cation is effectively the product of the reactior; also, the Ce/AE ratios 

as used by Sawicki are more directly applicable (see eqn. 1.3, section 1.8). 
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(43b) 

N RlR2 

N=N NRIR2 

NR1R2 

(43a) 

KT is dependent'upon the solvent and usually shows a gradual 

increase with increasing acid concentration. 
86 The relative amounts of 

each tautomer, can be estimated spectroscopically or from pKa values. 
83 

It should be noted that halochromism only occurs when the amino group 

is para to the azo linkage, but that such protonation characteristics 

are also shown by E-hydroxy- and 2-alkoxyazo compounds, although more 

strongly acidic conditions are required. 

The tautomeric equilibrium is dependent on steric effects, especially 

those which deconjugate the donor group. Thus, dye (37; X=H, Y=CH3) 

gives virtually no azonium tautomer, 93 
whereas the protonated azojulolidine 

dyes (32), with optimal conjugation of the terminal nitrogen lone pair, 

exist almost entirely in the azonium"form. 
56 These observations confirm 

the established view that the basicities of the ß-nitrogen and the terminal 

nitrogen atoms (and consequently the equilibrium) are mainly governed by 

the degree of conjugation between the amino group and the rest of the 

molecule. 
89,90 

UNIVERSITY LIBRARYLEEDEI 
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Applying . resonance theory to the azonium cation, the ground state 

of the molecule is best represented by (43a) and the excited state by 

(43b). 

direction of electron migration 

-L 

I 
H 

(43a) 

_direction 
of electron migration 

E 

(42a) 

N-N-ýIf ýi-NR'R2 

i H 

(43b) 

-N 

(42b) 

NRIR2 

Comparison with the neutral dye (42) shows that, in the azonium species, 

the ground and excited states are much closer together in energy terms so 

that a bathochromic shift of the first absorption band is observed on, 

protonation (positive halochromism). It can also be seen that the 

direction of charge migration accompanying electronic'excitation in the 

azonium form is opposite to that found in the neutral dye. This difference 

suggests that substituents X should have the'opposite effect in neutral 

and in protonated dyes and, indeed, electron donors, by stabilising the 

azonium excited state relative to the ground state, produce increased 

bathochromic shifts (Table 1,. 3). Electron acceptor groups behave in a 

less obvious manner (cf. electron donor groups in the acceptor ring of 

neutral dyes); powerful acceptors produce modest hypsochromic'shifts, 

whilst some weaker acceptors can give rise to slight bathochromic shifts 

(Table 1.3). 

The displacement of the absorption band is again roughly proportional 

to the Hammett a constant of the substituent X. However, excellent linear 
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correlations are found between the wavelength shift, Aazonium - xneutral (AX), 

or, more precisely, the frequency difference (Av), and the appropriate 

Hammett a constant 
55-57 (Table 1.3 and Fig. 1.5) in accordance with 

theoretical expectations. 
94 

As the electron withdrawing capacity of X increases, A decreases and 

can in fact become zero or even negative; the azonium cation absorbs at 

a shorter wavelength than the neutral dye. By extrapolation of the plot 

in Fig 1.5, it is possible to estimate the value of a, and hence the type 

substituent, needed to produce such negative halochromism; 95 
thus, 

Aa=o-1.24. 
From Table 1.12, it can be seen that dye (I), with a1: (p+m, ) 

somewhat less than 1.24, shows positive halochromism. Dye (II), having 

slightly above 1.24, exhibits a small negative halochromism whereas cE(p+m') 

dye (III) shows the relatively large negative halochromic effect expected 

for aE(p+m') moderately larger than 1.24. 

Examples of negative halochromism are quite rare when only one electron 

withdrawing group is present; examples include dyes (42; R'=R2=Et, 

X=C(CN)=C(CN) 2; A"= -6 nm)96 and (42; R'=R2=Me, X=N2+; AX _ -90 nm). 
95 

The julolidine derivative (32; X=N02), with its optimal conjugation of 

nitrogen lone pair, shows a hypsochromic shift of 4 nm on protonation. 
68 

Introduction of a heterocyclic residue can also promote this effect. 

the 

Thus, by using appropriate substituents, it is possible to design dyes 

which show no colour change in acid (tX'O) and which in theory should make 

good textile dyes, where pH sensitivity is undesirable. 
97 

Alternatively, 

dyes which show a marked colour change in acid can be made for use as 

indicators, exemplified by Methyl Orange (42; R1=R2=Me, X=SO3H). 

As the acid concentration increases, there is a gradual shift in the 

equilibrium between the azonium and ammonium cations towards the former 

species. This behaviour has been attributed in the 4-aminoazobenzenes to 



240-, 

e 200~ 
c 

f 
L 
iJ 

180 
K 
4 

E 
ý 
ý c 0 

160., 
I 

a. 

-1.0 
-0.8 -o. 6 -0.4 -0.2 13.0 0.2 

N=N 

(28) 

Aa = -101c + 125 

r=0.997 

NMe2 

0.4 0.6 0.8 1.0 1.2 1.4 
Ilp 

4o 

Fig. 1.5. Relation of Aazonium 
neutral 

to ap for some azo dyes (28). 



, 
41 

Table 1.12. Effect of Substituents on the Halochromism of Dyes (45)a. 

NMe2 

No. XY Xneutral' (nmb x 
azonium/nmc °E(p+m') 

I NO2 CF3 487 503 16' 1.10 

II S02CH3 S02CF3 497 494 -3 1.29 

III S02CF3 NO2 522 490 -32 1.46 

a Ref. 95 b In ethanol c In ethanolic hydrogen chloride 

d Effective a due to para and meta (converted)substituents. 

differences insolvation of the cation concerned through hydrogen bonding. 91 

In NN-disubstituted aminoazobenzenes this type of solvation will be 

appreciably less in the case of the ammonium ion and non-existent for 

the azonium form. A more important consideration may be the hybridisation 

of the terminal nitrogen atom; the tetrahedral configuration of this 

atom, due to sp 
3 hybridisation, in the ammonium species makes the access 

of the counter-ions difficult, whereas the same atom in the azonium form 

is sp2 hybridised and has a planar arrangement which allows the approach 

of counter-ions from above and below the plane of the molecule, with a 

resultant drop in free energy and stabilisation of the azonium form. 

As the acid concentration increases this stabilisation will increase, 

compared with the ammonium cation, as counter-ions cluster around the 

positive centre, causing an increase in the amount of azonium form present. 
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Once the saturation concentration of counter-ions at the terminal* 

nitrogen atom is reached, the maximum amount of azonium species will 

be present. 

In very strong acid conditions addition of a second proton may 

occur to give a species which absorbs in the 410-440 nm region. This 

latter band has been attributed tostructures of type (46)98'99 although 

there is some doubt as to the exact nature of the equilibrium set up. 
83 

Recent 15N 
and 

13C 
n. m. r. experiments involving 15N-enriched 

4-aminoazobenzene have suggested that protonation takes place at the a-azo 

and terminal nitrogen atoms (46b). 100 

1.8 Relationships Between pKaValues, CE/AE Ratio and Protonation 

Equilibria in Monoazo Dyes_ 

In the various derivatives of 4-aminoazobenzene there are two main 

basic centres, namely the ß-azo and the terminal nitrogen atoms. Since 

in acid solution an equilibrium exists in most cases, it is impossible 

to measure the individual basicity of each nitrogen atom. However, a 

value for the overall basicity of the molecule (pKa) can be easily 

obtained. 
101 

A rough idea of the tautomeric equilibrium can be obtained by measure- 

ment of emax values at the wavelength maxima of the azonium (C band) and 

ammonium (A band) forms. This procedure gives the ratio CC/AC which is 

roughly proportional to KT (eqn. 1.3) if it is assumed that the absorption 

of the azonium ion at the a 
max of the ammonium ion is zero, and vice-versa. 
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_[azonium] _k Cl: 
a pK2 

a 
Basicity at ß-N 

ý- [ammonium] AE pKi Basicity at t-N 
(1.3) 

The value of k takes into account the fact that the absolute emax value 

for the ammonium tautomer does not equal that of the azonium tautomer. 

Although such values have not been measured directly, data from 

Yamamoto et al. 
89 

and Hallas56 suggest absolute cmax values (c°) of 

20,000-25,000 for the ammonium tautomer (which agrees well with the 

value for azobenzene of 22,400) and 55,000-65,000 for the azonium 

tautomer. The value of k can then be obtained (eqn. 1.4) and thus CC/AE 

ratios can be used quantitatively to determine KT. The constant k has 

also been obtained graphically, leading to similar values. 
89 

A 
k= E' =0.38± 0.07 

CE. (1.4) 

Recently, doubt has been cast on the validity of the assumption that 

the azonium cation does not absorb at the Amax of the ammonium cation. 
102 

Absolute values of KT have been determined graphically, by a method not 

based on this assumption, by utilising the fact that the tautomeric 

equilibrium changes as the acid concentration changes. 

The Ce/Ae and pKa values for a particular molecule give information 

on the effect of a substituent within that molecule. 
103 This situation 

can be illustrated using data from Table 1.13. Other things being equal, 

increasing the basicity of the ß-nitrogen atom or decreasing the basicity 

of the terminal nitrogen atom increases the value of Cc/AE . For example, 

4-diethylaminoazobenzene has pKa 3.08 and Cc/AE 0.5. Successive 

replacement of ethyl by methyl lowers pKa to 2.58, then to 2.28, since 

the inductive effect of methyl is less than that of ethyl, so that the two 

basic centres as a whole show a drop in electron density. However, the 
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Table 1.13 Values of pK a and Ce/A a Ratios for Aminoazobenzene 

Derivatives in 50% Ethanol at 26°C. 103 

Substituents pKa [Hcl] /M C E/Ae 

2-NH2 1.8 1.0 0.00 

3-NH2 3.0 1.2 0.00- 

4-NH2 2.35 1.0 0.73 

4-NMe2 " 2.28 1.2 3.62 

4-NMeEt 2.58 1.0 1.4 

4-NEt2 3.08 1.0 0.5 

4-NMe2-4'-OMe 2.4 1.2 1.0 

4-NMe2-4'-Et 2.3 1.2 2.6 

4-NMe2-4'-Me 2.36 1.2 2.6 

4-NMe2-4'-H 2.28 1.2 3.62 

4-NMe2-4'-F 2.00 -- 

4-NMe2-4'-Cl 2.00 -- 

4-NMe2-4'-SCN - 1.2 4.5 

4-NMe2-4'-Ac 2.16 1.2 7.5 

4-NMe2-4'-N02 1.81 1.0 8.7 

4-NMe2-2-Me 3.08 1.2 10.0 

4-NMe2-3-Me 3.46 1.0 0.025 

4-NMe2-2'-Me 2.04 1.2 0.29 

4-NMe2-3'-Me 2.33 -- 

4-NMe2-2'=Et 1.85 1.0 0.14 
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alkyl groups affect the terminal nitrogen atom much more than the 

remote ß-azo nitrogen atom, lowering the electron density at the former 

and consequently increasing the Cc/Acratio to 1.4, then to 3.62. 

Replacement of the methyl groups by hydrogen atoms might be expected 

to give a further drop in pKa. However, there is a small increase in 

this parameter, indicating that the loss of the +I alkyl effect is 

more than compensated for by hydrogen bonding of the amino hydrogen atoms 

with, solvent molecules. This process results in an increase of electron 

density, and therefore of basicity, at the terminal nitrogen atom. The 

low PKa value (1.8) of 2-aminoazobenzene 
104 

is due to intramolecular 

hydrogen bonding which effectively involves the ß-nitrogen atom and makes 

protonation at this site very difficult. Indeed, the CE/AE ratio shows 

almost exclusive protonation at the terminal nitrogen atom. Mesomeric 

donation is impossible in the case of 3-aminoazobenzene so that the amino 

nitrogen atom has a high basicity and, again, the azonium species is not 

favoured. 

A methyl group in the 2-position increases the basicity at the 

ß-nitrogen atom, 
101,105 

presumably by the +I effect; thus 

4-dimethylamino-2-methylazobenzene has a value-for pKa of 3.08 and a 

CE/Ac ratio of 10.0, both values being significantly greater than those 

of the parent 4-dimethylaminoazobenzene (Table 1.13). The methyl group 

in the corresponding 3-methyl isomer also increases the pKa (to 3.46) due 

to steric crowding of the terminal dimethylamino group which is partially 

deconjugated and therefore more basic;. Ce/AE drops to 0.025. A methyl 

group at the 2'-position causes a drop in basicity at the ß-nitrogen by 

hindering the access of a proton. The terminal nitrogen atom remains 

unaffected so that a drop in pKa (to 2.04 from 2.28) and a decrease in 

CE/AE (to 0.29 from 3.62) is observed. The larger ethyl group exaggerates 

this effect thereby causing further reductions in the two values. 
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An electron donor substituent (methoxy) at the 4'-position causes 

only a small increase in pKa, although the CE/AE ratio drops to 1.0. 

These effects have been attributed to a +M effect (or +I for methyl) 

which is said to increase the basicity of the a-nitrogen atom at the 

expense of the ß-nitrogen atom. ' On the other hand, an electron 

acceptor, such as nitro, at the 4'-position decreases pKa by lowering 

the overall electron density at the two protonation sites. However, 

the increased conjugation of the terminal nitrogen atom decreases the 

basicity of the terminal group and at the same time increases the basicity 

of the ß-nitrogen atom, so that Ce/Ae increases, (to 8.7 in the case of 

nitro). In these 4'-acceptor-substituted dyes, a linear correlation has 

been found to exist between the pKa values and the appropriate Hammett 

v constant. 
106 

Only a limited amount of work has been published on diprotonated 

equilibria. As expected for a doubly charged ion, the equilibrium is on 

the side of the monoprotonated species, 
107 

and very strongly acidic 

conditions are required to permit the addition of a second proton. 

1.9. Application of Perturbational Molecular Orbital (PMO)-Theory 

to Aminoazo Dyes 

As Dewar has pointed out, 
50 it is significant that the large majority 

of coloured organic molecules are isoconjugate with odd alternant 

hydrocarbons, or are derivatives of such substances, or contain pairs of 

cross conjugated - and therefore independent - odd alternant systems. 

Even systems, such as the polyenes, show strong colour only when they 

contain many conjugated double bonds, as with the carotenes. It is help- 

ful to consider azobenzene and its derivatives. The parent trans-azobenzene 

molecule has a high intensity ir-. ir absorption band in the near ultra- 

violet at 320 nm (e'\22,000) cos 
and a low intensity n-ºn band in the visible 
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region at 443 nm (cti400). 108 Introduction of a mesomeric electron 

donor group effectively converts an even alternant n-system into an 

odd alternant system. Thus, 4-aminoazobenzene (47) is iso-n-electronic 

with the odd alternant carbanion (48) and PMO theory109 predicts that 

1 ý 
ý a. .i. ý- 

2 *IV 1rCH2 

(47) (48) 

a new delocalised r orbital is introduced into the azo molecule, classed 

as a non-bonding molecular orbital (NBMO) because of its proximity to 

the zero energy level. 110 
. This new NBMO contains two electrons, and 

excitation of one of these to the lowest unoccupied molecular orbital 

(LUMO) gives rise to a low energy (long wavelength) absorption band. III 

The transition is allowed and intense (cti25,000) and is responsible for 

the colour of the dye. The electronic excitation process causes a 

general migration. of electron density from the donor atom to the rest of 

the chromogen so that such absorptions are often described as intra- 

molecular charge transfer transitions. The NBMO-ºr* band of azo dyes 

often completely obscures the n-ºn* band even though the latter is of 

moderate intensity (c'500; cf. azoalkanes where c ti10) due to intensity 

'borrowing' from the energetically close NBMO --ºn* band. 112 

The special properties of a NBMO enable predictions to be made about 

substituent effects in odd alternant systems, which were originally 

formulated into a set of rules by Dewar in 1950.109,110 Dewar's rules 

can be summarised (with examples)as follows: 
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(a) An increase in electronegativity at an unstarred position gives a 

bathochromic shift. 

* 
Me2N 

(49) 

X- CH; X 
max ° 491 nm 

I 
max = 564 nm 

ýMe2 

(b) A decrease in electronegativity at an unstarred position gives a 

hypsochromic shift. 

(50) 

A= 610 nm max 

Me2N 

(51) 

X 
max - 491 nm 

+ 
NýMe2 

Attachment of the mesomeric donor group (NMe) across two unstarred positions 

effectively lowers the electronegativity at these positions. 

(c) Increasing the electronegativity at a starred position gives a 

hypsochromic shift. 

* tý 
CH=CH -C=CH--CH=: =L- .. ýI ýN tý 

Et XI 
Et 

(52) 

X=H; Amax ' 708 nm X= N02; Amax ' 580 nm 
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(d) Decreasing the electronegativity at a starred position produces 

a bathochromic shift. 

R2N 

(53) 

R=H; X 
max ' 558 nm 

R= Me; X 
max 

610 nm 

(e) Extending the conjugation with a neutral unsaturated group always 

gives a bathochromic shift, irrespective of the point of attach- 

ment. 

ý 
N Me 2 

XHN + 
NHX 
ý 

Ph 

(54) 

X=H; 'max 610 nm 

X= Ph; 'max - 621 nm 

(55) 
X=H; 'max -562nm 

X= Ph; 'max ' 637 nm 

Dewar's rules are similar in many respects to Knott's rules113 although 

the former have the advantage of being based on sound theoretical principles. 

The main limitations of Dewar's rules arise from the doubtful assumption 

that all 'odd alternant' chrömogens are strictly comparable with a true 

alternant hydrocarbon. Theory suggests the latter species have a uniform 

bond order of about 1.6-1.7 rather than alternate single and double bands. 

This condition holds in cyanine-type dyes which are therefore particularly 

well-suited to application of the rules. However, donor-acceptor 

chromogens, such as the aminoazo dyes, show a high degree of bond altern- 

ation in the ground state and it is less justifiable to apply the rules to 
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these systems. A neat illustration of these limitations is given by 

dyes (56) in which steric factors do not apply. 
114 Thus, Dewar's rules 

predict hypsochromic shifts for the ortho and Para isomers relative 

a 
; N=N NMe2 

(56) 

X= CH, amax = 408 nm; X=N, o= X 
max ° 432 nm 

m' I 
max = 428 nm 

Xmax 12 444 nm (solvent ethanol) 

to the parent compound (X=CH); in fact, all three isomers produce 

bathochronfic shifts. 

The azonium tautomers, because of the delocalised positive charge, 

have somewhat greater bond uniformity compared with their neutral counter- 

parts, so that Dewar's' rules should become more applicable. Nevertheless, 

it is apparent that the rules fail as often as they succeed for monoazo dyes 

(Fig. 1.6). 73 A further drawback is that the rules cannot be applied to 

ring systems with odd numbers of atoms since the starring system breaks 

down in these cases. 
115 

N=N 

x� �ý 

(a) (b) 

Fig. 1.6. The applicability of Dewar's rules to (a) neutral and 
(b) protonated 4-aminoazobenzene derivatives: 

� indicates correct prediction of substituent effect. 

x indicates incorrect prediction of substituent effect. 
? indicates rigorous experimental treatment not yet attempted. 
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As an alternative to resonance theory and to Dewar's rules for the 

prediction of colour in azo dyes, and in most other systems, the PPP 

molecular orbital method, 
116 

using computers, is rapidly gaining in 

popularity. This approach can be used both qualitatively, to predict 

trends within and between series of dyes, and quantitatively, to 

calculate absolute absorption values, although the accuracy varies in 

this respect from one system to another. Notable successes using this 

method include the correct order of wavelengths in the three isomeric 

aminoazobenzenes71 and prediction of the pronounced bathochromic shifts 

shown by heterocyclic azo dyes, relative to their carbocyclic analogues 

(see Appendix I), neither of which could be deduced from resonance theory. 

Table 1.14 shows recent work117 which further illustrates the usefulness 

of the PPP method. 

The PPP calculations are ideally suited for use with computers 

since they can be carried out rapidly and the required programmes are 

readily available. It is to be expected, therefore, that the method 

will be used more extensively in future routine applications to colour 

and constitution problems. 
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Table 1.14. Some Examples of Visible Absorption Spectra Calculated by the PPP 

Method. 117 

456 

(57) 

XR IN max/nm 
X 

max/nm 
(Cyclohexane) (Calculated) 

HH 

OMe H 

H Et 

OMe Et 

%YZ 

HHH 

(A) NO2 HH 

NO2 OMe H 

NO2 H OMe 

NO2 CN H 

NOH NO2 
Z 

463 

N=N 

410 

423 

-I 

+ 
N=N 
I 
H 

(58) 

X 
max/run 

A 
max/nm 

(EtOH/HC1)a (Calculated) 

497 469 

507 468 

471 456 

509 495 

529 490 

510 481 

423 

NR2 

Comments 

Unexpected batho. shift predicted 

Batho. shift observed 

NH 2 

Comments 

Predicts the observed unexpectedly 

small difference 

Predicts hypso. shift relative to (A) 

Predicts batho. shift relative to (A) 

Predicts batho. shift relative to (A) 

Predicts batho. shift relative to (A) 

a Should strictly be a non-polar solvent 



2. DISCUSSION OF RESULTS 
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2.1. Coupling Components 

The coupling components used in the synthesis of the azo dyes were 

all tertiary aromatic amines, of general structure (59), in which the 

nitrogen atom forms part of a saturated ring system. Details are given 

below: 

(59) 

Y 

-CH2CH2- 

-CH2CH2CH2- 

-CH2OCH2- 

-CH2SCH2- 

-CH2S02CH2- 

-CH2N(Et)CH2- 

-CH2N(Me)CH2- 

-CH2N(Ac)CH2- 

/CH2--. 

NY 
\H2 i 

i 

Coupling Component 

N-Phenylpyrrolidine (59a) 

N-Phenylpiperidine(59b) 

N-Phenylmorpholine(59c) 

N-Phenylthiomorpholine(59d) 

N-Phenylthiomorpholine-l, l-dioxide(59e) 

N-Phenyl-N'-ethylpiperazine(59f) 

N-Phenyl-N'-methylpiperazine (59g) 

N-Phenyl-N'. -acetylpiperazine(59h) 
I 

2.2. Electronic Absorption Spectra of Some Related Di- and 

Tri-Phenylmethane Dyes.. 

Several di-and tri-phenylmethane dyes derived from some of the 

coupling components used in the present work have been synthesised 

previously; the spectral characteristics of these dyes are shown in 

Table 2.1. On the basis that improved conjugation of the terminal 
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Table 2.1. Visible Spectra of Some Di- and Tri-phenylmethane Dyes. 

60; X= Ph 

61; X= PhNR2 

62; X=H 

Type 

60; Malachite Greena 

60; Brilliant Greena 

60; Pyrrolidine Greenb 

60; Piperidine Greenb 

60; Morpholine Greens 

98% Acetic Acid 

x-band y-band 
Amax 10 c Amax I, 0ý`E 

/nm 
. 

/nm 

621 10.4 427.5 2.0 

629.5 11.9 430 1.8 

629 11.1 426 1.7 

634 10.4 431 1.7 
623 9.0 433 1.9 

61; Crystal Violeta 589.11.6 

61; Ethyl Violeta. 592.5 13.0 

61; Pyrrolidine Violetb 591 12.1 

61; Piperidine Violetb 602 11.5 

61; Morpholine Violet 596 10.6 

62; Michler's Hydrol Bluea 607.5 14.75 

62; Diethyl Analoguea 613 17.6 

62; Pyrrolidine Analogueb 613 15.7 

62; Piperidine Analogueb 619 0.23 

62; Morpholine Analoguec 615 1.91 

10% Acetic Acid 

x-band y-band 
Amax 10-4 c Amax 10-4E 

/nm /nm 

^"425 0.3 

641 7.2 426 1.2 

643 5.1 426 1.6 

a Ref. 118 
b 

Ref. 119 c Ref. 120 
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nitrogen lone pair of electrons leads to bathochromic shifts of the 

longest wavelength absorption band (x-band) of these types of dye, 118 

and by considering only the inductive (+I) effect of the alkyl groups 

attached to the terminal nitrogen atom, one might expect similar Amax 

values (x-band) for the diethyl and pyrrolidine types; the piperidine 

analogues should absorb at slightly longer wavelengths. This order is 

indeed shown experimentally and suggests that the electron donor character of 

the piperidine ring is greater than that of the pyrrolidine ring. 

However, the piperidine analogue of Michler's Hydrol Blue, unlike the 

corresponding pyrrolidine compound, exhibits an extremely low extinction 

coefficient, thereby indicating that the solution equilibrium between 

hydrol and dye cation isýheavily in favour of the former species, 

presumably because the conjugation of the nitrogen lone pair in this 

system is insufficient to stabilise the initially formed cation. 

Additionally, the ease of protonation of the piperidino- group is 

apparent from the readiness with which Piperidine Violet reverts to a 

Piperidine Green type in 10% acetic acid; Pyrrolidine Violet shows no 

such tendency. 

In view of this conflicting evidence, it is therefore of interest 

to examine. the spectral characteristics of some corresponding azo dyes. 

2.3. Electronic Absorption Spectra of the Various Azo Dyes 

Spectral data for each-series of dyes are given in Tables 2.5-2.12, 

obtained from solutions of the dyes in cyclohexane, ethanol and 

ethanolic hydrogen chloride. 
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2.3.1. Neutral Solution 

It is clear from Tables 2.5 and 2.6 that dyes derived from 

N-phenylp yrrolidine are more bathochromic than their counterparts 

obtained from N-phenylpiperidine, in contrast to the behaviour of the 

corresponding di- and tri-phenylmethane dyes. Comparison with the l 
max 

values of some 4-NN-dimethylamino- and 4-NN-diethylaminoazobenzenes 

(Tables 1.3 and 2.2, respectively) indicate that the electron donor 

power decreases in the order pyrrolidino ti NN-diethylamino > NN-dimethyl- 

amino > piperidino; this overall trend is supported by other experimental 

data (Table 2.3). Thus, the 
13C-n. 

m. r. spectra of N-phenylpyrrolidine 

and NN-diethylaniline are very similar, whereas the ortho- and 

Para-carbon shieldings reflect the decreased phenyl ring-nitrogen 

resonance interaction in the case of N-phenylpiperidine: 122 The exaltation 

of molar refraction (ARD) is the difference between calculated and 

experimental values and can be used-as a qualitative measure of resonance 

energy. 
123 The ARD values for a series of aromatic amines have been 

observed to increase with increasing phenyl ring-nitrogen interaction, 124 

and in fact do so for the series under discussion. It is interesting to 

note that this parameter suggests rather more effective conjugation by the 

pyrrolidino group than the NN-diethylamino group, and is supported by the 

results of 
1H-n. 

m. r. studies in the present work and elsewhere 
125-8 

(see Section 2.5) and also by the dipole moment values of a series of 

4-pyrrolidino- and 4-NN-diethylaminoazobenzenes. 89 Curiously, this 

situation'is not clearly reflected in the X 
max value of the dyes, which 

are very similar in both non-polar and polar solvents; the pyrrolidinoazo 

dyes absorb almost identically to their NN-diethylamino counterparts 

in cyclohexane, but are slightly hypsochromic in ethanol. It may be 

that the ground state of the pyrrolidine dyes is more stable than that 

of the NN-diethylamino types due to hybridisation differences at the 

terminal nitrogen atom; this would help to explain the aforementioned 
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Table 2.2. Visible Spectra of Some Derivatives of 

a 4-NN-Diethylaminoazobenzene. 

N=N 

(30) 

NEt2 

Substituent Amaxýý 10-4e Aýx/nm 10ý`e Amax/nm 10-4s 

(Methanol) (Cyclohexane) (Hexane) 

4'-OMe 414 3.24 407c - 404 3.63 

4'-Me 416 3.16 407d 33.4d 403 3.39 

4'-H 416 2.88 408d 32.3d 404 3.39 

4'-Cl 425 3.16 416d 34.0d 413 3.55 

4'-Br 427 3.31 4 18C - 415 3.98 

4'-CF3 434c - 425C - 421c - 

4'-Ac 462b 2.82c 435c - 431c 

4'-CN 466b 3.24c 438c - 436c - 

4'-N02 489 3.98 458c - 453 3.80 

2'-CN, 4'-N02 536c - 502ý 

a Ref. 121 unless otherwise stated 

b Ref. 54 

c Authors data 

d Ref. 89 
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Table 2.3. Physical Data of Some Coupling Components. 

13C 
Chemical Shift ( p. p. m. w. r. t. benzene)a 

Compound C 
ortho 

c 
meta 

c 
para 

AR Db PK a 
c, d 

-N-Phenylpyrrolidine -20.3 15.5 -1.6 12.3 1.64 3.71 

NN-Diethylaniline -19.9 15.3 -1.4 12.2 1.58 5.71 

NN-Dimethylaniline -22.6 15.6 -1.0 11.5 1.49 4.22 

N-Phenylpiperidine -24.7 10.9 -1.6 8.7 0.96 4.60 

a Ref. 122 b Ref. 123 c 50% Aqueous ethanol at 20°C, ref. 129 

d Other workers 
123-5,129 have observed similar trends. 

ground state data. 'Additionally, any stabilisation of the_pyrrolidinoazo 

excited state due to increased conjugation of the lone pair may be off- 

set by the increase in energy associated with the eclipsed protons of 

the five membered ring (see below). 

Measurements of pKa also confirm the order of conjugation, with the 

exception of NN-diethylaniline, the anomalous high value of which has 

been attributed to the loss of solvation owing to the congested situation 

obtaining in the vicinity of the nitrogen atom, which destabilises the 

base relative to the ammonium ions 122 

The relative donating capacity of the pyrrolidino group compared with 

that of the piperidino group can be accounted for in terms of steric 

effects. 
129,130 By analogy with cyclopentane, 

131-3 
the pyrrolidine ring 

can be regarded as a pentagon which is somewhat distorted from planarity 

by puckering of the ring in order to reduce the torsional strain 
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experienced by the eclipsed protons. Such distortion leads to the 

envelope (CS) conformation 
133 (Fig. 2.0(a)], in which a-single atom is 

out of the plane containing the other four, and the half-chair (C2) 

conformation 
133,134 [Fig. 2.0(b)], where three adjacent atoms are in one 

plane, with the other two twisted such that one is as much above the 

plane as the other is below. Pseudorotationi3l causes these departures 

from planarity to be averaged around the ring, as the molecule passes 

through its various possible forms, giving internal bond angles 

approaching 109.50; thus, the terminal nitrogen atom can be accommodated 

in an sp3 arrangement with negligible angle strain. Mesomeric interaction 

with the phenyl ring will, however, increase the sp2 character of the atom 

(and consequently the p character of the orbital containing the lone pair 

of electrons) and will also obviate any steric crowding between the ortho 

protons of the phenyl ring and the a-methylene protons of the five- 

membered ring [Fig. 2.1(a)], particularly in the excited state 

(a) (b) 

N" ý 

I\/N/ ýlr 

Fig. 2.0. Typical envelope (a) and half-chair (b) forms for a five 

membered ring. 
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Fig. 2.1. (b)]. Unfortunately, this interaction also causes the 

pyrrolidine ring protons to become more eclipsed. Thus, a balance must 

be achieved between steric and mesomeric interactions. 

The piperidine ring will adopt a chair conformation in order to 

reduce angle strain, resulting in bond angles of 109.50, ideal for an 

spa-hybridised nitrogen atom; conjugation with the phenyl ring will again 

confer sp2 character. However, molecular models (Dreiding) show that 

the equatorial protons of the a-methylene groups in the six-membered ring 

are directed towards the ortho-protons of the phenyl ring [Fig. 2.1(c)] 

giving rise to a steric clash much greater than that caused by the 

pyrrolidine ring protons, and which is even more accentuated in the excited 

state 
[Fig. 2.1. (d)] when the protons in question are actually in the same 

plane. Rotation about the Car-N bond to reduce this crowding will remove 

the nitrogen lone pair electrons from the optimum position-of overlap with 

the aromatic n-electron cloud (Fig. 2.2; 0=0°) to a position of reduced 

overlap (Fig. 2.2; 0>00). This rotation will increase the sp 
3 

character 

of the nitrogen atom, causing a hypsochromic shift of Xmax" The angle of 

0 

N 

Fig. 2.2. Angle of Twist of the Nitrogen Lone Pair Orbital. 

twist (9) can be estimated by using the simple empirical relationship 
135,136 

e/co = cos20 

where a and ö are the molecular extinction coefficients of the non-planar 

molecule and the appropriate planar molecule, respectively. 
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Values of 0 can be used as a test for the presence of electronic 

buttressing137 in 4-aminoazobenzene-type systems. 
138 This phenomenon 

arises from the conjugative interaction between a mesomeric donor group 

(e. g. amino) and an electron withdrawing group attached to the same 

aromatic ring. Thus, for example, the para-substituted aniline derivative (63) 

may be regarded as a resonance hybrid of the extreme canonicals (63a) and 

(63b), with the Car-N bond thus gaining partial double bond character. 

(63a) (63b) 

Bulky substituents (R) tend to enforce rotation of the amino group, but 

this occurs less readily as the double bond character of the Car-N bond 

increases, i. e. as the electron withdrawing strength of the substituent X 

increases, and consequently values of 0 should decrease. This resistance 

to sterically induced rotation by electron withdrawing groups is termed 

electronic buttressing. 

Calculated 6 values for some representative piperidinoazo derivatives 

are given in Table 2.4 (the eo values used are those of the pyrrolidino 

analogues). In this case, the steric interaction is between the ortho- 

phenyl and the crmethylene protons, rather than with a bulky group R, but 

similar arguments apply. In accordance with earlier findings, 138 0 

does not decrease as the electron withdrawing strength of X in the azobenzene 

types (64) increases, indicating that the substituent is too far removed 

from the amino group to exert any significant buttressing effect. The 

phenylazo group itself does exert an appreciable buttressing effect, however, 
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Table 2.4. Comparison of the Estimated Angles of Twist, © ,a of 

b Some Piperidinoazo Dyes (64-67; Y_-CH 2Cii2CH2-) . 

Substituent /° 0 AA/nmc 

64; 4'-Me 25 14 

64; 4'-H 21 13 

64; 4'-CF3 22 11 

64; 4'-N02 26 18 

64; 2'-CN, 4'-N02 22 7 

65; 6'-OEt 20 5 

65; 6'-H 15 4 

65; 6'-SO2 Me 11 2 

65; 6'-N02 9.5 2 

66; 5'-H 22 6 

66; 5'-NO2 10.5 2 

67; 3'-NO255'-Ac 9.5 3 

a See Fig. 2.2 

b Solvent ethanol 

c Xmax(pyrrolidino)-amaX(piperidino) 

since ultraviolet spectroscopic data for the parent amine, N-phenylpiperidine, 

give a value of a 450 (in methanol)125 whereas in the case of the phenylazo 

analogues, 9 falls within the range 15-25° (in ethanol). In the 

4'-phenylazo types, AX increases as the electron withdrawing power of X 

increases, in accordance with simple perturbation theory. 139 



64 

In contrast to their benzene analogues, the values of the 

heterocyclic piperidinoazo dyes (65)-(67) suggest that the electronic 

buttressing effect is present in these compounds. Strongly electron 

withdrawing groups in the latter systems give rise to 0 values of about 

8-10°, significantly less than in the corresponding azobenzenes. The 

improved conjugation in these types is reflected not only in their 

intensity values, but also in their wavelength maxima, which are almost 

as bathochromic as their pyrrolidino counterparts. However, the 

hypsochromic effects caused by partial deconjugation of the lone pair are 

not completely overcome; if this were indeed the case, the increased +I 

effect of the five methylene groups in the piperidine ring would result 

in these dyes absorbing at somewhat longer wavelengths than their pyrrolidino" 

analogues. 

In the remaining six-membered ring systems, the -I effect of the 

heteroatom in the y-position reduces lone-pair conjugation still further, 

resulting in hypsochromic shifts of the visible absorption band, the 

magnitude of which increases as the strength of the inductive effect 

increases. The following overall order of electron donor strength is 

observed: 

-N S 
\J 

most bathochromic 

b 

ýa > 
-N NEt 

ýý 

b 
a /ý1 ^ 

ý -N NAc 
> 

-N SOZ 

least bathochromic 
a in cyclohexane 
b in ethanol 
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The wavelength range (in ethanol) along this sequence varies from 

37 nm for the parent azo dyes to 66 nm for the 41-nitro derivatives, 

thereby illustrating the combined effect of steric and inductive forces. 

These factors are emphasised by comparison with other systems. In 

particular, it is found that the hypsochromic effect of the morpholino 

group is considerably greater than that of the NN-bis-ß-hydroxyethyl group 

and virtually as great as that of the NN-bis-ß-cyanoethyl group 

(cf. Table 1.4). The hypsochromic shifts observed along the series are 

accompanied by gradual decreases in the intensity of absorption. 

The terminal amino substituents have a somewhat variable effect on the 

positive solvatochromism of the azo dyes. The piperidinoazo derivatives are 

less sensitive to the change of solvent than are the more polar 

pyrrolidinoazo compounds, which is to be expected since in the latter case 

stabilisation of the excited state (71b) of the molecule, on changing from 

N=N 

(71a) 

-+ 
NR 2 

(71b) 

a non-polar to a polar solvent, will be greater. However, the anticipated 

relationship between solvatochromic sensitivity and wavelength shift 

across the series does not entirely hold when a heteroatom is present. 

This finding may be linked to%the hydrogen bonding capacity of the atom or 

group; for instance, the N'-acetyl-N-phenylpiperazine dyes (64; Y= -CH2- 

N(Ac)CH2-) show greater solvatochromism than the more bathochromic 

N'-ethyl-N-phenylpiperazine dyes (64; Y= -CH2N(Et)CH2-), possibly due to 

the extra stabilisation of the excited state by solvation at the polar 

acetyl group. 
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.N 

(64) 

/H2 , 
. NY 
ý CH2 ý 

/CH2 ý2' 
ti=: N NY 

5 \-- f CHZ 

(65) 

/CN2 ,. 
% 2' N= N-ýý ýý-- 1 ýY 

(67) 

CN2 0- 

/CN2ý. 
NY 

CH20i 

CH i- 2 /2 ý_ ýý ý 

, 3t N=N-(, 
-`N le 

\CH fi ý 
s/CH2- ` 

2Ný N=N- NY 

J 1ý t, n2 

(68) 

4iN_N3o 

N=N 
ýS, ý4 

s' 

if 

(70) 

(66) 

(69) 

Hr, 
. NY 
. 

CH2 ý 

Scheme 2.1. Types of dye prepared. 
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Footnote to Tables 2.5-2.12 

d The shape of the visible absorption band in acid solution is 

somewhat variable [(i) 
- (vi)] , due to fine structure. The modified 

Amax values were obtained by completing a smooth band envelope (dotted 

(0) (i0 (iii) 

line). This procedure appears to be advantageous in certain cases, 

both as regards comparison between dyes in the same series and in different 

series . Where modified values are not quoted, the curve is of type (i). 

1-. 

0 '0 

(iv) (v) (vi) 
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Within each dye series, the 4'-substituted-4-aminoazobenzene derivatives 

show the expected general bathochromic displacement of the visible absorption 

band as the electron withdrawing strength of the 4'-substitueet increases, 

together with a somewhat variable but definite increase in the intensity 

absorption. The wavelength range depends on the terminal amino group; in 

the 4-pyrrolidinoazobenzene series (64; Ym -CH 2CH2-), for example, the 

4'-nitro derivative is 75 nm more bathochromic than its parent, whereas the 

corresponding thiomorpholine-I, I-dioxide'dyes (64; Y CH2SO2CH2-) show 

a difference of only 46 nm. Electron releasing groups (Me, OMe) have little 

effect on the position of the first band, shifting. Xmax from the parent 

dye value by only a few nanometres. Graphs of the wavelength shift produced 

by a 4'-substituent against the appropriate Hammett a-constant are shown 

for the pyrrolidino-, piperidino- and morpholino-azo dyes in Figs. 2.3, 

2.4 and 2.5, respectively. 
* The absence of a hypsochromic effect for the 

electron donor groups is reflected in their position relative to the straight 

line, and confirms previous findings (section 1.5) that, in general, only 

electron acceptors follow the Hammett relation, and then only approximately, 

since the substituent is directly involved in the excitation process and as 

a consequence will have different electronic properties (and hence different 

a value ) in the excited state. 

It can be seen from the graphs that certain acceptor substituents 

(H, Cl, Br, Ac, CN) fall on or near the line while others (CF31NO2) do 

not. These deviations appear to be consistent; thus, NO2 is always 

somewhat above the straight line, although comparison of the three plots 

suggests that this upward deviation'decreases as the electron donating 

power of the terminal amino group decreases. A similar distribution 

of points is found for the NN-dimethylamino- and NN-diethylaminoazobenzenes. 

J. 
See Table 2.20 for a values 
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Relation between Hammett substituent constants (a) and XDX ADH of 

derivatives of 4-pyrrolidinoazobenzene (Fig. 2.3) and 4-piperidino- 

azobenzene (Fig. 2.4) in ethanol (see Tables 2.5 and 2.6). 
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Relation between Hammett substituent constants (a) and ADX-XDH of 

derivatives of 4- morpholinoazobenzene in ethanol (see Table 2.7). 

Provided that the distribution pattern holds generally, it may be that 

graphs of this type could be used to predict )max values for 

4'-acceptor-substituted dyes (and presumably in a similar manner for 

3'-acceptors), having first related in some way the deviation from the 

line to the power of the 4-donor substituent. Unfortunately, the generality 

of this distribution is not known and it is necessary to correlate several 

series of dyes, containing as many different 41-substituents as possible, 
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in order to establish which substituents always appear close to the 

straight line. However, once the particular pattern is known, three 

or four dyes could be prepared in a new series and it would then be 

possible to calculate 'max values with reasonable accuracy for other 

dyes in that series. 

In cases where the 2'-cyano derivative has been prepared, it is 

found that the dye absorbs maximally at the same wavelength as the 

4'-isomer, as expected for an ortho substituent which does not exert 

a crowding effect (section 1.5). N-[4-(2'-Cyano-4'-nitrophenylazo)- 

phenyl pyrrolidine (72d) shows additivity of substituent effects, 
27,68,140 

such that the sum of the wavelength shifts of the 2'-cyano (72b) and of 

the 4'-nitro (72c) derivatives equals that produced by the disubstituted 

dye (Table 2.13). However, this additivity relationship does not hold 

for the corresponding dyes in which the terminal nitrogen atom forms 

part of a six-membered ring, as illustrated by the appropriate 

piperidinoazo dyes (72e-h). Presumably, this breakdown must be associated 

with the previously discussed steric factors inherent in dyes containing 

six-membered rings; the 2'-cyano-4'-nitro derivatives of these systems 

absorb at longer wavelengths than the additivity rule would suggest, 

again indicating that the powerful electron accepting residue of the 

molecule is forcing improved conjugation of the nitrogen lone pair at the 

expense of increased steric strain. 

Of the other dyes of type (64) studied, the 3', 5'-bistrifluoromethyl 

derivatives appear to cause wavelength shifts equivalent to dyes 

containing a 4'-cyano substituent. The pentafluoro dyes (64; 2', 3,4', 

5', 6'-F5) are not quite as bathochromic'as their 4'-Ac counterparts; 

the crowding effect of two fluorine atoms ortho to the azo link diminishes 

the overall electron withdrawing ability. It is apparent that, as a 
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Table 2.13. Visible Spectraa of Some Azo Dyes (72) which Illustrate 

the Additivity Rule. 

N=N Y 
I 

.f 

(72) 

Dye AB"YI /nm AX /tun 

72a HH -(CH2)2- 413 - 

72b H CN -(CH2)2- 458 45 

72c NO2 H -(CH2)2- 488 75 

72d NO2 CN -(CH2)2- . 
536 123 

72e HH -(CH2)3- 400 - 

72f H CN -(CH2)3- 442 42 

72g NO2 H -(CH2)3- 470 70 

72h NO2 CN -(CH2)3- 529 129 

a. Solvent ethanol 

b Relative to A=B=H 

120 

1 12 

general rule, the intensity of absorption increases gradually as the 

electron withdrawing strength of substituents in the diazo component 

increases; extinction coefficients are approximately the same in ethanol 

and in cyclohexane. Absorption bands in the latter solvent often contain 

shoulders on either side of the main peak. This feature is thought to 

be due to vibrational fine structure and is less common in polar solvents 

due to solvation effects. 
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In the case of the benzenoid dyes (64), the positive solvato- 

chromism increases gradually as the electron withdrawing power of the 

4'-substituent increases, due to a progressive increase in the 

stabilisation of the excited state (71b) by the polar solvent. The 

heterocyclic azo dyes (65-70) display a considerably bigger solvato- 

chromic effect owing to the general polarity of these systems and of 

their excited states in particular, possibly owing to the diene 

character of the acceptor residue and, in some cases, also to the 

presence of electronegative heteroatoms. The marked bathochromic 

shifts produced by the various heterocyclic dyes are accompanied by 

significant increases in intensity of absorption, giving extinction 

coefficients which are exceptionally high for azo dyes. Of the aromatic 

heterocycles studied, the benzthiazole residue imparts the highest 

intensities; the 6'-nitrobenzthiazole derivative (65; Y -CH 2 CH 2-) 

has an emax of 64,800, in line with PPP-MO predictions (see Appendix 1). 

This situation may be a consequence of the relatively large number of 

r-electrons contributing to the electronic transition. However, 

the benzthiazole ring system does not necessarily produce the dye of 

longest wavelength. Comparing the phenyl (64), benzthiazole (65) and 

thiazole (66) residues (Table 2.14), the benzthiazole system produces 

the most bathochromic of the parent dyes whereas the thiazole ring is 

associated with the most bathochromic of the nitro-substituted dyes. 

The Aa values listed in Table 2.14 reflect the insulating effect of the 

benzthiazole ring, and the enhanced conjugative effect of the thiazole 

ring, relative to the phenyl nucleus, on the acceptor capacity of the 

nitro substituent. 

Compared with the parent thiazolylazo dyes (73), the 1,3,4- and 

1,2,4-thiadiazole analogues, (74) and (75) respectively, appear to 

show the order of bathochromicity anticipated on resonance and inductive 

grounds. 
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Table 2.14. The Effect of a Nitro Group on Some Pyrrolidinoazo 

Dye Systems. 

Dye 

64(Y = -CH2CH2-); 4'-H 413 

; 4'-N02 488 75 

65(Y = -CH2CH2-); 6'-H 514 - 

; 6'-NO2 551 37 

66(Y = -CH2CH2-); 5'-H 494 - 

; 5'-NO2 584 90 

a Solvent ethanol 

b Relative to the parent dye 

Thiophene acceptor rings also show a substantial bathochromic shift 

when electron withdrawing substituents are present, although comparable 

dyes tend to absorb at shorter wavelengths than their thiazole counter- 

parts owing to the absence of an electronegative nitrogen atom in the 

ring. Nevertheless, blue dyes. are easily achieved using these systems 

(see Appendix II). 

Comparison of the thiazolyl- and 6'-nitrothiazolyl-azo dyes derived 

from the coupling component of dye (76)21 with those from N-phenylpyrrolidine 

(Table 2.5) suggest that the thienylazo dye (77a) should absorb at a 

wavelength of about 10-15 nm less than that of the dye (76), i. e. at 

about 510-15 nm. Dye (77b) might be expected to show a hypsochromic 

shift relative to (77a) owing to steric hindrance between the ortho- 

"X 
max/nma Aa/nm 
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acetyl group and the'lone pair of the a-azo nitrogen atom; even 

allowing for this clash, it is likely that the most bathochromic 

isomer will have the azo link in the 2'-position of the thiophene ring 

[dye (77b) should be more bathochromic than (78)]. This postulate 

assumes that conjugation of the acetyl group through four carbon 

atoms of the thiophene ring [(77a), para-substitution] does not hold 

any advantages over conjugation through two carbon atoms [(77b), ortho- 

substitution] apart from the steric factors previously discussed. 

Unfortunately, at the present time the required data for dyes (77) are 

not available. However, the hypothesis is supported by PPP-MO 

calculations; predicted Amax values for dyes (77a), (77b), and (78), 

H 

H 

J 

respectively, are 481 nm, 464 nm and 449 nm. 
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(78) 

2.3.2. Acidic Solution 

(77a); 51-Ac 

(77b); 31-Ac 

Xmax - 477 nm 

Emax - 27300 (EtOH) 

As discussed in the Introduction (Section 1.7), solutions of the 

mono-acid salt of derivatives of 4-aminoazobenzene show two long- 

wavelength absorption bands, due to the ammonium cation (at 1 %, 320 nm) 

and the azonium cation (at N 500-550 nm), the latter ion being 

responsible for the colour change of the dye in acid solution. 

Substituent effects can be interpreted in terms of their effect on the 

resonance canonicals (79a) and (79b) which correspond approximately to 

the ground and excited states, respectively, of the azonium cation. 

Qualitatively, the excited state will be increasingly stabilised as 

the electron-donating strength of X and the electron-accepting strength 

of R2 increase. Those terminal amino groups which exhibit the weakest 

donor properties in the neutral dye should show the strongest acceptor 

N=N 

(76) 

c»> 

/ Et X 
max 

525 nm 
N 
`CH2CH(OH)CH2OH 

Cmax 32500(MeOH) 
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(79a) (79b) 

powers in the protonated dye, thereby shifting the azonium band to 

longer wavelengths. Experimental data (Tables 2.5-2.12) reveal a 

rather irregular trend, as illustrated by two examples in Table 2.15. 

Table 2.15. Absorption Bands of Some Protonated Azo Dyes (80). 

Y X=H XaTj02 

x 
DH+/nm 

a (X DH+XD 
) /nm a DH+/nm (XDH+-XD) /nm 

-CH2CH2- 530 

-CH2CH2CH2- 528 

-CH 2SCH2 536 

-CH2N(Et)CH2- 534 

-CH2OCH2 535 

-CH 2 N(AC)CH 2- 535 

-CH2S02CH2- 530 

117 512 30 

128 516 52 

` 141 531 79 

142 545 91 

149 520 91 

148 546 100 

154 547 116 
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For dyes of type (80; X= H), variation of Y produces only small changesin 

protonated dye wavelength. Uncertainties in the measurement of 

protonated spectra due to their variable shape (see p. 78) become more 

important in these cases and tend to make any trends less apparent. 

For the 4'-nitro derivatives (80; X- NO2), however, where the changes 

in wavelength are larger, the expected trend is fairly clearly observed, 

although the effect of the morpholino group (80; Y- -CH 20CH2-) 

appears to be anomalous. The acceptor strength of the protonated 

N'-ethylpiperazinyl group is somewhat unclear; almost certainly, the 

aliphatic t-amino group will be protonated, thereby producing a large 

-I effect and increasing the electron withdrawing effect of the ring 

as a whole (81), but this situation is not always reflected in the wave- 

length shift. 

+/-1/H N N+ 
`--/ \CH2CH3 

(81) 
The difference in wavelength between protonated and unprotonated 

dye (Table 2.15, XDH+-XD) does show a fairly regular increase for both 

series as the donor strength of the terminal amino group decreases. 

Interestingly, the position of the N'-ethylpiperazinyl dyes is that 

expected on the basis of an unprotonated aliphatic amino group. 

The intensities of the absorption bands produced by the univalent 

cation-vary both with coupling component and with acceptor residue.. 

Although an equilibrium exists between ammonium and azonium tautomers, 

this equilibrium can be displaced significantly in favour of one or 

the other species. The 4-pyrrolidinoazobenzene dyes (64; Y= -CH2CH2-) 

exist-almost entirely as the azonium form in acid solution, unlike 
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their close relatives (in wavelength terms) the diethylaminoazo dyes, 

where the equilibrium favours the ammonium form. 89 This bias towards 

the azonium cation fits in with the generalisation of Brown et al., 
141 

which states that reactions will proceed in such a manner as to favour 

the formation of an exo"double bond in a five-membered ring (although 

it should be noted that Effenberger et al. 
126 

have expressed doubts 

about this generalisation).. The azonium cation (82) contains an exo 

double bond whereas the ammonium form (83) does not. 

�-+ N-N N 
Iý 
H 
(82) 

(83) 

The above workers also postulated that an exo double bond will 

destabilise a six-membered ring, and indeed the 4-piperidinoazobenzene 

dyes prefer to exist as the ammonium form in acid solution. This 

result is to be expected, of course, since the loss of conjugation 

caused by steric hindrance between a-methylene and ortho-phenyl 

protons results in an increased electron density at the terminal nitrogen 

atom and a decreased electron density at the ß-azo nitrogen atom. The 

former increase is such that only relatively low concentrations of acid 

are needed to effect full Protonation of the neutral dye. Electron 

withdrawing groups in the 4'-position of the acceptor ring increase the 

amount of azonium ion (up to about 20%) by increasing the conjugation of 

the lone pair, as illustrated by 84(a) and 84(b). This increase is less 

noticeable in the case of the pyrrolidinoazo dyes, since the equilibrium 

already lies very heavily in favour of the azonium species. 
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N-N 
1 
H 

(84) 

==4( 

(a) X= OMe; Emax " 1200 

(b) X= NO2; Emax 0 13250 

The remaining six-membered terminal amino ring systems contain 

heteroatoms in the y-position which withdraw electron density from 

the terminal nitrogen atom according to the strength of their -I 

effect. This withdrawal reduces the overall electron density at the 

two protonation sites and consequently increases the amount of acid 

needed to produce a cation. At the same time, the ß-azo nitrogen 

atom becomes a relatively more favoured site for protonation, especially 

when the dye contains an electron withdrawing group in the 4'-position 

of the phenyl ring, and this situation is reflected in the Emax values. 

The 4-morpholinoazobenzene dyes (64; Y= -CH2OCH2-)show a change in 

the equilibrium, as the acceptor strength of the 4'-substituent 

increases, from predominantly (about 80%) the ammonium form to 

predominantly (up to about 70%) the azonium form; this behaviour is 

illustrated by 85(a) and (b). The lowering of electron density at the 

(a) X= OMe; emax - 10,400 

(b) X- NO,; e_, _ = 47,800 
H IIIO 

(85) 

terminal nitrogen atom by the electronegative oxygen atom is partly 

offset by partial deconjugation of the nitrogen lone pair, so that the 

ammonium form still predominates when substituent X is a donor or a 

weak acceptor. In the presence of a strong acceptor, however, this 

deconjugation is sufficiently resisted for the ß-azo nitrogen atom to 
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become the more favoured site for protonation. 

A similar argument can be advanced for dyes in which the 

heteroatom is changed to the less electronegative sulphur such that 

relatively more of the ammonium cation is to be expected than for 

comparable dyes with an oxygen heteroatom. In fact, slightly more of 

the azonium form is observed [see 86(a) and (b)]; this result may be 

(a) X= OMe; emax ' 15300 

(b) X= N02; Emax 0 67400 

accounted for by the sulphur atom reducing the electron density at the 

ß-azo atom relatively less than at the terminal atom, possibly by some 

involvement of the d-orbitals of the sulphur atom. 

It is noticeable that the azo dyes derived from N'-ethyl- and 

N'-acetyl-N-phenylpiperazine (64; Y= -CH 2N(Et)CH2- and -CH 2 N(Ac)CH 2-1 

respectively), and from N-phenylthiomorpholine-1,1-dioxide 

(64; Y= -CH 2S02CH2-) exist in acid solution almost entirely as the 

azonium tautomers. These dyes probably interact with acid to develop 

a relatively high positive charge on the heteroatom due respectively 

to protonation at the heteroatom (87), at the N'-acetyl group as with (88) 

or atthe sulphone linkage (89). In any event, the N'-acetyl group is an 

electron withdrawing substituent and the sulphur atom is relatively 

positive. The pronounced inductive effect in these cases reduces the 

electron density at the terminal nitrogen atom to such an extent that 

protonation'takes place almost entirely at the ß-azo nitrogen atom, even 

when electron donor groups are present [see for instance 90(a) and (b)] 

and high concentrations of acid are needed since the overall electron 
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(87) 

/-\ 0 
H+ 

ý"\ OH 
+N N-C-CH3 

+N 
N ý-CH3 

(88) 

ý0+/ý OH 
N +Sý 

ý/ \\o 
+ 

\--/ \\o 
\J 

ýý ýo 

(89) 

density at the two sites is much reduced. 

Good linear correlations are found between the wavelength shift of 

the dye on protonation (ADH+ AD) and the Hammett a value of the 

Para-substituent (Figs. 2.6-2.13) for each of the benzenoid dye series 

(64). Similar correlations are found for the benzthiazol-2-yl dyes (65), 

although the number of points involved is rather small (e. g., Fig. 2.14). 

These correlations confirm earlier work on related azo systems-55 Donor 

groups in the para position produce bathochromic shifts of the first band 

(90) 

Ný 
N-Et 

\--/ \H 

ý +N 1 C-C H, 

_/ 

3 

(a) X= OMe; emax = 47,600 

(b) X= N02 ; emax = 77,100 
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Relation between Hammett substituent constants (a) and XDH+-XD of derivatives 

of 4-pyrrolidinoazobenzene (Fig. 2.6) and 4-piperidinoazobenzene (Fig. 23) in 

ethanol and ethanolic hydrogen chloride (see Tables 2.5 and 2.6). 
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4-morpholinoazobenzene (Fig. 2.8), and 4-thiomorpholinoazobenzene (Fig. 2.9) 

in ethanol and in ethanolic hydrogen chloride (see Tables 2.7 and 2.8). 
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piperazine (Fig. 2.12) in ethanol and ethanolic hydrogen chloride (see 

Tables 2.9,2.10 and 2.11, respectively). 
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disubstituted azobenzenes derived from N'-acetyl-N-phenylpiperazine (Fig. 2.13), 

and for N-[1-(6'-substituted-benzthiazol-21-ylazo)phenyl] pyrrolidines (Fig. 2.14) 

in ethanol and ethanolic hydrogen chloride (see Tables 2.12 and 2.5, 

respectively). 
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but the effect of electron withdrawing groups (as previously discussed 

in section 1.7) is less regular, varying both within and across the 

various series. The wavelength shift of the azonium cation (80) 

caused by the substituent X relative to its parent (X a Ii) appears to 

increase as the acceptor strength of the terminal amino group increases, 

when X is a strong acceptor, whereas it remains essentially constant 

when X is a donor group or a weak acceptor (Table 2.16). Identification 

of particular trends is again hampered by the irregular shapes of the 

azonium absorption bands. 

Dyes containing a 2'-cyano substituent often show reduced- 

intensities and absorb at slightly lower wavelengths than their 4'-isomers; 

this result may be due to interaction between the ortho-substituent and 

the protonated azo link. Much higher acid concentrations are needed to 

protonate these dyes and this reflects the shielding of the ß-azo 

nitrogen lone pair of electrons by the adjacent substituent. 

The pentafluoro derivatives (91) also hinder protonation at the 

ß-azo nitrogen atom. A new band appears at ca. 470 nm; the origin of 

the absorption is uncertain, but may arise from protonation at the a-azo 
142,143 

nitrogen atom. 

It is noteworthy that the azonium tautomers of dyes of types (64), 

(67) and (68) absorb in the region 500-565 nm [for example, dyes 92(a) 

and (b)], whereas the analogous bands of types (65), (66), (69) and 

(70) are found in the region 570-620 nm [for example, dyes 93(a) and 

(b)]. The diazahemicyanine cations of the latter groups are protonated 

at the ring nitrogen atom ortho to the azo link, leading to an 

extended conjugated system (95), 73,95 
and thereby producing a bathochromic 

shift of 60-80 nm relative to the phenyl azonium system (94). It is 
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Table 2.16. Wavelength Shifts Produced by Substituents X in the 

Azonium Cation (80). 

(80) 

Y X= OMe X= Cl Xa N02 

-eý eam eýa eam eaa eam 

-CH 2 CH 27 -+40 

-CH2CH2CH2- +37 

-CH2SCH2- +38 

-CH 2N(Et)CH2-c +33 

-CH2OCH2- +41 

-CH 2N(Ac)CH2- +30 

-CH 2S02CH2- +32 

+29 +5 +4 -7 -12 

+30 +3 +6 -5 -6 

+33 +3 +5 -5 -1 

+28 +7 +5 +16 +2 

+31 +5 +5 -5 -7 

+30 -3 +5 +11 +2 

+28 +9 +9 +2t . +8 

a AX= Difference between wavelengths of protonated azo dyes with 

substituents X and H 

b, &X 
m= 

As above, but with modified spectral curve (see p. 78) 

c Probably protonated at the t-amino group 
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(9t) 

evident that protonated benzthiazolyl dyes of the type (93) will absorb 

in the same region as the related commercial basic dyes (96). Hammett 

correlations of the types previously discussed will be of considerable 

use in the prediction of Amax values for these dyes. 

In the dyes studied, examples of negative halochromism occur only 

in the pyrrolidine and piperidine series, being greatest in the former 

group (which contains the most powerful terminal amino donor group). 

The positive halochromism of 4'-nitro-4-pyrrolidinoazobenzene confirms 

that the production of a hypsochromic shift on protonation with only 

one acceptor substituent present is very difficult, and requires an 

(93) 

R- 
I H =QQ 

-+ 
-N N 

(a) X= OMe; Xmax = 559 nm 

(b) X- NO2; Xmax = 512 nm 

(a) Xý OEt; 'max = 618 nm 

(b) X= N02; 'max = 585 nm 

li 
I 

.- Ný 
Ar-N- 

I 
H 

(94) 

ý /-'\ + 
ý I. 

- 

(95) 
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N=N 

(96 a) 

(96b) 

extremely strong acceptor such as tricyanovinyl. 
96. On the other hand, 

+ 
NR2 

the presence of two acceptor groups makes this effect much easier to 

obtain, as for example in 2'-cyano-4'-nitro-4-pyrrolidinoazobenzene 

(64; 2'-CN, 4'-N02, Y= -CH 2CH2-; XDH+ XD m -38 nm). The long wavelength 

shift produced by the neutral heterocyclic dyes does not automatically 

produce negative halochromism; this result depends on the species 

involved. Thus, the two dyes (97) and (98) show similar wavelengths 

in neutral solution but are markedly different in acid, since they 

belong to the different systems (95) and (94), respectively. An extreme 

example of negative halochromism is provided by dye (99). 

/ý ON 
ý' 

2S 
N=N 

Xmax ' 558 nm (EtOH) 

A DH+-XD = ±46 nm 

(97) 

(98) 

X 
max ' 

555 nm (EtOH) 

apH+-ap = -15 nm 



. 
102 

(99) 

X 
max ' 639 nm (EtOH) 

apH+-ap = -120 nm 

Analogous benzthiazolyl azo dyes show negative halochromism only 
68 

when the terminal amino group is optimally conjugated (e. g., 100), 

due to the insulating effect of the annellated ring. 

Me02 

(100) 

X 
max - 574 nm (EtOH) 

ADH+ XD - -10 nm 

The intensities of the visible band of the protonated heterocyclic 

azo dyes are generally high, showing the preference for this form over 

the ammonium form, although in some cases protonation is hampered by 

the presence of an ortho-substituent (particularly in the thienylazo 

dyes). Additionally, attachment of a second proton, presumably at 

the ß-azo nitrogen atom, can reduce the apparent intensity of the univalent 

cation. Such protonation produces a new band at ca. 430-460 nm, and 

occurs to such an extent with the 1', 2', 4'-thiadiazolyl types (69) that 

the diazahemicyanine absorption is observed only as a shoulder on the 

main band of the neutral dye. As this latter band decreases, so too 

does the shoulder since the dication forms immediately. This anomalous 

ease of diprotonation is probably related to the involvement of the 

second nitrogen atom of the heteroaromatic ring, perhaps by the 

formation of (101), particularly since the 1', 3', 4'-thiadiazolyl dye 

(70; 5'-SEt) does form an intense diazahemicyanine band. 
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Rý-fN R-r-`N 

H+ // 
N-N N -ý +\ 

ýN-N 

Ný S 

(1o1a) 

R_ ,. 
H 

.. ý Nf 
rN 
H NS 

N-N 

=C)ao 
(101b) 

The univalent cations of the benzthiazol-2-ylazophenylamino dyes (65) 

show remarkably high cmax values, exceeding 100,000 in some cases. 

These values are of the same order as those of the triarylmethane dyes 

and are reflected in the commercial development of related basic dyes (96). 

2.4. Fastness Properties of the Azo Dyes 

2.4.1. Light Fastness 

The light fastness ratings for each series of azo dyes, together 

with those of some NN-diethylaminoazobenzene derivatives dyed under the 

same conditions, are given in Tables 2.17-2.19. Fastness to light 

appears to improve as the strength of the -I effect of the terminal amino 

ring heteroatom increases, in accordance with findings in related 

dyes; 
16'27'6$ 

the pyrrolidino- and piperidinoazo dyes, in which the 

heteroatom is absent, are rather fugitive.. Light fastness ratings also 

increase as the electron withdrawing strength of substituents in the 

diazo residue increases, a trend previously observed by some workers14 
67 

but not by others,, 
140 

who found little change in ratings with 

variation in diazo ring substituents. It can be concluded that strong 
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Table 2.17. Light Fastness Ratings on Polyestera of some Azo Dyes 

Derived from (a) N-Phenylpyrrolidine (64-70; bY CH 2CH2-), 

(b) N-Phenylpiperidine (64-67; by CH2CH2CH2-) and 

(c) N-Phenylmorpholine (64-67; bY CH 2OCH2-). 

Dye Light Fastness Ratings 

(a) Y= -CH2CH2- (b) Y- -CH 2CH2CH2- 
(c) Y- =CH2pCH2- 

(i) Benzenoid Dyes (64) 

4'-OMe 1-2 2-3 3-4 

4'-Me 1-2 2-3 3-4 

4'-H 234 

4'-Cl 2 3-4 4 

4'-Br 2 3-4 3-4 

4'-CF3 2 2-3 4-5 

4'-Ac 3-4 3 4-5 

21-0 3-4 3-4 4-5 

4'-CN 3-4 3-4 5 

4'-NO2 3-4 3-4 4-5 

2'-CN, 4'-NO2 3-4 45 

3', 5'-(CF3)2 2 2-3 4-5 

F5 3-4 3 4-5 

continued/ ........ 
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Table 2.17. continued/ ........ 

Dye Light Fastness Ratings 

(a) Y= -CH 2CH2- (b) Y= -CH 2CH2CH2- (c) Y- -CH2OCH2- 

(ii) Heterocyclic Dyes (65-70) 

65; 6'-OEt 1-2 1-2 2-3 
65; 6'-H 1-2 1-2 2-3 
65; 6'-SO2Me 22 2-3 
65; 6'-N02 3 2-3 3-4 

66; 5'-H 

66; 5'-N02 

2-3 2-3 2-3 
3 3-4 3 

67; 3', 5'-(CN)2, 
4'-Me 2-3 

67; 3'-N02,5'-Ac 3 3-4 4 
67; 3', 5'-(N02)2 3-4 

68; 2'-CO2Me 3-4 

68; 2'-COMB 3 

69; 3'-Ph 

69; 3'-SMe 

2-3 

2-3 

70; 5'-SEt 2-3 

a 2% dyeing 

b See p. 66 
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Table 2.18. Light Fastness Ratings on Polyestera of Some Azo Dyes Derived from 

(a) N-Phenylthiomorpholine (64-66; bY- 
-CH 2SCFi2-), 

(b) N'-Ethyl- 

N-phenylpiperazine (64-66; Y- -CH 2N(Et)CH2-), and (c) N'-Acetyl- b 

N-phenylpiperazine (64-66; bY- 
-CH2N(Ac)CH2-). 

Light Fastness Ratings 

Dye (a) Y= -CHSCH - (b) Y- -CH N(Et)CH (c) Y- -CH N(Ac)CH22 2 2- 2 2- 

(i) Benzenoid Dyes (64) 

4'-OMe 1-2 2 

4'-H 23 

4'-Cl 2 4-5 

4'-CF3 2-3 3 4-5 

4'-CN 334 

4'-N02 2-3 34 

2'-CN, 4'-NO2 3-4 34 

(ii) Heterocyclic Dyes (65,66) 

65; 6'-NO2 2-3 3 

66; 5'-NO2 2 

a 2% dyeing 

b See p. 66 
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Table 2.19. Light Fastness Ratings on Polyestera of Some Azo Dyes 

Derived from (a) N-Phenylthiomorpholine-i, l-dioxide 

(64; bYm 
-CH 2S02CH2-), and (b) NN-Diethylaniline (30). c 

Dye Light Fastness Ratings 

(a) 64; Y -CH2SO2CH2 (b) 30 

4'-OMe 1-2 

4'-Me 2 

4'-H 2 

4'-Cl 4 3-4 

4'-Br 3-4 

4'-CF3 5 3-4 

4'-Ac 4 

4' -CN 4 4-5 

4 '-N02 4 4-5 

a 2% dyeing 

b See p. 66 

c See p. 57 
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acceptor groups are associated with improved stability to light. The 

suggestion that meta-substitution in the diazo component increases 

stability to light 
144,145 is not borne out by the various 

3', 5'-bistrifluoromethyl-substituted dyes (which give the same fastness 

ratings as the corresponding 4'-trifluoromethyl compounds), in agreement 

with the work of Mehta and Peters. 67 

It is widely assumed, largely on the basis of indirect evidence 

gained from comparative studies of fading rates, that the irreversible 

fading in light of azo dyes on polyester (where there is little inter- 

action between dye and fibre) is associated with oxidative cleavage of 

the azo linkage. 146 PPP calculations (see Appendixl)show that the 

electron density at the 0-nitrogen atom in the ground state of the dye 

is higher than that at the a-nitrogen atom, suggesting that oxidative 

attack will occur at the former site. However, the calculations also show 

that the electron density at the ß-nitrogen atom (and, hence, the rate of 

attack by oxygen) increases in the ground state as the electron-withdrawing 

strength of a substituent in the 4'-position increases, leading to lower 

fastness to light, a result in contrast with the experimental findings. 

The excited state of the dye molecule shows a large build up of electron 

density at the a-azo nitrogen atom such that oxidative attack might well 

occur here rather than at the ß-nitrogen atom (as resonance considerations 

imply). Electron withdrawing substituents in the diazo component do in 

fact reduce the electron density at the a-nitrogen atom in the excited 

state, leading to the observed fastness trend. Improved conjugation of 

the terminal amino group, which is also predicted to increase the electron 

density at the a-nitrogen atom in the excited state, should also lead 

to low stability to light. This is indeed the case for the optimally 

conjugated azo-julolidine (32)and azolilolidine (33) dyes, which have 

fastness ratings of only 1-2, and also for the pyrrolidinoazo dyes 
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(Table 2.17). It can therefore be concluded that the oxidative fading 

of azo dyes is initiated at the a-nitrogen atom when the dye is in the 

excited state. This proposal implies a fairly high stability to light 

in the case of the piperidinoazo dyes in which steric crowding results 

in a relatively low electron density at the a-azo nitrogen atom, and 

a relatively high density at the terminal nitrogen atom, owing to 

inefficient conjugation of the terminal nitrogen lone pair, as witnessed 

by the predominance of the ammonium form over the azonium form in acid 

solution. However, the observed fastness ratings are somewhat inferior 

to those of the NN-diethylaminoazobenzenes containing acceptor groups, 

and the dyes are almost as fugitive as the pyrrolidino analogues. 

Griffiths has suggested, 
147 by analogy with the susceptibility of 

many simple amino compounds towards photo-oxidation, that the oxidative 

degradation of aminoazo, dyes occurs at the amino group rather than at 

the azo linkage, and that reaction occurs through the ground state of 

the molecule since the excited state may be too short lived (on the 

basis of the lack of fluorescence of azo dyes) for an attack to take 

place. In recent work on the fading of NN-diethylaminoazobenzene 

derivatives, 148 
preliminary findings indicate that dealkylation of the 

substituted amino group takes place, thereby supporting this theory. The 

effect of electron-withdrawing substituents in the diazo residue or when 

incorporated into the terminal amino group can be explained in terms of 

their reduction of the electron density at the amino nitrogen atom. 

Similarly, the low light fastness values for the piperidinoazo dyes can 

be accounted for by the increased electron density at the terminal 

nitrogen atom. However, the high fading rates of efficiently conjugated 

dyes, such as the previously mentioned julolidine types, are less easily 

explained, although it can be argued that this conjugation is much less 

important in the ground state of the dye, compared with the excited state, 
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and that a relatively high electron density exists at the terminal 

nitrogen atom even in well conjugated dyes. 

It seems likely that the oxidative fading of azo dyes can take 

place via attack at both the azo linkage and the amino nitrogen atom, 

the relative importance of each mechanism depending on the relative 

electron densities, in their appropriate states, of the atoms in 

question. It is significant that dyes with low fastness ratings are 

those in which either the azo linkage or the amino nitrogen atom has a 

relatively high electron density. The inclusion of substituents which 

simultaneously reduce the electron density at both sites, namely electron 

acceptors in the diazo residue or incorporated into terminal alkyl chains, 

almost always results in higher light-fastness values. On the other hand, 

electronic or steric effects which favour a build up of electron density 

at one site, at the expense of the other, invariably result in low light- 

fastness ratings. 

2.4.2. Wash Fastness 

Of the dyes tested on polyester, all had wash fastness ratings of 5 

to bleeding and staining, with the exception of one compound which had a 

value of 4-5 for bleeding; wash fastness appears to be independent of any 

substituents present. - The excellent values are not unexpected, however; 

the after treatment removes any dye left on the surface of the, fibre and 

the dye molecules within the fibre cannot escape since the washing test 

takes place at temperatures, below 100°C, at which the polyester remains 

unswollen. 
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2.5. Proton Nuclear Magnetic Resonance Spectra of the Azo Dyes. 

The 1H-n. 
m. r. assignments are given in Tables 2.20-2.25, together 

with a footnote on p. 121. The spectra of the 4,4'-disubstituted 

azobenzene types are easily analysed since, in most cases, four super- 

imposed AB systems attributable to the four pairs of protons Ha, Hb, 

Hf and Hg (102) can be distinguished. The relative shifts of each pair 

can be inferred from the shape of the doublets and the observed constancy, 

(102) 

or otherwise, of chemical shifts when the para substituents are varied. 

PPP molecular orbital predictions are also useful, based on the well 

established assumption149-151 that within a class of compounds the 

chemical shift of a specific proton is determined primarily by the 

n-electron density at the carbon atom to which it is attached. For 

instance, they reveal that the Ha protons are usually more shielded than 

the Hf protons, even though the latter are in the ring containing the 

donor substituent (see Appendix 1). 

For a given substituent X, protons Ha and Hb effectively retain 

constant chemical shift values as the terminal amino donor group is 

changed (and vice-versa for'Hf and Hgthereby indicating the insulating 

effect of the azo linkage. Variation of X, however, causes Hb to move 

downfield, from d ca. 7.0 (X=OMe) to ö ca. 8.35 (X=N02), approaching 

and eventually passing the signal of the proton (Ha) to which it is 

coupled. This movement reflects the reduction of electron density at 

the carbon atom to which Hb is attached, by the acceptor group X. The 
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Footnote to n. m. r. data: 

s= singlet 

bs = broad singlet 

dd = double doublet 

t= triplet 

q= quartet 

m= multiplet 

Ha Hg: doublets unless otherwise stated 

Hh Hi: multiplets unless otherwise stated 

Coupling Constants: Jortho a 9.0 ± 0.6Hz 

Jmeta = 3.0 ± 0.6Hz 

J45 3.5 ± 0.6Hz, thiazole ring 

152a (lit., 3.1-3.6Hz) 

123 5.4 ± 0.6Hz, thiophene ring 

(lit., 153 4.9-6.2Hz) 

Jvic = 7.2 ± 0.6Hz, alkyl chains 

The 'H-n. 
m. r. spectra were all measured for solutions in 

[2H] 
chloroform at 60 MHz and ca. 40 °C. 
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effect of the latter group upon Ha is somewhat irregular, causing random 

chemical shifts within the region 6 7.7-7.95. 

The chemical shift of Hb shows a rough correlation with the 

Hammett a constant, for substituent X; F and Cl appear to be anomalous, 

in that they cause Hb to absorb upfield relative to X-H. A similar 

situation is evident with the cyano group relative to X=CF3. Much better 

correlations are obtained when a is plotted against the difference in 

chemical shift between Ha and Hb (AS)' 54 
as in Figs. 2.15 and 2.16. A 

similar correlation has been found in a series of 6'-(benzthiazolyl-2'-azo)- 

phenyl-NN-dimethylanilines. 
155 Examination of the relevant data reveals 

that Ad values are the same, regardless of the terminal amino donor 

group. This constancy may be of some use in the analysis of 4'-substituted 

azo dyes. Fluorine and chlorine again seem to be anomalous (Fig. 2.16); 

it is evident that the halogens produce quite different shifts for the 

protons Hb. The gradients of the two plots agree well with those found 

in the azojulolidine and azolilolidine analogues, 
156 

as expected since 

the sensitivity of Hb to variation in the 4'-substituent is independent 

of the 4-donor group. 

Of the other aminoazobenzene derivatives studied the pentafluoro 

derivatives are useful in that they give unambiguous assignments to the 

donor ring protons. The parent and 2'-CN dyes show complex signals in 

the aromatic region which are too complicated to analyse on a first- 

order basis. The 2'-cyano-4'-nitro derivatives can be readily assigned, 

however, and it is noteworthy that an additive relationship 
157 

exists 

between the A6values of the disubstituted dyes (103; Ad= e-b = ca. -0.63) 

and those of the monosubstituted dyes (102: X=N02, AS a a-b = e-b = ca. -0.41) 

and (102; X=CN, Ad= a-b = e-b = ca. -0.20). This relationship implies 

that in dyes of structure (104) the cyano group has the same effect on 
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1.0 Fig. 2.5. 

OMe 
0.8 ý e6 = -1.10a + 0.46 

AS 
0.6 

0.4 

0.2 

0.0 

-0.2 

-o. 4 

-0.6 
-0.3 -0.2 -0.1 

r-0.960 

ý Cl 

0.0 0.1 0.2 0.3 0.4 0. 0.6 0.7 0.8 0.9 
a 

o. 8-1 Fig. 2.6. 

o. 6 
e6 

0.4 

0.2-i 

. a. o -I 

-0.2 

-o-4. I e 
N02 

-o. 
-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

O 

Relation between Hammett substituent constant (o) and Aö (a-b) for 

derivatives of 4-pyrrolidinoazobenzene (Fig. 2.15) and NN-diethyl- 

aminoazobenzene (Fig. 2.16) in deuteriochloroform (see Tables 2.20 

and 2.25). 
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CN 

=N 

(103) 

NR2 c lý `ý--NR2 

(1o4) 

Hb and He irrespective of whether it is in the 2' - or the 4'-position; 

this is a reasonable assumption since the group will be positioned 

ortho to Hb, and meta to He, in each case. 

The chemical shifts of the Hg protons in the donor ring are essentially 

independent of the constitution of the diazo residue. Variations in the 

position of Hg with the donor group (Table 2.26) support previous 

indications that the order of decreasing donor power is pyrrolidino 

> NN-diethylamino > NN-dimethylamino > piperidino. Effenberger et al126 

have correlated the chemical shift of the ortho-amino protons with the 

r-electron density at the appropriate carbon atom, as calculated by 

Hückel MO theory, for the series of compounds (105) and obtained an 

order of mesomeric potential, as designated by the Hückel k values of 

X= NN-dimethylamino, pyrrolidino, piperidino, morpholino 

(105) 

pyrrolidino > NN-dimethylamino > piperidino > morpholino. Incorporation 

of a Y-heteroatom into the six-membered ring system results in only minor 

changes in the chemical shift of Hg; this finding is, confirmed by a 
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series of analogues of Michler's ketone (Table 2.26), and by the 

similar vinyl proton chemical shifts of the enamines (106). 128 

R2 = piperidino, morpholino 

(106) 

Table 2.26. The Effect of Terminal Amino Groups on the Chemical 

Shift (6) of Aromatic Protons. 

N(CH2)4 

NEt2 

NMe2 

N(CH 

N=N 

N(CH2)2S(CH2)2 

N(CH2)2N(Et)(CH2)2 

N(CH2)20(CH2)2 

"ýý 2)211 

N(CH2)2502(CH2)2 

a Ref. 158 

NR2 

Hf Hg 

7.92 6.64 

7.92 6.74 

7.92 6.78 

7.90 6.97 

7.91 6.93 

7.92 6.98 

7.94 6.98 

7.97 6.97 

7.97 7.02 

b 
--- ! --1 
NR2 = N(CH2)2N(Me)(CH2)2 

C 
II 
0 

NR2 

2-positions 3-positions 

7.78 

7.74 

7.74 

7.78 

7.79 

7.81b 

7.79 

6.57 

6.63 

6.67 

6.92 

6.89 

6.96b 

6.93 
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These results suggest that the ground state hybridisation of the 

terminal nitrogen atom is minimally affected by the heteroatom. Thus, 

the heteroatom must play a more important role in the excited state 

of the dye, where it will destabilise the charge-separated structure, 

thereby producing a hypsochromic shift of the visible absorption band. 

The invariance of the chemical shifts of the Hf protons as the 

terminal amino group is changed, suggests that the conjugation of the 

nitrogen lone pair with the phenyl ring is rather localised, and is not 

transmitted beyond the ortho carbon atoms, although it can be argued 

that the position which is meta to the amino group will be affected much 

less than the ortho and Para positions. 

Protons situated in a heterocyclic aromatic ring tend to show greater 

downfield shifts than their phenyl counterparts, as exemplified by the 

proton ortho to a nitro group in a thiazole ring which absorbs at 

6 ca. 8.6 (Venkataraman159 quotes 6 8.57 for the related dye (107) 

KI 

0 N-Cý 

'" /CH2CH2Ph 
NN NI 

2S- ýC H2CH2CN 
(107) 

/CH i'Y 

\CH2 ,' 
(108) 

N=N 

measured in CD2C12), compared with ca. d 8.35 for the phenyl analogue. 

This difference is due to the presence of atoms of high electronegativity 

in the ring and also to the enhanced electron withdrawing power of the 

nitro group. The proton Hd of the 6'-nitrobenzthiazole derivative 

(108; X=N02) is even more deshielded, at ca. 6 8.75. The relative positions 

of Ha, Hb and Hd protons in dyes of the latter type are also in agreement 

with the data of Venkataraman. 159 When the electron withdrawing group 

is less powerful, as in (108; X=SO2Me), the protons ortho to the acceptor 

group (Hb, Hd) absorb at higher field, whilst the proton Hain a position 
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of non-conjugation in terms of resonance theory, shows only a small 

change. The n. m. r. spectrum of dye (108; X-OEt) is poorly resolved so 

that assignments are somewhat difficult, although the ortho protons 

(Hb, H d) may in this case be expected to be shielded due to mesomeric 

donation by the methoxy group. The two protons of the thiazole nucleus 

of dyes (66) absorb at significantly different frequencies; Ha is 

assigned at lower field by comparison with the n. m. r. spectrum of 

thiazole, 
152b 

a conclusion supported by PPP-MO electron density cal- 

culations (see Appendix 1). Similar considerations were invoked in the 

assignment of protons Ha and Hb for dye (5; 2'-CO2Me, Table 2.20). The 

low field absorption of protons Ha of the dye (6; 3'-Ph, Table 2.20) is 

probably due to the combined effects of the diamagnetic ring currents of 

two aromatic rings. 

The terminal ring protons Hh and Hi are, in most cases, seen as 

two distinct signals, usually multiplets. Comparison with the appropriate 

coupler indicates that these protons are largely unaffected by the presence 

of the arylazo residue, as might be expected. At ambient temperature 

('40 °C), it was not possible to derive constants for the geminal and 

vicinal couplings. Protons attached to the same carbon atom tend 

towards equivalence due to rapid changes in the conformation of the rings; 

indeed, some evidence of triplet splitting is observed in certain dyes. 

Protons Hh absorb at the same frequency in both pyrrolidine and piperidine 

rings (slightly upfield from their NN-diethylamino counterpart), whereas 

the Hi protons of the pyrrolidine ring are shifted downfield by 6 ca. 0.35 

relative to those of the piperidine ring. This may be a consequence of 

the differing proximities of these protons, with respect to the nitrogen 

lone pair, brought about by the change in ring size. Hh and Hi protons 

in rings where a heteroatom is present have been assigned after reference 

to related systems. 
152c The heteroatom causes rather irregular shifts 
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in Uh within the region 6 3.3-4.1. The effect of oxygen appears to be 

anomalous, but the proton assignment agrees with the literature values 

measured on N-phenylmorpholine itself, 152c 
and it has been previously 

observed in open chain aliphatic compounds that the deshielding effect 

of a ß-sulphur atom can be greater than that of a ß-oxygen. 
152d 

Nevertheless, the upfield shift of Hh in the morpholine ring, relative 

to the value in the piperidine ring, is rather surprising. Hi protons 

are in every case shifted to lower field by the presence of a heteroatom, 

but correlations with the -I effects of the heteroatoms (as defined by 

electronegativity or by neutral dye Amax) are not apparent. 

2.6. Basicity Measurements of the Azo Dyes 

The basicities of a selection of azo dyes synthesised in this 

study are given in Table 2.27. It is clear from the 4'-cyano series 

(109; X=CN, X'=H) that the pKa' values vary considerably with changes 

in the terminal amino grouping. The pyrrolidino and piperidino dyes 

have similar pKa' values (1.98 and 2.31, respectively) although the latter 

compound is slightly more basic. As stated previously (Section 1.8), 

the pKa' value measures the overall basicity of the azo molecule, and 

does not distinguish between the two sites of protonation, namely at 

the ß-azo and the terminal nitrogen atoms. As a consequence of the 

difference in ring sizes, the pyrrolidino derivative exists mainly ("95%) 

as the azonium cation in acid solution (Table 2.4), whereas the piperidino 

analogue forms mainly (11685%) the ammonium tautomer (Table 2.5). 

Consequently, in these cases, the pKa' value can be approximately related 

to protonation at a specific site, and it can be concluded that protonation 

occurs most readily at the terminal nitrogen atom. This finding is not 

a general rule, of course, and the general situation will depend largely 

upon the relative conjugation (or deconjugation) of the terminal nitrogen 
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Table 2.27. pKa' Values of Some 4-Aminoazobenzene Derivatives in 50% Aqueous 

Ethanol at 25 °C. 

N=N 

(109) 

X 

109; CN 

109; CN 

109; CN 

109; CN 

109 ; CN 

109; CN 

109; CN 

109; CN 

i10; CN 

109; OMe 

109; Me 

109; H 

109; C1 

109; Br 

109; CF3 

109; Ac 

109; NO2 

109; H 

109; NO2 

109; OMe 

109; H 

109; NO 2 

Xr 

H 

H 

H 

H 

H 

H 

H 

H 

H 

H 

H 

H 

H 

H 

H 

H 

H 

CN 

CN 

H 

H 

H 

Y 

-CH2CH2- 

-CH2CH2CH2- 

-CH2SCH2- 

-CH2N(Et)CH2- 

-CH2N(Me)CH2- 

-CH2OCH2 

-CH2N(Ac)CH2- 

-CH2SO 2CH2- 

-CH2CH2- 

-CH2CH2- 

-CH2CH2- 

-CH2CH2- 

-CH2CH2- 

-CH2CH2- 

-CH2CH2- 

-CH2CH2- 

-CH2CH2- 

-CH2CH2- 

-CH2CH2CH2- 

-CH2CH2CH2- 

-CH2CH2CH2- 

pK a' 
vp (ctp ) 

1.98 ± 0.01 

2.31 ± 0.01 0.70 

0.66 ± 0.01 

-0-679 ± 0.003 

-0.717 ± 0.009 

0.29 ± 0.01 

0.29 ± 0.02 

-0.92 ± 0.01 

3.55 ± 0.06 

1.94 ± 0.02 

2.18 ± O. OIa 

2.16 ± 0.02b 

1.84 ± 0.01c 

1.85 ± 0.01 

1.95 ± 0.01 

2.13 ± 0.01 

1.96 ± 0.01 

0.41 ± 0.06 

0.21 ± 0.02 

3.15 ± 0.01 -0.28(-0.76) 
2.68 ± 0.02 0.00 

2.27 ± 0.02 0.81 

a Ref. 89 gives 2.43 b Ref. 89 gives 2.38 c Ref. 89 gives 2.15 
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lone pair. Thus, for example, the cyanoazojulolidine dye (110), which 

forms the azonium cation almost exclusively in acid solution, is 

considerably more basic (pKa' @ 3.55) than the piperidino analogue. 

Since the julolidine and the pyrrolidine dyes both protonate almost 

quantitatively at the same site, their basicities can be compared 

directly; the higher pKa' value of the former species supports the view 

that n-interaction of the lone pair is optimal in this case. 

Each of the remaining P cyano derivatives contains a six-membered 

cyclic terminal amino grouping with a heteroatom in the Y-position; the 

-I effect of the latter atom results in a decrease in the overall electron 

density at the two protonation sites of the dyes, leading to decreases 

in their basicities, relative to that of the corresponding piperidino 

dye. The relative basicities (with two exceptions) follow the same 

order as the relative \nax values (in ethanol) of the neutral dyes, 

decreasing as the strength of the -I effect of the Y-heteroatom increases. 

The deviation from this order occurs with the N-alkylpiperazinyl types, 

where the basicities are much lower than expected, reinforcing the view 

that in these systems the initial protonation site is the tertiary 

aliphatic nitrogen atom: 

N 

This situation results in a large -I effect (as discussed in 

Section 2.3.2). The higher basicity of the N'-acetylpiperazinyl compound 

suggests that the equivalent protonation reaction does not occur in this 

system. 
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In the pyrrolidinoazo series pKa' values appear to be largely 

independent of the substituent X. all values falling in the range 

2.0±0.16. This is a rather unexpected result, since a related series 

of dyes derived from NN-diethylaminoazobenzene shows a drop in basicity 

as the electron withdrawing strength of X increases (Table 1.13). Also, 

similar work on three pyrrolidinoazo dyes likewise showed this decrease 

in basicity, 89 
although the difference in pKa' values was small; the 

same trend is in fact observed in the present work for these dyes. 

This situation may be linked with the fact that each dye of the series 

protonates almost exclusively at the ß-azo nitrogen (in this respect it 

would be of interest to examine the trend in pKa' values for the azo- 

julolidines) if the availability of the ß-azo nitrogen lone pair 

(presumably governed by the electron density at this site) is essentially 

constant. It can be envisaged that, relative to the,, parent dye, any 

loss of electron density caused by the electron-withdrawing substituent 

X is offset by the increased conjugation of the terminal nitrogen lone 

pair produced by this same substituent. Thus, in such circumstances, 

the electron density at the ß-azo nitrogen atom would remain essentially 

constant, but a decrease would be evident at the terminal nitrogen atom. 

Since protonation occurs almost exclusively at the azo group, however, 

the basicity of the dye should be largely independent of substituent X, 

as appears to be the case. 

Application of this scenario to the piperidinoazo dyes in which 

the ammonium tautomer is dominant in acid solution (a situation where 

the electron density at the terminal nitrogen atom should directly 

influence pKa') would suggest a decrease in pKa' as x becomes more 

electron withdrawing. In the small group of dyes examined, this trend 

is observed and, indeed, a good linear correlation is found between 

pKa' and the appropriate Hammett a constant (Fig. 2.17), especially when 



p Ka I 

3.3 

3.2 

3.1 

3.0 

2.9 

2.8 

2.7 

2.6 

2.5 

2.4 

2.3 

2.2 
-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 

cJ 

Fig. 2.17. Relationship between pKa' value and Hammett a constant for 

some, derivatives of 4-piperidinoazobenzene (see Table 2.27). 
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an enhanced a constant (a') is employed for the methoxy substituent 

This usage can be justified on the grounds that the donor group can 

conjugate directly with the positively charged site and will thus 

encourage protonation since it can stabilise the cation. It is of 

interest, therefore, to obtain-pKa' values for the remaining dyes of this 

series, in order to confirm this correlation. 

Relatively low basicities are observed for the two pyrrolidinoazo 

dyes containing an o-cyano group; this result can be attributed to a 

shielding of the ß-azo nitrogen lone pair by the substituent, thus 

hindering attack by the proton. It is interesting to note, that, although 

relatively high acidities are needed to effect protonation in these cases, 

there is no sign of any ammonium ion formation. Clearly, small electron 

density changes at the terminal nitrogen atom can appreciably affect rates 



133 

of protonation at this site. It is anticipated that the corresponding 

piperidinoazo dyes containing an o-cyano group in the acceptor ring 

will have PKa' values more in line with the para-substituted 

analogues, since protonation here is mainly at the terminal amino group 

and should therefore be little affected by the presence of an ortho- 

substituent: 



3. DISCUSSION OF EXPERIMENTAL 
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3.1. Preparation of Intermediates 

3.1.1. Coupling Components 

Methods for the preparation of the coupling components were chosen 

to combine synthetic ease with a high yield of product. Literature methods 

were used in all cases with the exception of N'-ethyl-N-phenylpiperazine, 

A selection of alternative procedures from the literature is shown in 

Schemes 3.1-3.7; percentage yields and melting points of product are 

given (where available) for comparison purposes. 

3.1.2. Diazo Components 

Most of the amines used in the diazotisation reaction were commercial 

samples, used without further purification unless otherwise stated. 

However, three heterocyclic amines were synthesised, using literature 

methods: 2-amino-3-nitro-5-acetylthiophene, 5-amino-3-methylthio-1,2,4- 

thiadiazole and 2-amino-5-ethylthio-1,3,4-thiadiazole. In the case of 

the first heterocycle, the nitration step used by Dickey et al. 
19 

gave 

rise to 2-chloro-3,5-dinitrothiophene, m. p. 119-20 °C (lit., 186 120-21°C), 

i. r. showed no /C=O stretch. The mono-nitro derivative was prepared, 

however, by the method of Hurd and Kreuz, 187 in which the nitrating mixture 

is added to the 2-chloro-5-acetylthiophene, rather than vice-versa. The 

two thiadiazoles were isolated in somewhat lower yields than claimed in 

the literature, owing in the case of the 1,3,4-thiadiazole possibly to an 

inferior sample of diethyl sulphate. 

3.1.3. Miscellaneous Preparations 

Several 4-substituted-N-phenylthiomorpholines were prepared for use 

in dipole moment studies. The 4-nitro and 4-cyano derivatives were made 
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by the appropriate nucleophilic displacement of halogen with 

thiomorpholine, using 4-nitrochlorobenzene and 4-fluorobenzonitrile 

respectively; in both cases, butanol (b. p. 110 °C) was used as solvent, 

ethanol. affording little product. 

Bromination of N-phenylthiomorpholine gave the 4-bromo derivative in 

high yield. Methylation of the latter compound (via metallation with 

butyl-lithium) gave crude 4-methyl-N-phenylthiomorpholine shown to be 

reasonably pure by n. m. r. However, column chromatography, vacuum 

distillation and several recrystallisations from cyclohexane and ethanol 

were required to obtain a sample which remained crystalline (m. p. 30-31 0C) 

at room temperature. 

In order to compare the p. m. r. spectrum of 4,4'-thiomorpholino- 

benzophenone with analogous benzophenone derivatives, this compound was 

synthesised from 4,4'-difluorobenzophenone. Use of butanol as solvent 

gave only the mono-amino derivative after prolonged heating under reflux; 

dimethylsulfoxide (b. p. 189-92 °C) was therefore used'as a high-boiling 

solvent. Although some mono-amino compound- was again produced, the 

majority of the crude product was found to be the required ketone. 

3.2. Synthesis of Azo Dyes 

The dyes were prepared by standard methods of diazotisation188 (in 

particular the direct method and that involving nitrosylsÄ huric acid) 

and coupling. 
188 

3.2.1. Diazotisation 

The diazotisation of aromatic primary amines, followed by a coupling 

reaction, is the method by which practically all technical azo dyes are 
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produced. In diazotisation, the amine in aqueous solution is converted 

into the diazonium ion at 00C by the action of sodium nitrite in the 

presence of mineral acid (3.1). Normally the use of 2.5-3 equivalents 

ArNH2 + 2HX + NaNO 2 ArN2X + NaX + 2H20 (3.1) 

(X = Cl, Br, NO 3' HSO4, etc. ) 

of acid is essential for smooth reaction, for the following reasons: 

(i) To maintain the equilibrium (3.2) in favour of the amine salt which 

ArNH2 + H+ ArNH3+ (3.2) 

prevents the combination of unreacted free base with newly formed 

diazonium ions, resulting in the formation of diazoamino compounds. Although 

the concentration of neutral amine is consequently low, the equilibrium 

is maintained during reaction so that more neutral amine becomes available. 

(ii) To maintain the nitrosating agent in an active form. 

(iii) To stabilise the resulting diazonium ion in solution (i. e. to 

obviate formation of diazoamino compounds). 

A slight excess of nitrous acid should be present at the end of 
. 

the reaction, and this can be detected by the instantaneous blue-black 

coloration with starch-iodide paper. A large excess of nitrous acid is 

detrimental to the stability of the diazonium ion, and can be destroyed 

by the addition of urea or sulphamic acid (3.3). 

Z-NH2 + HNO2 Z-0H + N2 + H2O (3.3) 

Urea: Z= H2NCO- 

. Sulphamic acid: Z= HO3S- 

The low temperature of diazotisation is a prerequisite demanded by 

the moderate stability of most diazo compounds. An advantage of a low 
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reaction temperature is the higher stability of nitrous acid at 00C, 

which ensures that there is less danger of nitrous gases escaping from 

the acid medium than at a higher temperature. These two factors out- 

weigh the lower rate of reaction and inferior solubility of the starting 

material at this temperature. 

More strongly acidic conditions than those suggested by eqn. (3.1) 

are required in the diazotisation of more weakly basic amines, in order 

to shift the equilibrium (3.2) in favour of the amine salt and to 

encourage the formation of more electrophilic nitrosating moeities. 

This is the case with aniline derivatives in which the total electron 

withdrawing power of the substituents is sufficiently strong, such as 

2-cyano-4-nitroaniline, and with many heterocyclic amines (in which the 

heterocycle is an inherent electron acceptor) such as the thiazole, 

thiadiazole and thiophene types. Concentrated sulphuric acid is used 

as the diazotising medium for these amines and the active species is 

nitrosyls Ä huric acid (NO + HSO4 ). 

Formation of the attacking species involved in the diazotisation 

reaction189 can be summarised by equations (3.4) and (3.5). It is clear 

that the nitrous acidium ion (H2t-NO) does not simply lose water to form 

the electrophilic nitrosonium ion (NO) as the attacking species, but is 

often associated with a base X in the system either as an unsymmetrical 

molecular nitrous anhydride or (more likely) as an ion pair (X ii0). 

The general mechanism of diazotisation was mainly elucidated by 

Hughes, Ingold and Ridd, 190,191 
and is shown in Scheme 3.8. 
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2HN02 ý-= 02N-NO + H20 

2' HNO 2+ 
H'X 

+ 
H20-NO 

X-NO + H20 

ll -+ 
X+ NO 

Low acidity 
(3.4) 

(dil. HC104 or < 85% H 2SO4) 

Moderate acidity: X= Cl, Br 

(in dil. HCI or HBr) 

High acidity: X= OSO3H 

(in > 85% H2SO4) 

Order of reactivity: 02N-NO < X-NO < H2O-NO < NO 

ý. -x- 
H 

. -H+ 
ý 

Ar-NH� N=0 ----ý Ar=N=N-0 Ar-N=N=0 
ý'X slow I 

H 

+ 
Ar-N=N -H20 

rapid 

L+ 

! j__ ± +H 
Ar-N=N-OH 2 rapid 

i rapid 1 

Jo 

3.5) 

Scheme 3.8. General mechanism for diazptisation. 
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Although the aliphatic analogues readily'lose N2 (g) to form alcohols, 

aryl diazo compounds are relatively stable due to delocalisation of the 

positive charge into the aromatic ring: 

N=N: E--> (() }-N=N: ý-ý 
ý( 

+ 
ýN=N: 

a* 

Of the amines used, the monosubstituted anilines were diazotised 

smoothly by the direct method. The lower basicity of 2-cyano-4-nitro- 

aniline required the use of nitrosylsulphuric acid, as did 

3,5-bistrifluoromethylaniline which, by the direct method, gave: 

significant amounts of a water insoluble solid after diazotisation and 

a low yield (44%) when coupled to N-phenylmorpholine (cf., 77% usirg 

nitrosylsulphuric acid). In the diazotisation of 2,3,4,5,6-penta- 

fluoroaniline by this method, some loss of the original purple colour 

was observed when the freshly prepared diazonium solution was heated 

to a maximum of 60°C. It may be that this heating stage should be 

omitted, in view of the moderate yields obtained in the present work. 

The nitrosylsulphuric method was also utilised for the heterocyclic 

amines. 

Owing to the more extreme reaction conditions, the nitrosylsulphuric 

method may be expected to give rise to more side reactions leading to 

impurities, thereby lowering the yield of dye and making purification 

more difficult. This behaviour was indeed found to be the case. 

3.2.2. Azo Coupling 

Coupling reactions (to amines) are carried out 'in a medium in which 
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the equilibria associated with the diazo and coupling components lie 

as far as possible towards the diazonium ion and neutral amine, 

respectively. This situation obtains with an acidity of pH 4-9 

(see Scheme 3.9). Consequently, coupling is carried out under buffered 

acidic conditions (using acetic acid and sodium acetate) and at 0 °C to 

reduce the decomposition of the diazonium ion. Reaction times vary 

and are dependent on the reactivities of the diazonium and the coupler 

species. Although the diazonium group is one of the strongest 

electrophiles known, aromatic diazonium ions are relatively weak 

electrophiles due to charge delocalisation into the aromatic ring, as 

previously mentioned. The electrophilicity is sensitive to substituent 

effects; electron withdrawing groups in the aromatic ring accentuate 

the positive charge associated with the diazo group (and hence increase 

the reactivity) either by mesomeric interaction [at ortho and/or para 

N=N-OH -ý-= 
(/ \)-N=N-O 

<pH9 > pH 9 

+ 
jR 

H 

>pH4 < pH 4 

Scheme 3.9. Species involved in azo coupling reactions. 
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positions; large effects (111)] or by inductive interaction(at meta 

positions; smaller effect). Electron donating groups in ortho and/or 

para positions decrease the reactivity by lowering the positive charge 

on the diazo group (112) but meta substituents generally behave similarly 

'0 ++ \N 
N=N 

'0/ 

(iii) 

(112) 

to electron withdrawing groups due to the inductive effect. Each of the 

above substituents increases the stability of the ion, relative to that 

of the parent species by increasing the double bond character of the 

C-N bond. 

The weak electrophilic character of the diazonium ion ensures that 

a centre of high electron density is required for any coupling reaction 

to occur. This requirement is provided in the coupling component by 

mesomeric donation by the terminal nitrogen lone pair (113), and coupling 

+ 
NR2 

(113) 
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generally occurs at the para position. ortho-Coupling is normally 

prevented by the steric crowding caused by the R substituent groups. 

The C-coupling mechanism with tertiary amines is shown in Scheme 3.10. 

Primary and secondary aromatic amines can also couple at the nitrogen atom 

Ar-N= 

Ar-N= 

(114) 

Scheme 3.10. General coupling reaction involving t-amines. 

+ N+ 

(N-coupling) to give diazoamino compounds (Scheme 3.11). Rearrangement 

of (115) to the azo dye (114) is achieved by heating the compound in 

acid conditions with the addition of an excess of the coupling 

component. 

It should be noted that aromatic amines generally deteriorate on 

standing, probably due in part in the case of t-amines to the formation 

of quinonoid species (116) by oxidative self-coupling. 
192 Such 

coloured impurities can usually be removed by distillation (or 

recrystallisation) and prevented by storage under a nitrogen atmosphere. 
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=N-Ar 

(115) 

Scheme 3.11. N-Coupling reaction involving p- and s-amines. 

NR2 [0] R 

(116) 

Of the coupling components used, N-phenylthiomorpholine-I, 1-dioxide 

(117) proved to be very unreactive with diazotised aniline and p-anisidine, 

due to the large -I effect of the >02 
group, so that dyes from these 

diazo components were difficult to isolate in the pure state. Reaction 

(117) 
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between coupler and diazonium ion was continued until a test for 

diazonium ion (an alkaline solution of ß-naphthol gives a red coloration 

on treatment with a drop of the test solution) proved negative; in the 

case of 4-methoxyphenyldiazonium chloride, the ion could be detected 

after several weeks at room temperature, an indication of the relative 

stability of this species. This procedure, however, did not lead to 

improved yields. The method of Ellwood and Griffiths193 involving 

phase-transfer coupling was also used in an attempt to improve the yields 

of these dyes; this procedure proved largely unsuccessful, although a 

small sample of pure dye was obtained from the reaction with 

4-methoxyphenyldiazonium chloride. Very low yields with the less reactive 

diazo components were also obtained in the case of N'-ethyl- and 

N'-methyl-N-phenylpiperazine, probably owing to protonation of the 

aliphatic amino group (see 118) during coupling which reduces the 

(118) 

reactivity of the coupler by providing a large -I effect. The fact that 

N'-acetyl-N-phenylpiperazine gives much higher yields of dye supports 

this view, since the amide nitrogen atom is unlikely to protonate during 

coupling. 

The other coupling components gave rise to satisfactory yields of 

dye. 

3.3. Side Reactions 

Although the formation of impurities during diazotisation and 
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coupling reactions has not been well studied, it is known that the 

diazonium ion is subject to loss of nitrogen by the action of light and 

heat. Although this decomposition is minimised by reaction at low 

temperature, it will still occur to some extent to give cations and 

radicals which may react, for instance, as shown in Scheme 3.12. 

Ph-NR2 

H20 

Cl 

Scheme 3.12. Side reactions of diazonium ions. 

OH 

NR2 

Incomplete diazotisation, particularly in the case of heterocyclic 

amines, results in the amine being present in the end product, and the 

unused nitrous acid may react with coupler to give several by-products 

(Scheme 3.13). Thus, a small amount of N-(4-nitrosophenyl)pyrrolidine 

(119) was isolated and characterised by elemental analysis and n. m. r. 

[S (CDC13), 7.6-8.1 (2H, broad, Ha), 6.55 (2H, d, J 9.0 Hz, Hb), 3.35-3.6 

(4H, in, Hc), 1.95-2.25 (4H, m, Hd)1 from the attempted coupling of 

diazotised (nitrosylsulphuric acid method). 5-amino-3-methylthio- 

1,2,4 -thiadiazole with N-phenylpyrrolidine. No dye was obtained from 

this reaction since the diazotisation step was unsuccessful (a nitrosation 

process gave better results), so that appreciable amounts of nitrous acid 



02 

NR 2 

N=0 

Scheme 3.13. By-products associated with incomplete diazotisation. 

ON 

would have been present during the coupling stage. From the reaction 

of diazotised 2-amino-5-nitrothiazole with N-phenylpiperidine, a sample 

of N-(4-nitrophenyl)piperidine (120) was isolated (Found: C, 63.9; 

O=N 

HNO2 

(119) (120) 

+ 
N-N 

150 
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H, 6.45; N, 13.9%; M+, 206. C11H14N202 requires C, 64.1; H, 6.8; N, 13.6% 

M, 206). This compound must be formed via oxidation of the corresponding 

intermediate nitroso derivative. 

An impurity which occurred not from the coupling reaction but 

during purification by column chromatography (alumina, dichloromethane) 

was observed in the case of dye (121). Thus, condensation between 

0 Me 

H 
=N 

(121) 

N=N 

II r-----+I C-C-H2 0=C 
i.. ___., 

(122) 

=N 

(121) 

=N 

two molecules of dye, involving loss of water, gave compound (122) 

(Found: M+, 596; C38H40N60 requires M, 596) of similar colour but of 

slightly lower RF value than the parent species. 

The coupling component (123) has been observed to undergo 

dealkylation of the terminal nitrogen atom during the-coupling stage. 
194 

/ He 

N 
Me 

(123) 
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Analogous reactions by the couplers in the present study would involve 

ring opening to give impurities of similar colour to the original dye. 

Such-products, however, would be expected only in small amounts under 

normal conditions. 

The nature of the'diazotisation reaction is: such that impurities 

can'be expected in-the, final product, especially in the case of 

. heterocyclic amines where the reaction conditions are more severe. A 
/- 

detailed study of these impurities would be of interest. 

3.4. Purification Techniques 

Most of the crude dyes were obtained as solids by filtration of the 

basified reaction mixture. Exceptions include many of the dyes derived 

from N'-ethyl- and N'-methyl-N-phenylpiperazine where unreacted coupler 

was removed by steam-distillation and the residue was then extracted 

with dichloromethane; evaporation of the solvent gave the crude dye as 

a solid. 

Purification of a crude dye was generally effected by column- 

chromatography followed by recrystallisation. In some cases preparative 

, ̀ layer chromatography was necessary. In the case of N-[4-(4-acetyl- 

phenylazo)phenyl]piperidine, two recrystallisations were sufficient. 

Dyes obtained from heterocyclic diazo components were found to be 

less soluble in a given amount of solvent than their benzenoid counter- 

parts; the dyes have lower RF values and also contain more impurities. 

In practice, with these dyes, a large solution of dye was made up and 

added to the top of the column until it became clear that impurities 

of higher RF values would not all have time to be eluted before the dye 
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came off the column. Addition was then stopped and the dye was eluted 

in the normal manner. The combination of low solubility and additional 

impurities made purification of these dyes much more difficult. 

Dye purity was confirmed by t. l. c., elemental analysis and, where 

solubility permitted, by n. m. r. Solubility problems were again 

evident in the latter case with several of the heterocyclic dyes; n. m. r. 

spectra for these dyes were obtained using the CAT technique. 

3.5. Examination of the Dyes 

In the preparation of solutions for visible spectral measurements, 

solubility problems were encountered with certain dyes, especially with 

cyclohexane as solvent and in the case of heterocyclic dyes and dyes 

derived from N-phenylthiomorpholine-1,1-dioxide. In these cases, Amax 

values were measured, where possible, but emax values could not be 

obtained. 

It has beenstated195 that the formation of cis isomers on 

irradiation of azo dyes is favoured by hydrocarbon solvents, such as 

cyclohexane, whereas ethanol inhibits this isomerisation to the greatest 

extent. Nevertheless, dye solutions kept overnight in the dark contain 

negligible amounts of cis isomer. 

In the spectral measurement of acidified dyes, those species 

containing o-cyano groups behaved anomalously; certain dyes faded 

rapidly on acidification and only rough estimates of cmax could be 

obtained. 
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3.6. Calculation of pKa Values 

Ionisation constants can be calculated by using the equation: 
196,197 

pK = pH - log 
Ee- eBH+ 

_ log 
ffB 

B BH+ 

where CB and eBH+ are the molar extinction coefficients of. the non- 

protonated (base) form and the mono-protonated form of the dye, 

respectively, and c is the apparent molar extinction at a given pH. 

All measurements are taken at one wavelength when using the equation. 

Rogers et al., 
198 

when measuring the pK values of some 4'-substituted- 

4-NN-dimethylaminoazobenzenes, took the activity coefficient ratio 

fB/fBH+ to be unity because their dye concentrations were always small 

0410 mol dm 3). However, activity coefficients depend on the total 

ionic strength of the solution; in the : present work the range of 

acidities is such that the activity coefficient ratio is not necessarily 

unity. As this term is to be omitted, and also since the calculations 

are based on acidity function (H0) values, the basicities obtained are 

referred to as pKa' values. The solubility of some of the dyes was such 

that their stock solutions had to be filtered before the protonated 

dye solutions could be produced. The unknown dye concentrations of 

these solutions necessitated the use of absorbance readings instead of 

extinction coefficients, leading to an overall modified equation: 

A- ABH+ 
ý PKa = Ho - log AB -A 

where AB and ABH+ are the absorbances of the solutions containing 100% 

non-protonated dye and 100% mono-protonated dye, respectively, and A 
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is the absorbance of the solution at the appropriate acid concentration 

and at the same wavelength (usually at the Amax value for Bti+, unless 

the extinction coefficient of the latter species is low, in which 

case the Imax value for B was used). 

The determination of ABH+ (at a given acid concentration) was not 

straightforward for each dye. It has been stated102 that a solution 

containing 100% BH+ cannot be obtained for 4-aminoazobenzene because 

the pK values for mono- and di-protonation are too similar. For each 

dye in the present examination, the diprotonated form (BH22+) of the 

dye can be obtained in concentrated sulphuric acid. However, the 

procedure of Carpentier and Dominique102 could not be used because 100% 

BH22+ could not be obtained for most of the dyes in 50% ethanol. For 

the azopyrrolidine and the azojulolidine dyes it was deduced, from 

the constancy of the absorbance values over an appreciable range of 

acidities ("1-5N), together with the excellent isosbestic obtained, that 

the pK values for mono- and di-protonation were sufficiently separated 

for 100% mono-protonated dye to be obtained over this range, and this 

absorbance value, at the chosen wavelength, was taken as ABH+. The 

azopiperidine dyes showed similar behaviour, but measurements were at the 

"max of the neutral dye, and would therefore be insensitive to any 

changes in ABH+ due to shifts in the tautomeric equilibrium, with 

increasing acid concentration, towards the azonium form. Thus, ABH+ was 

erroneously taken as constant in this case, leading to a slight discrepancy 

in the calculated pKa' value. The error involved, however, will be much 

smaller than if measurements had been taken at Amax for BH+, since at this 

wavelength the spread of absorbance values is small, thereby making the 

basicity calculation prone to large errors. 

No such range of acidities was found for the other dyes and, in 
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addition, a slight lateral displacement of the isosbestic point was 

observed at higher acidities. For these dyes, "titration plots" of 

absorbance, adjusted laterally199 where necessary, against Ho, revealed 

a significant "medium, effect", i. e. the absorbance value did not level 

off to some constant value, but instead showed a gradual increase as 

the amount of azonium species increased. The procedure adopted, based 

on the work of Reeves, 199 Safta and Ostrogovich, 200 Haldna201 and 
202 Katritzky et al. was to extrapolate the linear part of the "titration 

plot" at high acidities backwards to cover the region pKa' ±1. An 

approximate value of pKa' was estimated from the "titration plot". 

Adjusted values of ABH+, corresponding to the appropriate Ho value, were 

then read off the graph (Fig. 3.1). Each PKa' value was determined from 

Adjusted ABH+va 1 ues 

1I 1ý 1 
Iý1 

I II; 
II ý 
III 
I 
1 
i 
I 
I 
1 

i 

i 
i 

i 
i 
i 
i 
i 

i 
ý 
ý ii 

II 
Iý 
I 

decreasing Ho 

Fig. 3.1. A typical "titration plot". 
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+ the linear plot of Ho against log ( A-A Ä ). Manual plots enabled "suspect 
s 

points", which were remote from the straight line, to be identified. 

These points were found to arise when the Ho values were outside the 

range pKa' ±1, and were not used thereafter. The best values of pKa' 

were then calculated by least squares analysis. 

The Ho values used in this work are those obtained by White et al. 
203 

using nitro- and chloro- substituted anilines as indicators. Yamamoto 

et al. 
91 

state that the protonation behaviour of azobenzenes, primary 

anilines and diphenylamines are sufficiently different to invalidate an 

acidity function based upon a mixture of different kinds of indicators. 

However, Safta200 compared H0 values obtained for sulphuric acid in 50% eth- 

anol based on E-1,3-dimethy] -6-(p-X-3-styryl)2,4-dioxo-IH, 3H-1,3,5-triazines 

with those obtained for perchloric acid in 50% ethanol by Vetesnik et a1.204 

using 2-hydroxyazobenzenes (the acid powers of sulphuric and perchloric acids 

are practically identical up to a high limit of acidity205). The two 

scales coincided excellently and were practically identical with that of 

the nitroaniline indicators in the same medium and in all regions studied. 

The Ho values of Safta200 differ from those of White et al. 
203 The 

latter values were chosen in the present study because of the larger range 

of acidities covered. It should be noted, however, that these values are 

quoted at 30'0. C whereas a temperature of 25°C was used in this work. 

However, it appears from tables of Ho values at varying temperatures206-208 

that a change from 30 °. C to 25 °C will have only a negligible effect on the 

Ho values. 
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. 158 

4.1. General Information 

Melting points were determined in a Gallenkamp apparatus and are 

uncorrected. 

Visible absorption spectra were measured in a Unicam SP800 recording 

spectrophotometer. 

Infra-red absorption spectra were measured in a Unicam SP200 recording 

spectrophotometer, employing a disc made up from I mg, of the substance in 

200 mg of AnalaR potassium bromide. 

Nuclear magnetic resonance spectra were obtained with a Perkin-Elmer 12B 

spectrometer at 60 MHz for solutions in deuteriochloroform, unless 

otherwise stated. 

Mass spectra were determined at the Physico-Chemical Measurements Unit, 

Harwell. 

Microanalyses were carried out in the Department of Organic Chemistry, 

University of Leeds. 

Column chromatography was carried out using active neutral alumina 

(Brockmann grade 1) or silica gel 100 (70-230 mesh); for preparative-layer 

chromatography (p. l. c. ), silica gel 60H (layer thickness 0.75 mm) was used, 

and in the case of thin-layer chromatography (t. l. c. ), silica gel 60 pre- 

coated aluminium sheets (without fluorescent indicator, layer thickness 

0.2'mm), and alumina 60 F254 neutral (type E) pre-coated aluminium sheets 

(layer thickness 0.2 mm) were employed. 
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4.2. Reaction Schemes 

oc1 

Scheme 4.1 
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' 
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4.3. Preparation of Diazo Components. 

(i) 5-Acetyl-2-amino-3-nitrothiophene (Scheme 4.1) 

A solution of 2-chlorothiophene (50 g, 0.42 mole) and acetyl chloride 

(33 g, 0.42 mole) in hexane (300 cm3) was treated portionwise with 

anhydrous aluminium chloride (56 g, 0.42 mole) at 40 °C over 40 min; a 

mild reaction ensued and a purple complex separated. After stirring the 

mixture for I h, the hexane was decanted off and the dark residue was 

decomposed by adding ice. Distillation in steam yielded a white, low 

melting solid (41.3 g) which was washed with a small amount of ice-cold 

pentane to give 5-acetyl-2-chlorothiophene (31.4 g, 48.8%), m. p. 42-4 °C 

(lit., 19 44-6 °C), vC_0 1665 cm 
1. 

To a solution of 5-acetyl-2-chlorothiophene (24 g, 0.15 mole) in 

concentrated sulphuric acid (25 cm3) was added the nitrating mixture (13 g 

of nitric acid and 15 g of sulphuric acid) at 0-5 °C during 30 min. The 

reaction mixture was poured on to ice and the resulting solid was filtered, 

washed with water and crystallised from ethanol, giving brown needles of 

5-acetyl-2-chloro-3-nitrothiophene (21.5 g, 69.8%), m. p. 81-3 °C. Further 

recrystallisation from cyclohexane followed by ethanol/charcoal gave 

pale yellow needles, m"p" 84-6 °C (lit. 
$187 85-7 °C), vC_0 1670 cm 

1, 

VN02 1515 cm 
1. 

A solution of 5-acetyl-2-chloro-3-nitrothiophene (14.5 g, 0.07 mole) 
3 

and aqueous ammonia (32-33%, 50 cm) in methanol (300 cm3) was heated under 

reflux for I h. On cooling, brown crystals separated and were collected. 

Concentration of the mother liquor produced additional solid to give a 

combined yield of 9.85 g (73.5%), m. p. 222-5 °C. Crystallisation from 

methanol/charcoal afforded 5-acttyl-2-amino-3-nitrothiophene as dark yellow 

needles(8.93 g, 66.6%), m. p. 224-6 0C (lit., 19 227-8 °C, `C-O 1645 cm 
1, 
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vNH2 3410,3290 cm 
1,6 (CDC13/DMSO-d6) 8.76 (2H, s, NH2), 7.88 

(H, s, Hring) 9 2.46 (3H, s, Ac); signal at 8.76 disappears upon addition 

of D20. 

(ii) 5-Amino-3-methylthio-1,2,4-thiadiazole (Scheme 4.2) 

Methyl iodide (71 g, 0.5 mole) and thiourea (38 g, 0.5 mole) were 

heated together under reflux in methanol (150 cm3) for I h. The solution 

was distilled until 30 cm3 of distillate had been collected thereby 

removing the excess of methyl iodide. Sodium thiocyanate (50 g, 0.63 mole) 

in dry methanol (300 cm3) was then added and the solution was stirred and 

cooled to -15 
°C. Simultaneously, solutions of sodium (23 g, I mole) in 

methanol (300 cm3) and of bromine (80 g, I mole) in methanol (215 cm3) 

were added dropwise over 90 min at less than -5 
°C, a proportion (1/7th) 

of the sodium methoxide solution being added before the addition of bromine 

was commenced. The mixture was then stirred for 2h without cooling and 

the resulting faintly alkaline solution was neutralised with a little 

concentrated hydrochloric acid. The reaction mixture was evaporated to 

dryness and the residue was crystallised from toluene/light petroleum 

(b. p. 80-100 °C) to yield pale yellow needles of 5-amino-3-methylthio- 

1,2,4, -thiadiazole (28 g, 38.5%), m. p. 141-2 °C (softens at 134 °C) 

(lit., 209 138-39 °C), vNH2 3325(3270 sh), 3105(3070 sh)cm 
1. 

(iii) 2-Amino-5-ethylthio-1,3,4, -thiadiazole (Scheme 4.3) 

Thiosemicarbazide (45.5'"g, 0.5 mole), carbon disulphide (38 g, 0.5 mole) 

and sodium carbonate (29.2 g, 0.28 mole) were stirred and heated under 

reflux in ethanol (250 cm3) for 15 h. 
. The ethanol was removed by rotary 

evaporation and warm water (250 cm3) was added to the residue. Diethyl 

sulphate (77g, 0.5 mole) was then added dropwise at less than 70 °C and 

the whole was heated at 80 °C for 1 h. The cooled solution was filtered 
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and the precipitated product was washed with cold water and crystallised 

from methanol to give 2-amino-5-ethylthio-1,3,4-thiadiazole as a pale 

yellow solid (37.5 g, 46.6%), m. p. 129-32 °C (lit. $209 132-5 °C)+VNH 
2 

3260,3100 cm 
l. 

4.4. Preparation of Coupling Components 

(i) N-Phenylmorpholine (59c - p. 161) 

A commercial sample was used (m. p. 50-54 °C), a(CDC13) 7.2-7.5(2H, m, Hb). 

6.8-7.1(3H, m, Ha 
c), 

3.8-4.05 (4H, m, He), 3.1-3.3 (4H, m, Hd). 

(ii) N-Phenylpyrrolidine (Scheme 4.4) 

1,4-Dichlorobutane (63.5g, 0.5 mole) and redistilled aniline (172g, 

1.85 mole) were heated together under reflux for 30 min, the mixture was 

cooled and poured into water (300 cm3). Evaporation of the dried (MgSO4) 

dichloromethane extracts (2 x 150 cm3) gave a dark red oil which was boiled 

with acetic anhydride (100 cm3) for Ih and then distilled under reduced 

pressure. The fraction collected at 90-100 °C/0.6 
mm Hg was redistilled 

to give N-phenylpyrrolidine as a colourless liquid (57. Ig, 77.70, 

b. p. 91-2 °C/0.6 mm Hg (lit., 210 124 °C/14 mm Hg, see also Scheme 3.1) 

(Found: C, 80.0; H, 8.6; N, 9.457. C10H13N requires C, 81.6; H, 8.85; 

N, 9.57), 6(CDC13) 7.0-7.6 (2H, m, Hb), 6.55-6.85 (3H, ui, Ha 
c) 

3.2-3.45 

(4H, m, hd), 1.9-2.15 (4H, m, He). 

(iii) N-Phenylpiperidine (Scheme 4.5) 

1,5-Dichloropentane (70.5g, 0.5 mole) and redistilled aniline (172g, 

1.85 mole) were heated together under reflux for 30 min, the mixture was 

cooled and worked up as in (ii) to give N-phenylpiperidine as a colourless 

liquid (56.4g, 70.1%), b. p. 100 0 C/0.7 mm Hg (lit., 211 257-8 °C/752 mm Hg, 
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see also Scheme 3.2)(Found: C, 80.3; H, 9.0; No 9.05%. Ci1HIs N requires 

C, 82.0.; H, 9.3; N, 8.77. ), 6(CDC13) 7.2-7.5 (2H, m, Hb), 6.7-7.1 

(3H, m, Ha. 
c), 

3.1-3.3 (4H, m,. Hd), 1.6-1.9 (6H, m, He f)' ý 

(iv) N-Phenylthiomorpholine (Scheme 4.6) 

Phosphorous pentachloride (30 g, 0.14 mole) was carefully added 

portionwise to a solution of NN-bis-(ß-hydroxyethyl)aniline (25 g, 

0.14 mole) in chloroform (100 cm3) and the mixture was heated on a steam 

bath for about 6h until the evolution of hydrogen chloride had ceased. 

Evaporation of the solvent gave a red gelatinous solid which, after 

crystallisation from methanol, gave NN-bis-(ß-chloroethyl)aniline as a 

white solid (23.0 g, 76.4%), m. p. 42-4 °C (lit., 212 36-8 °C), i. r. shows 

absence of VOH in 3500-3000 cm 
1 

region. 

A mixture of NN-bis-(ß-chloroethyl)aniline (30 g, 0.14 mole) and 

sodium sulphide hydrate (equivalent to 31% Na2S, 45 g, 0.18 mole Na2S) 

in ethanol (200 cm3) was heated under reflux for 18 h. The solvent 

was evaporated, water (200, cm3) was added and the dried (MgSO4) dichloro- 

methane extracts (3 x 100 cm3) were. evaporated to give white needles of 

N-phe nylthiomorpholine (11. lg, 79%), m. p. 31-2 °C (lit., 212 32.3-32.6 °C, 

see also Scheme 3.3), S(CDC13) 7.15-7.45 (2H, m, Hb), 6.75-7.05 

(3H, m, Ha 
c), 

3.45-3.7 (4H, in, Hd), 2.65-2.85 (4H, in, He 

(v) N-Phenylthiomorpholine-1,1-dioxide (Scheme 4.7) 

Divinylsulphone (59g, 0.5 mole) and redistilled aniline (46.5 g, 

0.5 mole) were stirred together on a steam bath for 3h, the mixture was 

then cooled and poured into water (700 cm3). Concentrated hydrochloric 

acid was added dropwise at the boil until the organic layer had completely 

dissolved; cooling yielded white needles of N-phenylthiomorpholine-l, 1-dioxide 

(32g, 30.37), m. p. 118-21 °C (lit., 213 118-20 0 C, see also Scheme 3.4), 
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vsý 1310,1120 cm 
1,6 (CD C13) 7.2-7.5 (2H, in, Hb), 6.8-7.1 

(3H, in, Ha, 
c), 

3.75-4.0 (4H, in, Hd), 3.0-3.2 (4H, in, He). 

(vi) N'-Acetyl-N-phenylpiperazine (Scheme 4.8) 

A mixture of N-phenylpiperazine (20g, 0.12 mole), acetic anhydride 

(150g, 1.5 mole) and acetic acid (75g, 1.25 mole) was heated under 

ref lux for Ih. The excess solvents were removed by rotary evaporation, 

the residual red oil was quenched with water (200 cm3) and the organic 

material was extracted with dichloromethane (3 x 100 cm3) and dried 

(MgSO4). The dichloromethane was gradually exchanged for light petroleum 

(b. p. 80-100 °C) at the boil and a small amount of insoluble residue was 

removed by decantation. The solution was concentrated and cooled to give 

N'-acetyl-N-phenylpiperazine as a white crystalline solid (22.0g, 87.4%), 

m. p. 96 °C (lit., 185 96 °C, see also Scheme 3.6), C_O '1625 cm 
1, 

S(CDCI3) 7.2-7.5 (2H, m, Hb), 6.75-7.05 (3H, m, Ha 
c), 

3.5-3.9? 

(4H, m, Hd), 3.1-3.3? (4H, m, He), 2.14 (3H, s, Hf). 

(vii) N'-Ethyl-N-phenylpiperazine (Scheme 4.8) 

To a stirred suspension of lithium aluminium hydride (7.6 g, 0.2 mole) 

in dry ether (400 cm3) was added a solution of N'-acetyl-N-phenylpiperazine 

(21g, 0.1 mole) in ether (200 cm3) at such a rate that gentle refluxing 

occurred. The refluxing was continued for 6h, after which time the 

mixture was cooled in ice before ethyl acetate (17.6g, 0.2 mole) was 

carefully added to destroy the excess of lithium aluminium hydride. 

The resulting grey suspension was then poured carefully into chilled 

sulphuric acid (10% solution, 800 cm3). Basification of the mixture 

gave a white precipitate in the aqueous layer which was filtered off; 

the filtrate was extracted with ether (3 x 100 cm3). The filter cake 

was washed with ether and the combined extracts were dried (NaOH pellets). 
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Evaporation of the solvent and vacuum distillation of the residue 

gave N'-ethyl-N-phenylpiperazine as a viscous oil which solidified in 

the receiver flask to give a white solid (17.0 g, 89.5%), 95-8 °C/ 

0.7 mm Hg, m. p. 40-43 °C. Two recrystallisations from ethanol raised 

the melting point to 47-49 °C (lit., 181 50-51 °C, see also Scheme 3.5), 

S(CDC13) 7.1-7.4 (2H, m, Hb), 6.7-7.0 (3H, in, Ha, 
c3.15-3.35 

(4H, in, Hd), 2.5-2.7 (4H, in, He), 2.52 (2H, q, J7.0Hz, Hf), 1.14 

(3H, t, J7.0Hz, Hg) . 

(viii) N'-Methyl-N-phenylpiperazine (Scheme 4.9) 

A solution of N-phenylpiperazine (purified via the acetyl derivative) 

(8.1 g, 0.05 mole) in dry THE (150 cm3) was added dropwise to a 

suspension of lithium aluminium hydride (7.6 g, 0.2 mole) in dry THE at 

room temperature. After 10 min, ethyl formate (11.35 g, 0.15 mole) was 

added with stirring and cooling in ice. After 1h, the reaction mixture 

was decomposed by the careful addition of aqueous sodium hydroxide 

(3M, 400 cm3). The white inorganic salts were filtered off and the 

filtrate was extracted with ether (3 x 100 cm3). These extracts were 

combined with the ether washings of the filter cake and dried (NaOH 

pellets). Evaporation of solvent and vacuum distillation of the residue 

gave N'-methyl-N-phenylpiperazine as a viscous yellow oil (6.5 g, 74.3%) 

b. p. 120-24 °C/1.5 mm Hg (lit., 184 145 °C/2-3 
mm Hg, see also Scheme 3.7) 

(Found: C, 74.9; H, 9.35 N, 16.05%. C11H16N2 requires C, 75.0; H, 9.1; 

N, 15.9%), 6(CDC13) 7.1-7.4'"(2H, m, Hb), 6.7-7.1 (3H, m, Ha 
c), 

3.1-3.3 

(4H, m, Hd), 2.4-2.7 (4H, m, He), 2.33 (3H, s, Hf). 
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4.5. Preparation of Dyes (Scheme 4.10) 

4.5.1. Diazotisation Procedures 

(i) Monosubstituted Anilines188 

The amine (A g, a B mole)b was dissolved in concentrated hydrochloric 

acid (C cm3,3B mole) 
b 

and water (20 cm3), using heat if necessary. The 

clear solution was then cooled to 0 °C with efficient stirring to give 

a solution/suspension of the amine hydrochloride, which was treated with 

a solution of sodium nitrite (Dg, aB mole) in water (10 cm3) at such 

a rate that no brown fumes were evolved. The reaction temperature was 

maintained at 0 °C by the addition of ice. Stirring was continued for 

about 15 min. The presence of a slight excess of nitrous acid in solution 

was tested for by using starch/iodide paper (blue-black coloration 

develops immediately); similarly, excess acid was detected with Congo Red 

paper. Any residual undissolved material was removed by filtration. 

The resultant clear diazonium solution was used immediately in the coupling 

reaction. 

a For weights of the various amines, see Table 4.1 
b 

e. g. B=0.02 mole; C=5 cm3; D=1.4 g. 
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Table 4.1. Diazotisation of Monosubstituted Anilines - Amounts of Amine 

Used. 
* 

Substituent Amount" of Amine Substituent Amount of Amine 

A/g, B/mole A/g B/mole 

4'-OMe 2.46 0.02 4'-CF3 0.64 
. 
0.004 

4'-Me 2.14 0.02 4'-Ac 2.70 0.02 

4'-H 1.86 0.02 2'-CN 2.36 0.02 

4'-Br 3.44 0.02 4'-CN 2.36 0.02 

4'-Cl 2.55 0.02 4'-N02 2.76 0.02 

Refers to reactions with N-phenyl-piperidine, -pyrrolidine and -morpholine; 

for other couplers, the amounts are modified to the same number of moles as 

coupler (see Table 4.2). 

(ii) 2,3,4,5,6-Pentafluoroaniline56 

Finely ground sodium nitrite (0.276 g, 0.004 mole) was added portion- 

wise with stirring at below 20 °C to sulphuric acid (3 cm3) at a rate such 

that no brown fumes were evolved. After stirring for 10 min, the suspension 

was heated to a maximum of 65 °C to give a clear solution which was cooled 

to 0 °C to give a solution/suspension of nitrosyl-sulphuric acid. This 

reagent was added slowly with stirring at 0 °C (external cooling) to a 

solution of 2,3,4,5,6-pentafluoroaniline (0.73 g, 0.004 mole) in sulphuric 

acid (3 cm3) and the resulting purple solution was warmed to a maximum of 

60 °C, then cooled to 00C to give the diazonium solution ready for 

coupling. 
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(iii) 2-Cyano-4-nitroaniline 

The amine was twice recrystallised from ethanol/charcoal to give yellow 

needles, m. p. 203-4 0C. 

Finely ground 2-cyano-4-nitroaniline (3.26 g, 0.02 mole) was added 

portionwise to a solution of nitrosyl-sulphuric acid (0.02 mole, made as 

in (ii)) at 0-5 0 C. The mixture was stirred for Ih (until a test sample 

diluted by ice gave only a faint test for nitrite) and was ready to be 

used in the coupling reaction. 

This method was also used for 3,5-bis-trifluoromethylaniline (4.6g, 

0.02 mole). 

(iv) 2-Aminothiazole213 

A solution of nitrosyl-sulphuric acid (0.02 mole) was prepared as in 

(ii). At a temperature below 15 °C, 1: 5 acid (propionic : acetic, 10 cm3) 

was added dropwise; the resulting cloudy mixture was cooled to 0 °C and 

2-aminothiazole (2g, 0.02 mole) was added portionwise. The mixture was 

stirred for 2h at 0 °C to give the diazonium ion as a dark orange-brown viscous 

solution. 

This method was also used for 2-amino-5-nitrothiazole (2.03. g, 0.014 

mole), all the aminothiophenes and 2-amino-5-ethylthio-1,3,4-thiadiazole 

(0.48 g, 0.003 mole). 

(v) 2-Aminobenzthiazole213 

2-Aminobenzthiazole (2.7 g, 0.018 mole) was dissolved in a mixture of con- 

centrated sulphuric acid (28 cm3) and water (50 cm3) and cooled to 0 0C. A 

solution of sodium nitrite (1.3 g, 0.018 mole) in concentrated sulphuric 

acid (5 cm3) was added dropwise at 0 °C and the mixture was stirred for 2h to 
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give a viscous orange solution of the diazonium ion. 

This method was also used for 2-amino-6-ethoxybenzthiazole (3.5 g, 

0.018 mole). 

(vi) 2-Amino-6-me thylsulphonylbenzthiazole214 

2-Amino-6-methylsulphonylbenzthiazole (4.24 g, 0.02 mole) was added to 

a mixture of concentrated sulphuric acid (38 cm3) and water (30 cm3); the 

mixture was heated to 90-95 °_C to effect solution. The solution was cooled 

to 0 °C with stirring to give a fine suspension of the amine, which was 

treated dropwise with a solution of sodium nitrite (1.55. g, 0.0225 mole) 

in water, (20 cm3). The mixture was stirred for Ih to give a clear brown 

solution of the diazonium salt. 

(vii) 2-Amino-6-nitrobenzthiazole 

Nitrosyl-sulphuric acid [0.02 mole, made as in (ii)] was added to a 

solution of 2-amino-6-nitrobenzthiazole (3.5 g, 0.018 mole) in a mixture of 

orthophosphoric acid (30 cm3) and acetic acid (9 cm3) at 0 °C. Stirring for 

4h gave a viscous dark brown diazonium solution. 

4.5.2. Coupling Procedure 

The general procedure used was the same for all the coupling components. 

A typical example is given below. 

Powdered N-phenylpyrrolidine (2.94 g, 0.02 mole) was dispersed in a 

solution of acetic acid (5 cm3) and sodium acetate (10 g) in water (10 cm3) 

and cooled to 0 °C. The diazonium component was added dropwise over 15 min 
u. A : n, ri,. 1 c.. 0.. 1 (Z. ) 

and the whole was stirred for 3h A at 0 °C, then overnight at room temperature 

to complete the coupling reaction C in cases where an unreactive diazonium ion 

was added to an unreactive coupling component, the mixture was stirred for 



172 

several days, often until a test for the diazonium ion (addition of a 

sample to a solution of alkaline $-naphthol on filter paper gives a red 

coloration)-proved negative]. After basification with sodium hydroxide 

solution, the product was filtered off, washed with water and dried (or, 

if after basification, the, product remained oily, distillation in steam 

was carried out and the product was then filtered off or extracted with 

dichloromethane and isolated). 

Unless otherwise stated, the crude dyes were isolated as solids. 

4.5.3. Nitrosation of 5-Amino-3-phenyl-1,2,4-thiadiazole and Coupling 

to N-Phenylpyrrolidine214 

5-Amino-3-phenyl-1,2,4-thiadiazole (3.55 g, 0.02 mole) was added to 

formic acid (90%, 20 cm3) and the mixture was stirred for 15 min at room 

temperature. The milky suspension was cooled to 0 °C and finely powdered 

sodium nitrite (1.4 g, 0.02 mole) was added portionwise at 0-5 °C. Stirring 

was continued at this temperature for Ih., after which the mixture was 

checked for excess nitrite. 

To the nitrosamine slurry was added a solution of N-phenylpyrrolidine 

(2.94 g, 0.02 mole) in formic acid (90%, 30 cm3) at 0°C. After stirring 

for 30 min, the mixture was heated to 70 °C and maintained at 70-75 °C for 

3h, producing an intense dark red solution. Water (200 cm3) was added and 

the mixture was cooled to room, temperature and neutralised with sodium 

hydroxide solution to pH 6-8; the product was filtered off and dried. 
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a With many of the heterocyclic dyes, the solubility was such that 

several column chromatographic treatments would have been necessary to 

purify all the crude dye. Thus, only a portion of the dye was purified 

and the amount of pure product was extrapolated to obtain the total yield. 

b Steam distillation treatment. 

c Mainly coupler. 

A: Column chromatography (alumina; dichloromethane) followed by 

crystallisation from toluene. 

B: Column chromatography (silica; dichloromethane/toluene, 80/20 

initially, then dichloromethane +1% AR acetone to facilitate elution of 

dye from column) followed by crystallisation from toluene. 

C Column chromatography (silica; toluene) followed by crystallisation 

from toluene.. 

D: Column chromatography (alumina; dichloromethane) followed by two 

crystallisations from toluene. 

E: Column chromatography (alumina; dichloromethane, repeat alumina; -toluene) 

followed by crystallisation from toluene. 

F: Column chromatography (silica; toluene) then p. l. c. (silica; toluene) 

followed by crystallisation from toluene. T. l. c. ' showed faint fluorescent 

impurity still present. 

G: Column chromatography (alumina; dichloromethane/toluene, 50/50)followed 

by crystallisation from toluene. 
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H Two crystallisations from toluene (chromatography promotes reaction 

on the column). 

I: Column chromatography (alumina; dichloromethane) followed by 

crystallisation from ethanol/water. 

J: Column chromatography (silica; dichloromethane) followed by 

crystallisation from toluene. 

K: Column chromatography (alumina; toluene) followed by crystallisation 

from toluene. 

L: Column chromatography (silica; toluene initially, then dichloromethane, 

followed by dichloromethane +0.5% ethanol) followed by crystallisation from 

toluene, then ethanol/light petroleum (b. p. 60-80 0 C). 

M: Column chromatography (alumina; toluene) followed by crystallisation from 

dichloromethane/light petroleum (b. p. 40-60 °C). 

N: Column chromatography (silica; toluene initially, then gradually add 

dichloromethane up to 100%, to elute dye) followed by crystallisation 

from toluene. 

0: Column chromatography (x2: alumina; toluene) then p. l. c. (silica; 

toluene) followed by crystallisation from toluene. 

P: Column chromatography (alumina; dichloromethane) followed by 

crystallisation from acetic acid. 

Q: Crystallisation from acetic acid, then butanol. 

R: Column chromatography (alumina; dichloromethane initially, then add 

5% AR acetone to remove dye from column) followed by crystallisation from 

toluene. 
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S: Column chromatography [(a) silica; dichloromethane initially, then 

gradually change to methanol; (b) alumina; dichloromethane] followed by 

crystallisation from ethanol. 

T: Column chromatography (silica; AR acetone) then p. l. c. (silica; 

AR acetone) followed by crystallisation from toluene/light petroleum 

(b. p. 100-120 °C). 

U: Column chromatography (silica; AR acetone) followed by crystallisation 

from toluene. 

V: Column chromatography (alumina; toluene) then p. l. c. (silica; 

dichloromethane + 1% AR acetone) followed by crystallisation from toluene. 

W: Column chromatography (silica; dichloromethane initially, then gradually 

add 10% AR acetone) followed by crystallisation from toluene). 
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Table 4.10. Melting Points and Elemental Analyses of Dyes Derived 

from N-Phenylpyrrolidine (59a). 

Required/% 

Dye M. p. /°C. Elemental Analyses: 

CHN Other 

Found/% 

(i) Benzenoid Dyes (64; Y=-CH2CH2-) 

4' -OMe 

4'-Me 

4'-H 

4'-Cl 

4'-Br 

4'-CF3 

4'-Ac 

2'-CN 

4' -CN 

4'-N02 

2'-CN, 4'-NO2 

3', 5'-(CF3)2 

F5 

168-70 

198-200 

163-4 

199-200 

202-3 

206-8 

72.6 6.8 14.95 
73.0 6.85 15.0 

77.0 7.2 15.85 
77.25 7.2 15.95 

76.5 6.8 16.7 
76.35 6.75 16.9 

67.25 5.6 14.7 12.45(C1) 
67.35 5.8 14.8 12.3 

58.2 4.85 12.75 24.25(Br) 
58.35 4.85 12.5 24.7 

63.95 5.0 13.2 17.9(F) 
64.2 4.95 13.4 18.15 

213-15 73.7 6.5 14.3 
73.8 6.35 14.45 

151-2 

222-4 

226-7 

73.9 5.8 20.3 
73.7 5.85 20.3 

73.9 5.8 20.3 
74.1 5.8 20.5 

64.85 5.4 18.9 
64.5 5.5 18.75 

210-11 63.55 4.7 21.8 
63.45 4.65 21.7 

116-17 55.8 3.9 10.85 29.5(F) 
56.05 3.8 11.0 29.65 

146-8 56.3 3.5 12.3 27.9(F) 
56.4 3.85 12.5 27.4 

Continued/ ....... 
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Table 4.10., continued/....... 

Dye M. p. /°C 

(ii) Heterocyclic Dyes (65-70; Y=-CH2CH2-) 

65; 6'-OEt 

65; 6'-H 

65; 6'-SO2Me 

65; 6'-NO2 

66; 5'-H 

66; 5'-N02 

67; 3', 5'-(CN)2, 
4' -Me 

67,3'-NO2,5'-Ac 

67; 3', 5'-(NO 
2)2 

68; 2'-CO 2Me 

68; 2'-COMea 

69; 3'-Ph 

69; 3'-SMe 

70; 5'-SEt 

246-9 

252-4 

260-2 

Elemental Analyses: 
Required/% 

Found/% 

CHN Other 

64.8 5.7 15.9 9.1(S) 
64.45 5.45 16.15 9.35 

66.2 5.2 18.2 10.4(5) 
66.3 5.2 18.2 10.8 

56.0 4.7 14.5 16.6(S) 
56.1 4.5 14.4 16.55 

238-40 57.8 4.25 19.8 9.1(S) 
58.3 4.3 19.8 8.9 

195-7 60.5 5.4 21.7 12.4(S) 
60.75 5.2 21.5 12.45 

238-40dec. 51.5 4.3 23.1 10.6(S) 
51.6 4.35 22.65 10.8 

221-2 63.55 4.7 21.8 10.0(S) 
63.85 4.85 21.6 10.15 

201-2 55.8 4.65 16.3 9.3(S) 
56.3 4.65 16.15 9.4 

184-6dec. 48.4 3.75 20.2 9.2(S) 
48.95 3.95 19.9 9.1 

174-6 60.95 5.4 13.3 10.2(S) 
60.8 5.5 13.1 10.1 

155-7 

218-20 64.5 5.1 20.9 9.55(S) 
64.8 5.2 20.7 9.6 

218-9 51.15 4.9 22.95 21.0(S) 
51.55 4.9 23.05 21.0 

223-5 52.7 5.3 21.9 20.1(s) 
52.8 5.3 21.75 19.95 

a Mass snCc. - qi ves---M- , 299.1088; 016H 17N, OS requires H, 299.1092 
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Table 4.11. Melting Points and Elemental Analyses of Dyes Derived 

from N-Phenylpiperidine (59b). 

Dye M. p. /°C 
Required/% 

Elemental Analyses: 
Found/% 

CHN Other 

(i) Benzenoid Dyes (64; Y=-CH2CH2CH2-) 

4'-OMe 149-50 73.2 7.1 14.25 
73.5 7.2 14.5 

4'-Me 

4'-H 

4'-Br 

4'-C1 

41-CF 3 

41-Ac 

2'-CN 

4' -CN 

4'-N02 

2'-CN, 4'-NO2 

3'95'-(CF3)2 

F5 

166-7 77.4 7.55 15.05 
77.4 7.4 15.05 

151-2 77.0 7.15 15.85 
76.8 7.35 15.95 

147-9 59.3 5.25 12.2 23.25(Br) 
59.2 5.2 12.05 23.45 

133-5 68.1 6.0 14.0 11.85(C1) 
68.25 5.85 14.1 11.9 

151-3 64.85 5.4 12.6 17.1(F) 
65.0 5.2 12.7 17.0 

191-2 74.25 6.85 13.7 
74.25 7.05 13.7 

108-10 74.5 6.2 19.3 
74.35 6.5 19.4 

188-90 74.5 6.2 19.3 
74.4 6.25 19.45 

202-3 65.8 5.8 18.05 
65.65 5.75 18.0 

128-30 64.5 5.05 20.9 
64.8 5.05 20.75 

89-91 56.85 4.25 10.45 28.45(F) 
56.95 4.2 10.7 28.7 

116-8 57.45 3.95 11.85 26.75(F) 
57.65 4.05 11.8 26.45 

continued/........ 
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...... "" Table 4.11., continued/ 

Dye M. p. /°C 
Required/Z 

Elemental Analyses: 
Found/Z 

CHN Other 

(ii) Heterocyclic Dyes (65-67; Y=-CH2CH2CH2-) 

65; 6'OEt 161-63 

65; 61-H 225-7 

65; 6'-S02 Me 228-30 

65; 6'-N02 228-30 

66; 5'-H 136-8 

66; 5'-N02 239-40dec. 

67; 3'-NO2,5'-Ac 199-201 

65.55 6.0 15.3 8.75(S) 
65.6 6.0 15.2 8.8 

67.1 5.6 17.4 9.95(S) 
67.35 5.5 17.3 9.85 

57.0 5.0 14.0 16.0(S) 
57.35 4.8 13.85 15.8 

58.85 4.65 19.05 8.7(S) 
58.9 4.85 18.8 8.5 

61.75 5.9 20.6 11.75(S) 
61.95 5.55 20.95 11.55 

53.0 4.75 22.1 10.1(s) 
53.1 4.85 22.15 9.9 

57.0 5.05 15.65 8.95(S) 
56.85 4.85 15.3 8.75 
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Table 4.12. Melting Points and Elemental Analyses of Dyes Derived 

from N-Phenylmorpholine (59c). 

Dye M. p. /°C 
Required/% 

Elemental Analyses: 
Found/% 

(i) Benzenoid Dyes (64; Y=-CH 20CH2-) 

4'-OMe 215-7 

4' -Me 

4'-H 

4' -Br 

219-21 

194-6 

230-31 

4'-Cl 202-4 

4'-CF3 219-21 

4'-Ac 235-7 

2'-CN 155-7 

4'-CN 209-11 

4'-NO2 229-30 

2'-CN, 4'-NO2 183-5 

3'95'-(CF3)2 152-3 

F5 142-4 

CHN Other 

68.7 6.4 14.15 
68.8 6.5 14.25 

72.6 6.75 14.95 
72.7 6.85 14.8 

71.9 6.35 15.75 
71.8 6.35 15.95 

55.5 4.6 12.15 23.1(Br) 
55.45 4.65 12.2 23.6 

63.7 5.3 13.95 11.75(C1) 
63.35 5.4 13.8 11.9 

60.9 4.8 12.55 17.0(F) 
61.3 4.8 12.6 16.85 

69.9 6.15 13.6 
69.9 6.15 13.85 

69.85 5.5 19.2 
70.3 5.6 19.25 

69.85 5.5 19.2 
69.9 5.6 19.35 

61.55 5.15 17.95 
61.6 5.2 18.15 

60.55 4.45 20.75 
60.65 4.45 21.05 

53.6 3.75 10.4 28.3(F) 
53.75 3.8 10.55 27.95 

53.8 3.35 11.75 26.6(F) 
54.1 3.65 11.65 26.25 

continued/........ 
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Table 4.12., continued/....... 

Dye M. p. /°C 
Required/% 

Elemental Analyses: 
Found/% 

CHN Other 

(ii) Heterocyclic Dyes (65-67; Y=-CH2OCH2-) 

65; 6'-OEt 217-9 

65; 6'-H 282-4 

65; 6'-SO2Me 279-81 

65; 6'-N02 274-6 

66; 5'-H 211-12 

66; 5'-N02 261-3 

61.95 5.45 15.2 8.7(S) 
61.9 5.3 15.3 8.55 

62.95 4.95 17.3 9.9(S) 
62.95 4.9 16.95 9.85 

53.75 4.5 13.95 15.9(S) 
53.9 4.6 14.2 15.9 

55.3 4.05 18.95 8.65(S) 
55.3 4.15 19.15 8.7 

56.9 5.1 20.45 11.7(S) 
56.65 5.0 20.8 11.6 

48.9 4.1 21.95 10.05(S) 
49.0 4.35 22.25 10.2 

67; 3'-NO2,5'-Ac 206-7 53.35 4.45 15.55 8.9(S) 
53.2 4.4 15.35 8.8 
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Table 4.13. Melting Points and Elemental Analyses of Dyes Derived 

from N-Phenylthiomorpholine (59d). 

Dye M. P. /°C Elemental Analyses: 
Required/X 

Found/% 

4 

CHN Other 

(i) Benzenoid Dyes (64; Y=-CH2SCH2-) 

4'-OMe 156-9 65.2 6.05 13.4 10.2(S) 
65.2 5.95 13.6 

. 
10.25 

4'-H 152-3 

4'-C1 179-81 

4'-CF3 178-80 

4'-CN 182-4 

4'-NO2 220-22 

2'-CN, 4'-NO2 143-4 

67.85 6.0 14.85 11.3(S) 
67.8 6.0 14.6 11.55 

60.45 5.05 13.25 11. ''(C1), 10.1(5) 
60.5 5.0 13.1 11. <<; 5 10.15 

58.1 4.55 12.0 16.25(F), A. 1(S) 
57.9 4.25 11.95 16.35 9.05 

66.25 5.2 18.2 10.4(S) 
66.2 5.1 18.1 10.05 

58.55 4.9 17.05 9.75(S) 
58.65 4.6 17.05 9.4 

57.8 4.25 19.85 9.05(S) 
57.8 4.5 19.7 9.15 

(ii) Heterocyclic Dyes (65-66; Y=-CH2SCH2-) 

65; 6'-NO2 231-3 

66; 5'-N02 248-50 

53.0 3.9 18.2 16.6(S) 
52.8 4.0 18.55 16.75 

46.6 3.9 20.9 19.1(S) 
46.9 4.1 21.2 18.9 
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Table 4.14. Melting Points and Elemental Analyses of Dyes Derived 

from N-Phenylthiomorpholine-I, 1-dioxide (59e). 

Dye M. p. /°C Elemental Analyses: 
Required/% 

Found/Z 

CHN Other 

(i) Benzenoid Dyes (64; Y=-CH 2S02CH2-) 

4 '-OMe 227-9 

4'-H 

4'-Cl 

4'-CF3 

59.15 5.5 12.2 9.3(S) 
59.3 5.3 12.45 9.35 

Pure sample not isolated 

238-40 54.95 4.6 12.0 10.15(C1), 9.15(s) 
55.25 4.45 11.75 10.45 9.25 

220-23 53.25 4.2 11.0 14.9(F) , 8.35(S) 
53.25 4.2 11.15 14.7 8.65 

4'-CN 273-5 60.0 4.7 16.5 9.4(S) 
60.2 4.7 16.3 9.05 

4'-N02 279-81 53.35 4.45 15.55 8.9(S) 
53.7 4.65 15.3 8.9 

2'-CN, 4'-N02 254-6 53.0 3.9 18.2 
. 
8.3(S) 

53.4 3.9 17.9 8.05 

(ii) Heterocyclic Dyes (65-66; Y=-CH2S02CH2-) 

65; 6'-N02 276-7 48.9 3.6 16.8 15.35(S) 
48.7 3.75 16.95 15.35 

66; 5'-N02 291-3 42.3 3.5 19.0 17.35(S) 
42.45 3.7 18.95 17.55 
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Table 4.15. Melting Points and Elemental Analyses of Dyes Derived 

from N-Phenyl-N'-acetylpiperazine (59h). 

Dye M. p. /°C Elemental Analyses: 
Required/Z 

Found/Z 

CHN Other 

(i) Benzenoid Dyes (64; Y=-CH 2N(Ac)CH2-) 

4'-OMe 213-4 67.45 6.5 16.55 
67.1 6.65 16.8 

4'-H 209-10 

4'-Cl 226=7 

4'-CF3 208-9 

4'-CN 207-9 

4'-NO2 238-40 

2'-CN, 4'-NO2 179-80 

70.15 6.5 18.2 
70.45 6.45 18.25 

63.05 5.55 16.35 10.35(C1) 
63.0 5.65 16.3 10.15 

60.65 5.05 14.9 15.15(F) 
60.9 5.2 15.05 15.3 

68.45 5.7 21.0 
68.8 5.6 21.2 

61.2 5.4 19.85 
60.85 5.05 19.9 

60.3 4.75 22.2 
60.5 4.85 21.95 

(ii) Heterocyclic Dyes (65-66; Y=-CH2N(Ac)CH2-) 

65; 6'-N02 255-7 

66; 5'-N02 224-5 

55.6 4.4 20.5 7.8(S) 
55.6 4.2 20.2 8.1 

50.0 4.45 23.35 8.9(S) 
50.1 4.4 23.7 9.05 
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Table 4.16. Melting Points and Elemental Analyses of Dyes Derived 

from N-Phenyl-N'-ethylpiperazine (59f). 

Dye M. P. /°C Elemental Analyses: 
Required/% 

Found/% 

CHN Other 

(i) Benzenoid Dyes (64; YT-CH 2 N(EOCH 2-) 

4'-OMe - Pure sample not isolated 

4' -H 
a 

4'-Cl 186-8 

4'-CF3 202-5 

4'-CN 204-6 

4'-NO2 178-80 

2'-CN, 4'-NO2 124-6 

63.0 5.8 15.45 15.75(F) 
63.05 5.8 15.35 15.5 

71.45 6.6 21.95 
71.75 6.65 22.25 

63.7 6.2 20.65 
63.8 6.1 21.0 

62.65 5.5 23.1 
62.7 5.5 23.0 

(ii) Heterocyclic Dyes (65-66; Y=-CH2N(Et)CH2-) 

65; 6'-N02 198-9 57.6 5.05 21.2 8.1(S) 
57.25 4.8 20.85 8.45 

66; 5'-NO2 171dec. 52.0 5.20 24.3 9.25(S) 
52.35 5.15 24.4 9.1 

a Mass spec. gives M+, 294.1848; C18H22N4 requires M, 294.1844 

b Mass spec. gives M+, 328.1451; C18H21N4C1 requires M, 328.1455 
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Table 4.17. Melting Points and Elemental Analyses of Dyes Derived 

from N-Phenyl-N'-methylpiperazine (59g). 

Dye M. P. /°C Elemental Analyses: 
Found/% 

CHN Other 

Required/% 

(i) Benzenoid Dyes (64; Y=-CH 2N(Me)CH2) 

4' -OMe 

4'-H 

4'-Cl 207-9 

4'-CF3 223-5 

4'-CN 235-7 

4'-N02 230-2 

2'-CN, 4'-NO2 172-4 

Pure sample not isolated 

Pure sample not isolated 

64.85 6.05 17.8 11.3(C1) 
65.2 6.0 17.45 11.05 

62.95 5.45 16.1 16.4(F) 
62.55 5.25 16.15 16.6 

70.8 6.25 22.95 
70.55 6.1 22.95 

62.75 5.85 21.55 
62.7 5.5 21.8 

61.7 5.15 24.0 
61.65 5.0 24.05 

(ii) Heterocyclic Dye (65; Y=-CH2N(Me)CH2-) 

65; 6'-NO2a 211-3 

a Mass spec. gives M+, 382.1224; C18H18N602S requires M, 382.1212 
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4.6. Miscellaneous Preparations 

(i) N-(4-Nitrophenyl)thiomorpholine (Scheme 4.11) 

4-Nitrochlorobenzene (3.94 g, 0.025 mole) and thiomorpholine (6.45 g 

0.062 mole) were heated under reflux in 1-butanol (20 cm 
3). After 12h 

the solvent was evaporated under reduced pressure and the residue was 

treated with dilute hydrochloric acid (5%, 200 cm3). The resulting 

green precipitate was filtered off and the filtrate was extracted with 

dichloromethane until the yellow colour of the aqueous layer had 

disappeared. Evaporation of solvent from the dried (MgSO4) organic layer 

gave a green oil which was combined with the filter cake and recrystallised 

from ethanol (using a little toluene to facilitate complete solution) to 

give N-(4-nitrophenyl)thiomorpholine as dark green leaflets (4.1 g, 73.1%) 

m. p. 140-42 °C (Found: C, 53.45; H, 5.2; N, 12.65; S, 14.2%. 

C1OH12N202S requires C, 53.55; H, 5.35; N, 12.5; S, 14.3%), d (CDC13) 

Hc), 8.14(2H, d, J 9.0 Hz, Ha), 6.8 (2H, d, J 9.0 Hz, Hb), 3.75-4.0 (4H, in, 

2.6-2.9 (4H, m, Hd). 

(ii) N-(4-Cyanophenyl)thiomorpholine (Scheme 4.12) 

4-Cyanofluorobenzene (5 g, 0.044 mole) and thiomorpholine (11.29 g, 

0.11 mole) were heated under reflux in 1-butanol (20 cm3). After 10 

days, work up as in (i) gave a brown solid and a brown oil, which were 

combined and subjected to column chromatography (silica, toluene). 

Crystallisation of the main band from ethanol and then from toluene afforded 

white crystals of N-(4-cyanophenyl)thiomorpholine (6.0 g, 66.7%), m. p. 94-5 0C 

(Found: C, 64.45; H, 6.05; N, 14.05; S, 15.45%. C11H12N2S requires C, 64.7; 

H, 5.9; N, 13.7; S, 15.7%), vCN = 2210 cm-1 9 6(CDC13) 7.50 

(2H, d, J 9.0 Hz, Ha), 6.82 (2H, d, J 9.0 Hz, Hb), 3.65-3.9 (4H, m, Hc) 

2.55-2.8 (4H, in, Hd). 
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(iii) N-(4-Bromophenyl)thiomorpholine (Scheme 4.13) 

A stirred solution of N-phenylthiomorpholine (8 g, 0.045 mole) in 

acetic acid (25 cm3) was treated dropwise over 20 min with a solution of 

bromine (2.3 cm3,0.045 mole) in acetic acid (15 cm3) at room temperature. 

The resulting white suspension was stirred overnight and then poured into 

water (300 cm3). Sodium metabisulphite solution was added to destroy any 

unreacted bromine. The basified suspension was extracted with dichloro- 

methane (3 x 100 cm3); drying (MgSO4) and evaporation of solvent produced 

a crude solid which was crystallised from methanol to give-off-white 

crystals of N-(4-bromophenyl)thiomorpholine (9.35 g, 80.58), m. p. 96-7 °C 

(Found C, 46.75; H, 4.65; N, 5.55; S, 31.05; Br, 12.05%. C10H12NSBr 

requires C, 46.5; H, 4.65; NO 5.45; S, 31.0; Br, 12.4%), d (CDC13) 7.33 

(2H, d, J 9.0 Hz, Ha)66.74 (2H, d, J 9.0 Hz, Hb), 3.4-3.6 (4H, m, Hc), 

2.6-2.8 (4H, m, Hd)" 

(iv) N-(4-Tolyl)thiomorpholine (Scheme 4.13) 

A solution of N-(4-bromophenyl)thiomorpholine (8"g, 0.031 moles) in 

dry ether (25 cm3) was added dropwise to a solution of butyl-lithium 

(33.5 cm3 of a 15% w/w solution in hexane, 0.052 mole) in dry ether (20 cm3) 

under a nitrogen atmosphere at room temperature. After stirring for 30 min 

to allow the aryl-lithium to form (confirmed by adding a few drops to a 

solution of Michler's ketone; addition of acetic acid then gives a 

violet colour), methyl iodide (1.93 cm3,0.031 moles) in dry ether 

(10 cm3) was added dropwise. The mixture was stirred for lh and then 

carefully poured into aqueous sodium hydroxide (10%, 300 cm3). Evaporation 

of the dried (MgSO4) ethereal extracts left'a brown oil. Column chromato- 

graphy (silica, toluene) gave a pale yellow oil (5.15 g, 86%), m. p. ti 20 °C 

which was shown to be N-(4-tolyl)thiomorpholine of reasonable purity by 

t. l. c. andIH-n. m. r., S(CDC13) 7.12 (2H, d, J 8.5 Hz, Ha)9'6.83 
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(2H, d, J 8.5 Hz, Hb), 3.4-3.65 (4H, m, Hc), 2.65-2.85 (4H, m, Hd), 

2.30 (3H, s, Me). However, to obtain a sample which remained solid 

at room temperature required an additional column chromatographic treat- 

ment [silica, light petroleum (b. p. 40-60 °C)I and several recrystallisations 

from ethanol and from'light petroleum (b. p. 40-60 °C) to give a white 

crystalline powder, m. p. 30-31 °C (lit., 176 32.5-33 0 C). 

(v) 4,4'-Bisthiomorpholinobenzophenone (Scheme 4.14) 

4,4'-Difluorobenzophenone (0.2 g, 0.02 mmole) and thiomorpholine 

(0.95 g, 9.2 mmole) were heated under reflux in "dimethylsulfoxide (10 cm3). 

After 90 min, the mixture was cooled and dichloromethane (50 cm3) was 

added. After washing with water (3 x 100 cm3) to remove unreacted 

thiomorpholine and dimethylsulfoxide, evaporation of solvent gave a dark 

brown oil. P. l. c. (silica, dichloromethane : toluene, 60 : 40) of the 

oil yielded two major products; a yellow fluorescent band of high Rf 

was identified as 4-fluoro-4'-thiomorpholinobenzophenone (41mg, 15%), 

m. p. 159 °C (Found: C, 67.65; H, 5.4; N, 5.1; S, 10.65; F, 7.05%. 

C17H16NSOF requires C, 67.75; H, 5.3; N, 4.65; S, 10.65; F, 6.3%), 

6(CDC13) 7.83 (2H, d, J 9.0 Hz, He), 7.77 (2H, d, J 9.0 Hz, Ha), 7.06 

(2H, d, J 9.0 Hz, Hf), 6.85 (2H, d, J 9.0 Hz, Hb), 3.7-3.9 (4H, m, Hc), 

2.6-2.8 (4H, m, Hd). 

The yellow fluorescent band of lower Rf was subjected to a further 

p. l. c. treatment (silica, dichloromethane +0.5% AR acetone), to remove 

a slower moving blue fluorescent impurity, and was then crystallised from 

light petroleum (b. p. 100-120 °C), adding a little toluene to facilitate 

solution, to give 4,4'-bisthiomorpholinobenzophenone as a pale yellow 

powder (0.14 g, 40%), m. p. 147-9 °C (Found: C, 65.75; H, 6.4; N, 7.15; 

S, 16.45%. C21H24N20S2 requires C, 65.63; H, 6.25; N, 7.29; S, 16.67%), 

6(CDC13) 7.77 (4H, d, J 8.5 Hz, Ha), 6.87 (411, d, J 8.5 Hz, Hb), 

3.7-3.9 (8H, m, Hc), 2.65-2.85 (811, m, Hd). 
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4.7. Preparation of the Dyes for Spectral Measurements 

(i) Neutral Solution 

A known weight of dye (5-10 mg) was dissolved in the appropriate 

solvent (ethanol or cyclohexane) in a volumetric flask (100,250 or 

500 cm3) and made up to the mark. A given amount of this stock solution 

was pipetted into a 25 cm3 volumetric flask and diluted to the mark to 

give an absorbance value of 0.7-1.4. After leaving the solution in the 

dark overnight to ensure conversion of any cis-azo dye into the trans 

form, the absorption spectrum of the dye was measured. 

(ii) Acid Solution 

Ethanolic hydrogen chloride was prepared by passing dry hydrogen 

chloride gas (generated by the dropwise addition of concentrated 

hydrochloric acid to sulphuric acid) into ethanol for several hours. 

The resulting solution was standardised by titration against 0. IM aqueous 

sodium hydroxide using phenolphthalein as indicator (colourless to red 

at the end point). The amount of ethanolic hydrogen chloride required 

to give the desired number of equivalents was added to the appropriate 

volume of dye solution and made up to the mark in a 25 cm volumetric 
3 

flask. In the azobenzene series, an estimation of the amount of acid 

needed to fully protonate a dye was obtained by measuring the spectrum 

of the 4'-nitro derivative at several acidities. In cases where the 

concentration of the ethanolic hydrogen chloride was insufficient to 

produce full protonation, concentrated hydrochloric acid was used instead. 

4.8. High Temperature Dyeings on Polyester 

A 2% dyeing on polyester was carried out for each of the dyes as 

follows. 
215 
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A solution of the dye (20 mg, 2% on mass of fibre) in cellosolve 

(2-ethoxyethanol) was added with stirring to a solution of Dyapol T 

(0.1 g, Ig/1), the dispersing agent, in water (95 cm3) to give a uniform 

dispersion of the dye in a dyebath of liquor ratio 100: 1. A sample of 

polyester was immers-ed, in-the dyebath and the whole was heated to 120 °C 

(developing a pressure of 15*lb in 2) 
over 30 min and maintained at this 

temperature for 90 min. The dyebath was cooled and the substrate w&s 

washed with cold water, then scoured at 90 °C for 15 min in a solution 

of Lissapol NC (lg/1) at a liquor ratio of 100: 1. The cooled and rinsed 

polyester sample was dried at room temperature. 

4.9 Fastness Tests 216 

(i) Fastness to Light: Xenon Lamp. 

The samples to be examined were cut into pieces (2.5 cm x1 cm) and 

mounted on strips of white card, with half the sample covered by a second 

strip of card 
[Fig. 4.2. (a)]. A set of blue standards was similarly 

mounted, and arranged together with the dyed samples around the xenon 

lamp . Exposure was continued until the light fastness of each sample 

had been assessed. 
216 

(ii) Fastness to Washing 

The ISO 3 method was used to evaluate wash-fastness ratings. 

The prepared dyed sample of, polyester [Fig. 4.2 (b)] was placed in the 

container of a wash wheel together with a solution of soap flakes (5g/1) 

and anhydrous sodium carbonate (2g/1) at a liquor ratio of 50: 1 for 

30 min at 60 °C. The washed samples were rinsed in cold water and then 

dried at room temperature. The change in colour between the soaped 

sample and an unsoaped sample, and the staining of undyed cloths in the 

prepared sample, were assessed. 
216 



204 

Exposed 
dyed sample 

r 
i 
ý 
i 
i 
t 
ý 
i 
i 
L 

(a). 

-----v 
---1I 

I) 
t1 
11 
I 

----ii II 
II 
I 
I 

- --4 
I 
I 
1 
I 

__J 

T 
( 
ý 

( 
( 
( 

ý 

( 

II 

II 
ii 
1ý 
ii 
ýi 
ý 

__J 
ý 

___J 

-- --------- -� 

ý 

(b) 

1 
I 
I 
1 
I 
I 

J 

Unexposed 
dyed sample 

White card 

Dyed sample 

Undyed cloth - 
polyester on top and 
wool underneath the 
dyed sample. 
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4.10 Measurement of pKa Values 
217 

For each dye, stock solutions containing a known mass concentration 
3 (ca. 2 mg dm 7) in ethanol were prepared. A series of solutions in 

50% ethanol by volume was produced in which the dye concentration was 

constant but the (known) concentration of sulphuric acid was changed to 

give a range which varied from that containing predominantly the non- 

protonated form to one involving mainly the protonated form of the dye. 

One strongly basic solution and a number of strongly acidic solutions 

were prepared for each dye. The solutions were thermostatted at 25 °C 

for at least thirty minutes before measuring their spectra in 4 cm 

silica cells contained in the thermostatted cell block of a Unicam SP 

8-100 spectrophotometer. 

For purposes of comparison, the pKa value. for 9-(4-cyanophenylazo)- 

julolidine was similarly obtained, although in this case the pH values 

of the dye solutions were measured since H0 values for the acidity range 

of protonation of the dye were not available. Standard buffer solutions218 

of 0.01 mol dm -3 lithium hydrogen oxinate/0.01 mol 'dm 3 
oxalic acid 

in 50% ethanol and of 0.01 mol dm 3 lithium hydrogen succinate/0.01 mol 

dm 3 
succinic acid in 50% ethanol were used to calibrate the pH meter 

(Philips PW9410 Digital). 

The concentrated solutions of sulphuric acid were prepared and 

standardised by accurate dilution and titration with sodium hydroxide 

solution standardised with AR potassium hydrogen phthalate. 
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5. Appendix I. Quantitative Applications of Molecular Orbital Theory 

to the Spectral Properties of Dyes. 219 

5.1. General Considerations 

The absorption of ultraviolet and visible light leads to a 

disturbance of the electronic distribution in a molecule, resulting in 

the formation of an electronically excited state. Quantum theory states 

that a molecule can exist only in a limited number of discrete energy 

states, En, as described by the wave functions 
n 

in the equation 

HT 
n= 

EnT 
n 

i5.1) 

where H is the Hamiltonian operator. In physical terms, 'n2dT represents 

a probability function for the state in a small volume element dT, so that 

integrated over all space the product will be equal to unity, as shown by 

the normalising equation: 

+ý _ 

_ao 
Tn1 dT =1 (5.2) 

Values of Vn(often called eigenfunctions) which satisfy the equation can 

be regarded as the various possible electronic states of the molecule, each 

having an energy value En (often called eigenvalues). The lowest energy 

eigenfunction is the ground state of the molecule; the energy of the 

radiation absorbed is then given by 

Eexcited 
state 

Eground 
state = by 

where h is Planck's constant and v is the frequency. 

(5.3) 

If the eigenvalues of a molecule were known precisely, all possible 

electronic transitions could be assigned energy values. Unfortunately, 
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the exact solution of eqn. (5.1) is not possible for complex molecules 

using present mathematical techniques, and approximations have therefore 

to be made. Empirical parameters are often utilised to overcome 

theoretical difficulties and absorb these approximations. 

A particularly valuable approximation assumes that the complete 

electronic wave function for the ground state of a molecule can be factorised 

out into a series of simpler wave functions, * , each of which describes 

the behaviour of one electron only; these one-electron wave functions 

are the familiar molecular orbitals. The electronic structure of a 

molecule can then be built up by feeding electrons in pairs into the 

various orbitals, in order"of increasing energy, and the longest-wavelength 

absorption band can be attributed to the promotion of an electron from 

the highest occupied molecular orbital (HOMO) to the lowest unoccupied 

molecular orbital (LUMO). 

The one-electron wave function approach is implicit in the Huckel 

molecular orbital (HMO) method and the superior Pariser-Parr-Pople (PPP) 

method, both of which are outlined briefly below. 

5.2' The Hückel Molecular Orbital (HMO) Method. 220-223 

This approach invokes the o-n separation principle in which it is 

assumed that the a and n electrons can be treated independently ( in fact, 

the o electrons are effectively ignored). One-electron wave functions 

and related energies are obtained by using the linear combination of atomic 

orbitals (LCAO) procedure. Hence, for a system of n overlapping p orbitals 

the molecular orbital wave function (P) is expressed as a linear sum of 

the component atomic orbital wave functions (f): 
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.*= c101 + c202 + ...... * cnOn (5.4) 

The mixing coefficients (or eigenvectors), cn, can have any value 

between ±I and denote the relative contributions of each atomic orbital 

to 4'; adjacent coefficients of like algebraic sign correspond to in- 

phase overlap, whilst those of opposite sign correspond to out-of-phase 

overlap. 

The energy (or eigenvalue), E, of the molecular orbital is defined 

by 

Hý = Eý (5.5) 

This equation refers to the energy and wave function of a molecular orbital, 

rather than to those of a molecular state as in eqn. (5.1). Mathematical 

manipulation gives an expression for the energy of the molecular orbital, 

in terms of ý, c and the operator H. Utilisation of the variation 

principle gives n secular equations, containing integrals of the form 

f ýn4 
ndT = Hnn 

f ýmHýndT = Hmn 

f ý2ndT = Snn 

f ýmýndT - Smn 

(5.6a) 

(5.6b) 

(5.6c) 

(5.6d) 

The normalisation requirement of atomic orbital wave functions causes all 

Snn integrals to be equated to unity. The Smn integrals, or overlap 

integrals, are a measure of the degree of overlap of the two orbitals m 

and n. These values are taken as zero, in the zero differential overlap 

(ZDO) approximation, despite the fact that formation of a molecular 

orbital requires spatial overlap of atomic orbitals. This assumption 

greatly simplifies the calculations without greatly affecting their out- 

come. 
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Each-Hnn integral (5.6a) represents the energy of an electron 

whilst it occupies, the atomic orbital 0 
n. 

This energy is called the 

Coulomb integral, an, and in HMO theory it is assumed that all Hnn 

integrals for carbon atoms have the same numerical value, a . The 

Hmn integral can be regarded as the energy of an electron whilst it 

occupies the region of overlap of orbital +m with 0 
n, and is termed the 

resonance integral. In the HMO method, resonance integrals relating to 

non-adjacent atoms are given a value of zero (owing to the negligible 

degree of overlap), and those between adjacent pairs of carbon atoms are 

assumed to have the same value, B. 

The secular equations can now be greatly simplified and written in 

the form of a determinant (having extracted the coefficients cn) for a 

molecule containing n conjugated p orbitals: 

a1-E 812 013 ....... ß1n 

021 a2-E ß23 ....... ß2n 

031 032 a3-E ...... ß3n 

ßn1 ßn2 ßn3 ....... an-E 

=o (5.7) 

The aforementioned approximations concerning an and 0mn enable a solution 

to the determinant to be obtained; in general, for a system of n overlapping 

p orbitals (giving a determinant of order n), n molecular orbital eigen- 

values are obtained, expressed in terms of a and ß, which are treated as 

empirical parameters. Application of the ZDO approximation to the 

normalisation requirement of a molecular orbital gives eqn (5.8) which, 
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in addition to the secular equations, enables the mixing coefficients 

cn to be calculated for each orbital. Each cn2 term can be identified 

222_ 
c1 + c2 + c3 ........ +c-1 (5.8) 

with the fraction-of an electron in an orbital associated with atomic 

centre n, i. e., the fractional electron density on atom n. In a typical- 

molecule, there will be several w -orbitals and many will contain two 

electrons, such that the net electron density Qn on atom n is given by: 

2 Qn =ý cr, 
n . Nr (5.9) 

where Nr is the number of electrons (1 or 2) in each orbital r. 

Considering the region of overlap between two adjacent atoms,. m and 

n, the quantity cm. cn can be associated with the probability of finding 

an electron in the region of overlap, or in other words the degree of 

bonding. Hence the term cmcn is referred to as the partial bond order for 

the bond between atoms m and n due to one electron in one molecular 

orbital. Total bond order, Pm, 
n, 

is given by the sum of the partial 

bond orders due to all the various a-electrons in the molecular orbitals 

r: 

Pm, 
n =r cr, m. cr, n. 

Nr (s. lo) 

and lies between zero (pure single bond) and unity (pure double bond). 

Thus, electron densities and bond orders in both ground and excited states 

can be obtained by means of egns. (5.9) and (5.10), using the appropriate 

orbital occupancies. 

In its original form, as outlined above, the HMO procedure specifically 

refers to hydrocarbons. The presence of heteroatoms makes the inherent 

approximations concerning a and ß less valid. Although modifications to 
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account for heteroatoms (e. g., the w-technique 
224) 

have been developed, 

the fact that the HMO approximation neglects electronic interactions 

makes it rather unreliable for the prediction of transition energies, 

except in certain favourable cases. 

5.3. The Pariser-Parr-Pople (PPP) Self Consistent Field. (SCF) 

Molecular Orbital (MO) Method. 225'226 

This method retains the v-n separation principle of the HMO method 

but specifically includes interelectronic effects in the calculations. 

The LCAO approach is again used to give a general determinant similar to 

eqn. (5.7), the fundamentaldifference being in the an and 0 
mn electron 

energy terms. In the HMO method, repulsion energies due to the presence 

of other n-electrons are not included in the a and ß values. The PPP 

method, however, does include the effects of electron interaction. Thus, 

the magnitude of these terms depends on the electron occupancy of the 

n-orbitals. In the PPP procedure, each an and 0 
mn 

term in the determinant 

is given a specific numerical value; solution of the determinant again 

gives the molecular orbitaleigenvalues for the system. The LCAO 

coefficients are found in the same way as in the HMO method, leading to 

electron densities and bond orders for the molecule. 

The main problem in the PPP method lies in the assignment of 

appropriate values to each an and $mn, ensuring that electronic 

interactions are well accounted for. These values may be expressed as 

follows: 

ansan core + (RE) 
n 

ßmn ° ßmncore + (RE) 
mn 

(5.11) 

(5.12) 

The one-centre core term, an core is the attraction energy experienced by 
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an electron on an atom n, due to the positively charged nuclear frame- 

work, assuming that all the other n-electrons have been-removed, and is 

given approximately by minus the valence state ionisation potential . 
(VSIP) of the atom on which the electron is residing, added to the sum 

of each of the attractive energies, -yam, between the electron on atom 

n and a remote positive centre m, where ymn is the repulsion energy that 

would result if the positive charge in the system were replaced by an 

electron. These ymn terms can be calculated from experimental data 

(see eqn. 5.15), and are dependent on the geometry of the molecule. 

The ßmn core values can be regarded as the energy of an electron 

residing between atoms m and n, experiencing the total attractive force 

of the positively charged nuclear framework. They are usually determined 

empirically for specific bonds and can be related to bond lengths. The 

6mn core term for non-adjacent atoms is taken as zero, as in the HMO 

method. PPP 'calculations appear to be less sensitive to the choice of 

core ßmn values than to other parameters. 

The one-centre repulsion term (RE) 
n arises from the interaction of 

the electron localised on atom n with all the other ir-electrons, and is 

given by the expression 

(RE)n m 2Qn'Ynn + 
m#n 

Qn'Ymn (5.13) 

where Qn and Qm are the ff-electron densities on atoms n and in, 

respectively, as evaluated from eqn. (5.9), and Yn 
nis the repulsion energy 

between two p electrons on the same atom n, and is obtained from 

Ya VSIP -A nn nn 
(5.14) 

where An is the experimentally determined electron affinity of atom n. 

The two-centre electron repulsion integrals Ymn are found from some 
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average of the one-centre terms for atoms m and n. The empirical 

relationship of Nishimoto and Mataga227 (egn. 5.15), where dmn is the 

distance through space between atoms m and n, gives good results in 

many cases. Thus, a geometry dependence is again introduced into the 

calculations. 

y= 14.39(Ymm + Ynn) 
mn (ymm + Ynn)dmn + 28.781 

The two-centre repulsion energy term (RE)mn is given by 

(RE)IM _-2 PY 

where Pmn is the n-bond order between atoms m and n. 

(5.15) 

(5.16) 

Thus, it is seen that eigenvalues for the system can be obtained if 

the following parameters are known: 

(a) interatomic distances and bond angles, 

(b) VSIP and A values for all atoms, 

(c) all 0 
mncore 

values, 

(d) n-electron densities and a-bond orders. 

Unfortunately, the electron densities and bond orders can only be 

determined after the LCAO coefficients for all the occupied orbitals are 

known, i. e., after the eigenvalues have been calculated. This problem is 

negotiated by carrying out a%preliminary Hückel calculation, without 

specifying exact a and $ values, to give a rough set of eigenvectors. 

The resultant calculated bond orders and electron densities are then 

used to set up the PPP secular determinant, solution of which affords 

an improved set of coefficients. This process is then repeated until 

successive cycles give the desired degree of consistency. This iterative 
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approach introduces a degree of self consistency into the PPP method. 

In addition to calculating eigenvalues for the system (of both 

singlet and triplet states), from which A 
max values are derived, together 

with the LCAO coefficients cn, from which n-electron densities and n- 

bond orders are obtained, output from the PPP computation also includes 

dipole moment magnitudes and directions in the ground and excited states, 

the transition moment vector, and oscillator strengths, f, 228 
as 

defined by the expression 

fa4.703 x 1029. v M2 
m- 

(5.17) 

where m is the mean absorption frequency of the band (in cm-1) and M is 

the transition dipole moment. Oscillator strength is related to the 

area under an absorption band covering frequencies v1 to v2: 
V2 

f- 4.32 x 10-9 
1 

dv ti 4.32 x 10-9"cmax'Av (5.18) 

V1 

The approximation, where Avg is the width of the band (in cm 
l) 

at 

e= max/2, holds for reasonably symmetrical curves. Thus, oscillator 

strengths are directly proportional to molar extinction coefficients 

provided that half-band widths are constant for the dyes studied. Values 

of f range from zero for a very weak band to unity for a very intense 

band. Computed values are often greater than unity, presumably because 

the calculated transition dipole moment is too large. Thus, although 

absolute values are inaccurate, relative values within a series are of 

predictive value. 

The vast majority of stable organic molecules have an orbital 

arrangement consisting of sets of paired electrons of opposite spin, i. e., 

possess singlet ground states. If, after promotion to a higher orbital, 

an electron retains its spin, the resultant excited state is also a singlet 

state, whereas'if the electron reverses its spin a triplet excited state is 
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obtained. Quantum mechanical restrictions render ground (singlet) state 

to excited triplet state transitions highly forbidden, leading to 

exceedingly weak absorption bands. Corresponding singlet to singlet 

transitions, on the other hand, are allowed and therefore intense and 

are normally responsible for the visible absorption bands of molecules. 

Thus, calculated 
mx values are for this latter transition, although 

it should be noted that the PPP method is able to distinguish between 

singlet and triplet states (by its consideration of electronic repulsion 

effects), making it possible to calculate energy values for both states. 

5.3.1. Configuration Interaction (CI). 

The results of a PPP calculation strictly refer to the ground state 

molecule, since the electron repulsion energies are based on the ground 

state orbital occupancy. Promotion of an electron to an unoccupied 

orbital results in a new occupany, and it is not valid to assign to the 

electron an eigenvalue that is based on a ground state calculation. 

Thus, a PPP calculation has to be refined in order to calculate electronic 

transition energies in a reliable manner. 

It is common practice to designate electronic states of a molecule 

by orbital occupancy descriptions. These representations are better 

described as electronic configurations, and are often a poor 

representation of a true molecular state since they are a theoretical 

concept, based on the assumption that a many-electron state wave function 

can be factorised out into a product of one-electron molecular orbital 

functions. Better approximations to the true state wave functions, 

state, can be obtained by a linear combination of the various configur- 

ation wave functions, V, in a manner similar to the LCAO treatment of 

molecular orbital wave functions (eqn. 5.19). 
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state ti 
improved 

_ c1 T1 +c2T2+.... cnT (5.19) 

Solution of the resulting new determinant gives a series of improved 

state energies (and hence better transition energies) and the mixing 

coefficients, or configuration vectors, cn some of which will be finite 

(in which case the relevant configurations will interact) and some zero 

(no configuration interaction). This treatment leads to the concept 

that an absorption process can be represented either by one electronic 

configuration (i. e., by the transition of an electron from one orbital 

to another, as was entirely the case before CI), or by a transition to 

which more than one electronic configuration contributes. The latter type 

often occurs strongly if the initial PPP calculation predicts degenerate 

configurations and involves the degenerate configurations only. For 

instance, the transitions of buta-1,3-diene were initially predicted at 

213,162 (two bands) and 123 nm. After CI, the revised values were 214, 

175,150 and 122 nm. Some transitions, however, may involve several 

electronic configurations. Thus, CI is essential in many cases to remove 

the artifical degeneracy of certain excited configurations, and hence to 

predict the correct number of absorption bands, and also to increase the 

accuracy of the calculated data. Configuration vectors are calculated in 

the computation, and these vectors give an indication of how best the 

electronic transition can be represented. 

5.4. Practical Applications of the PPP Method. 
229,230 

The PPP-SCF-MO method has been used in the study of the colour and 

constitution of a wide range of dyes, including aminoazo compounds 
229-233 

di- and tri-arylmethanes, 
234 

anthraquinones, 
235, 

naphthoquinones236,237 

and heterocyclic analogues of the anthraquinones. 
238 Calculations of 
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a more specific nature in other dye classes have also been carried out. 
239,240 

In the present work, a standard PPP-MO procedure was employed, 

within the fixed ß approximation. Two-centre electron repulsion integrals 

were determined by the previously described Nishimoto-Mataga relationship 

(eqn. 5.15), and electronic excitation energies were refined by a 

limited CI treatment involving the nine singly excited singlet 

configurations obtained by promoting an electron from the three highest 

occupied orbitals to the three lowest unoccupied orbitals. It was found 

that the limited CI treatment generally produced 
.a 

bathochromic shift of 

the longest wavelength absorption band of 0-5%, although in some hetero- 

cyclic dyes shifts of up to 10% were calculated. Extension of CI had 

little additional effect, as other workers have also found. 231 

The calculated configuration vectors indicate that in most cases the 

contribution of the HOMO --' LUMO electronic transition to the visible 

absorption band is about 95% (although for the 4'-nitrophenyl and 

6'-nitrobenzthiazolyl dyes the amount drops to 80-85%), i. e., a 

description of the first excited states of these types of molecules in 

terms of orbital occupancies is quite reasonable. 

Calculations have been restricted in the main to the pyrrolidinoazo 

dye series, since (by analogy with recent work on aminoazo dyes241) 

these dyes can reasonably be assumed to have planar structures, and will 

therefore show any trends more clearly than if steric factors had also 

to be considered. Parameters used in the calculations are shown in 

Table 5.1, with calculated visible absorption data being given in 

Table 5.2. It should be noted that, since the experimental Amax values 

of corresponding pyrrolidinoazo and NN-diethylaminoazo dyes are essentially 

the same, the parameters for the terminal nitrogen atom will also be the 

same, hence the PPP method is insensitive to any differences in experimental 



225 

Table 5.1. PPP-MO Parameters used for the Calculation of Electronic Absorption 

Spectral Data for Derivatives of 4-Aminoazobenzene. 229,230,242,243 

Bond Type Atom Y VSIPYa Ayb 0X"ic ZYd rXYe 

X-Y (eV) (eV) (eV) (Ä) 

C=C aromatic C 11.16 0.03 -2.39 1 1.40 

C4Me2f N 18.0 8X -2.75 2 1.40 

C-N (pyrrolidino)9 N 17.5 7.5 -2.75 2 1.40 

C-ÖMe (and ÖEt) 0 32.9 11.43 -2.60 2 1.36 

Cl-Ch C 12.0 0.61 -I- 
C-611 C1 23.3 12.5 -1.36 2 1.34 

C-C 
acetyl 

C 11.16 0.03 -2.30 1 1.45 

C=0 

}0 

15.0 0.71 -2.46 1 1.22 

C-C 
cyano 

C 11.19 0.1 -2.30 1 1.40 

C=N 

ýN 

14.18 3.5 -2.67 1 1.15 

C-N L 
nitro 

N 24.8 12.53 -2.00 2 1.49 

N-0 0 21.0 2.5 -2.80 1 1.21 

C-N azo 
N 14.7 2.3 -2.48 1 1.40 

N=N N 14.7 2.3 -2.90 1 1.23 

C-Sf'j s 20.0 10.0 -1.00 2 1.71 

C-Nf'k heterocyclic N 12.0 0.5 -2.40 1 1.38 

C=Nf N 12.0 0.5 -2.00 1 1.33 

R-ýN 21.0 9.26 -2.40 2 1.35 

a Valence state ionisation potential of atom Y 

b Electron affinity of atom Y 

c Resonance integral for bond X-Y 

d Core charge of atom Y 

e Bond length 

f parameters reoptimised (c. f. refs, 229,230,242,243). 

9. Identical to reoptimised C-NEt2 parameters 

h Parameters of carbon atom modified to account for -I effect of Cl 

i Cl considered to be part of n-electron system, with its own parameters 

N-S given same parameters 

k N-N given same parameters 
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(II) 

3' 

ýSý 

N 

5'ý S 

(III) 

5' 
ýSý- 

(IV) M NO (VII) 

`C 

ý 0 

ýj-- N: 

. 
-{\ ý 

X 

Conformation of ortho-substituted 
dyes used in the calculations. 

Scheme 5.1. Model systems (with stereochemistry as shown) used in 

Ar-NýXl 

(I) 

2' 

e, ýýF 

Data given are for the average 
of the two structures. 

.ý ýN- 

N-N 

PPP-MO calculations. 
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Table 5.2. Comparison of Experimental and Calculated Electronic Absorption 

Spectral Data for Dyes Derived from N-Phenylpyrrolidine (I-VII). 

Dye Xmax/nm fa Xmaxhmb 10-4c 

(calc. ) (calc. ) (exp. ) (exp. ) 

I; 4'-OMe 412 

I; 4'-H 411 

I; 4'-Cl 413(411)d 

I; 4'-Ac 431 

I; 2'-CN 442.5 

I; 4'-CN 439.5 

I; 4'-NO2 464(452.5)e 

I; 2'-CN, 4'-NO2 482.5(473)e 

II; 6'-OEt 475.5 

Ii; 6'-H 475 

II; 6'-NO2 509.5 

III; 5'-H 466 

III; 5'-NO2 533 

1.51 407 2.98b 

1.45 407 2.86b 

1.45(1.47)d 416 3.08b 

1.63 434 3.25b 

1.30 438 3.08b 

1.66 438 3.52b 

1.48 459 3.43b 

1.44 503 4.44b 

1.79 478 5.51c 

1.73 471 5.48c 

1.85 505 6.48c 

1.52 452 3.93c 

1.75 529 5.17c 

IV; 3 ; 5'-(CN)2- ff 4'-Me 524 1.61 538 

IV; 3'-N02,5'-Ac 547.5 1.29 547 

IV; 3', 5'-N02 556 1.47 589 

IV; 3'-Ac 464 1.32 

IV; 5'-Ac 

V; 2'-Ac 

V; 2'-C02Me 

V; 3'-Ph 

VI; 3'-SMe 

VII; 5'-SEt 

481 1.77 

448.5 1.31 

439 1.29 

466 1.58 

471g 1.53g 

476g 1.57g 

a oscillator strength 

b Solvent cyclohexane 

c Solvent ethanol 

5.79c 

4.280 

5.94 

440 2.73c 

430 2. ß3c 

472 4.86c 

474 4.60c 

467 5.24C 

d Consideration of -I effect of Cl atom gives Amax value outside brackets. 

Incorporation of Cl atom into the n-electron system gives Amax value inside 

brackets 

e Value outside brackets is for 0 N-0 
(nitro)=-2.8; value inside brackets is for 

ßN-0(nitro)= -3.05 

f 4'-Me group not included in calculations 

ý Calcul., itF, (! v11lie is for methoxv analonuc, 
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data caused by the different terminal alkyl groups, such as dipole 

moment values and electron density distributions (as indicated by n. m. r. ). 

Standard bond lengths and angles were used in the computations 

wherever possible, and literature a values were utilised unless other- 

wise stated. The most critical parameters of a PPP calculation are the 

valence state ionisation potential (VSIP) and the one-centre electron 

repulsion integral (Ynn) for each atom. If the PPP method is of genuine 

wide applicability it should not be necessary to change any of these 

parameters from those derived for similar atoms in other systems. Thus, 

the VSIP and Ynn values were those used elsewhere wherever possible. 

However, in order to optimise the agreement between experimental and 

calculated results over the range of azo dyes studied, certain parameters 

were reassessed by trial and error calculations. Thus, the resonance 

integral (ß) for the N-0 bonds of the nitro group was changed from 

-3.05 eV to -2.8 eV. This modification provided a bathochromic shift 

of the calculated Amax values of 5-15 nm (see, for example, I; 4'-NO21 

Table 5.3). The VSIP and A values for the n-excessive sulphur atom of 

the heterocyclic ring systems were modified slightly, from 22.2 eV and 

9.16 eV, to 20.0 eV and 10.0 eV, respectively, in order to give the 

best fit for all the heterocyclic systems. The most important change 

occurs in the parameters for the a-equivalent C=N bond(s) of the hetero- 

cyclic rings.. The $ value for the C=N bond is moved from -2.6 eV to 

-2.0 eV, producing a significant bathochromic shift inthe first absorption 

band, whilst the VSIP and A values are reduced from 16.0 and 2.5, to 

12.0 and 0.5, respectively, thereby separating the originally similar 

'max values of the parent thiazole and benzthiazole azo dyes, and of the 

6'-nitrobenzthiazole derivative (Table 5.3). Hence, the new parameters 

enable the absorption bands to be reasonably well predicted, free from 

other visible bands and of high oscillator strength. The applicability 
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Table 5.3. The Effect of Parameter Modification on the Calculated 

Absorption Spectral Data of Some Pyrrolidinoazo Dyes. 

ORIGINAL MODIFIED 
nvr VARAMFTFRC AAPAWTFRQ 

EXPERIMENTAL 
uaur caa"ýaa au au a"aý a c.. "cs. au a u. "v 

)4nax/nm(f) Amax/nm( f) Xmax/nm ( 10-4e ) 

I; 4'-N02 452.5(1.52)a 

II; 6'-H 451(1.69)c 

II; 6'-N02 456(1.81)a, c 

[460(1.83) b, cl 

(III); 5'-H 453(1.46)C 

(III); 5'-N02 478.50.7 )ac 

(VI), 3'-Ph 432.5(1.38) 

a ON-0 (nitro) = -3.05 

b ßN-0 (nitro) = -2.8 

464(1.48)b 

442.5(1.67)d 

483.5(1.73)e 

475(1.73)d, e 

471.50.75 )bpd 

490.5(1.92)b, e 

509.5(1.85)b, d, e 

438.5(1.51)d 

480.5(1.52)e 

466(1.52)d, e 

533(1.75)b, d, e 

466(1.58)d'e 

459(3.43) 

471(5.48) 

505(6.48) 

452(3.93) 

529(5.17) 

472(4.86) 

c Heterocyclic aza: VSIPN, = 16.0, AN = 2.5, ßC=N = -2.6, ßC-N = -2.4 

d As c, except VSIPN = 12.0, AN = 0.5 

e As c, except 0 C_N=-2.0 

f Solvent cyclohexane 
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of these new values to other systems is uncertain; it may be that they 

are useful only in azo dye systems. Nevertheless, the modifications 

are justified by the considerable improvements found in A 
max values, 

relative to the original parameters. (see Table 5.3). It is probable 

that the appropriate parameters can be still furtheroptimised so as 

to remove any discrepancies in the calculated trends. 

Study of Table 5.2 reveals that in most cases the calculated Amax 

value of each dye in the pyrrolidinoazo series is predicted to within 

5-10 nm. Obvious exceptions are (I; 2'-CN, 4'-N02) and (IV; 3'5'-(N02)2) 

which are, respectively, about 20 nm and 30 nm too hypsochromic.. These 

discrepancies may arise from the parameters of the nitro group (common 

to both dyes) or the complications arising from a substituent in an ortho 

position. 

The experimentally observed small effect of a 4'-donor substituent 

in 4-aminoazobenzene derivatives is predicted (dyes I; 41-OMe and 

4'-H, Table 5.2), as are the relative bathochromicities of the 4'-acceptor 

dyes. In the case of dye (I; 4'-Cl), A 
max values can be obtained by 

considering only the inductive effect of the Cl atom, simulated by a 

modification of the parameters of the carbon atom to which it is attached, 

or by incorporating a lone pair of electrons on the Cl atom into the 

n-electron system of the molecule. Both methods give similar results; 

in this case, the former approach is slightly better. The isomeric cyano 

dyes (I; 2'-CN and 4'-CN) are predicted to have similar Amax values, a 

prediction observed experimentally. 

Oscillator strength, f, can be directly related to molar extinction 

coefficients (eqn. 5.18) if half-band widths (in cm 
1) 

are constant for 

the dyes studied. As this is not always the case, predicted f values give 

only a rough guide to the expected intensity of a dye. Oscillator 
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strengths obtained from eqn. 5.18 for dyes (I) range from about 0.6 

to 0.7, whereas calculated values are near 1.5. The reason for this 

overestimation of oscillator strength is uncertain. --In almost every 

case, all other calculated absorption bands (in the u. v. region of the 

spectrum) have predicted oscillator strengths below 0.5, as is expected 

from experimental data. 

In the benzthiazolylazo series, the experimentally observed small 

effect on Amax of a 6'-donor substituent (65; 6'-OEt, Table 2.5,2.6 and 

2.7) is again predicted. The calculated relative positions of the parent 

thiazolyl- and benzthiazolylazo compounds, and their nitro derivatives, 

agree with experimental data, reflecting the easier polarisability of 

the thiazolyl- types. 

It is noteworthy that conformational changes such as that between 

(124) and (125) cause a change in X max of 1-2 nm. Similar small changes 

are observed in calculated oscillator strengths, electron densities and 

dipole moments. 

NR2 

(124) 

NR2 

(125) 



Text cut off in original 
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The relative bathochromic. effects of the acetyl and methoxy- 

carbonyl groups in the thienyl dyes (V; 2'-COMe and 2'-CO2Me, 

respectively) are well reproduced in the calculated values. Calculations 

also indicate that dyes of the thienyl-2-azo class should absorb at 

longer wavelengths than the -3-azo analogues; experimental data from 

related systems support this view (see Section 2.3.1). The similarity 

between a 
max values of the parent benzthiazole (II; 6'-H) and the 

1,2,4- and 1,3,4, -thiadiazoles (VI and VII, respectively) is reproduced, 

but unfortunately the 1,3,4-thiadiazoles are erroneously predicted to 

absorb at longer wavelengths than their 1,2,4-isomers. 

Calculated oscillator strengths of the heterocyclic types (II-VII) 

are again overestimated, values obtained from eqn. 5.18 being in the 

region of 0.8-0.9. Relative values are somewhat variable, although the 

high intensities produced by the benzthiazolyl system are predicted 

qualitatively. 

As a further test of the applicability of the modified'parameters, 

calculations were carried out on the benzisothiazole (VIII) and 

isothiazole (IX) dyes, and also on dye (X) in which the terminal amino 

group is attached to a heterocyclic ring rather than a phenyl ring. The 

predictions reproduce the exceptionally bathochromic properties of these 

dyes, in particular that the 5'-nitrobenzisothiazole residue imparts larger 

wavelength shifts than any of the other systems studied, and that the 

parent benzisothiazole dye (VIII; 5'-H) is nearly as bathochromic as the 

4'-nitroisothiazole dye (IX; 4'-N02). Dye (X) is also correctly predicted 

to absorb at significantly longer wavelengths than its phenyl parent, which 

absorbs at 478 nm in ethanol and 444 nm in cyclohexane 
[X(caIc)=452 nm]. 



233 

Table 5.4. Comparison of Experimental and Calculated Electronic 

Absorption Spectral Data for Some Azo Dyes (VIII)-(X). 

N=N 

(VIII) 

NR2 

(x) 

N= --N 

(ix) 

NMe2 

NR2 

Dye 
max(calc) 

f(calc) ýax(exp. )a 10ý'c(exp. ) 

/nm /nm 

VIII, R=Me; 5'-H 521.5 

VIII, R=Me; 5'-N02 599 

1.71 548b 

1.15 598 b 

VIII, R=Et; 5'-H 530 1.75 

VIII, R=Et; 5'-N02 611 1.18 - 

IX, R=Me; 4'-H 445 1.44 482.5 

IX, R=Me; 4'-N02 536 0.91 558c 

IX, R=Et; 4'-H 453.5 1.48 - 

IX, R=Et; 4'-N02 547.5 0.94 - 

X 

a Solvent ethanol? 

b Ref. 76 

495 1.63 554d 5.00d 

c 3'-Methyl derivative, ref. 76 

d Ref. 14 
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The protonated phenylazo dyes generally absorb at longer wavelengths 

than their neutral precursors. PPP calculations (Table 5.5) are in line 

with this fact Ie. g., 4-pyrrolidinoazobenzene, observed wavelength shift 

(in ethanol) on protonation a 106 nm, calculated shift 67 nm], 

although trends within the pyrrolidinoazo series are poorly predicted. 

Due to the low solubility of these cationic molecules in non-polar 

solvents, spectral measurements are usually obtained in ethanol, introducing 

a measure of uncertainty into such comparisons. However, the relatively 

small wavelength shifts caused by 4'-acceptor groups is reproduced, and 

the 4'-methoxy dye is correctly predicted to be the most bathochromic 

member of the series. The additional bathochromic effect of protonation 

at the ring nitrogen in thiazolyl and benzthiazolyl dye systems is also 

predicted, for instance dyes (126) to (128), as are the increased 

intensities of the protonated dyes (assuming protonation occurs at the 

ß-azo - or heterocyclic ring - nitrogen atom rather than the terminal 

nitrogen atom) compared, with the neutral precursors (Table 5.5). 

a__ý(calc. ) = 478 nm 

H ý-=J \ý, -j Xmax (exp. ) = 517 nm 

(126) 

N-N .. __ /\'iI IIIdJC 

N-N 

(127) 

H 

3NO c >=N_N 

S'>== 

X 
max(calc. 

) = 535 nm 

X 
max(exp. 

) = 600 nm 

X 
max(calc. 

) = 542 nm 

X 
max(exP. 

) ' 589 nm 

(128) 
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It is probable that the VSIP and A values for the ß-azo nitrogen atom 

(the site of protonation) were developed on the assumption that the 

protonated dyes would show positive solvatochromism in a manner similar 

to that of the neutral dyes. However, recent work 
244 has suggested that 

the opposite is true, i. e. these systems will shift to longer wavelengths 

in non-polar solvents. If this is indeed the case, then a re-evaluation 

of the ß-azo'nitrogen parameters is required. 

Electron densities of the ground and excited states of some azo 

dyes (as calculated by the PPP method) are shown in Figs. 5.1-5.7 

Table 5.5. Comparison of Experimental and Calculated Electronic 

Absorption Spectral Data for Some Protonated Dyes Derived 

from 4-Aminoazobenzene. 

N 

H 

g 
amax(calc) f(calc) X 

max(exp) 
10-4E 

/nm 
, 

/nm 

4'-OMe 502 2.02 559 5.90 

4'-H 478 2.01 519 5.77 

41-C1' 479a(498)b 2.02a(2.01)b 524 5.88 

4'-Ac 490 2.20 520 6.34 

4'-CN 488 2.26 512 6.19 

4'-NO2 483 2.18 512 6.82 

a Cl not part of n-electron system 

b Cl part of n-electron system 
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(conformations as shown). With reference to the parent dye, 

4'-pyrrolidinoazobenzene (Fig. 5.1), the ground state of the molecule 

shows-a considerable loss of electron density at the terminal nitrogen 

atom, the main electron rich centres being the ortho and para carbon 

atoms of the donor ring together with the ß-azo nitrogen atom as 

predicted by ground state resonance theory) and also, but to a lesser 

extent, the a-azo nitrogen atom. Excitation is seen to result in even 

more conjugation by the terminal nitrogen lone-pair and also in reductions 

in electron density at the ortho and para positions, whilst a build up 

of electron density occurs at the azo link, in particular at the a-nitrogen 

atom, as has previously been stated. 
245 Gains in electron density 

(of variable amounts) are seen at all the carbon atoms of the acceptor 

ring. These trends are clearly incompatible with resonance ideas, which 

suggest a build up of electron density at the ß-azo nitrogen atom due to 

the contribution of structures such as (129) to the excited state, but, on 

the other hand, they are closely related to the results of similar 

N- 

(129) 

+ 
NR2 

2 
calculations on 4-aminostilbene, 

46 
where electron density build up at the 

a -carbon atom is observed on excitation. 

Bond order calculations for 4-pyrrolidinoazobenzene (130) do, on 

the other hand, suggest a movement towards a more quinonoid structure (130b) 

in the excited state, as witnessed by the increased bond order at the Car-N, 

C2-C3, both Car-N(azo), and C21-C3, bonds, and decreases in bond order at 

the other bonds, especially at the azo link. 
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0.72 

0.68 

i13Ua) 

0.75 

N=N 

Excited 
State 

(130a) 

N- 

(130b) I (etc. ) 

- 
(: )I---N-N 

Ground 
State 

ý- E. S. 

Introduction of a methoxy group at the 4'-position (Fig. 5.2) 

causes a slight reduction in the conjugation of the terminal nitrogen 

lone pair, but the trends are similar to those of the parent dye. It 

is noticeable that the oxygen lone pair plays a negligible part in the 

excitation process, which may help to explain why the methoxy group has 

little effect on the Xmax value. Replacement of methoxy by an electron 

withdrawing group causes a reduction in the build up of electron density 

at the $-azo nitrogen, leading eventually to an overall loss on excitation, 

as shown for the 4'-nitro derivative (Fig. 5.3). The terminal nitrogen 

lone pair shows increased conjugation in both ground and excited states, 

whilst the nitro group shows a major build-up of electron density at all 
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Fig. 5.1. The HOMO--ºLUMO electronic transition for 4-pyrrolidino- 

azobenzene: 

(a) Ground state r-electron densities and dipole moment angle, 

(b) Excited state r-electron densities and dipole moment angle, 

(c) Changes in r-electron densities and transition moment angle. 
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Fig. 5.2. The HOMO --O-LUMO electronic transition for 4'-methoxy- 

4-pyrrolidinoazobenzene: 

(a) Ground state n-electron densities and dipole moment angle, 

(b) Excited state n-electron densities and dipole moment angle, 

(c) Changes in r-electron densities and transition moment angle. 
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Fig. 5.3. The HOMO-LUMO electronic transition for 4'-nitro- 

4-pyrrolidinoazobenzene: 

(a) Ground state n-electron densities and dipole moment angle, 

(b) Excited state jr-electron densities and dipole moment angle, 

(c) Changes in n-electron densities and transition moment angle. 
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Fig. 5.4. The HOMO-ºLUMO electronic transition for N-[4-(benz- 

thiazol-2'-ylazo)phenyl]pyrrolidine: 

(a) Ground state r-electron densities and dipole moment angle, 

(b) Excited state r-electron densities and dipole moment angle, 

(c) Changes in r-electron densities and transition moment angle. 

+0.050ý. ý-0.099____ 
+0.235 ., -0.140/ \+0.019 

�-0.264 
0.00 N\ 067 / 

Iý... .... [1 F--'wý---- 

W"r-v ., 1 nna 1 n1I4 

eu. u38 N +O. 04ö -0.103 

_- --"-- 



242 

7.270 

1.006 1.074 
1.099 N 

o . 963, N. / 
i 

1.478 p, 
l' 

1.156 

1.478° 

0.970 
I nip 

0 . 0'N 0.952` 1.115 
1.158 

I . VI V 

1.895 

9.41° 

0.975 1.008 

1.602 0 
1.051 

1.319N 

1.602 

1.001 

1.019 

/ . 949 N 
1.135 

(b) 

I. UjZ N . ,. _.. 
1.190 0.891 

6.670 

0.970 

+0.019 -0.105 

+0 . 124 n 

+0.163 

ý/+0.124 

-0.006 -0.047 
+0.115 N0.145 

o. oo6 
N 

-0.293 

N 

(a) 

." +u. u, o 

-0.024 

(c) 

1.007 

-0.108 

Fig. 5.5. The HOMO LUMO electronic transition for N-(4- 

(6'-nitrobenzthiazolyl-2'-azo)phenyl]pyrrolidine: 

(a) Ground state r-electron densities and dipole moment angle, 

(b) Excited state n-electron densities and dipole moment angle, 

(c) Changes in electron densities and transition moment angle. 
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Fig.. 5.6. The HOMO -ºLUMO electronic transition for N-[4- 

(thiazol-2'-ylazo)phenyl]pyrrolidine: 

(a) Ground state r-electron densities and dipole moment angle, 

(b) Excited state n-electron densities and dipole moment angle, 

(c) Changes in r-electron densities and transition moment angle. 
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Fig. 5.7. The HOMO-ºLUMO electronic transition for 

N-[4-(5'-nitrothiazol-2'-ylazo)phenyl]pyrrolidine: 

(a) Ground state r-electron densities and dipole moment angle, 

(b) Excited state r-electron densities and dipole moment angle, 

(c) Changes in r-electron densities and transition moment angle. 
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three atoms in the excited state. 

In each of the above dyes, the ground state electron density at 

the terminal nitrogen atom is greater than at the ß-azo nitrogen atom. 

The fact that protonation occurs to a large extent in many azo dyes at 

the latter site suggests that other factors are important, such as the 

ease of attack. by the proton, and resonance stabilisation of the 

resulting cation. 

The parent dyes and nitro derivatives of the benzthiazolyl and 

thiazolyl dyes show similar trends to their phenyl counter-parts. The 

change of electron density at the terminal nitrogen atom in the 

5'-nitrothiazolyl dye (Fig. 5.7) is rather less than with the other 

nitro derivatives. Presumably this situation arises because the ground 

state of this molecule is already very polar. The sulphur atom of-the 

heterocyclic rings of these systems appears to play only a small part in 

the redistribution of electronic charge accompanying excitation, 

suggesting that this atom is not important in terms of the bathochromicity 

of these dyes. The ring nitrogen atom behaves rather like the ß-azo 

nitrogen atom, -its net profit or loss depending on the type of substituent 

at the 5'-position. 

Calculated dipole moment values tend to exceed those obtained from 

experimental observations (Table 5.6). This finding may arise from the 

fact that the contribution of the a electron core to the overall dipole 

moment of the molecule is not considered. As stated earlier, the PPP 

method cannot distinguish between the pyrrolidino- and NN-diethylamino- 

groups, so that calculated dipole moments are identical for both types. 

However, it is noticeable that the excited state moment is higher than 

the ground state moment for each dye, suggesting an excited state more 

polar than the ground state, and this is reflected in the positive solvato- 
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Table 5.6. Calculated n-Contribution to the Dipole Moments of Some 

Pyrrolidinoazoa Dyes (I-III). b 

DYE 

I; 4'-OMe 

I; 4'-H 

I; 4'-Cl 

I; 4'-Ac 

I; 4'-CN 

I; 4'-N02 

II; 6'-H 

II; 6'-N02 

I II ; 5' -H 

GROUND 
STATE 

CALL. u/D 

4.06 

6.50 

7.12(5.87)e 

8.45 

10.60 

12.22 

7.16 

13.00 

6.31 

III; 5'-N02 13.79 

EXCITED 
STATE 

17.49 

21.53 

22.51(20.57)e 

26.77 

31.01 

46.19 

20.32 

45.18 

19.37 

35.26 

EXP. u/D 

PGROUND 
STATEd 

3.76 

5.13 

3.40 

5.01 

8.17 

8.43 

a Calculated values apply equally to the analogous NN-diethylaminoazo dyes 

b Conformations as shown in Scheme 5.1 

c Pyrrolidinoazo dyes (ref. 89) 

d NN-Diethylaminoazo analogues (ref. 81) 

e Value outside brackets refers to consideration of -I effect of Cl atom 

only; value inside brackets considers the C1 atom as part of the n-electron 

system 
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chromism of these dyes. Predicted ground state moments increase as the 

strength of the electron acceptor residue of the dye increases, as 

would be expected due to the increased conjugation of the nitrogen lone 

pair. 

Experimental dipole moment studies on the pyrrolidinoazo dyes are 

being undertaken at the present time. These results will shed more 

light on the relationship between calculated and experimental values. 

The transition moment vector (M) of a dye molecule (arising from 

the temporary increase in asymmetry of the electron density distribution 

which occurs during the transition of a molecule from one state to another) 

has assumed a technical significance in recent years in connection with 

coloured liquid crystal display systems, which depend on the polarisation 

of dye absorption bands, i. e., on the criterion that for light absorption 

to occur the electric vector of the incident light must oscillate in 

the same direction as the transition moment. In such display systems, 

the dye is dissolved in a liquid crystal host (the components of which 

are usually long and highly polar molecules) and must align itself as 

closely as possible with the liquid crystal so that as the molecules of the 

latter are switched from one orientation to another, by application of an 

electric field, the orientation of the dye molecules will follow suit. 

Thus, the dye molecule should ideally be a long planar molecule, such as 

an azo dye, with its ground state dipole moment vector (u) along the long 

axis. These two factors can be assumed to dictate the orientation axis 

of the dye molecule with respect to the host. The PPP model suggests 

that azo dyes fit the latter requirements [see Figs. 5.1 (a)-5.7(a)], and 

computed. P values may be of considerable use in comparing the alignment 

properties of related dyes; alignment will be reinforced as p for the dye 

increases. 
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In the absence of an electric field the cell will appear coloured, 

but when a voltage is applied the dye molecule aligns with its 

orientation axis parallel to the direction of the light wave, i. e., 

perpendicular to the electric vector of the wave. For light absorption 

not to occur in this orientation, M must also lie along the orientation 

axis of the molecule or, to a first approximation in azo dyes, parallel 

to p. PPP calculations (Figs. 5.1-5.7) predict similar directions for M 

and u, suggesting that azo dyes may be useful in liquid crystal systems, 

and recent studies 
35 have confirmed the promise of this class of 

chromogens. Although other factors, such as photochemical stability, 

are important in determining the suitability of dyes for use in liquid 

crystal devices, the PPP method may prove to be a valuable tool in their 

initial evaluation. 
230 
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Plate 6.1. High Temperature Dyeings on Polyester of Some Dyes Derived 

from N-Phenylpyrrolidine (64-70; Y= -CH 2CH2-). 

64; 4'-OMe 64; 4'-H 64; 4'-C1 64; 4'-CF3 64; 4'-Ac 

64; 2'-CN 

64; 4'-CN 64; 4'-NO2 4'-N02 65; 6'-H 65; 6'-SO2Me 

.ý ý 
,. 

0 

67; 5'-Ac, 67; 3', 5'-(CN)2, 

65; 6'-N02 66; 5'-H 66; 5'-N02 3'-NO2 4'-Me 

67; 3' 55'- 
(NO 2) 2 68; 2'-Ac 68; 2'-OAc 69; 3'-SMe 70; 5'-SEt 

m 
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Plate 6.2. High Temperature Dyeings on Polyester of Some Dyes Derived 

from (a) N-Phenylpiperidine (64-67; Y = -CH2CH2CH2-) and (b) N-Phenyl- 

morpholine (64-67; Y = -CH20CH2-). 

64; 4'-OMe 64; 4'-H 64; 4'-CF3 64; 4'-N02 64; 2'-CN, 4'-N02 

65; 6'-H 65; 6'-N02 66; 5'-H 66; 5'-N02 67; 5'-Ac, 3'-NO2 

m0m 

64; 4'-OMe 64; 41-H 64; 4'-CF3 64; 4'-N02 64; 2'-CN, 4'-N02 

65; 6'-H 65; 6'-N02 66; 5'-H 66; 5'-N02 67; 5'-Ac, 3'-N02 
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Plate 6.3. High Temperature Dyeings on Polyester of Some Dyes Derived 

from (a) N-Phenylthiomorpholine (64-66; Y = -CH2SCH2-), (b) N-Phenyl- 

thiomorpholine-1, l-dioxide (64; Y = -CH 2S02CH2-), 
(c) N'-Ethyl-N-phenyl- 

piperazine (64; Y = -CH 2N(Et)CH2-(d) 
N'-Acetyl-N-phenylpiperazine 

(64-65; Y = -CH2N(Ac)CH2-) and (e) NN-Diethylaniline (30). 

64; 4'-OMe 64; 4'-H 64; 4'-NO2 64; 2'-CN, 65; 6'-N02 
4'-NO2 

K 

abc 

66; 5'-NO2 64; 4'-OMe 64; 4'-NO2 64; 4'-N02 64; 2'-CN, 4'-N02 

64; 4'-OMe 64; 4'-H 64; 4'-N02 64; 2'-CN, 65; 6'-N02 
4'-NO2 

30; 4'-OMe 30; 4'-H 30; 4'-N02 


