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Abstract
In this manuscript we introduce the notions of R-function and R-contractions, and we
show an ad hoc fixed point theorem. We prove that this new kind of contractions
properly includes the family of all Meir-Keeler contractions and other well-known
classes of contractions that have been given very recently (for instance, those using
simulation functions and manageable functions). As a consequence, our approach
turns out to be appropriate to unify the treatment of different kinds of contractive
nonlinear operators.
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1 Introduction
Fixed point theory is a branch of nonlinear analysis that can be applied successfully to a
wide range of contexts in social and natural sciences. Although some results had been in-
troduced before, it is usually considered that this field of study was born in , when Ba-
nach presented a celebrated theorem in order to guarantee that a nonlinear operator had
a fixed point. After the appearance of the Banach contractive mapping principle, lots of
generalizations, in many different frameworks, have been done. In many cases, new results
that currently are being obtained involve contractivity conditions that depend on aux-
iliary functions (comparison functions, Geraghty functions, altering distance functions,
Bianchini-Grandolfi gauge functions, etc.).

One of the extensions that have attracted much attention over the last years was due
to Meir and Keeler (see []) who introduced in  a family of contractive mappings in
a new sense. Although their original notion did not depend on auxiliary functions, Lim
[] proved that a self-mapping was a Meir-Keeler contraction if, and only if, it satisfied
a contractivity condition in a classical sense depending on a new class of functions (that
he called L-functions). After that, several extensions of Meir-Keeler contractions have ap-
peared (see, for instance, [–]).

Very recently, Khojasteh et al. (see []) introduced the notion of simulation function,
which was later modified by Roldán-López-de-Hierro et al. in a subtle way (see []). The
main difference with respect to previous approaches was that simulation functions de-
pend on two variables rather than on a unique variable. And, in order to extend some
results in the field of multi-valued maps, Du and Khojasteh presented the very close (but
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independent) notion of manageable function (see []). Surprisingly, contractions that use
simulation functions turned out to be Meir-Keeler contractions (see []).

This fact points up the difficulty in finding true extensions of Meir-Keeler contractions
when we use a simple contractivity condition only involving classical terms as d(x, y) and
d(Tx, Ty), where d is the distance and T : X → X is the nonlinear operator.

The main aim of the present manuscript is to give a set of auxiliary functions that let us
consider a true extension of Meir-Keeler contractions. To do that, we present the notion
of R-contraction, which permits us to introduce such a large family of contractions that
includes not only Meir-Keeler contractions, but Geraghty contractions, contractions de-
pending on simulations functions and manageable functions, etc. We illustrate such kind
of contractions with an example in which previous results are not applicable.

2 Preliminaries
In the sequel, N = {, , , , . . .} stands for the set of all nonnegative integers. Throughout
this manuscript, let A ⊆ R be a nonempty subset of real numbers, let (X, d) be a metric
space and let T : X → X be a mapping from X into itself. We denote the range of d by

ran(d) =
{

d(x, y) : x, y ∈ X
} ⊆ [,∞).

We say that a sequence {xn} ⊆ X is asymptotically regular on (X, d) if {d(xn, xn+)} → .
A fixed point of T is a point x ∈ X such that Tx = x. The iterates of the self-mapping T

are the mappings {Tn : X → X}n∈N defined by

T = IX , T  = T , T = T ◦ T , Tn+ = T ◦ Tn for all n ≥ .

Given a point x ∈ X, the Picard sequence of T based on x is the sequence {xn}n∈N given
by xn+ = Txn for all n ∈N. Notice that xn = Tnx for all n ∈N.

Following [, ], we say that T is a weakly Picard operator if, for all x ∈ X, the Picard
sequence of T based on x converges to a fixed point of T . Furthermore, T is a Picard
operator if it is a weakly Picard operator and it has a unique fixed point. In such a case, if
z is the unique fixed point of T , then {Tnx} → z for all x ∈ X.

A function φ : [,∞) −→ [,∞) is lower semi-continuous if

φ(L) ≤ lim inf
t→L

φ(t) for all L ∈ [,∞).

A Geraghty function is a function φ : [,∞) → [, ) such that if {tn} ⊂ [,∞) and
{φ(tn)} → , then {tn} → . A Geraghty contraction (see []) is a mapping T : X → X
such that

d(Tx, Ty) ≤ φ
(
d(x, y)

)
d(x, y) for all x, y ∈ X,

where φ is a Geraghty function.

2.1 Simulation functions and manageable functions
The notion of simulation function was introduced by Khojasteh et al. in [] as follows.

Definition  (Khojasteh et al. []) A simulation function is a mapping ζ : [,∞) ×
[,∞) →R satisfying the following conditions:
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(ζ) ζ (, ) = ;
(ζ) ζ (t, s) < s – t for all t, s > ;
(ζ) if {tn}, {sn} are sequences in (,∞) such that limn→∞ tn = limn→∞ sn > , then

lim sup
n→∞

ζ (tn, sn) < .

The third condition is symmetric in both arguments of ζ but, in proofs, this property
is not necessary. In fact, in practise, the arguments of ζ have different meanings and they
play different roles. Then, Roldán-López-de-Hierro et al. slightly modified the previous
definition in order to highlight this difference and to enlarge the family of all simulation
functions.

Definition  (Roldán-López-de-Hierro et al. []) A simulation function is a mapping
ζ : [,∞) × [,∞) →R satisfying the following conditions:

(ζ) ζ (, ) = ;
(ζ) ζ (t, s) < s – t for all t, s > ;
(ζ) if {tn}, {sn} are sequences in (,∞) such that limn→∞ tn = limn→∞ sn >  and tn < sn for

all n ∈ N, then

lim sup
n→∞

ζ (tn, sn) < .

Let Z be the family of all simulation functions ζ : [,∞) × [,∞) →R.

Every simulation function in the original Khojasteh et al.’s sense (Definition ) is also a
simulation function in our sense (Definition ), but the converse is not true (see []).

Definition  (Khojasteh et al. [], Roldán-López-de-Hierro et al. []) Let (X, d) be a
metric space and let T : X → X be a self-mapping. We say that T is a Z-contraction if
there exists ζ ∈Z such that

ζ
(
d(Tx, Ty), d(x, y)

) ≥  for all x, y ∈ X such that x 
= y.

In , Du and Khojasteh [] introduced the concept of manageable functions. They
showed that many known results can be deduced of some local constraints related to man-
ageable functions.

Definition  (Du and Khojasteh []) A function η : R × R → R is called manageable if
the following conditions hold:

(η) η(t, s) < s – t for all s, t > .
(η) For any bounded sequence {tn} ⊂ (,∞) and any nonincreasing sequence {sn} ⊂

(,∞) , it holds

lim sup
n→∞

tn + η(tn, sn)
sn

< .

We denote the set of all manageable functions by M̂an(R).
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Several examples of simulation functions and manageable functions can be found on
[–].

Example  If k ∈ (, ), then the function η : R × R → R given by η(t, s) = ks – t for all
t, s ∈ R, is a manageable function, and its restriction to [,∞) × [,∞) is a simulation
function.

The notion of manageable function was introduced in order to study multi-valued con-
tractions. Next, we particularize such a notion to single-valued mappings.

Definition  (Khojasteh et al. []) Let (X, d) be a metric space and let T : X → X be a
self-mapping. We say that T is a M̂an(R)-contraction if there exists η ∈ M̂an(R) such that
η(d(Tx, Tx), d(x, Tx)) ≥  for all x ∈ X.

2.2 Meir-Keeler contractions
Meir and Keeler generalized the Banach theorem in the following way.

Definition  (Meir and Keeler []) A Meir-Keeler contraction is a mapping T : X → X
from a metric space (X, d) into itself such that for all ε > , there exists δ >  verifying that
if x, y ∈ X and ε ≤ d(x, y) < ε + δ, then d(Tx, Ty) < ε.

Meir-Keeler contractions have attracted much attention in the last years (see, for in-
stance, [–]). Lim characterized this kind of mappings in terms of a contractivity con-
dition using the following class of auxiliary functions.

Definition  (Lim []) A function φ : [,∞) → [,∞) will be called an L-function if
(a) φ() = ,
(b) φ(t) >  for all t > , and
(c) for all ε > , there exists δ >  such that φ(t) ≤ ε for all t ∈ [ε, ε + δ].

Theorem  (Lim [], Theorem ) Let (X, d) be a metric space and let T : X → X be a self-
mapping. Then T is a Meir-Keeler mapping if, and only if, there exists an (nondecreasing,
right-continuous) L-map φ such that

d(Tx, Ty) < φ
(
d(x, y)

)
for all x, y ∈ X verifying d(x, y) > . ()

Using a result of Chu and Diaz [], Meir and Keeler [] proved that every Meir-Keeler
contraction from a complete metric space into itself has a unique fixed point.

For our purposes, we highlight the following properties of L-functions and Meir-Keeler
contractions.

Lemma  Every L-function φ satisfies the following properties:
() φ(t) ≤ t for all t ∈ [,∞).
() For all ε > , there exists δ >  such that φ(t) ≤ ε for all t ∈ [, ε + δ].

Proof () If t = , then φ() = . And if t > , using ε = t > , we deduce, from (c), that
φ(t) = φ(ε) ≤ ε = t.
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() Let ε >  be arbitrary and let δ >  be given by (c). Then, for all t ∈ [, ε), we have that
φ(t) ≤ t < ε. �

The following result is useful to guarantee that a self-mapping is not a Meir-Keeler con-
traction.

Proposition  Let T : X → X be a self-mapping from a metric space (X, d) into itself and
assume that there exist L >  and two sequences {xn}, {yn} ⊆ X such that

d(Txn, Tyn) = L < d(xn, yn) for all n ∈N and
{

d(xn, yn)
} → L.

Then T is not a Meir-Keeler contraction.

Proof Reasoning by contradiction, assume that T is a Meir-Keeler contraction. By Theo-
rem , there exists an L-map φ : [,∞) × [,∞) → [,∞) such that

d(Tx, Ty) < φ
(
d(x, y)

)
for all x, y ∈ X verifying d(x, y) > .

As a consequence,

φ(L) ≤ L = d(Txn, Tyn) < φ
(
d(xn, yn)

) ≤ d(xn, yn) for all n ∈N.

Using ε = L > , taking into account that T is a Meir-Keeler contraction, there exists δ > 
such that

φ(t) < L for all t ∈ [L, L + δ].

As {d(xn, yn)} → L and d(xn, yn) > L for all n ∈ N, there exists n ∈ N such that L <
d(xn , yn ) < L+δ. Then φ(d(xn , yn )) < L, which contradicts the fact that L < φ(d(xn , yn )).
As a result, T cannot be a Meir-Keeler contraction. �

3 R-Functions and R-contractions
In this section we introduce the family of auxiliary functions we will use to present a new
kind of contractive mappings. We will also show that this family contains several classes
of contractive mappings, including Meir-Keeler contractions.

3.1 The family of R-functions
Definition  Let A ⊆ R be a nonempty subset and let � : A × A → R be a function. We
say that � is an R-function if it satisfies the following two conditions.

(�) If {an} ⊂ (,∞)∩A is a sequence such that �(an+, an) >  for all n ∈N, then {an} → .
(�) If {an}, {bn} ⊂ (,∞) ∩ A are two sequences converging to the same limit L ≥  and

verifying that L < an and �(an, bn) >  for all n ∈N, then L = .

We denote by RA the family of all R-functions whose domain is A × A.

In some cases, given a function � : A × A →R, we will also consider the following prop-
erty.
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(�) If {an}, {bn} ⊂ (,∞) ∩ A are two sequences such that {bn} →  and �(an, bn) >  for
all n ∈N, then {an} → .

Remark  Notice that conditions (�), (�) and (�) establish that if there exist sequences
verifying some assumptions, then a thesis must hold. However, we point out that if such
kind of sequences does not exist, then conditions (�), (�) and (�) hold.

Proposition  If �(t, s) ≤ s – t for all t, s ∈ A ∩ (,∞), then (�) holds.

Proof Assume that {an}, {bn} ⊂ (,∞) ∩ A are two sequences such that {bn} →  and
�(an, bn) >  for all n ∈ N. Since an, bn ∈ (,∞) ∩ A, then  < �(an, bn) ≤ bn – an for all
n ∈N. As a consequence,  < an < bn for all n ∈N, which means that {an} → . �

Firstly, we show some examples.

Lemma  Every simulation function is an R-function that also verifies (�).

Proof Let ζ : [,∞) × [,∞) → R be a simulation function.
(�) Let {an} ⊂ (,∞) be a sequence such that ζ (an+, an) >  for all n ∈N. Therefore,  <

ζ (an+, an) < an – an+ for all n ∈ N. Hence, {an} is a strictly decreasing sequence of positive
real numbers, so it is convergent. Let L ≥  be its limit. To prove that L = , assume, by
contradiction, that L > . Let tn = an+ and sn = an for all n ∈ N. Then {tn} and {sn} are
convergent to L and tn < sn for all n ∈ N. By condition (ζ),

 ≤ lim sup
n→∞

ζ (an+, an) = lim sup
n→∞

ζ (tn, sn) < ,

which is a contradiction. Then {an} → L = .
(�) Let {an}, {bn} ⊂ (,∞) be two sequences converging to the same limit L ≥  and

verifying that L < an and ζ (an, bn) >  for all n ∈ N. To prove that L = , assume, by con-
tradiction, that L > . On the one hand, by (ζ),  < ζ (an, bn) = bn – an, so L < an < bn for
all n ∈N. On the other hand, by condition (ζ), we have that

 ≤ lim sup
n→∞

ζ (an, bn) < ,

which is a contradiction. Then L = .
(�) Let {an}, {bn} ⊂ (,∞) be two sequences such that {bn} →  and ζ (an, bn) ≥  for

all n ∈ N. Since ζ is a simulation function,  ≤ ζ (an, bn) < bn – an for all n ∈ N. Hence,
 < an < bn for all n ∈N, which means that {an} → . �

Lemma  Every manageable function is an R-function that also verifies (�).

Proof Let η : R×R→ R be a manageable function.
(�) Let {an} ⊂ (,∞) be a sequence such that η(an+, an) >  for all n ∈N. Therefore,  <

η(an+, an) < an – an+ for all n ∈N. Hence, {an} is a strictly decreasing sequence of positive
real numbers, so it is convergent. Let L ≥  be its limit. To prove that L = , assume, by
contradiction, that L > . Let tn = an+ and sn = an for all n ∈ N. Then {tn} is a bounded
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sequence (in fact, it is convergent) and {sn} is a nonincreasing sequence (convergent to L).
By condition (η),

lim sup
n→∞

an+ + η(an+, an)
an

= lim sup
n→∞

tn + η(tn, sn)
sn

< .

Taking into account that

an+

an
≤ an+ + η(an+, an)

an
for all n ∈N,

we deduce that

 =
L
L

= lim
n→∞

an+

an
= lim sup

n→∞
an+

an
≤ lim sup

n→∞
an+ + η(an+, an)

an
< ,

which is a contradiction. Then {an} → L = .
(�) Let {an}, {bn} ⊂ (,∞) be two sequences converging to the same limit L ≥  and

verifying that L < an and ζ (an, bn) >  for all n ∈ N. To prove that L = , assume, by con-
tradiction, that L > . On the one hand, by (η),  < η(an, bn) = bn – an, so L < an < bn for
all n ∈ N. As {bn} → L and L < bn for all n ∈ N, then there exists a partial subsequence
{bn(k)}k∈N of {bn} such that {bn(k)} is strictly decreasing, that is,

L < bn(k+) < bn(k) for all k ∈N.

Hence {an(k)} is a bounded sequence (in fact, it is convergent to L) and {bn(k)} is a nonin-
creasing sequence. By condition (η), we have that

lim sup
n→∞

bn(k) + η(an(k), bn(k))
an(k)

< .

Taking into account that

bn(k)

an(k)
≤ bn(k) + η(an(k), bn(k))

an(k)
for all n ∈N,

we deduce that

 =
L
L

= lim
n→∞

bn(k)

an(k)
= lim sup

n→∞
bn(k)

an(k)
≤ lim sup

n→∞
bn(k) + η(an(k), bn(k))

an(k)
< ,

which is a contradiction. Then L = .
(�) Let {an}, {bn} ⊂ (,∞) be two sequences such that {bn} →  and η(an, bn) ≥  for

all n ∈ N. Since η is a manageable function,  ≤ η(an, bn) < bn – an for all n ∈ N. Hence,
 < an < bn for all n ∈N, which means that {an} → . �

Lemmas  and  provide us with a wide range of R-functions taking into account ex-
amples given in [, ]. In the following examples we show that the notion of R-function
is more general than the previous ones.

Example  Given λ ∈ (, ), let � : [, ] × [, ] → R be the function given by �(t, s) =
λs – t for all t, s ∈ [, ]. Then � is an R-function, but it is not a simulation function neither
a manageable function because its domain is neither [,∞) × [,∞) nor R×R.
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Example  Let � : [,∞) × [,∞) →R be the function defined, for all t, s ∈ [,∞), by

�(t, s) =

{

 s – t, if t < s,
, if t ≥ s.

Let us show that � is an R-function on [,∞) which also satisfies condition (�).
(�) Assume that {an} ⊂ (,∞) is a sequence such that �(an+, an) >  for all n ∈N. There-

fore an+ < an and

 < �(an+, an) =
an


– an+ for all n ∈N.

As a consequence,  < an+ < an/ for all n ∈N, which implies that {an} → .
(�) Assume that {an}, {bn} ⊂ (,∞) are two sequences converging to the same limit

L ≥  and verifying that L < an and �(an, bn) >  for all n ∈N. Hence

an < bn and  < �(an, bn) =
bn


– an for all n ∈N.

As a consequence, an < bn for all n ∈ N. Letting n → ∞, we deduce that  ≤ L ≤ L,
which means that L = .

(�) Let {an}, {bn} ⊂ (,∞) ∩ A be two sequences such that {bn} →  and �(an, bn) > 
for all n ∈N. Therefore,  < an < bn, which implies that {an} → .

As a consequence, � is an R-function on [,∞) which also satisfies condition (�). How-
ever, � is not a simulation function because if we take tn = sn =  for all n ∈N, then {tn} → ,
{sn} →  but �(tn, sn) =  for all n ∈N, which implies that � does not verify condition (ζ).
The same argument guarantees that �, defined from R × R into R, is not a manageable
function.

Proposition  If � ∈ RA, then �(a, a) ≤  for all a ∈ (,∞) ∩ A.

Proof By contradiction, assume that there exists a ∈ (,∞) ∩ A such that �(a, a) > . Let
us define an = a for all n ∈ N. Therefore �(an+, an) = �(a, a) >  for all n ∈ N. Condition
(�) implies that {an} → , which contradicts the fact that a > . �

Functions taking values greater than or equal to an R-function can be an R-function.

Proposition  If � ∈ RA and λ > , then �λ : A × A → R, defined by �λ(t, s) = λ�(t, s) for
all t, s ∈ A, is also an R-function. And if � satisfies (�), then �λ also satisfies it.

An interesting subclass of the family of R-functions can be considered involving L-
functions as follows.

Theorem  Given an L-function φ : [,∞) → [,∞), let �φ : [,∞) × [,∞) →R be the
function defined by

�φ(t, s) = φ(s) – t for all t, s ∈ [,∞).

Then �φ is an R-function on [,∞). Furthermore, �φ satisfies condition (�).
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Proof (�) Assume that {an} ⊂ (,∞) is a sequence such that �φ(an+, an) >  for all n ∈N.
Therefore,

 < �φ(an+, an) = φ(an) – an+,

which means that an+ < φ(an) for all n ∈N. Using item () of Lemma ,

an+ < φ(an) ≤ an for all n ∈ N.

Hence, {an} is a strictly decreasing sequence of positive real numbers. Let L ≥  be its
limit. In order to prove that L = , assume that L > . Therefore,

L < an+ < φ(an) ≤ an for all n ∈N.

As φ is an L-function, using ε = L > , there exists δ >  such that

φ(t) ≤ ε = L for all t ∈ [ε, ε + δ] = [L, L + δ]. ()

Since {an} ↘ L+, there exists n ∈ N such that an < L + δ. Since L < an < L + δ, then ()
implies that φ(an ) ≤ L, which yields the contradiction

φ(an ) ≤ L < an+ < φ(an ).

As a consequence, L = .
(�) Assume that {an}, {bn} ⊂ (,∞) are two sequences converging to the same limit

L ≥  and verifying that L < an and �φ(an, bn) >  for all n ∈N. In order to prove that L = ,
assume that L > . Therefore,

 < �φ(an, bn) = φ(bn) – an.

As a consequence,

L < an < φ(bn) ≤ bn for all n ∈ N.

As φ is an L-function, using ε = L > , there exists δ >  such that

φ(t) ≤ ε = L for all t ∈ [ε, ε + δ] = [L, L + δ]. ()

Since {bn} ↘ L+, there exists n ∈N such that L < bn < L + δ. And, by using (), we deduce
that φ(bn ) ≤ L, which is a contradiction because φ(bn ) ≤ L < an < φ(bn ). Thus, L = .

(�) Let {an}, {bn} ⊂ (,∞) ∩ A be two sequences such that {bn} →  and �φ(an, bn) > 
for all n ∈ N. Therefore, by item () of Lemma ,  < �φ(an, bn) = φ(bn) – an ≤ bn – an, so
 < an < bn for all n ∈N, which implies that {an} → . �

Theorem  Let ψ ,ϕ : [,∞) → [,∞) be two functions such that ψ is nondecreasing
and continuous from the right, ϕ is lower semi-continuous and ϕ–({}) = {}. Let �ψ ,ϕ :
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[,∞) × [,∞) →R be the function defined by

�ψ ,ϕ(t, s) = ψ(s) – ϕ(s) – ψ(t) for all t, s ∈ [,∞).

Then �ψ ,ϕ is an R-function on [,∞). Furthermore, �ψ ,ϕ satisfies condition (�).

Proof First of all, we show that, for t, s ∈ [,∞),

s > , �ψ ,ϕ(t, s) ≥  ⇒ t < s. ()

Indeed, assume that �ψ ,ϕ(t, s) ≥  and t ≥ s, and we are going to show that s = . As ψ is
nondecreasing,

ψ(s) ≤ ψ(t) ≤ ψ(s) – ϕ(s) ≤ ψ(s),

which implies that ϕ(s) = . Hence s = , which contradicts the fact that s > . Thus, t < s.
(�) Assume that {an} ⊂ (,∞) is a sequence such that �ψ ,ϕ(an+, an) >  for all n ∈ N.

By (), an+ < an for all n ∈N. Hence, {an} is a strictly decreasing sequence of positive real
numbers. Let L ≥  be its limit. Then L < an for all n ∈ N. In order to prove that L = ,
assume that L > . Therefore, for n ∈N,

 < �ψ ,ϕ(an+, an) = ψ(an) – ϕ(an) – ψ(an+)

⇒  ≤ ϕ(an) < ψ(an) – ψ(an+).

As ψ is continuous from the right and {an} ↘ L+, letting n → ∞ we deduce that
limn→∞ ϕ(an) = . And as ϕ is lower semi-continuous,

 ≤ ϕ(L) ≤ lim inf
r→L

ϕ(r) = lim
n→∞ϕ(an) = .

Hence ϕ(L) = , so L = .
(�) Assume that {an}, {bn} ⊂ (,∞) are two sequences converging to the same limit

L ≥  and verifying that L < an and �ψ ,ϕ(an, bn) >  for all n ∈ N. By (), L < an < bn for all
n ∈N. In order to prove that L = , assume that L > . Therefore,

 < �ψ ,ϕ(an, bn) = ψ(bn) – ϕ(bn) – ψ(an) ⇒  ≤ ϕ(bn) < ψ(bn) – ψ(an).

As ψ is continuous from the right and {bn} ↘ L+, letting n → ∞ we deduce that
limn→∞ ϕ(bn) = . And as ϕ is lower semi-continuous,

 ≤ ϕ(L) ≤ lim inf
r→L

ϕ(r) = lim
n→∞ϕ(bn) = .

Hence ϕ(L) = , so L = .
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(�) Let {an}, {bn} ⊂ (,∞) ∩ A be two sequences such that {bn} →  and �φ(an, bn) > 
for all n ∈N. By condition (),  < an < bn for all n ∈N, which implies that {an} → . �

Another example, involving Geraghty functions, is the next statement.

Lemma  If φ : [,∞) → [, ) is a Geraghty function, then �′
φ : [,∞) × [,∞) → R,

defined by

�′
φ(t, s) = φ(s)s – t for all t, s ∈ [,∞),

is an R-function on [,∞) satisfying condition (�).

Proof (�) Assume that {an} ⊂ (,∞) is a sequence such that �′
φ(an+, an) >  for all n ∈N.

Therefore,

 < �′
φ(an+, an) = φ(an)an – an+.

As an >  and φ(an) <  for all n ∈N, then

an+ < φ(an)an < an for all n ∈N.

Hence, {an} is a strictly decreasing sequence of positive real numbers. Let L ≥  be its
limit. In order to prove that L = , assume that L > . Therefore,

 < L < an+ < φ(an)an < an for all n ∈N.

Letting n → ∞ in the last inequalities, we deduce that limn→∞ φ(an) = . As φ is a Ger-
aghty function, it follows that L = limn→∞ an = , which contradicts L > . Then necessar-
ily L = .

(�) Assume that {an}, {bn} ⊂ (,∞) are two sequences converging to the same limit
L ≥  and verifying that L < an and �′

φ(an, bn) >  for all n ∈N. In order to prove that L = ,
assume that L > . Therefore,

 < �′
φ(an, bn) = φ(bn)bn – an for all n ∈N.

As a consequence,

L < an < φ(bn)bn ≤ bn for all n ∈N.

Letting n → ∞ in the last inequalities, we deduce that limn→∞ φ(bn) = . As φ is a Ger-
aghty function, it follows that L = limn→∞ bn = , which contradicts L > . Then necessarily
L = .

(�) Let {an}, {bn} ⊂ (,∞) ∩ A be two sequences such that {bn} →  and �′
φ(an, bn) > 

for all n ∈N. Therefore  < �′
φ(an, bn) = φ(bn)bn – an ≤ bn – an, so  < an < bn for all n ∈N,

which implies that {an} → . �
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3.2 R-Contractions
In this section we introduce the notion of R-contraction and we show several examples of
such kind of contractions.

Definition  Let (X, d) be a metric space and let T : X → X be a mapping. We will say
that T is an R-contraction if there exists an R-function � : A × A → R such that ran(d) ⊆ A
and

�
(
d(Tx, Ty), d(x, y)

)
>  for all x, y ∈ X such that x 
= y. ()

In such a case, we will say that T is an R-contraction with respect to �. We denote the
family of all R-contractions from (X, d) into itself with respect to � by RX,d,A,� or, when no
confusion is possible, by R� .

The following result shows an extensive family of R-contractions.

Theorem  Every Meir-Keeler contraction is an R-contraction with respect to an R-
function � which satisfies (�).

In the last result, the R-function � may be chosen satisfying the following properties.
• �(t, s) < s – t for all t, s ∈ (,∞).
• �(t, s) ≤ s – t for all t, s ∈ [,∞).

Proof Let (X, d) be a metric space and let T : X → X be a Meir-Keeler contraction. By
Theorem , there exists an L-function φ such that

d(Tx, Ty) < φ
(
d(x, y)

)
for all x, y ∈ X verifying d(x, y) > .

Theorem  guarantees that �φ : [,∞) × [,∞) →R, defined by

�φ(t, s) = φ(s) – t for all t, s ∈ [,∞),

is an R-function on [,∞) which satisfies (�). Moreover, for all x, y ∈ X such that x 
= y,
we have that

�φ

(
d(Tx, Ty), d(x, y)

)
= φ

(
d(x, y)

)
– d(Tx, Ty) > ,

which means that T is an R-contraction. �

The previous statement implies that every fixed point theorem that can be proved for
R-contractions (such as Theorem ) also holds for Meir-Keeler contractions. However,
the converse is false as we shall see in the next section.

Corollary  Every Geraghty contraction is an R-contraction with respect to an R-function
� which satisfies (�).
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Proof Let (X, d) be a metric space and let T : X → X be a Geraghty contraction. Then
there exists a Geraghty function φ : [,∞) → [, ) such that

d(Tx, Ty) ≤ φ
(
d(x, y)

)
d(x, y) for all x, y ∈ X.

Let ϕ : [,∞) → [, ) be the function defined by ϕ(t) = ( + φ(t))/ for all t ∈ [,∞). Then
ϕ is also a Geraghty function and it verifies φ(t) < ϕ(t) <  for all t ∈ [,∞). Therefore, if
x 
= y, then

d(Tx, Ty) ≤ φ
(
d(x, y)

)
d(x, y) < ϕ

(
d(x, y)

)
d(x, y).

Lemma  guarantees that �′
ϕ : [,∞) × [,∞) →R, defined by

�′
ϕ(t, s) = ϕ(s)s – t for all t, s ∈ [,∞),

is an R-function on [,∞) which satisfies (�). Moreover, for all x, y ∈ X such that x 
= y,
we have that φ(d(x, y)) <  and

�′
ϕ

(
d(Tx, Ty), d(x, y)

)
= ϕ

(
d(x, y)

)
d(x, y) – d(Tx, Ty) > ,

which means that T is an R-contraction. �

4 Some fixed point theorems under R-contractivity conditions
This section is dedicated to obtaining fixed point theorems under R-contractivity condi-
tions. Later, we will show that some well-known results can be deduced as simple conse-
quences of our main result, which is the following one.

Theorem  Let (X, d) be a complete metric space and let T : X → X be an R-contraction
with respect to � ∈ RA. Assume that, at least, one of the following conditions holds:

(a) T is continuous.
(b) The function � satisfies condition (�).
(c) �(t, s) ≤ s – t for all t, s ∈ A ∩ (,∞).
Then T is a Picard operator. In particular, it has a unique fixed point.

Proof Let x ∈ X be an arbitrary point and let {xn}n≥ be the Picard sequence of T based
on x, that is, xn+ = Txn for all n ∈ N. If there exists some n ∈ N such that xn+ = xn ,
then xn is a fixed point of T . In the contrary case, assume that xn 
= xn+ for all n ∈ N.
Let {an} ⊂ (,∞) be the sequence defined by an = d(xn, xn+) >  for all n ∈N. Taking into
account that T is an R-contraction with respect to �, then

�(an+, an) = �
(
d(xn+, xn+), d(xn, xn+)

)
= �

(
d(Txn, Txn+), d(xn, xn+)

)
> .

Applying (�) we deduce that {d(xn, xn+)} = {an} → , that is, {xn} is an asymptotically
regular sequence.

Next we show that {xn} is a Cauchy sequence reasoning by contradiction. If {xn} is not a
Cauchy sequence, then there exist ε >  and two subsequences {xn(k)} and {xm(k)} of {xn}
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such that

k ≤ n(k) < m(k), d(xn(k), xm(k)–) ≤ ε < d(xn(k), xm(k)) for all k ∈N,

lim
k→∞

d(xn(k), xm(k)) = lim
k→∞

d(xn(k)–, xm(k)–) = ε.

Let L = ε > , {ak = d(xn(k), xm(k))} → L and {bk = d(xn(k)–, xm(k)–)} → L. Since L = ε <
d(xn(k), xm(k)) = ak and

�(ak , bk) = �
(
d(xn(k), xm(k)), d(xn(k)–, xm(k)–)

)

= �
(
d(Txn(k)–, Txm(k)–), d(xn(k)–, xm(k)–)

)
> 

for all k ∈ N, condition (�) guarantees that ε = L = , which is a contradiction. As a
consequence, {xn} is a Cauchy sequence. Since (X, d) is complete, there exists z ∈ X such
that {xn} → z. Let us show that z is a fixed point of T distinguishing two cases.

Case . Assume that T is continuous. In this case, {xn+ = Txn} → Tz, so Tz = z.
Case . Assume that the function � satisfies condition (�). In this case, let an = d(xn+, Tz)

and bn = d(xn, z) for all n ∈N. Then {bn} → . Moreover,

�(an, bn) = �
(
d(xn+, Tz), d(xn, z)

)
= �

(
d(Txn, Tz), d(xn, z)

)
>  ()

for all n ∈N. Furthermore, it is clear that

bn =  ⇒ an =  ()

because

bn =  ⇔ xn = z ⇒ xn+ = Txn = Tz ⇔ an = .

Let us consider the set

� = {n ∈N : an = } =
{

n ∈ N : d(xn+, Tz) = 
}

.

Subcase .. Assume that � is finite. In this case, there exists n ∈ N such that
d(xn+, Tz) = an >  for all n ≥ n. By (), d(xn, z) = bn >  for all n ≥ n. Taking into account
(), condition (�), applied to {an}n≥n and {bn}n≥n , implies that {d(xn+, Tz) = an} → ,
which means that {xn+} → Tz. By the uniqueness of the limit, Tz = z.

Subcase .. Assume that � is not finite. In this case, there exists a subsequence {xn(k)}
of {xn} such that

d(xn(k)+, Tz) =  for all k ∈N.

Hence xn(k)+ = Tz for all k ∈N. Since {xn} → z, then Tz = z.
Case . Assume that �(t, s) ≤ s – t for all t, s ∈ A ∩ (,∞). Proposition  implies that

Case  is applicable.
In any case, z is a fixed point of T . Then T is a weakly Picard operator.
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Finally, let us show that z is the unique fixed point of T . Let x, y ∈ X be two arbitrary
fixed points of T . We will deduce that x = y reasoning by contradiction. Assume that x 
= y
and let us define an = d(x, y) >  for all n ∈N. Therefore, for all n ∈N,

�(an+, an) = �
(
d(x, y), d(x, y)

)
= �

(
d(Tx, Ty), d(x, y)

)
> .

Applying (�), {an} → , which contradicts the fact that d(x, y) 
= . As a consequence, x = y
and T has a unique fixed point. �

Corollary  Every continuous R-contraction from a complete metric space into itself has
a unique fixed point.

Corollary  Every Z-contraction from a complete metric space into itself has a unique
fixed point.

Corollary  Every M̂an(R)-contraction from a complete metric space into itself has a
unique fixed point.

Every manageable function leads to a simple corollary considering the corresponding
R-function. For instance,

�(t, s) = ϕ(s) – s, �(t, s) = φ(s) – ψ(t), etc.

Corollary  Let (X, d) be a complete metric space and let T : X → X be a self-mapping.
Assume that there exist two functions ψ ,ϕ : [,∞) → [,∞) such that

ψ
(
d(Tx, Ty)

) ≤ ψ
(
d(x, y)

)
– ϕ

(
d(x, y)

)
for all x, y ∈ X.

If ψ is nondecreasing and continuous from the right, ϕ is lower semi-continuous and
ϕ–({}) = {}, then T has a unique fixed point.

Proof If follows from Theorem  taking into account Theorem . �

Corollary  Every Geraghty contraction from a complete metric space into itself has a
unique fixed point.

Proof If follows from Theorem  taking into account Corollary . �

Corollary  Every Meir-Keeler contraction from a complete metric space into itself has
a unique fixed point.

Proof If follows from Theorem  taking into account Theorem . �

Next, we show an example of an R-contraction which is not a Meir-Keeler contraction.
Let N∗ = N�{} = {, , , . . .} and let {xn} and {yn} be the sequences

xn = n and yn = n +  +

n

for all n ∈N
∗.



Roldán López de Hierro and Shahzad Fixed Point Theory and Applications  (2015) 2015:98 Page 16 of 18

Let X be the set

X = {, } ∪ {xn}∞n= ∪ {yn}∞n= ⊂ [,∞)

endowed with the Euclidean metric d(x, y) = |x – y| for all x, y ∈ X. As X is discrete and

d(x, y) ≥  for all x, y ∈ X such that x 
= y, ()

then (X, d) is complete. Let T : X → X be defined by

Tx =

{
, if x ∈ {, } ∪ {n}∞n=,
, if x ∈ {n +  + 

n }∞n=.

Notice that T satisfies the following properties:

• T(X) = {, }; ()

• If x, y ∈ X verify d(Tx, Ty) > , then d(Tx, Ty) = . ()

We claim that T is an R-contraction but it is not a Meir-Keeler contraction. The second
fact follows from Proposition  taking into account that

d(Txn, Tyn) =  <  +

n

= d(xn, yn) for all n ∈N
∗.

Then T is not a Meir-Keeler contraction. Next, we are going to show that T is an R-
contraction. To prove it, let A = ran(d) ⊂ [,∞) be the range of the metric d. As X is
numerable, then A = d(X × X) is also a numerable set. In fact, if x, y ∈ X are such that
x ≤ y, then one, and only one, of the following cases holds:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(c) d(x, y) =  if, and only if, x = y;
(c) d(x, y) =  if, and only if, x =  and y = ;
(c) d(x, y) =  + 

n if, and only if, x = xn and y = yn for some n ∈N
∗;

(c) d(x, y) ≥  in any other case.

()

As a consequence, the range of d can be expressed as

A = ran(d) = {, } ∪
{

 +

n

}∞

n=
∪ {λk}∞k=,

where λk ≥  for all k ∈N. In particular,

s ∈ A = d(X × X), s >  ⇒ s ≥ . ()

Let � : A × A →R be the function given by

�(t, s) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

s
 , if t = ,
s
 – t, if s ≥  and t > ,
s – t, if t =  and s =  + 

n for some n ∈N
∗,

, otherwise.

()
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Let us show that � is an R-function verifying condition (�). To do that, recall Remark 
because we are going to show that there are not sequences as in the hypotheses of condi-
tions (�), (�) and (�).

(�) We claim that it is impossible to have a sequence {an} ⊂ (,∞) ∩ A such that
�(an+, an) >  for all n ∈N. To prove it, assume that such sequence exists. As an >  for all
n ∈N, description () leads to three cases.

Case . There exists n ∈N such that an = . As t = an+ >  and s = an =  < , then the
inequality �(an+, ) = �(an+, an ) >  is impossible following ().

Case . There exists n ∈ N such that an =  + 
m for some m ∈ N

∗. As t = an+ >  and
s = an =  + 

m < , then necessarily an+ = , but this is impossible by Case .
Case . an ≥  for all n ∈N. In this case, for all n ∈N,

 < �(an+, an) =
an


– an+ ⇒ an+ ≤ an


.

Hence {an} →  but this is impossible because, by (), an ≥  for all n ∈N.
In any case, it is impossible to have a sequence {an} ⊂ (,∞)∩A such that �(an+, an) > 

for all n ∈N, which means that (�) holds.
(�) We claim that it is impossible to have two sequences {an}, {bn} ⊂ (,∞) ∩ A con-

verging to the same limit L ≥  and verifying that L < an and �(an, bn) >  for all n ∈N. To
prove it, assume that such sequences exist. Since an > , then an ≥  for all n ∈ N by ().
Hence  ≤ L < an for all n ∈ N. The only case in which �(t, s) >  and t >  occurs when
s ≥ . Thus �(an, bn) >  implies that bn ≥  for all n ∈N. Moreover, for all n ∈N,

 < �(an, bn) =
bn


– an ⇒ an < bn.

Letting n → ∞, we deduce that  ≤ L ≤ L, so L = , which contradicts the fact that L ≥ .
This contradiction ensures that (�) holds.

(�) We claim that it is impossible to have two sequences {an}, {bn} ⊂ (,∞) ∩ A such
that {bn} →  and �(an, bn) >  for all n ∈ N. To prove it, assume that such sequences exist.
Since bn > , then bn ≥  for all n ∈ N by (), which contradicts the fact that {bn} → .
Hence (�) holds.

As a consequence, � is an R-function on A = ran(d). Finally, we claim that T is an
R-contraction with respect to �. Let x, y ∈ X be such that x 
= y, that is, d(x, y) > . If
d(Tx, Ty) = , then

�
(
d(Tx, Ty), d(x, y)

)
= �

(
, d(x, y)

)
=

d(x, y)


> .

Suppose that d(Tx, Ty) > . In this case, by () and (), we have that {Tx, Ty} = {, } and
d(Tx, Ty) = . Suppose that Tx =  and Ty = . Hence x ∈ {, } ∪ {n}∞n= and y ∈ {m +
 + 

m }∞m=. Therefore, only cases (c) and (c) of () are possible. In case (c), x = xn and
y = yn for some n ∈N

∗. Then

�
(
d(Tx, Ty), d(x, y)

)
= �

(
,  +


n

)
=

(
 +


n

)
–  =


n

> .
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In case (c), d(x, y) ≥ , so

�
(
d(Tx, Ty), d(x, y)

)
=

d(x, y)


– d(Tx, Ty) ≥ 


–  >  > .

As a result, in any case, �(d(Tx, Ty), d(x, y)) >  for all x, y ∈ X such that x 
= y, so T is an
R-contraction with respect to �.

As a consequence, Theorem  guarantees that T has a unique fixed point. However,
other previous results about Meir-Keeler contractions are not applicable.
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