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Abstract: Mortality in neonates with Gram-negative bloodstream infections has remained unac-
ceptably high. Very few data are available on the impact of resistance profiles, virulence factors,
appropriateness of empirical treatment and clinical characteristics on patients’ mortality. A survival
analysis to investigate 28-day mortality probability and predictors was performed including (I)
infants <90 days (II) with an available Enterobacterales blood isolate with (III) clinical, treatment
and 28-day outcome data. Eighty-seven patients were included. Overall, 299 virulence genes were
identified among all the pathogens. Escherichia coli had significantly more virulence genes identified
compared with other species. A strong positive correlation between the number of resistance and
virulence genes carried by each isolate was found. The cumulative probability of death obtained
by the Kaplan-Meier survival analysis was 19.5%. In the descriptive analysis, early age at onset,
gestational age at onset, culture positive for E. coli and number of classes of virulence genes carried
by each isolate were significantly associated with mortality. By Cox multivariate regression, none
of the investigated variables was significant. This pilot study has demonstrated the feasibility of
investigating the association between neonatal sepsis mortality and the causative Enterobacterales
isolates virulome. This relationship needs further exploration in larger studies, ideally including host
immunopathological response, in order to develop a tailor-made therapeutic strategy.

Keywords: infant; newborn; bacteremia; Gram-negative bacteria; drug resistance; microbial; viru-
lence factors; mortality

1. Introduction

Mortality in neonates with Gram-negative bloodstream infections (GN-BSIs) has
remained unacceptably high. Appropriate empirical treatment is considered crucially
important in reducing mortality. However, despite the improvement in neonatal care, the
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fatality rate in babies with GN-BSIs remains around 15–20%, also during the emergence of
antimicrobial resistance (AMR) [1–6].

Very few data are available on the impact of different treatment regimens on clinical
outcome in neonates with GN-BSIs. Previous studies conducted in both adults and children
showed conflicting results on the impact of resistance profiles, appropriateness of empirical
treatment and clinical characteristics on patients’ mortality [7–15]. In the last decade,
the implementation of modern bioinformatics to assist next-generation sequencing data
analysis greatly improved the knowledge on the genetic characterization of pathogenic
strains that may serve as target for new therapies [16]. There has been a growing body of
evidence about the role of virulence factors (VFs) in the pathogenesis of invasive infections.
Enterobacterales employ many strategies to enhance invasiveness, overcome host defenses
and cause infections. Different strains can use alternative VFs with similar functions during
the infection process, with this plasticity leading to unique combinations of such factors [17].
Some VFs are disease-specific whereas others seem to play different roles in different types
of infection [18]. This plasticity enables pathogenic strains to colonize and infect different
tissues and hosts. Some major classes of VFs, such as capsule, siderophores and fimbriae,
have been characterized well [18]. However, several other factors were recently identified
and have yet to be defined to fully understand their mechanisms of action and clinical
significance (summarized in Table 1). To achieve this goal, a genomic approach can be
used to identify genes encoding specific virulence determinants. In adults, several genes
present in the great majority of bacteremic strains and involved in virulence have been
identified [19–21]. These are presumably essential for the infection process. However, the
specific VFs that are relevant in causing neonatal GN-BSIs are not well defined yet, partly
due the variability among the few studies available so far [2]. These have mostly been
conducted on neonates and children with Escherichia coli bacteremia, with virtually no data
available on other Enterobacterales [22–25]. Also, in the recent years, several data have
been published investigating a potential role of the bacterial virulome, defined as the set
of genes contributing to the bacterial virulence, in determining the outcome of patients
with both Gram-positive and GN-BSIs. Again, these studies demonstrate a mixed picture
reporting a significant correlation between virulence factors and mortality in both children
and adults [2,19,26–29].

Table 1. Main virulence factors in Enterobacterales.

Category Sub-Category Function Genes Pathogens

Adherence

Anti-aggregation
protein-dispersin

Bound to the outer membrane,
assisting dispersion across the

surface by overcoming electrostatic
attraction between fimbriae and

bacterial surface

aap Escherichia coli

Adhesins
Cell-surface components that allow
bacteria to attach to host cells or to

surfaces
afa, dra, fde Escherichia coli

Fimbriae
Major adhesive structures in biofilm

formation and binding to abiotic
surfaces

agg, bcf, csg, daa, fim,
foc, lpf, mrk, paa, pap,
sfa, yag.ecp, ykg.ecp

Escherichia coli
Enterobacter spp.

Klebsiella spp.

Intimin Outer membrane protein needed for
intimate adherence eae, tir Escherichia coli

Zinc metalloprotease Contributes to intimate adherence to
host cells stc Escherichia coli
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Table 1. Cont.

Category Sub-Category Function Genes Pathogens

Bacterial metabolism

Allantoin Metabolism Enzymes involved in degradation of
allantoin all A-D

Klebsiella spp.
Escherichia coli

Enterobacter spp.

Transcription factors DNA-binding transcriptional
activator/repressor all R-S

Klebsiella spp.
Escherichia coli

Enterobacter spp.

Bacterial survival
promoters

Methionine aminopeptidase map Escherichia coli

Magnesium transporter mgt
Klebsiella spp.
Escherichia coli

Enterobacter spp.

Toll-like receptor and
MyD88-specific signalling inhibitor tcp Escherichia coli

Capsule

Capsule

Extracellular polysaccharide matrix
that envelops the bacteria, prevents

phagocytosis, hinders the
bactericidal action of antimicrobial

peptides, blocks complement
components

cps, gal, glf, gnd, gtr,
kfo, kps, man, rcs, rmp,

ugd, wca, wza, wzi,
wzm, wzt

Klebsiella spp.
Escherichia coli

Enterobacter spp.

Lipopolysaccharide

Component of the outer leaflet of the
cell membrane of all Gram-negative

bacteria (GNB) which protects
against humoral defences

lpx, waa, wbb All GNB

Cell invasion

Arylsulfatase Penetration of the blood-brain
barrier asl Escherichia coli

Outer membrane porin A

Adherence to epithelial cells,
translocation into epithelial cells

nucleus, induction of epithelial cell
death, biofilm formation, binding to
factor H to allow bacteria to develop

serum-resistance

ompA
Escherichia coli

Enterobacter spp.
Klebsiella spp.

Invasion protein A Cell invasion into the host tissues ibeA Escherichia coli

Iron metabolism

Siderophores-Hemin
uptake

Enable using of Fe from
haemoglobin in the host system chu Escherichia coli

Enterobacter spp.

Siderophores-
Enterobactin

Mediation of iron acquisition,
obstacole macrophages antimicrobial

responses
ent, fep, fes All GNB

Siderophores-
Yersiniabactin

Can solubilise iron bound to host
binding proteins and transport it

back to the bacteria
fyu, irp, ybt Escherichia coli

Klebsiella spp.

Siderophores-Salmochelin Siderophore receptor, use of Fe ions
obtained from the body host iro

Escherichia coli
Enterobacter spp.

Klebsiella spp.

Siderophores-Aerobactin Acquisition of Fe2+/3+ in the host
system

iuc, iut Escherichia coli
Klebsiella pneumoniae

Heme/haemoglobin
transport protein and

receptor
Cell survival shu Escherichia coli

Enterobacter spp.

Motility and
chemotaxis

Chemotaxis Bacterial movement in response to a
chemical stimulus che, mot Escherichia coli

Enterobacter spp.

Flagella Motility organelle, function as
adhesins flg, flh, fli Escherichia coli

Enterobacter spp.

Pumps Pumps
Efflux pump implicated in both

virulence and resistance to
antibiotics

acr
Escherichia coli

Enterobacter spp.
Klebsiella spp.
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Table 1. Cont.

Category Sub-Category Function Genes Pathogens

Secretion system
factor

Type I secretion system
protein (T1SS)

Enables pathogens to inject effector
proteins into host cells hly Escherichia coli

Type II secretion system
protein (T2SS)

Enables pathogens to inject effector
proteins into host cells exe, gsp Escherichia coli

Klebsiella spp.

Type III secretion system
(T3SS)

Enables pathogens to inject effector
proteins into host cells ces, esc Escherichia coli

Type VI secretion system
(T6SS)

Enables pathogens to inject effector
proteins into host cells

clpV.tssH, dotU.tssL,
hcp, hsiB1.vip, icmF.tss

Escherichia coli
Enterobacter spp.

Klebsiella spp.

Toxins

Colibactin

Genotoxin causing genomic
instability in eukaryotic cells by

induction of double-strand breaks in
DNA

clb Escherichia coli
Klebsiella pneumoniae

T3SS effector Cytoskeletal rearrangements esp Escherichia coli

Hemolysin A Creating of pores in membranes of
host cells (cell lysis) hly Escherichia coli

Clarifying the role of the main determinants leading to adverse outcomes could
help to define targeted interventions to decrease mortality. With this study, we aimed to
investigate potential associations between patient characteristics, pathogen characteristics
and antibiotic treatment regimen on the clinical outcome of neonates/infants affected by
culture-proven GN-BSIs.

2. Results
2.1. Demographic and Clinical Data

Overall, 87 infants from six European countries (the United Kingdom: 49, Estonia:
21, Greece: 7, Italy: 7, Lithuania: 2, Spain: 1) between 2010–2015 fulfilled our inclusion
criteria and were included in the study. Forty patients were retrieved from the neonatal
infection surveillance network (NeonIN) study [30], 38 from NeoMero [31], and 9 from the
Collaborations for Leadership in Applied Health Research and Care (CLAHRC) study [32].
Patients, pathogens and treatment characteristics of the included episodes are summarised
in Table 2. At the BSI onset, the median age of the selected neonates was 15.2 days
(interquartile range (IQR) 6.7–31), with a median gestational age (GA) of 33 weeks (IQR
28–37). Forty-nine out of 87 babies (56%) had a central line in situ at the episode onset. A
total of 37 different antibiotic regimens have been reported among the 87 patients in the
first 48 h of treatment.

Table 2. Demographic and clinical characteristics of included patients.

Variable Overall, n = 87 (%)

Gender

Male 43 (49)

Female 44 (51)

Age at the onset (days, median (IQR)) 15.2 (6.7–31)

Gestational age category (weeks of GA)

<28 0/7 37 (42)

28 0/7–31 6/7 21 (24)

32 0/7–33 6/7 8 (9)

34 0/7–36 6/7 8 (9)
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Table 2. Cont.

Variable Overall, n = 87 (%)

37 0/7–38 6/7 7 (8)

39 0/7–40 6/7 6 (7)

Birth weight category (grams)

>=2500 20 (23)

1500–<2500 15 (17)

1000–<1500 15 (17)

<1000 37 (42)

Small for Gestational Age (SGA)

Yes 11 (13)

No 76 (87)

Underlying conditions

Yes 51 (59)

No 36 (41)

Gestational age (weeks) at onset, median (IQR) 33 (28–37)

Isolated organism

Escherichia coli 36 (41)

Enterobacter cloacae 18 (21)

Klebsiella pneumoniae 11 (13)

Klebsiella oxytoca 7 (8)

Serratia marcescens 7 (8)

Enterobacter asburiae 3 (3)

Enterobacter aerogenes 2 (2)

Serratia liquefaciens 1 (1)

Enterobacter kobei 1 (1)

Proteus mirabilis 1 (1)

First 48-h antibiotic treatment *

Aminoglycosides anti-bacterials 25 (29)

Beta-lactam anti-bacterials, penicillins 26 (30)

Other anti-bacterials 9 (10)

Other beta-lactam anti-bacterials 23 (26)

Quinolone anti-bacterials 4 (5)

First 48-h treatment concordance with the anti-biogram

Concordant 81 (93)

Discordant 6 (7)

Multidrug resistant **

No 61 (70)

Yes 26 (30)

Number of classes of resistance genes per isolate, median (IQR) 5 (4–5)

Number of classes of virulence genes per isolate, median (IQR) 7 (7–9)
* Coded according to the WHO ATC/DDD (Anatomical Therapeutic Chemical/Defined Daily Dose) Index 2020
at the 4th level. ** According to Magiorakos, A.P., Clin. Microbiol. Infect. 2012 Mar, 18(3), 268–281.
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2.2. Microbiological Data

The species IDs identified on matrix-assisted laser desorption/ionization time-of-flight
(MALDI-TOF) mass spectrometry were all confirmed by sequencing. The isolate-specific
accession numbers are indicated in Supplementary Table S1. The most frequently isolated
pathogen was E. coli followed by Enterobacter spp. and Klebsiella spp. (Table 2). The percent-
age of multidrug-resistance (MDR) isolates was 30% (26/87). Based on interpretation of
the in vitro susceptibility profile, 16/87 (18%) were suspected of producing an extended-
spectrum beta lactamase (ESBL) enzyme, and only one isolate (Klebsiella pneumoniae) was
resistant to carbapenems. Susceptibilities of single species to the investigated antibiotics
are presented in Table 3.

Table 3. Percentages of susceptibility for the isolated pathogens.

Pathogen (n) AMK * AMP AMC CRO CAZ ATM CIP GEN MEM TZP SXT

Escherichia coli (36) 97 42 67 94 97 94 89 86 100 92 64

Enterobacter cloacae (18) 94 0 0 56 56 83 100 67 100 94 89

Klebsiella pneumoniae (11) 55 0 46 46 55 64 91 64 91 64 64

Klebsiella oxytoca (7) 100 0 71 86 86 100 100 71 100 100 86

Serratia marcescens (7) 100 0 0 86 100 86 86 100 100 86 100

Enterobacter asburiae (3) 100 0 0 100 100 100 100 33 100 100 100

Enterobacter aerogenes (2) 50 0 0 50 50 50 100 50 100 50 100

Serratia liquefaciens (1) 100 100 100 100 100 100 100 100 100 100 100

Enterobacter kobei (1) 100 100 0 100 100 100 100 100 100 100 100

Proteus mirabilis (1) 100 0 100 100 100 100 100 0 100 100 0

AMK: amikacin, AMP: ampicillin, AMC: amoxicillin-clavulanate, CRO: ceftriaxone, CAZ: ceftazidime, ATM: aztreonam, CIP: ciprofloxacin,
GEN: gentamicin, MEM: meropenem, TZP: piperacillin-tazobactam, SXT: trimethoprim-sulphametoxazole * Proportion of isolates resistant
to the antibiotic.

A total of 50 different sequence types (STs) were found, with ST131 and ST90 as the
most frequent in E. coli and Enterobacter cloacae, respectively. The median number of classes
of resistance genes carried per isolate was 5 (IQR 4–5) whereas the median number of
classes of virulence genes was 7 (IQR 7–9). Twenty-five isolates harbored blaTEM-type
genes, two non-Klebsiella spp. strains the blaSHV-type determinant, and two E. coli strains
the blaCTX-M-type genes. One K. pneumoniae ST17 carried blaVIM-12 gene, and two
Enterobacter asburiae (ST484) the mcr-9 determinant.

Overall, the genome sequencing identified 299 different virulence genes among all the
pathogens. There was a strong positive correlation between the number of resistance and
virulence genes carried by each isolate (Rho = 0.79; p = 0.001) (Figure 1).

E. coli strains showed the highest mean number of virulence genes (105 vs. <65
in the other species overall), mainly those involved in fimbriae production (p < 0.0001)
(Table 4). The genes that were more frequently carried by the isolates are summarized in
Table 5. Among the most represented strains (E. coli, E. cloacae, K. pneumoniae, K. oxytoca)
the following virulence genes were carried by all the isolates: gal, gnd, rcs (capsule); ompA
(cell invasion); ent, fep (iron metabolism); acr (pumps). Some genes were shown to be strain-
specific. Among them, the adhesion mrk gene cluster was sequenced in all Klebsiella spp.
isolates as well as the secretion system’s exe and impA.tss genes. Conversely, genes encoding
for motility and chemotaxis proteins (che, flg and fli) were only carried by E. coli and
Enterobacter spp. The clb, esp and hly genes encoding for toxin proteins were sequenced only
in E. coli strains. One hypervirulent K. pneumoniae with a hypermucoviscous phenotype
harboring the rmpA and wca genes was found [33].
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Table 4. Median number of classes of virulence genes carried per bacterial strain.

Pathogen (n)

Virulence Factors Category (Median Number of Genes Carried)

Adherence Bacterial
Metabolism Capsule Cell

Invasion
Iron

Metabolism
Motility and
Chemotaxis Pumps

Secretion
System
Factor

Toxins

Escherichia coli (36) 31 2 5.5 2 37 8 2 13 6.5

Enterobacter cloacae
(18) 5 0 7 1 16 7 2 11 0

Klebsiella
pneumoniae (11) 24 0 14 1 12 0 2 13 0

Klebsiella oxytoca (7) 15 2 9 1 22 0 2 10 0

Table 5. Number and percentage of the most represented virulence genes.

Virulence Gene
Escherichia coli

(36)
Enterobacter cloacae

(18)
Klebsiella pneumoniae

(11)
Klebsiella oxytoca

(7)

N (%) N (%) N (%) N (%)

Adherence

csg 36 (100) 18 (100) 0 0

fde 36 (100) 0 0 0

fim 36 (100) 0 10 (91) 7 (100)

mrk 0 2 (11) 11 (100) 7 (100)

pap 26 (72) 0 0 0

yag.ecp 36 (100) 0 11 (100) 7 (100)

ykgK.ecp 35 (97) 0 11 (100) 0
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Table 5. Cont.

Virulence Gene
Escherichia coli

(36)
Enterobacter cloacae

(18)
Klebsiella pneumoniae

(11)
Klebsiella oxytoca

(7)

N (%) N (%) N (%) N (%)

Bacterial metabolism

all 36 (100) 0 0 3 (43)

mgt 0 0 0 7 (100)

Capsule

cps 0 0 10 (91) 0

gal 36 (100) 18 (100) 11 (100) 7 (100)

gif 0 0 6 (54) 7 (100)

gnd 36 (100) 18 (100) 11 (100) 7 (100)

kps 33 (92) 0 0 0

man 0 18 (100) 7 (64) 2 (29)

rcs 36 (100) 18 (100) 11 (100) 7 (100)

ugd 2 (6) 18 (100) 11 (100) 7 (100)

Cell invasion

asl 36 (100) 0 0 1 (14)

ompA 36 (100) 18 (100) 11 (100) 7 (100)

Iron metabolism

chu 35 (97) 6 (33) 0 0

ent 36 (100) 18 (100) 11 (100) 7 (100)

fep 36 (100) 18 (100) 11 (100) 7 (100)

fes 36 (100) 0 11 (100) 7 (100)

fyu 35 (97) 0 2 (18) 5 (71)

iro 11 (31) 11 (61) 11 (100) 0

irp 35 (97) 0 2 (18) 5 (71)

iuc 25 (69) 0 1 (9) 0

iut 25 (69) 0 1 (9) 0

Motility and chemotaxis

che 36 (100) 18 (100) 0 0

flg 36 (100) 18 (100) 0 0

fli 36 (100) 18 (100) 0 0

Pumps

acr 36 (100) 18 (100) 11 (100) 7 (100)

Secretion system factor

clpV.tssH 0 13 (72) 11 (100) 3 (43)

dotU.tssL 0 13 (72) 11 (100) 4 (57)

exe 0 0 11 (100) 7 (100)

gsp 35 (97) 0 0 0
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Table 5. Cont.

Virulence Gene
Escherichia coli

(36)
Enterobacter cloacae

(18)
Klebsiella pneumoniae

(11)
Klebsiella oxytoca

(7)

N (%) N (%) N (%) N (%)

hcp 21 (58) 14 (78) 11 (100) 7 (100)

hsiB1.vip 0 18 (100) 0 0

icmF.tss 0 11 (61) 10 (91) 4 (57)

impA.tss 0 0 11 (100) 0

vasE.tssK 0 12 (67) 11 (100) 4 (57)

vip.tss 21 (58) 15 (83) 11 (100) 7 (100)

ybd 0 18 (100) 10 (91) 7 (100)

Toxins

clb 7 (19) 0 1 (9) 0

esp 15 (42) 0 0 0

2.3. Determinants of 28-Day Case-Fatality

The cumulative probability of death obtained by the Kaplan-Meier survival analysis
was 19.5% with the greater percentage of deaths happening in the first week. In the
descriptive analysis, early age at onset (p = 0.002), culture positive for E. coli (p = 0.029),
number of classes of virulence genes carried per isolate (p = 0.022) and GA (weeks) at the
onset (p = 0.003) were significantly associated with mortality (Table 6). By Cox multivariate
regression, none of the investigated variables was significant (Table 7).

Table 6. Descriptive analysis of potential association between variables and mortality.

Variable Alive, n = 69 (%) Died, n = 18 (%) p-Value

Male 31 (45) 12 (67) 0.168

Female 38 (55) 6 (33)

Age at the onset (days, median (IQR)) 19.1 (8.8–35) 7.1 (3.3–9.8) 0.002

Gestational age category (weeks of GA)

<28 0/7 27 (39) 10 (56) 0.323

28 0/7–31 6/7 17 (25) 4 (22) 1.000

32 0/7–33 6/7 7 (10) 1 (6) 1.000

34 0/7–36 6/7 8 (12) 0 (0) 0.197

37 0/7–38 6/7 5 (7) 2 (11) 0.631

39 0/7–40 6/7 5 (7) 1 (6) 1.000

Birth weight category (grams)

>=2500 17 (25) 3 (17) 0.754

1500–<2500 13 (19) 2 (11) 0.727

1000–<1500 13 (19) 2 (11) 0.727

<1000 26 (38) 11 (61) 0.128

Small for Gestational Age (SGA)

Yes 8 (12) 3 (17) 0.690

No 61 (88) 15 (83)
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Table 6. Cont.

Variable Alive, n = 69 (%) Died, n = 18 (%) p-Value

Underlying conditions

Yes 39 (56) 12 (67) 0.610

No 30 (43) 6 (33)

Gestational age (weeks) at onset, median (IQR) 33 (30–38) 27 (25–33) 0.003

Isolated organism

Escherichia coli 24 (35) 12 (67) 0.029

Enterobacter spp. 20 (29) 4 (22) 0.769

Klebsiella spp. 16 (23) 2 (11) 0.342

Serratia spp/Proteus mirabilis 9 (13) 0 (0) 0.194

First 48-h antibiotic treatment *

Aminoglycosides antibacterials 19 (27) 6 (33) 0.848

Beta-lactam antibacterials, penicillins 22 (32) 4 (22) 0.611

Other antibacterials 7 (10) 2 (11) 1.000

Other beta-lactam antibacterials 19 (27) 4 (22) 0.770

Quinolone antibacterials 2 (3) 2 (11) 0.188

First 48-h treatment concordance with the antibiogram

Concordant 64 (93) 17 (94) 1.000

Discordant 5 (7) 1 (6) 1.000

Multidrug resistant

No 47 (68) 14 (78) 1.000

Yes 22 (32) 4 (22) 1.000

Number of classes of resistance genes per isolate, median (IQR) 5 (4–5) 5 (4–5) 0.203

Number of classes of virulence genes per isolate, median (IQR) 7 (7–9) 9 (8–9) 0.022

* coded according to the WHO ATC/DDD Index 2020 at the 4th level.

Table 7. Multivariate regression analysis on the 28-day mortality predictors.

Variable N HR * (L.95–U.95) p-Value

Age at the onset (days) 87 0.97 (0.93–1.01) 0.125

N. classes of virulence genes 87 1.35 (0.92–1.97) 0.128

Gestational Age (weeks) at onset 87 0.91 (0.83–1) 0.056

* Hazard Ratio.

3. Discussion

This study included 87 European neonates and infants younger than 90 days with
GN-BSIs due to Enterobacterales. Overall, 299 virulence genes were identified in these
pathogens. Among the different organisms, E. coli had significantly more virulence genes
identified compared with other species. Gal, gnd, rcs, ompA, ent, fep, and acr virulence
genes were identified from all the pathogens, likely being essential for the infection process.
Conversely, some other genes were shown to be strain-specific. A strong positive correlation
between the number of resistance and virulence genes carried by each isolate was found.
By survival analysis, the 28-day probability of death was 19.5%. In the descriptive analysis,
early age at onset, GA at the onset, culture positive for E. coli and number of classes of
virulence genes carried by each isolate were significantly associated with mortality whereas
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discordant therapy was not related to mortality. By Cox multivariate regression, none of
the investigated variables was significant.

Many studies have been conducted in both adults and neonates trying to define the
main determinants of mortality in patients with GN-BSIs. AMR has been broadly investi-
gated in the adult population, with the majority of studies reporting a significant association
between multiple resistance to antibiotics and patients mortality [7,34–36]. Some large
cohorts have not found a clear correlation between AMR and adverse outcome [8,12,13].
Data from this small study did not confirm a significant impact of resistance profile on
neonatal mortality [5].

In recent years, an increasing number of studies are being conducted trying to inves-
tigate the impact of virulence genes on the outcome of patients with GN-BSIs. Among
them, E. coli was the most frequently investigated pathogen followed by K. pneumoniae.
Independent risk factors associated with 30-day mortality among adult patients with
ESBL-producing E. coli bacteremia included siderophores iroN and iss positivity [21], the
siderophore fyuA gene, and the presence of the afimbrial adhesin afa gene [19,37]. In a large
prospective study investigating the main determinants for adverse outcome in patients
with K. pneumoniae BSIs, the cytotoxicity pks gene cluster carriage by causative strains
was an independent risk factor for 30-day mortality when accompanied by MDR [38].
Lastly, the siderophore-related iutA gene was found to be an independent predictor of the
30-day mortality in K. pneumoniae bacteremia [39]. However, almost all of these studies
were conducted with pre-selected virulence genes searched by polymerase chain reaction
(PCR) rather than sequencing the entire bacterial virulome. This led to a wide hetero-
geneity, with each group analyzing different genes and hampering the comparison of
the results. Very little data have been published on the relationship between bacterial
virulence factors and BSI mortality in children, and almost all in patients with E. coli
bacteremia. In a prospective cohort of 43 septic neonates, the adhesin hek/hra gene was
found to be significantly more frequent in isolates from newborns who died than in isolates
from survivors [2]. On the other hand, in a cohort of children 0–17 years old (median age
2.4 months), none of the 20 virulence factors tested by PCR was found to correlate with
sepsis severity [26]. The Burden of Antibiotic Resistance in Neonates from Developing
Societies (BARNARDS) study was conducted to assess the burden of AMR in neonates in
seven low-middle income countries [6]. In this study, Gram-negative (GN) pathogens from
neonatal sepsis were isolated and characterized through whole genome sequencing (WGS)
for resistance and virulence genes. The number of virulence genes carried by each isolate
through a virulence score was used. The results obtained suggested that yersiniabactin
and/or aerobactin/salmochelin virulence genes may be involved in a more rapid onset
and mortality. However, the inability to follow up all neonates and additional local factors
likely to contribute to patient’s death hampered the authors’ capacity to attribute mortality
singularly to the presence/absence of genomic traits.

Our results showed a strong positive correlation between the number of resistance
and virulence genes carried by each isolate. Many studies have been conducted on either
AMR or virulence. However, the biological effect and connection between these two factors
are of particular importance [40,41]. Indeed, a negative or positive relationship can be
found among them. Enhanced virulence or AMR frequently has been reported to have
a fitness cost on bacteria but their relationship changes according to different bacterial
species, the resistance and virulence genes involved and the host’s immune system [42,43].
Some antibiotics, such as ceftazidime, cefotaxime and quinolones, have been reported to
enhance the increase of the deletion and transposition of DNA regions that are specific for
VFs [42]. By contrast, a positive correlation has been shown between AMR and virulence
with the use of other antibiotics. In particular, uropathogenic strains of E. coli carrying the
blaCTX-M-15 resistance gene also harbored more colV, colE2-E9, colIa-Ib, hlyA, and csgA
genes as well as the blaOXA-2 beta lactamase was correlated with increased expression of
colM, colB, colE, and crl genes [44]. Prophages are another mechanism that has been shown
to be involved in both virulence and resistance diffusion through the spread of toxins to
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other resistant strains [45]. Porins and biofilm also play an important role in the relationship
between virulence and resistance, with the first acting as a channel controlling the entrance
of both antibiotics and VFs into the pathogens (i.e., the OmpC gene) and the second favoring
antimicrobial treatment tolerance and infection persistence at the same time also increasing
the transfer of resistance and virulence genes among the cells [46]. Lastly, an enhancement
in both resistance and virulence characteristics of the pathogens can occur through mobile
genetic elements like plasmids. These self-replicating extra-chromosomal elements are
capable of transferring among different bacteria while carrying virulence and resistance
genes [47]. This mechanism is independent of any antibiotic pressure.

There are several limitations in the study design, due to both confounding factors and
heterogeneity of our sample. Firstly, the study is not powered to demonstrate a significant
correlation between the presence of single resistance/virulence genes and neonates’ clinical
outcome; this required us to analyze resistome and virulome by grouping genes according
to the class. Moreover, we are well aware of the rapid dynamics of bacterial genetics, and the
selection of a single time point isolate can cause bias and affect the results. At the same time,
considering the possible implication of heteroresistance, the selection of certain colonies
in the first place could have potentially missed relevant isolates. We found a significantly
higher number of virulence genes in E. coli isolates compared with other species; this
could be due to an over representation of E. coli genes in the virulence database (VFDB).
Different pathogens can have different impacts on neonates with sepsis, and pooling
data on multiple strains could alter the results. Lastly, neonates and infants represent a
broadly heterogeneous population, being characterized by different gestational ages, birth
weight, underlying conditions, and risk factors. Despite these limitations, this was the first
study to correlate virulence factors of non-E. coli Enterobacterales with mortality in septic
neonates. Although a number of studies have tried to correlate single virulence genes with
Gram-negative sepsis outcome, virtually none of them have investigated the role of the
entire virulome in causing mortality. Considering the huge number of virulence genes
involved and the limited sample size, we presented a potential way to use the entire body of
information gained from the WGS by grouping genes as the number of classes of virulence
genes involved. Having access to a very complete dataset including patient-level treatment,
outcome data, and isolates available for a comprehensive genetic characterization, we
believe that our data provide new and relevant information on the molecular picture of
GN pathogens causing neonatal BSIs.

4. Materials and Methods
4.1. Study Design and Data Source

A case series of neonates with clinical sepsis and microbiologically confirmed GN-
BSIs was constructed from three separate studies: the NeonIN [30], the NeoMero clinical
trial [31], and the CLAHRC [32]. The NeonIN is a multinational network which prospec-
tively collect data on neonatal infections from neonatal units. The detailed data procedures
have been previously described [48]. NeoMero was a European-based randomized con-
trolled trial to compare the efficacy of meropenem with standard of care (ampicillin +
gentamicin or cefotaxime + gentamicin) in the treatment of late onset neonatal sepsis.
CLAHRC is a United Kingdom-based prospective cohort study to collect data for patients
with GN-BSIs in three hospitals in South London which aims to characterize clinical man-
agement of patients with GN-BSIs in all ages and identify potential risk factors associated
with 28-day treatment outcomes.

4.2. Selection Criteria, Available Data and Definitions

Patients with a microbiologically-confirmed diagnosis of GN-BSIs due to Enterobac-
terales were selected from the above studies among European Neonatal Intensive Care
Units between 2010–2015. Inclusion criteria were (I) age between 0–90 days, (II) Enterobac-
terales blood isolate available for the sequencing, (III) patient-level clinical and treatment
data, and (IV) 28-day clinical outcome data.
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Data available for the analysis included demographic, risk factors, clinical character-
istics, antibiotic treatment, susceptibility results, resistome and virulome of the isolated
bacteria, and 28-day treatment outcome.

The date of the blood culture was considered as the day of the sepsis onset. The
MDR of the isolates was defined according to Magiorakos A.-P. et al. as acquired non-
susceptibility to at least one agent in three or more antimicrobial categories [49]. The first
48-h antibiotic treatment was defined as concordant or discordant based on the inclusion
of at least an active drug against the blood isolate. The evaluated outcome was defined as
28-day case-fatality (patient alive/dead).

4.3. Microbiological Methods

Bacterial isolates from blood were cultured from frozen stocks (−80 ◦C) on blood
agar plates. Species were identified by MALDI-TOF mass spectrometry (Bruker, Karlsruhe,
Germany). Antibiotic susceptibility profiles were obtained according to the European
Committee on Antimicrobial Susceptibility Testing (EUCAST) 2019 Clinical Breakpoints
with disk diffusion tests for the following antibiotics: amikacin, ampicillin, amoxicillin-
clavulanate, ceftriaxone, ceftazidime, aztreonam, ciprofloxacin, gentamicin, meropenem,
piperacillin-tazobactam, and trimethoprim-sulphametoxazole. To facilitate the analyses,
isolates that were defined as having increased exposure were classified as non-susceptible.
The isolates included in the study were subjected to WGS using the Illumina MiSeq platform
(Illumina, San Diego, CA, USA), with paired-end runs of 2 × 300 bp, after Nextera XT
library preparation. The obtained reads were assembled using SPAdes [50]. For each
genome, we determined the ST using an in-house script (available upon request) and
the Multilocus sequence typing (MLST) schemes and gene alleles sequences available on
PubMLST (pubmlst.org). The isolates were further characterized at the genomic level with
the identification of resistant and virulence genes using ABRicate (Seemann T, Abricate,
Github https://github.com/tseemann/abricate, accessed on: 11 November 2019) and the
following databases: The Comprehensive Antibiotic Resistance Database (CARD) [51] and
Resfinder [52] for the resistance genes and VFDB [53] for the virulence genes.

4.4. Statistical Analysis

Qualitative variables were summarized by absolute frequencies and percentages,
and quantitative variables by median and IQR. A descriptive analysis was conducted
with the potential association between variables and outcome of interest evaluated by
chi-squared or Fisher’s exact test as more appropriate for qualitative variables, and Mann–
Whitney or t-test as appropriate for quantitative variables. A Spearman’s rank correlation
was calculated to evaluate the correlation between the number of resistance genes and
virulence genes carried by each isolate. We performed a survival analysis to investigate
the 28-day mortality predictors using the Cox regression model (primary endpoint), after
evaluated the proportional hazard (PH) assumption. In case of non-PH assumption, the
weighted Cox regression model was performed [54]. A bivariate analysis (univariate) was
carried out and the variables for which the p-value was <0.10 in univariate analysis were
included in the multivariate model. All variables entered as covariates were evaluated at
the baseline. As secondary endpoint, a survival analysis was conducted using the Kaplan-
Meier curves to assess the probability of death at 28 days. To facilitate the analysis, the
resistome and virulome data obtained in sequencing were categorized as number of classes
of virulence and resistance genes carried by each isolate. Because of the huge heterogeneity
of treatment regimens among the included patients, antibiotics were coded according to
the WHO ATC/DDD Index 2020 at the 4th level [55]. p values <0.05 were considered as
statistically significant.

All statistical analyses were performed using R Statistical Software (version 4.0.2) [56].

https://github.com/tseemann/abricate
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4.5. Ethics

The source studies were approved by the Ethical Committees of the participating in-
stitutions, and all enrolled patients’ legal guardians provided informed consent. Given the
retrospective nature of the present study, ethical approval for this analysis was not necessary.

5. Conclusions

To conclude, this pilot study demonstrated the feasibility of investigating the as-
sociation between neonatal sepsis mortality and the causative Enterobacterales isolates
virulome. The limited sample size of our cohort did not allow us to determine the role of
single virulence genes in neonatal GN-BSIs but grouping genes as the number of classes
involved allowed us to investigate the impact of the entire virulome in neonatal sepsis
outcome. This knowledge may be useful for predicting clinical outcomes, detecting virulent
strains, and helping with vaccine development. Expanding research on anti-virulence
molecules together with the development of new antibiotics could be crucial to improving
the management of these fragile patients. Further research would be advisable to eluci-
date the correlation with the timing of sepsis onset to personalize the clinical approach.
These findings need further exploration in larger global studies, ideally including host
immunopathological response, in order to develop a tailor-made therapeutic strategy.
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