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Abstract: The vast majority of Attention-deficit/hyperactivity disorder (ADHD) patients 

have other associated pathologies, with depressive symptoms as one of the most prevalent. 

Among the mediators that may participate in ADHD, melatonin is thought to regulate circadian 

rhythms, neurological function and stress response. To determine (1) the serum baseline daily 

variations and nocturnal excretion of melatonin in ADHD subtypes and (2) the effect  

of chronic administration of methylphenidate, as well as the effects on symptomatology,  

136 children with ADHD (Diagnostic and Statistical Manual of Mental Disorders, Fourth 

Edition, Text Revision: DSM-IV-TR criteria) were divided into subgroups using  

the “Children’s Depression Inventory” (CDI). Blood samples were drawn at 20:00 and 09:00 h, 

and urine was collected between 21:00 and 09:00 h, at inclusion and after 4.61 ± 2.29 months 

of treatment. Melatonin and its urine metabolite were measured by radioimmunoassay RIA. 

Factorial analysis was performed using STATA 12.0. Melatonin was higher predominantly 

in hyperactive-impulsive/conduct disordered children (PHI/CD) of the ADHD subtype, 
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without the influence of comorbid depressive symptoms. Methylphenidate ameliorated this 

comorbidity without induction of any changes in the serum melatonin profile, but treatment 

with it was associated with a decrease in 6-s-melatonin excretion in both ADHD subtypes. 

Conclusions: In untreated children, partial homeostatic restoration of disrupted neuroendocrine 

equilibrium most likely led to an increased serum melatonin in PHI/CD children. A 

differential cerebral melatonin metabolization after methylphenidate may underlie some of 

the clinical benefit. 

Keywords: children; ADHD; ADHD subtypes; comorbidities; depressive symptoms; CDI; 

prolonged release methylphenidate; melatonin; 6-sulphatoxy-melatonin 

 

1. Introduction 

Attention-deficit/hyperactivity disorder (ADHD) is the most common neurobehavioral disorder  

of childhood. In addition to genetic factors [1], environmental risk factors and gender are associated 

with ADHD [2]. For the vast majority of patients, ADHD is associated with other pathologies,  

with depressive symptoms as one of the most prevalent [3]. The theories about the neurobiological 

basis of ADHD have recently centered on two complementary models [4,5], both of which are based 

on the dysregulation of interacting neural pathways, i.e., the inhibitory noradrenergic fronto-cortical 

activity on dopaminergic striatal structures [6] and the ascending dopamine circuits, in addition to the limbic 

system [7]. As a neurodevelopmental disorder, in ADHD, there are age-related changes in discrete 

brain volume areas and connectivity [8] that parallel behavioral improvement and increased efficiency 

in cognitive task performance [9,10]. 

Melatonin is a critical circadian synchronizer with a pleiotropic biological signal that exerts 

multiple effects [11], including increasing tyrosine hydroxylase activity and activating dopamine 

receptors [12] and sleep/wake cycle regulation [13]. The circadian rhythm of pineal melatonin 

secretion, which is controlled by the suprachiasmatic nucleus [14], is reflective of the mechanisms that 

are involved in the control of the sleep/wake cycle. It has been reported that approximately 25%  

of children with ADHD have some type of sleep disorder, such as delayed sleep phase syndrome [15]. 

The key features of ADHD include the presence of the core problems of inattention, hyperactivity  

and impulsivity. In addition, the vast majority of ADHD patients have at least one comorbid condition, 

e.g., conduct disorders, depressive symptoms or sleep disorders [16]. A hypothetical link between these 

comorbidities may be the dysregulation of biological rhythms due to alterations in the melatoninergic 

system [17,18]. In a previous study, both ADHD subtypes had depressive symptom severity equal  

to a non-ADHD psychiatric control group and greater than community control groups, and externalizing 

behavior problems and aggression appeared to be related to the hyperactive-impulsive ADHD symptom 

domain and to overall ADHD symptom severity [19]. 

The aim of this study was to examine the relationship between serum levels of melatonin, as well as its 

daily fluctuations in ADHD children in addition to the urinary nocturnal excretion of 6-sulphatoxy-melatonin, 

prior to and after chronic methylphenidate treatment. In addition, another aim was to explore the relationship 
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of these melatonin values to clinical symptomatology to determine whether this neuroendocrine 

mediator actively participates in the pathophysiology of ADHD or the response to ADHD treatment. 

2. Results and Discussion 

All of the clinical course data (Evaluation of Deficit of Attention and Hyperactivity (EDAH),  

d2 attention test and Children’s Depression Inventory (CDI) scores) for the ADHD group, separated  

for diagnostic subtypes and subgroups, displayed an improvement [20]. After treatment, the increase  

in height for patients was unaffected, whereas weight decreased, which was expected and previously 

reported [21]. More than 80% had improvement in parent evaluation data after methylphenidate, with 

almost 1/3 of participants reporting clinical score data after methylphenidate treatment that no longer 

meet the ADHD criteria. 

At inclusion in the study, 23% of the ADHD sample showed a sleep onset delay, defined by a delay 

in the hour for going to bed and/or a prolongation of time needed for sleep induction, which were 

referred to by parents as of low/moderate intensity; with 12% of them showing nocturnal enuresis  

and no other sleep problems. Approximately a similar percentage (a quarter) of the parents of these 

subgroups of patients referred to worsening or ameliorations, respectively, of this symptom, with the other 

50% of the patients experiencing no changes in their sleep patterns. The amelioration of sleep pattern 

refers mostly to the decrease of the resistance of children to go to sleep. On the other hand, one of  

five children without previous sleep disruption referred to a slight increase in the duration time needed  

to achieve sleep after methylphenidate treatment. Methylphenidate induced no changes in the rate  

of nocturnal enuresis. 

2.1. Melatonin Serum Concentration by Attention-Deficit/Hyperactivity Disorder (ADHD) Subtypes 

and Subgroups 

In the predominantly attention disorder (PAD) ADHD subtype children subgroup without 

depressive symptoms, the morning melatonin concentration was 22.59 ± 11.97 pg/mL at baseline  

and 18.58 ± 16.42 pg/mL after treatment (Figure 1A). In children with depressive symptoms, these 

values were 22.13 ± 20.61 pg/mL before and 15.6 ± 3.99 pg/mL after treatment. At night, the values 

were slightly lower, 10.7 ± 8.91 and 11.78 ± 9.52 pg/mL, before and after treatment, respectively,  

in the subgroup without depressive symptoms and (12.35 ± 14.35)/(11.5 ± 7.48) pg/mL, respectively,  

in the subgroup with depressive symptoms (Figure 1B). 

In the hyperactive-impulsive/conduct disordered children (PHI/CD) subtype (Figure 1) subgroup without 

depressive symptoms, the morning melatonin concentration was 33.11 ± 31.13 and 28.09 ± 20.69 pg/mL 

after treatment. In children with depressive symptoms, these values were 30.41 ± 21.55 and  

24.89 ± 36.98 pg/mL, before and after treatment, respectively. At night, in the subgroup without 

depressive symptoms, the values were 17.4 ± 16.85 and 27.02 ± 39.9 pg/mL, at baseline and after 

treatment, respectively, and 24.89 ± 36.98 and 24.36 ± 28.48 pg/mL for subgroup with depressive 

symptoms, before and after treatment, respectively. 

The factorial analysis, adjusted by age and sex, with subtype, subgroup, time and hour, as factors, 

displayed significant differences between ADHD subtypes with higher values in the PHI/CD children 

(30.21 ± 27.77 vs. 18.62 ± 21.24 pg/mL; z = 2.28, p = 0.02), with significant day/night fluctuations  
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(z = 3.22; p < 0.001). There was no differences by time (z = 0 and p = 0.97) nor depressive symptoms 

(z = 0.1; p = 0.94) before or after methylphenidate. 

Serum melatonin values were not significantly different in ADHD children vs. a control group [21]. 

Between subtypes and subgroups, we observed a significantly higher PHI/CD than in PAD children, 

with a similar response to prolonged release methylphenidate (PRMPH) in both subtypes without  

the influence of comorbid depressive symptoms. 

Figure 1. Melatonin concentration in Attention-deficit/hyperactivity disorder (ADHD) 

children grouped by ADHD subtype and depressive symptoms, in the morning (A)  

and at night (B). PAD, predominantly attention disorder; PHI/CD, predominantly 

hyperactive-impulsive/conduct disordered children. 

 

2.2. Nocturnal Excretion of 6-Sulphatoxy-melatonin by ADHD Subtypes 

In comparisons adjusted by age and sex, in both ADHD subtypes, PRMPH resulted in a significant 

decrease in 6-sulphatoxy-melatonin (expressed in ng per mg of creatinine). In the PAD subtype,  

the values were 0.75 ± 0.34 and 0.24 ± 0.35 before and after treatment (p < 0.001), respectively,  

and 0.72 ± 0.43 and 0.48 ± 1.6 (p < 0.001) for the PHI/CD subtype, respectively (Figure 2). 
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Figure 2. 6-Sulphatoxy-melatonin nocturnal excretion, by subtypes and time, in comparisons 

adjusted by age and sex. PRMPH, prolonged release methylphenidate. 

 

The serum melatonin concentration was significantly greater for the PHI/CD subtype than in the PAD 

subtype; however, the baseline urinary excretion of 6-sulphatoxy-melatonin (adjusted comparison)  

was very similar in both subtypes. The treatment with PRMPH induced a very significant decrease  

in excretion of 6-S-melatonin in both subtypes (Figure 2), which was even greater for the PAD subtype 

according to visual inspection of the figure, although the value of the z is lower because, in this 

subtype, the “n” of the sample was much lower. 

In another report, we demonstrated that neurosteroids and other neuroendocrine mediators are also 

influenced by PRMPH treatment. Dehydroepiandrosterone and allopregnanolone displays a trend 

toward lower baseline concentrations in ADHD children [20]. Methylphenidate exerts a differential 

effect on their concentration as a function of depressive symptoms, because, i.e., PRMPH induced  

a very significant increase in the concentration of allopregnanolone, only in PAD patients without 

comorbid depressive symptoms. 

In the melatonin case, on the contrary, this paper demonstrates that the occurrence of depressive 

symptoms does not modify melatonin concentration, in either of the ADHD subtypes, nor at baseline, 

nor after PRMPH treatment. Baseline melatonin was significantly higher in the PHI-CD ADHD 

subtype vs. the PAD-ADHD subtype. The PHI-CD subtype is more related with externalizing symptoms 

and higher melatonin levels that of the PAD-ADHD subtype, which is more related to internalizing 

symptoms. In a control group without ADHD, the serum melatonin levels concentration were intermediate 

between PAD and PHI/CD subtypes, without differences in comparisons with both ADHD subtypes [21]. 

PRMPH ameliorates clinical depressive symptoms, as reflected by the decrease of CDI total 

punctuation for both subgroups PAD: (12.44 ± 7.30)/(11.11 ± 6.12) (p = 0.054), PHI/CD: (13.44 ± 6.24)/ 

(12.33 ± 7.80) (p < 0.001), before/after treatment, respectively (Table 1), although with significance 

differences in the PHI/CD subgroup, most likely due to the higher “n” sample number. 

Our data reinforce the need to quantify ADHD comorbidities in clinical practice settings, as this  

can help to better define the profile of the patient and, thus, adapt the treatment protocol to the patient’s 

needs and to reformulate family expectations. 
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Table 1. Children’s Depression Inventory (CDI) values, by ADHD subtypes and subgroups, 

before and after prolonged release of methylphenidate treatment. 

Total CDI Time 
PAD  

(n = 37) 
PHI/CD  
(n = 99) 

Total  
(n = 136) 

z p 

<18  
(n = 104) 

Baseline Post-PRMPH 

10.18 ± 4.74 10.48 ± 4.21 10.39 ± 4.34 
−1.743 0.081 

9.47 ± 5.08 10.97 ± 6.34 10.45 ± 5.93 

9.76 ± 4.49 10.65 ± 5.05 

 z p z p 

−2.09 0.037 −0.84 0.40 

>17  
(n = 32) 

Baseline Post-PRMPH 

22.40 ± 8.73 21.53 ± 2.59 21.71 ± 4.31 
−3.301 0.001 

20.50 ± 8.96 14.86 ± 4.29 16.11 ± 5.84 

22.00 ± 6.99 18.70 ± 4.74 

 z p z p 

−0.921 0.357 −3.30 0.001

Total Simple  
(n = 136) 

Baseline Post-PRMPH 

12.44 ± 7.30 13.44 ± 6.24 13.16 ± 6.52 
−3.596 0.0001

11.11 ± 6.12 12.33 ± 7.80 12.25 ± 6.19 

11.89 ± 6.80 12.97 ± 6.06 

 z p z p 

−1.93 0.054 −3.48 0.001

Related samples: Wilcoxon signed rank test, two-sided test. The values are expressed as the mean ± SD. 

Our data indicate that fewer ADHD symptoms (EDAH scale) and fewer depressive symptoms (CDI) 

after methylphenidate may be related, in part, to the neuroendocrine changes documented in this study.  

In addition, subtle changes in the daily fluctuations of both melatonin and serotonin [21] may contribute  

to marked clinical improvement in the key symptoms of ADHD. Melatonin and serotonin influence 

food intake [22], immunity [23], neurological function [24] and stress response [25]. In addition  

to its effects on sleep regulation, its salivary levels have been correlated with ADHD psychopathology [26], 

and melatonin treatment could exert some neuroprotective effects [27]. 

The serum melatonin values of the PAD subtype are more correlated with the decrease observed  

in other mediators, for example for adrenocorticotropic Hormone (ACTH), β-endorphin and melatonin  

in affective deprived children [25] and for children with other types of stress [28]. Although 

neuroendocrine mediator increases in response to stress are adaptive in the short term, animal models 

of chronic stress and depression indicated lower brain and plasma concentrations of several mediators 

in response to acute stressors. These results are consistent with our results in children [20,25].  

Two neurosteroids [29], dehydroepiandrosterone and allopregnanolone, displayed slightly lower  

values (without significant differences) compared with a control group. The baseline concentrations 

and responses to PRMPH differ for both neurosteroids. In the case of allopregnanolone, the presence 

of comorbid depressive symptoms erase the very high increase of concentration after methylphenidate that 

is observed in the PAD subtype without these comorbidities. On the contrary, dehydroepiandrosterone 

displayed slightly higher values in the subgroup of PHI/CD-ADHD with depressive symptoms  

and a further increase after PRMPH. Melatonin [30] and the neurosteroid, dehydroepiandrosterone [31], share 

antiglucocorticoid properties that may have regulatory effects on glucocorticoid action in the brain [32]. 
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Untreated children with ADHD have a high rate of sleep onset disorder [33], which may be associated 

with combined-type ADHD, which may reflect the association between sleep problems and more 

severe ADHD symptoms [34]. Defiant behavior at bedtime causes delays in getting into bed and falling 

asleep and reinforces the need for using sleep medication [35]. The stimulant medication for ADHD 

may aggravate sleep onset delay [16], and melatonin has been demonstrated to be an effective therapy 

in the long term for the treatment of chronic sleep onset insomnia in children with ADHD [36].  

As combined-type ADHD children may more frequently need to use melatonin, the melatonin increase that 

our report demonstrated in this subtype may reflect an incomplete restoration of their physiological needs. 

Other mechanisms may help explain that PAD-ADHD children displayed even lower melatonin 

concentrations and suffer from less intense sleep onset delays. 

The reduced excretion of the 6-sulphatoxy-melatonin in nocturnal collected urine after  

PRMPH prompt us to suggest that the stimulant treatment may induce an alternative route for 

melatonin metabolism/utilization. Until the discovery of two 5-methoxylated kynuramines, named  

N(1)-acetyl-N(2)-formyl-5-methoxykynuramine (AFMK) and N(1)-acetyl-5-methoxy-kynuramine (AMK), 

melatonin was usually believed to be almost exclusively metabolized to 6-hydroxymelatonin and  

its excretion product, 6-sulphatoxy-melatonin. AFMK and AMK now are known as major brain 

metabolites of melatonin [37], with activities as potent cyclooxygenase inhibitors, NO scavengers, 

inhibitor and/or downregulators of neuronal and inducible NO synthases and mitochondrial metabolism 

modulators [38]. These properties may underline some of the beneficial effects of methylphenidate. 

Psychostimulants, such as methylphenidate, produce differential lasting behavioral alterations, depending 

on the time of the day that they are administered, and correlate with diurnal changes in the system  

of transcription factors, termed clock genes, and with changes in the availability of subtypes of  

dopamine receptors [39]. The molecular mechanism of melatonin’s effects on the responsiveness of CNS  

to psychostimulants appears to involve melatonin receptors and clock genes. In addition to their 

benefits, psychostimulants also produce toxic effects in the brain [40,41] that are believed to be due  

to oxidative stress in addition to the stimulant-induced depletion of striatal dopamine [42]. In vitro 

studies have demonstrated that amphetamine increases inducible NOS mRNA, which may be prevented 

by melatonin [39,43]. 

The PAD and PHI-CD ADHD subtypes may be separate disorders. Attention and impulsivity are sexually 

dimorphic in healthy populations. These gender differences may be related to dehydroepiandrosterone [44]. 

Similar to our data, experimental [45] and clinical studies [46] have reported significant inverse correlations 

between clinical symptomatology (in particular hyperactivity symptomatology) and dehydroepiandrosterone 

levels [47,48]. Moreover, symptoms of hyperactivity and impulsivity in attention-deficit hyperactivity 

disorder may be separately regulated at the level of the nucleus accumbens [49]. 

Melatonin production, which is related to free radical production [50], reduces the production  

of adhesion molecules and pro-inflammatory cytokines [51], has antiapoptotic activity [52] and functions 

as a direct and indirect antioxidant, scavenging free radicals, stimulating antioxidant enzymes and enhancing 

the activities of other antioxidants or protecting other antioxidant enzymes from oxidative  

damage [53,54]. Melatonin has also been demonstrated to stimulate neurogenesis [55]. Melatonin 

could contribute to the prevention of environmental risk factors by gender that are associated  

with ADHD [2] and with other disorders [56] that may be related to oxidative stress [57]. Moreover, 

some of the deleterious effects associated with the highly effective use of psychostimulants in ADHD 
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may be prevented by melatonin [39,43]. We now hypothesize that nocturnal administration of melatonin 

may be helpful for treatment of both ADHD subtypes. 

In terms of the limitations of our study, our study had an open design and lack of randomization, 

with reporting of objective neuroendocrine measures of response after chronic treatment. Other 

limitations include (1) a low number of females, adolescents and patients belonging to the PAD subtype 

and (2) a large proportion of ADHD children with comorbid CD. Similar studies involving homogeneous 

groups of patients in terms of age, gender and co-morbidities, along with a more precise estimation  

of the adherence to treatment, are warranted for defining the serum biomarkers of the disorder  

and its comorbidities, in addition to the neurophysiological biomarkers that recently have been proposed [58]. 

3. Experimental Section 

3.1. Sample 

A total of 148 children (115 males, 33 females) between the ages of 5 and 14 years old  

(mean: 9.61 ± 2.54 year) were included in a prospective, quasi-experimental open clinical study  

in a hospital-based sample, primarily reporting objective neuroendocrine measures of response. 

The sample included a total of 136 children who met the Diagnostic and Statistical Manual  

of Mental Disorders, Fourth Edition, Text Revision/9th International Classification of Diseases  

(DSM-IV-TR/ICD-9) criteria for ADHD [59], after completing the clinical protocol to exclude the main 

comorbidities, in which each included patient was assessed at least twice, before and after treatment. 

Consequently, each patient may be considered as his/her own control. 

3.2. Clinical Method 

After the initial clinical interview with parents, completion of a personal medical history and physical 

examination of the child, we delivered to parents the following documents: (1) the DSM-IV-TR 

criteria assessment, which was completed by the child’s teacher; (2) EDAH scale (Spanish acronym 

for Evaluation of Deficit of Attention and Hyperactivity scale [60,61]), in duplicate, one for the teacher 

and the other for the child’s parents; (3) the CDI, which was completed by subjects aged ≥8 years;  

and (4) a sleep diary that was completed for one week. The EDAH contains some of the main criteria 

recommended in the DSM-IV-TR to aid in identifying children with ADHD and conduct disorder 

(CD). The EDAH questionnaire is a 20-item scale [62] that utilizes structured observation by teachers 

and is divided into two 10-item subscales for ADHD and CD. Based on EDAH, the ADHD group  

was sub-classified into two clinical subtypes: children with predominantly attention deficit (PAD;  

if AD (attention deficit) > 9; HI (hyperactivity-impulsivity) < 10; and total scores < 30) and children 

with predominantly hyperactive-impulsive/conduct disorder (PHI/CD; if AD < 10; H (hyperactivity) > 9; 

and/or total punctuation > 29). Therefore, of the 78 children who were included in the PHI/CD group, 

34 of them (44%) met criteria for the diagnosis of HI without CD. Of the 44 children with symptoms 

of CD, 33 displayed a predominance of symptoms of HI on the symptoms of CD, whereas the rest  

of the children (11/78; 14%) had a prevalence of symptoms of CD on the symptoms of HI. Only 26 of 

78 children in this group (33%) did not meet further criteria for attention deficit. 
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The d2 attention test [63] is a measure of attention, particularly visual attention. d2 measures 

processing speed, rule compliance and quality of performance, allowing for a neuropsychological 

estimation of individual attention and concentration performance, by quantification of two scoring 

keys: errors of omission and errors of commission. The d2 test has been fully validated and includes 

extensive norms according to age, sex and education. 

The CDI [64] is a self-report assessment of depression for children whose two subscales (negative 

mood and negative self-esteem) consist of the items that are most unique to depression and least 

related to anxiety. For defining subgroups, we considered the sum of both subscales, with a cut-off  

of >17 points considered pathological. The depressive symptom was assessed through interviews with  

the parents at baseline, in the clinical follow-up and quantified by the CDI score fulfilled by each children. 

All children were evaluated with an abbreviated intelligence test as a screening cognitive ability 

Kaufman (KBIT) [65] and also completed the Spanish version of the Sleep Diary of the National Sleep 

Foundation for one week, and the ADHD group completed the diary once again after treatment. 

Written informed consent was obtained from all parents and from children aged ≥12 years, and 

informed assent was obtained from all participants. The study design and outcome variables were 

approved by the Hospital Ethics Committee and the Health Research Fund of Spanish Ministry of 

Science and Innovation. 

The exclusion criteria were as follows: (1) KBIT < 85; (2) preexisting or actual treatment for epilepsy; 

(3) other treatments for ADHD or other conditions and (4) revocation of previous informed consent. 

Table 1 shows the clinical characteristics of the two study subgroups at inclusion. Methylphenidate 

(Osmotic Release Oral System (OROS) formulation) was well tolerated. 

Table 2 shows the incidence of depressive symptoms separated by ADHD subtype and sex. 

Table 2. Sample distribution of ADHD subtypes by presence of depressive symptoms and sex. 

The values are expressed as number and percentage. 

Sex 
Depressive 
Symptoms 

ADHD Subtype 
Total (%) 

PAD PHI/CD 

Boys

No 24 (77.42) 61 (80.26) 85 (79.43) 
Yes 7 (22.58) 15 (19.74) 22 (20.56) 

Total 31 (28.97) 76 (71.03) 107 (78.67) 

Girls 
No 5 (83.33) 14 (60.87) 19 (65.52) 
Yes 1 (16.67) 9 (39.13) 10 (34.48) 

Total 6 (20.69) 23 (79.31) 29 (21.33) 

Total

No 29 (78.38) 75 (75.75) 104 (76.47) 
Yes 8 (21.62) 24 (24.24) 32 (23.53) 

Total 37 (21.01) 99 (72.99) 136 (100) 

3.2.1. Treatment 

The only drug used in the study was prolonged release methylphenidate (PRMPH, OROS 

formulation), initially at 0.5 mg/kg/day. The dosage was adjusted as a function of response and tolerance  

to treatment (absence of adverse symptomatology). The mean initial dose of methylphenidate  

was 25.81 ± 10.35 mg, and the final dose at the time of the second evaluation was 31.85 ± 10.68 mg.  
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At inclusion, all patients were naive of any medication, and no other treatment (pharmacological  

or psychological) was administered before conclusion of the protocol. 

Previously, at inclusion and during the study duration time, none of the patients of our sample were 

treated with melatonin or other sleep medications. 

3.2.2. Measurements 

None of the samples were obtained in the presence of an acute or severe illness. Blood samples 

were taken at 20:00 and at 09:00 the following day. In the ADHD group, after 4.61 ± 2.29 months  

of daily methylphenidate administered early in the morning, the identical study protocol was repeated. 

Serum was separated into 0.5-mL aliquots for freezing at −30 °C until analysis. 

3.3. Analytical Method 

Serum melatonin was measured using melatonin direct RIA (IBL–Hamburg, Germany). The intra- and 

inter-assay CV were 3.9%–6.9% in the range of 28.8 to 266 pg/mL and 6.2%–15.9% in the range of 3.5 to 

281 pg/mL, respectively. The mean recovery of melatonin was 102%, and the sensitivity was 0.9 pg/mL. 

In addition, 6-sulphatoxy-melatonin (6-S-aMT) in urine was measured by ELISA (IBL–Hamburg). The 

detection limit was 1 ng/mL, with an intra-assay range of 5.2% to 12.2%, and the inter-assay range was 

5.1%–14.9%. Recovery ranged from 91% to 122%, and the correlation with RIA techniques was r = 0.96. 

3.4. Statistical Method 

To achieve the objectives of the study, factorial analyses were conducted as described below.  

For comparisons between EDAH and CDI scores (ordinal variables), Wilcoxon signed-rank tests (paired 

samples) were used for inferential statistics. For comparisons between patients (cases) and each variable  

in the study, the factors in the factorial models were as follows: (1) subtype with two categories: PAD 

and PHI/CD subtypes; (2) patients, nested in subtypes and subgroups (CDI); (3) hour, with two categories, 

day and night, and crossed with subtype; and (4) time, with two levels before and after treatment;  

this factor was a crossed factor with subtype and hour. Subtype, hour and time were fixed effects 

factors, and patients were considered as a random effects factor. Comparisons between cases were 

performed. The factorial model had the following three factors: (1) group with two categories (PAD 

and PHI/CD subtypes); (2) patients nested in CDI subgroups; and (3) hour, with two categories, day 

and night, that was crossed with group. Group and hour were fixed effects factors, and subjects  

was a random effects factor. For both types of comparisons, an ANOVA table was built, and higher 

interactions were determined. If these were significant, multiple pairwise comparisons were made 

using Bonferroni’s correction, and if not, these corrections were applied to the principal effects in the table. 

The experimental quantities for these comparisons were not “t” as expected, because we used “z”,  

the normal approximations for “t’s”, because of global sample sizes. The analyses reported were crude 

analyses, and adjusted analyses by age and gender were performed using the ANCOVA methodology. 

In all cases, the interactions were studied for levels below 0.15, and the latest comparisons were 

considered significant at p < 0.05 after applying the penalty provided by the correction. When 

analyzing the variances in different groups, homogeneous transformations were conducted for data using 
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natural logarithm to achieve uniformity. We used the statistical package STATA 12.0 (StataCorp, College 

Station, TX, USA) for all analyses. 

4. Conclusions 

In summary, our study indicates that the presence of depressive symptoms is not responsible for the 

observed higher melatonin levels in the PHI-CD subtype of ADHD children, although the pineal hormone 

may participate in the pathophysiology of ADHD, as, in addition to melatonin alleviating sleep onset 

disorders, clinically effective methylphenidate treatment is related to a decrease of 6-sulphatoxy-melatonin 

excretion, most likely indicating a differential cerebral metabolism, which may generate end products 

that finally result in a clinically favorable outcome. Methylphenidate appears to induce changes in 

several others neuroendocrine mediators that globally act by adjusting physiological functions that 

collaborate to achieve the high efficacy of the stimulant pharmacological treatment of ADHD. 
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