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BACKGROUND: Cough frequency, and its duration, is a biomarker that can be used in low-
resource settings without the need of laboratory culture and has been associated with
transmission and treatment response. Radiologic characteristics associated with increased
cough frequency may be important in understanding transmission. The relationship between
cough frequency and cavitary lung disease has not been studied.

METHODS: We analyzed data in 41 adults who were HIV negative and had culture-confirmed,
drug-susceptible pulmonary TB throughout treatment. Cough recordings were based on the
Cayetano Cough Monitor, and sputum samples were evaluated using microscopic observation
drug susceptibility broth culture; among culture-positive samples, bacillary burden was assessed
by means of time to positivity. CT scans were analyzed by a US-board-certified radiologist and a
computer-automated algorithm. The algorithm evaluated cavity volume and cavitary proximity
to the airway.CT scanswere obtainedwithin 1monthof treatment initiation.We compared small
cavities (# 7mL) and large cavities (> 7mL) and cavities located closer to (# 10mm) and farther
from (> 10 mm) the airway to cough frequency and cough cessation until treatment day 60.

RESULTS: Cough frequency during treatment was twofold higher in participants with large cavity
volumes (rate ratio [RR], 1.98; P ¼ .01) and cavities located closer to the airway (RR, 2.44;
P ¼ .001). Comparably, cough ceased three times faster in participants with smaller cavities
(adjusted hazard ratio [HR], 2.89; P¼ .06) and those farther from the airway (adjustedHR, 3.61;,
P¼ .02). Similar results were found for bacillary burden and culture conversion during treatment.

CONCLUSIONS: Cough frequency during treatment is greater and lasts longer in patients with
larger cavities, especially those closer to the airway. CHEST 2018; 153(6):1358-1367
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During 2016, there were estimated to be 10.4 million
new TB cases worldwide, causing 1.7 million deaths.1

TB is transmitted mostly through coughing,2-4 which
has been associated with increased bacillary burden.5

Cough can be assessed easily throughout treatment, but
its relationship with cavitary lung disease, to our
knowledge, has not been studied.6 Identifying
radiologic characteristics associated with increased
cough frequency is important in understanding
transmission and evaluating treatment response.2,5,7,8
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Infectivity of TB is different for each individual, with
some infecting more than others, so transmission in
TB is considered heterogeneous.9-19 In this
longitudinal study, we sought to investigate whether
there is an association between cough frequency, and
its duration, with radiologic characteristics, such as
cavitary volume and cavitary proximity to the airway.
We also evaluated whether bacillary burden and
culture conversion were associated with these
radiologic characteristics.
Materials and Methods
Study Design

This was a prospective cohort study conducted in two tertiary hospitals
in Lima, Peru. The detailed study protocol has been published
previously.20 Study participants were at least 18 years old, and their
pulmonary TB diagnosis and drug sensitivity were assessed by means
of microscopic observation drug susceptibility (MODS) broth culture
assay.20-26 In this report, we restricted analyses to participants who
had a strain that was susceptible to isoniazid and rifampicin and
who did not have HIV (Fig 1) because immune status and drug-
resistant strains affect radiologic manifestation.27,28

The Cayetano Cough Monitor (CayeCoM) was used to record
participants’ data daily during the first 14 days of treatment and at
days 21, 30, and 60. Recordings started at 9:00 AM.20 A cough
episode included all independent cough events that occurred without
a 2-second pause, no cough was a cough frequency # 0.7 cough
events per hour, and cough cessation was two consecutive recordings
with no cough.5 Sputum was obtained on days 0, 3, 7, 14, 21, and 60
of treatment. Bacillary burden was assessed through time to
positivity (TTP) of cultures5,29,30 in all MODS culture-positive
sputum samples, and culture conversion was defined as the first
negative culture with no subsequent positive cultures.5 The study
data for cough frequency and bacillary burden has been
published.5,31 A baseline chest CT scan was obtained within 31 days
of treatment initiation in all participants enrolled in the study who
consented, similar to methods used in a previous TB study in
participants who were drug susceptible and HIV negative.28

Radiologic Imaging

Scans were obtained (Aquilion 64, Toshiba) and analyzed by using a
free Digital Imaging and Communications in Medicine viewer. Our
computer-automated algorithm detected and measured the volume
of the cavitary lesion and its proximity to the airway.

A previous algorithm used in small animals32 has been improved in
performance for human CT scans by using a more accurate lung
segmentation algorithm.33,34 The validation methods of this higher-
resolution algorithm are described in the supplementary methods
section of e-Appendix 1. In the case of multiple cavities, we used the
cumulative volume of all cavities for analyses.

Fuzzy connectedness methods35 were used to segment the airway in
high-resolution CT scans (< 4-mm section thickness). The
proximity of the cavitary lesion to the airway was determined using
Euclidean distance transform.36-38 If multiple cavities were present,
then the cavity closest to the bronchi was used to determine
proximity to the airway. To evaluate other radiologic features, a US
board-certified radiologist (P. C.) evaluated each scan to indicate
presence or absence of consolidation, cavitation, pneumatocele,
atelectasis, fibrosis, bronchiectasis, pericardial effusion, pleural
effusion, lymphadenopathy, miliary spread, and pneumothorax.

Statistical Analysis
Data analysis was performed using software (Stata/SE 14.0, Stata
Corp). P values # .05 were considered statistically significant, and
data are shown following recommended numeric presentation.
Percentages presented as integers, mean difference (MD) is shown to
one decimal place, rate ratio (RR) and hazard ratio (HR) are shown
based on the rule of four.39,40
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Adults (over 18 years old) with confirmed diagnosis of
pulmonary tuberculosis were evaluated for eligibility
and with a chest CT scan with no contrast (n = 64)

Non-contrasted chest CT scans from 41 participants were included to evaluate if
the presence of a radiological feature, the volume of the cavitary lesion and the
distance from the cavitary lesion to the bronchial tree would affect:
(1) Cough frequency during treatment
(2) Bacillary burden, measured by TTP, during treatment
(3) Time to cough cessation
(4) Time to culture conversion

Excluded from the final analysis:
•  Poor quality CT Image (n = 3)
•  Incomplete CT scans (n = 2)
•  Drug-resistance (n = 9)
•  Drug susceptible HIV-positive (n = 2)
•  Drug susceptible HIV-negative with CT after
    one month of TB treatment (n = 7)

Figure 1 – Flowchart for the Cayetano Cough Monitor CT scanning study. Radiologic features are based on readings from a US-board-certified
radiologist. Cavity volume and distance to the airway are based on results from a computer-automated algorithm. TTP ¼ time to positivity.
Cavitary disease was evaluated based on its volume and proximity to
the airway according to data from the computer-automated
algorithm. We chose 7 mL as the cutoff between a small and a large
cavity and 10 mm as the cutoff between a cavity positioned closer to
and farther from the airway to the closest edge of the cavity (inner
wall). Cutoff analyses showed significance at these values (P < .001
for both) (e-Fig 1). In addition, the presence of bronchiectasis,
atelectasis, pleural effusion, and lymphadenopathy were assessed by
the radiologist. Other features were too skewed to be compared.

We evaluated baseline cavitary lung disease (cavitary volume and
proximity from the cavitary lesion to the airway) with pretreatment
cough frequency (negative binomial model) and pretreatment TTP
(linear regression), adjusting for age and sex, respectively. We also
assessed the association between baseline cavitary lung disease and
longitudinal cough frequency results during treatment by using a
negative binomial model adjusting for age, culture positivity or
negativity, sex, treatment day, and treatment day squared, with a
random intercept for study participant; covariates were chosen based
on previous analyses.5 Baseline cavitary lung disease and
longitudinal TTP during treatment were assessed using a linear
1360 Original Research
regression model adjusting for age, cough rate, sex, treatment day,
and treatment day squared. A Cox proportional hazards model,
unadjusted and adjusted to age and sex, was used to evaluate
baseline cavitary lung disease and its effect on cough cessation and
culture conversion.

In addition, we used the same analyses to evaluate the presence of
baseline atelectasis, bronchiectasis, pleural effusion, and
lymphadenopathy on cough frequency before and during treatment,
TTP, cough cessation, and culture conversion. For all analyses
described, given the small sample size and the exploratory nature of
these analyses, no correction for multiple comparisons was made.
Ethics

This study was conducted in accordance with the Declaration of
Helsinki.41 This study also was conducted with institutional review
board approval by each participating hospital; Universidad Peruana
Cayetano Heredia (SIDISI:57183); Asociación Benefica PRISMA in
Lima, Peru; and Johns Hopkins University in Baltimore, Maryland
(IRB00001676).
Results
There were 64 participants with available CT scans, but
three scans were of poor image quality (recorded as JPEG
format instead of Digital Imaging and Communications
in Medicine), and two were incomplete (not enough
cross-sectional images) and therefore could not be read.
After excluding participants with drug-resistant strains,
HIV-positive status, or CT scanning performed after
1 month of treatment, 41 participants were available for
analysis. The 41 participants in the study group had a total
of 695 recordings, but 37% had to be excluded for
technical reasons (e-Table 1). After exclusion, there were
18 participants with pretreatment cough recordings.
Themedian length of recordings was 21 hours. Sixty-eight
percent of participants were male, with a median age at
enrollment of 30 years (interquartile range, 23-50 years).
CT scans were obtained a median of 13 days after
treatment initiation (interquartile range, 7-21 days).
Demographic and radiologic characteristics of
participants are shown in Table 1.
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TABLE 1 ] Baseline Demographic Characteristics of the Study Group

Characteristic Data

No. of participants 41

Male participants, % (95% CI) 28 (68%, 53%-83%)

Age at study enrollment, median (IQR), y 30 (23-50)

Pretreatment culture positive, No. (%, 95% CI) 38 (93%, 84%-100%)

Pretreatment TTP, median (IQR), d 6 (6-8)

Pretreatment negative auramine smear, No. (%, 95% CI) 13 (32%, 17%-47%)

Pretreatment paucibacillary auramine smear,a No. (%, 95% CI) 2 (5%, 0%-12%)

Pretreatment auramine smear,b No. (%, 95% CI) 9 (22%, 9%-35%)

Pretreatment auramine smear,c No. (%, 95% CI) 6 (15%, 3%-26%)

Pretreatment auramine smear,d No. (%, 95% CI) 11 (27%, 13%-41%)

Participants who were drug susceptible No. (%, 95% CI) 41 (100%, 100%-100%)

Lung volume,e median (IQR), mL 4,700 (4,000-6,000)

No cavity,e No. (%, 95% CI) 3 (7%, 0%-16%)

Cavity in right lung only,e No. (%, 95% CI) 16 (39%, 23%-55%)

Cavity in left lung only,e No. (%, 95% CI) 16 (39%, 23%-55%)

Cavity in both lungs,e No. (%, 95% CI) 6 (15%, 3%-26%)

Cavity volume,e median (IQR), mL 4 (1-13)

Distance to airway,e median (IQR), mm 7 (2-16)

IQR ¼ interquartile range; TTP ¼ time to positivity of microscopic observation drug susceptibility culture.
a1 to 19 acid-fast bacilli per 40 fields at �400 magnification.
b20 to 199 acid-fast bacilli per 40 fields at �400 magnification.
c5 to 50 acid-fast bacilli per field at �400 magnification.
d> 50 acid-fast bacilli per field at �400 magnification.
ePresence, location, and volume of a cavitary lesion are based on computer-automated algorithm results of CT scans, which estimated volumes by using the
voxel size. Distance from airway to cavitary lesion was calculated only for participants with a CT scan obtained with a section thickness of 4 mm at most on
the basis of the computer-automated algorithm results of CT scans, which estimated distances on the basis of Euclidean distance transform.
According to the radiologist, the most common findings
were cavitary lesions (98%), consolidations (93%),
bronchiectasis (68%), atelectasis (29%), lymphadenopathy
(20%), and pleural effusion (17%). Only three participants
had pneumatocele or pericardial effusion reported, only
one participant had fibrosis reported, and miliary spread
and pneumothorax were not reported.

CT scans with adequate quality were used (n ¼ 41)
(Fig 1). In a sensitivity-specificity analysis of cavitation
detection, the computer-automated algorithm had a
sensitivity of 95% and a specificity of 100% (e-Table 2).
The validation of the higher-resolution computer-
automated algorithm is shown in the supplementary
results (e-Appendix 1, e-Fig 2).

Cough Frequency Associations

Baseline cavitary volume and proximity to the airway
were not associated with pretreatment cough frequency
(e-Tables 3-5). However, results of our multivariable
analyses showed that cough frequency during treatment
in participants with larger cavities was nearly double
that of participants with smaller cavities RR, 1.98;
chestjournal.org
95% CI, 1.17-3.35; P ¼ .01) (Table 2). Similarly,
participants with cavity lesions located farther from the
airway had significantly less cough frequency during
treatment than did patients with closer proximities (RR,
0.41; 95% CI, 0.248-0.68; P ¼ .001) (Table 3). When we
analyzed both cavity volume and distance to the airway,
combined, we found that only distance to the airway was
significant during treatment (RR, 0.376; 95% CI, 0.196-
0.72; P ¼ .003) (Table 4). Older age had a strong trend
for more cough frequency during treatment in our
models (Tables 2-4).

There was a nonsignificant trend for association between
atelectasis and higher pretreatment cough frequency (RR,
2.71; 95% CI, 0.91-8.1; P ¼ .07). Atelectasis (RR, 1.89;
95%CI, 1.17-3.08; P¼ .01) and pleural effusion (RR, 1.99;
95% CI, 1.06-3.73; P ¼ .03) were associated with higher
cough frequency during treatment (e-Table 6).

Bacillary Burden Associations

Pretreatment TTP with faster-growing cultures, denoting
higher bacillary burden, was associated with larger
cavity volumes, in a nonsignificant trend (MD, �1.3;
1361
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TABLE 2 ] Cavity Volume as Risk Factor for Cough Frequency During Treatment

Risk Factor for Cough Frequency

Partially Adjusted Model (N ¼ 41, Obs ¼ 428) Fully Adjusted Model (N ¼ 41, Obs ¼ 188)

RR P Value 95% CI RR P Value 95% CI

Treatment day 0.90 < .001 0.88-0.93 0.95 < .001 0.92-0.98

Treatment day squared 1.00 < .001 1.00-1.00 1.00 < .001 1.00-1.00

MODS culture positive . . . 1.55 .08 0.94-2.54

Small vs large cavity (categorical)

Small cavity (# 7 mL) . . . . . .

Large cavity (> 7 mL) 1.90 < .001 1.35-2.69 1.98 .01 1.17-3.35

Sex, female . . . 1.31 .3 0.78-2.19

Age per 10 years, y . . . 1.23 .008 1.05-1.42

Cough frequency was used as an outcome in a negative binomial regression to test for risk factors that would increase cough frequency during treatment.
In the partially adjusted model, we adjusted for treatment day and treatment day squared. In the fully adjusted model, we adjusted for treatment day,
treatment day squared, MODS culture positivity, age, and sex. The volume of the cavity in milliliters was calculated through a computer-automated al-
gorithm that analyzed CT scans on the basis of the voxel size of the cavitary lesion. Participants with no cavities were included in this analysis as having 0-
mL volume. MODS ¼ microscopic observation drug susceptibility; Obs ¼ observations; RR ¼ rate ratio.
95% CI,�3.0 to 0.4; P¼ .1) (e-Table 7), but there was no
clear trend with proximity to the airway (e-Table 8).
However, when analyzing both, combined, farther
distance to the airway showed a nonsignificant trend with
slower growing cultures, denoting lower bacillary burden
(MD, 1.6; 95% CI,�0.6 to 3.9; P¼ .1) (e-Table 9). During
treatment, we noted an association between larger cavity
volumes and faster culture growth, higher bacillary
burden, in sputum (MD,�2.4; 95% CI,�4.6 to�0.3; P¼
.03). Farther distance also was associated with longer time
for culture growth, lower bacillary burden, during
treatment (MD, 3.3; 95% CI, 1.4-5.2; P ¼ .001). When
analyzing both volume and distance, combined, only
distance to the airway remained significant during
treatment (MD, 2.8; 95% CI, 1.0-4.5; P ¼ .002). Other
TABLE 3 ] Distance to Airway as a Risk Factor for Cough F

Risk Factor for Cough Frequency

Partially Adjusted Model (N ¼
RR P Value

Treatment day 0.91 < .001

Treatment day squared 1.00 < .001

MODS culture positive . .

Distance to airway (categorical)

Closer distance (# 10 mm) . .

Farther distance (> 10 mm) 0.331 < .001

Sex, female . .

Age per 10 years, y . .

Cough frequency was used as an outcome in a negative binomial regression to t
In the partially adjusted model, we adjusted for treatment day and treatment
treatment day squared, MODS culture positivity, age, and sex. Distance to t
automated algorithm that analyzed CT scans with high resolution (< 4-mm
Table 2 legend for expansion of abbreviations.
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radiologic features were not associated with bacillary
burden before or during treatment.

Cough Cessation Assessment

Cough cessation tended to be three times faster among
participants with smaller cavities than among those with
larger cavities, but this finding was not statistically
significant (adjusted HR, 2.89; 95% CI, 0.95-8.8; P ¼
.06). The probabilities of cough cessation by day 60,
were 69% for small cavities and 31% for large cavities
(Fig 2). Furthermore, the hazard for cough cessation
was significantly three times higher among participants
with cavities located > 10 mm from the airway than
among those with cavities located # 10 mm from the
airway (adjusted HR, 3.61; 95% CI, 1.26-10.4; P ¼ .02).
requency During Treatment

33, Obs ¼ 353) Fully Adjusted Model (N ¼ 33, Obs ¼ 154)

95% CI RR P Value 95% CI

0.89-0.93 0.95 .001 0.92-0.98

1.00-1.00 1.00 .003 1.00-1.00

. 1.47 .1 0.88-2.48

. . . .

0.236-0.47 0.41 .001 0.248-0.68

. 0.92 .8 0.55-1.57

. 1.20 .06 1.00-1.46

est for risk factors that would increase cough frequency during treatment.
day squared. In the fully adjusted model, we adjusted for treatment day,
he airway from the cavitary lesion was calculated through a computer-

section thickness) on the basis of Euclidean distance transform. See
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TABLE 4 ] Combined Risk Factors for Cough Frequency During Treatment

Risk Factor for Cough Frequency

Partially Adjusted Model (N ¼ 33, Obs ¼ 353) Fully Adjusted Model (N ¼ 33, Obs ¼ 154)

RR P Value 95% CI RR P Value 95% CI

Treatment day 0.91 < .001 0.89-0.93 0.95 < .001 0.91-0.98

Treatment day squared 1.00 < .001 1.00-1.00 1.00 .003 1.00-1.00

MODS culture positive . . . 1.47 .1 0.88-2.46

Small vs large cavity (categorical)

Small cavity (# 7 mL) Ref . . Ref . .

Large cavity (> 7 mL) 1.03 .9 0.68-1.55 0.86 .7 0.42-1.76

Distance to airway (categorical)

Closer distance (# 10 mm) Ref . . Ref . .

Farther distance (> 10 mm) 0.336 < .001 0.227-0.50 0.376 .003 0.196-0.72

Sex, female . . . 0.87 .6 0.49-1.56

Age per 10 years, y . . . 1.20 .06 0.99-1.45

Cough frequency was used as an outcome in a negative binomial regression to test for risk factors that would increase cough frequency during treatment.
In the partially adjusted model, we adjusted for treatment day and treatment day squared. In the fully adjusted model, we adjusted for treatment day,
treatment day squared, MODS culture positivity, age, and sex. The volume of the cavity in milliliters was calculated through a computer-automated
algorithm that analyzed CT scans on the basis of the voxel size of the cavitary lesion. Participants with no cavities were included in this analysis as
having 0-mL volume. Distance to the airway from the cavitary lesion was calculated through a computer-automated algorithm that analyzed CT scans with
high resolution (< 4-mm section thickness) on the basis of Euclidean distance transform. Ref ¼ reference. See Table 2 legend for expansion of other
abbreviations.
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Figure 2 – Kaplan-Meier curves for cough cessation and culture conversion by cavity volume size in the study group. Survival curves for cough cessation
and microscopic observation drug susceptibility (MODS) culture conversion. Cough cessation represents the time to a cough frequency of # 0.7 cough
per hour (considered no cough) for two consecutive recordings. A small cavity is # 7 mL, and a large cavity is > 7 mL on the basis of the results from a
computer-automated algorithm. By day 14, the unadjusted probability of cough cessation for small cavities was 58% (95% CI, 40%-77%; adjusted,
97%), whereas for larger cavities this probability was 31% (95% CI, 13%-63%; adjusted, 4%); by day 60, these probabilities were 69% (95% CI, 52%-
85%; adjusted, 99%) and 31% (95% CI, 13%-63%; adjusted, 4%), respectively. MODS culture conversion represents time to the first negative culture
with no subsequent positive culture. By day 14, the unadjusted probability of culture conversion for small cavities was 37% (95% CI, 22%-58%;
adjusted, 32%), whereas for larger cavities this probability was 14% (95% CI, 4%-46%; adjusted, 6%); by day 60, these probabilities were 100% (95% CI,
100%-100%; adjusted, 100%) and 73% (95% CI, 47%-93%; adjusted, 82%), respectively.
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By day 60, the probabilities for cough cessation were
37% for closer distances and 75% for farther distances
(Fig 3). The presence of other radiologic features was
not associated with cough cessation.
Culture Conversion Assessment

Culture conversion hazard tended to be two times
higher among patients with smaller cavities than
among those with larger cavities, but this finding was
not statistically significant (adjusted HR, 2.07; 95% CI,
0.90-4.7; P ¼ .09). By day 60, the probabilities of
culture conversion are 100% for small cavities and
73% for large cavities (Fig 2). Similarly, those with
lesions located farther from the airway tended to have
a higher culture conversion hazard but this was not
statistically significant (adjusted HR, 2.00; 95% CI,
0.95-4.2; P ¼ .07). Culture conversion probabilities, by
day 60, were 83% for closer distances and 100% for
farther distances (Fig 3). The presence of other
radiologic features was not associated with culture
conversion.
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Figure 3 – Kaplan-Meier curves for cough cessation and culture conversion
represents the time to a cough frequency of # 0.7 cough per hour (considered
and a farther distance is > 10 mm on the basis of the results from a compute
closer distances was 32% (95% CI, 16%-57%; adjusted, 11%), whereas for farth
by day 60, these probabilities were 37% (95% CI, 20%-63%; adjusted, 13.1%)
conversion represents time to the first negative culture with no subsequent po
distances was 15% (95% CI, 5%-40%; adjusted, 2%), whereas for farther dista
60, these probabilities were 83% (95% CI, 62%-96%; adjusted, 47%) and 100%
for expansion of abbreviation.
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Discussion
Despite the importance of cough in TB transmission,
there is a lack of research on this topic,2,7 and a recent
clinical guideline demonstrated that cough duration and
cavitary lung disease have not been studied.6 An increase
in cough frequency, as well as delayed cough cessation,
heightens the theoretical chances for that patient to
expel TB aerosols into the air,42,43 increasing the risk of
transmission.44,45 Our study demonstrated that higher
cough frequency during treatment, as well as delayed
time to cough cessation, are associated with larger
cavitary volume, especially cavities closer to the airway.

Patients suspected of having pulmonary TB possibly
could be risk stratified for transmission and prognosis
within 24 hours through use of the CayeCoM and chest
CT scan by using a diagnostic algorithm, based on an
underlying mathematical framework,46 in a much
shorter time frame compared with that for culture
(median culture of MODS is 1 week).47 This risk
stratification is particularly important in TB, for which
transmission is heterogeneous,9-19 especially in certain
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by distance from cavity to airway in the study group. Cough cessation
no cough) for two consecutive recordings. A closer distance is # 10 mm,
r-automated algorithm. By day 14, the probability of cough cessation for
er distances this probability was 65% (95% CI, 45%-84%; adjusted, 94%);
and 75% (95% CI, 55%-91%; adjusted, 98%), respectively. MODS culture
sitive culture. By day 14, the probability of culture conversion for closer
nces this probability was 43% (95% CI, 25%-66%; adjusted, 42%); by day
(95% CI, 100%-100%; adjusted, 100%), respectively. See Figure 2 legend

[ 1 5 3 # 6 CHES T J U N E 2 0 1 8 ]



environments.48 A diagnostic algorithm could determine
quickly the most likely contagious patients, as well as
identify potential patients who might not respond well
to treatment given their increased disease burden.46

However, the most important factor to diminish
transmission is effective treatment,5,49,50 and other
factors (cough strength, sputum viscosity, cough
hygiene, social interaction) also would need to be
evaluated for this algorithm to build on current scores.51

We observed that a larger cavity volume and a closer
proximity to the airway was associated with higher
cough frequency during treatment, higher bacillary
burden before and during treatment, delayed cough
cessation, and culture conversion. Previous studies
support the association between larger cavitary volume
and higher bacillary burden before treatment,52 as well
as a relationship between closer proximity to the airway
and higher bacillary burden before treatment.53 When
evaluating both volume and proximity, combined, we
found that of these two, proximity to the airway seems
to play a larger role for both cough frequency during
treatment and bacillary burden before and during
treatment. The closer the cavity is to the airway, the
more inflammation causes increased cough frequency
during treatment, and the better oxygen access is
provide an optimum microenvironment for
Mycobacterium tuberculosis growth.54,55 Previous
studies show that M tuberculosis grows better within the
macrophages of the luminal surface of the cavitary
lesion because of better oxygen access, coupled with a
lack of T lymphocytes, which diminishes the
interactions between T cells and macrophages that clear
mycobacteria.54,55

Patients with more severe infection might have
bronchial obstruction that can lead to a lung collapse
(atelectasis), which in turn can act as a one-way valve
that ultimately increases cough frequency.56,57 However,
pleural effusion is a hypersensitivity reaction that could
cause a systemic response resulting in cough,
independent of bacillary burden.58-60 Our study also
supports the suggested relationship between radiologic
extent of the disease, based on CXR,61 and cough
frequency.62
chestjournal.org
A limitation is that 18 participants had pretreatment
recordings, and nearly one-third of recordings had to be
excluded due to technical limitations. We did not
identify bias when comparing participants with at least
10 excluded recordings with those with fewer than 10
excluded recordings. Chest radiography (CXR) is usually
the imaging modality of choice in TB control programs,
but CT scans are more sensitive for detecting pleural and
parenchymal lesions.63-68 Nearly all participants had
cavities, so we could not evaluate or compare the cough
frequency between patients with a cavity and patients
without a cavity. The presence of a cavity has not been
associated with cough-generated aerosols.49 Given that
CXR are obtained in a two-dimensional fashion, it
would not have enabled us to evaluate three-
dimensional volume and proximity to the airway. A
strength of our investigation is that our cough
measurements with CayeCoM were validated
previously,69-71 as was the algorithm used to evaluate
cavity volume and proximity to the airway.32,38 Our
sample size was similar to those in other CT scanning
studies in TB, and the small delay in CT scanning after
starting treatment is unlikely to affect results because
major changes in cavity structure are uncommon in the
first month of treatment.28,52,53,64

Conclusions
To our knowledge, this is the first report regarding an
association between cough frequency during treatment
and cavitary lung disease. Our study demonstrates an
association between cough frequency during treatment,
and its duration, with cavitary volume and cavitary
proximity to the airway. Younger patients, with small
cavitary lesions, especially lesions farther from the
airway, may present with minimal cough and sputum
samples with low bacillary burden (ie, be smear
negative). These patients likely would have cough
symptoms later than those with cavities close to the
bronchi and, if they are not cultured, may be missed by
smear alone. Similarly, if a patient is has a large cavity
diagnosed, especially close to the airway, this patient has
an increased risk for coughing more during treatment
and should be monitored closely for the possibility of
expelling more M tuberculosis to the environment.
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