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Abstract: Zernike polynomials are commonly used to represent the 
wavefront phase on circular optical apertures, since they form a complete 
and orthonormal basis on the unit circle. Here, we present a generalization 
of this Zernike basis for a variety of important optical apertures. On the 
contrary to ad hoc solutions, most of them based on the Gram-Schmidt 
orthonormalization method, here we apply the diffeomorphism (mapping 
that has a differentiable inverse mapping) that transforms the unit circle into 
an angular sector of an elliptical annulus. In this way, other apertures, such 
as ellipses, rings, angular sectors, etc. are also included as particular cases. 
This generalization, based on in-plane warping of the basis functions, 
provides a unique solution and what is more important, it guarantees a 
reasonable level of invariance of the mathematical properties and the 
physical meaning of the initial basis functions. Both, the general form and 
the explicit expressions for most common, elliptical and annular apertures 
are provided. 
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1. Introduction 

The problem of finding complete orthonormal systems to represent functions defined on finite 
supports with a given geometry appears in many areas of Physics and Engineering. In 
particular, Zernike circle polynomials (ZPs) [1] are widely used to represent optical path 
differences (phase differences or wave aberrations) in wavefronts, or even the sag of optical 
surfaces (such as the human cornea [2, 3]) as they are well adapted to the circular shape of a 
majority of conventional optical systems. There are an infinite number of possible systems, 
but ZPs (or lineal combinations of them [4]) show important advantages and interesting 
properties. Among these properties, they permit to establish a link with the traditional Seidel 
theory of aberrations [5], which is based on a third order Taylor series expansion, and with 
further extensions of the Seidel theory to 5th order, etc. On the one hand, the monomials of 
the Taylor series have a clear physical meaning as they represent different types of 
aberrations (defocus, astigmatism, coma, etc.) but are not orthogonal, which limits both 
theoretical and practical developments. On the other hand, higher order ZPs contain lower 
order terms, as a necessary balance to get zero average [6]. As a result of this cross-talk 
between higher and lower orders, the link of the ZPs to the Seidel theory is not evident. 
Nevertheless, the theoretical and practical advantages of orthonormal polynomials, make that 
ZPs became the standard way to describe the phase of wavefronts [7] (or the wave aberration 
or optical path differences) in many fields ranging from atmospheric optics [8], optical design 
and testing [9] or visual optics (the ANSI Z80.28 standard for reporting aberrations in the 
human eye is based on ZPs). Even though the circle is the most common optical aperture, 
there are other geometries, such as the annular pupils in large telescopes [10] or rectangular in 
anamorphic systems, etc. Furthermore, even in the case of circular apertures, the effective 
pupil becomes elliptical for off-axis field angles [11]. The eccentricity of the ellipse increases 
with field angle, and can reach high values for wide angle lenses. The importance of this 
problem motivated the development of a series of ad hoc solutions, most of them based on the 
Gram-Schmidt (G-S) method to obtain orthonormal basis on different types of apertures [12, 
13] such as ellipses [11], rectangles [14], annuli [15], circular sectors [16], etc. In some 
particular cases, such as rectangles, Legendre [14] or Chebyshev polynomials [17] were also 
proposed, but their integration within Seidel or Zernike theoretical frameworks is difficult. An 
extensive catalogue of polynomial basis functions on different types of apertures can be found 
in [18]. The G-S method has several advantages but also important drawbacks. The main 
advantage is that it is a quite general linear method, and thus, the resulting basis functions are 
linear combinations of the initial ZPs. The main drawbacks are that there is not a unique 
solution (the final basis may depend on the ordering of the initial system, or on the particular 
implementation [19], refining algorithms [20, 21], etc.) and that one has to find an ad hoc 
solution for every type of aperture [12–17]. These, in turn, hinder the physical interpretation 
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of the associated expansion coefficients (especially for the higher orders due to a cumulative 
effect associated to the G-S method). In addition, the G-S method is especially well-suited for 
numerical implementation, which means even further optimization for specific parameters of 
the apertures (eccentricity or orientation of the ellipse, radius of the central obscuration, etc.). 
Somewhat more general analytical expressions can be obtained too using a non-recursive 
method [22], but the computational cost may dramatically increase with the order of the 
polynomial, which may become an effective limitation [11]. 

In this context, our goal was to develop a general framework able to provide a common 
formulation under a unique criterion and providing a unique general solution for most of the 
usual optical apertures. Our approach is based on finding the mapping that transforms the unit 
circle into the desired aperture geometry. That is to find the diffeomorphism (i.e. a mapping 
that has a differentiable inverse mapping) [23] that transforms the unit circle into the 
connected set within the plane that represents the optical aperture. This mapping means 
warping (and rotating within the plane) the input basis functions so that they fit into the new 
aperture geometry. On the contrary to that ad hoc solutions, that warping permits not only 
uniqueness, but also a high level of invariance of the mathematical properties and physical 
meaning of the basis functions (tilt, defocus, astigmatism, coma, etc.) and hence a natural 
generalization of the aberration theory. One of the simplest possible mappings consists of the 
affine transformation (composed of scaling along x and y, and rotation) which maps the circle 
into the ellipse. Here, the resulting basis functions are linear combinations of the initial ones 
(i.e. polynomials), and the associated metrics are proportional (i.e. Euclidean). Other 
mappings, in particular those transforming the circle into (circular or elliptical) annuli, are 
non-linear and thus, in general, the warped basis functions are not polynomials and the 
associated metric may not be Euclidean. 

In the present work, we will consider the angular sector of an elliptical annulus with 
arbitrary orientation as our most general case of mapping of the circle, since other geometries 
such as circles, ellipses, annuli, sectors, etc., correspond to particular values of the parameters 
of the general sector. Square, rectangular, hexagonal, etc., geometries are not considered in 
the present study. 

2. Theoretical basis 

The generalization of unit circle polynomials (or, in general, any complete and orthogonal set 
of basis functions in the circle) to deformations or partitions of the disc can be achieved by 
applying a diffeomorphism of the unit circle (or unit disc) D into a connected set M within the 
plane (see Fig. 1): 

 1R A= ≠  (1) 
The diffeomorphism is an especially useful transformation in this context, since it is a 

bijection and its inverse exists and is differentiable as well: 

 1
: ( , ) ( , ) : ( ( , ), ( , )),u u v x y u x y v x yϕ −= = =
  (2) 

and the Jacobian of the inverse transformation 1ϕ − will be ( , ) :
u

J x y
x

∂
=

∂
  
 



 . Now, let us choose a 

complete set of basis functions Zj (for example ZPs) orthonormal on D with metric dudv . 
These functions are orthonormal also under the change of variables ( , ) ( , ) ( , )u v x y u vϕ→ = ; and 

taking into account that ( , )dudv J x y dxdy= , then we have: 

 1 1

,

1 1
( , ) ( , ) ( ( , )) ( ( , )) ( , )

i j i j i jD M
Z u v Z u v dudv Z x y Z x y J x y dxdyδ ϕ ϕ

π π
− −= =     (3) 

where π is the area of the unit circle D. This means that the new functions resulting from this 
change of variables 
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 :ds dxdy rdrdθ= =  (4) 

are orthonormal on M with metric ( , )J x y dxdy . We can obtain a further generalization by 

considering the product of these functions with a continuous function ( , )Q x y  so that: 

 1
( , ) : ( , ) ( ( , )).

j j
K x y Q x y Z x yϕ −=  (5) 

The resulting functions are orthonormal on M with metric 2
( , ) ( , )Q x y J x y dxdy

− . In 

particular, we can take the trivial case ( , ) 1Q x y = , so that ( , ) ( , )
jj

K x y K x y=  are orthonormal 

functions on M  with metric ( , )J x y dxdy . Another interesting particular case is when we take 

( , ) ( , )Q x y J x y= , in shuch a way that the resulting functions ( , )jK x y  are orthonormal on 

M  but now with the Euclidean metric dxdy . 

 

Fig. 1. Mapping of the unit circle D onto a connected set M through diffeomorphism φ(u,v). 

It is straightforward to show that the set { ( , )}
j

K x y  forms a complete system in 2
( )L M  with 

metric 2
( , ) ( , )Q x y J x y dxdy

− . For any function ( , )f x y  on 2
( )L M , we can define ( , )f u v  on 

2
( )L D  (with Euclidean metric dudv) as follows: 

 1
( , ) : ( ( , )) ( ( , )) ( , ),

j j

j

f u v Q u v f u v c Z u vϕ ϕ−= =   (6) 

that is the expansion of f on the basis set Zj, where the coefficients are given by the 
projections of ( , )f u v  on the basis functions: 

 
1

: ( , ) ( , ) .
j jD

c f u v Z u v dudv
π

=    (7) 

If we now apply the change of coordinates to the definition of the new basis functions, 
and solve for Zj we have: 

 1
( , ) ( ( , )) ( ( , ));

j j
Z u v Q u v K u vϕ ϕ−=  (8) 

and then we find that 

 ( , ) : ( , )
j j

j

f x y c K x y=   (9) 

where the coeffients are also obtained through projection onto the set of basis functions on M: 

 21
: ( , ) ( , ) ( , ) ( , ) .

j jM
c f x y K x y Q x y J x y dxdy

π
−=    (10) 
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Note that the metric will be dxdy only when ( , ) ( , )Q x y J x y= . The above formulation 

assumes Cartesian coordinates, but equivalent results are obtained in polar coordinates. 
We want to remark that the choice of ( , )Q x y has important consequences. In practrice, 

there are two alternative ways to obtain the expansion coeffients 
j

c , either computing the 

inner products (projections) with the basis functions, as in Eq. (10), or through least squares 
fit, which is especially useful for sampled functions [24]. In the last case, the effect of the non 
Euclidean metric ( ( , ) 1Q x y = ) is that we will have a weighted least squares problem. On the 

one hand, using ( , ) ( , )Q x y J x y=  implies a deformation of the basis functions which might 

potentially alter their physical meaning. In fact some properties such as zero mean or the 
possibility of computing the variance of the function as the squared sum of the coefficients 
can be lost in that case. We know that the mean of functions ( , )

j
K x y , 

1
( , ) ( , ) 0,

j jM
K x y J x y dxdyμ

π
= =   0j∀ ≠ as a consequence of their orthogonality; but the mean 

of ( , )
j

K x y , 
1 1

( , ) ( , ) ( , )
j j jM M

K x y dxdy K x y J x y dxdyμ
π π

= =    may be different from zero 

depending on the Jacobian. The variance 2σ  of any function ( , )f x y  

is
2

2 21 1
( , ) ( , ) ( , ) ( , )

M M
f x y J x y dxdy f x y J x y dxdyσ

π π
= −   

     . If we replace ( , )f x y by its 

expansion ( , )jj jc K x y  we have 2 2
jj

cσ = as far as ( , )
j

K x y have zero mean 

( 0
j

μ = , 0j∀ ≠ ), since the left integral becomes the sum of 2

,j j j
c δ , whereas the right integrals 

are equal to zero, except for j = 0, for which we have ( )2

0
c . Thus we have 

2 2

0

2

0

2
j jj j

cc cσ
>

= − =  . If we now consider the expansion on the system ( , )
j

K x y  then we 

arrive to ( )2
2

0

2 2

j j j jj j j
c c cσ μ

>
= − ≠   . As we discuss further below, despite the 

complexity added by the non-Euclidean metric to the computation of inner products or to the 
weighted least squares fit, it seems more convenient to set ( , ) 1Q x y = . Nevertheless, when 

( , )J x y Constant=  then ( , ) ( , )Q x y J x y Constant= =  is a simple re-normalization factor. 

3. Standard portions of circles and ellipses 

In this section we particularize the above general formulation to standard partitions of circles 
and ellipses (annuli, angular sectors, etc.). To this end we consider the angular sector G of an 

elliptical annulus with arbitrary orientation as the most general mapping ϕ considered here. 
As shown in Fig. 2, the geometry of this general sector G is described by 6 parameters, 
whereas other shapes (annuli, ellipses, etc.) are obtained as particular cases for specific values 
of these parameters. The mapping from the unit circle (radius R = 1) into the ellipse can be 
obtained through a linear affine transformation that is the composition of scaling x and y (to 
obtain semi axes A and B with B ≤ A) and rotation by angle α (formed by the major axis A 
with the x axis). The (concentric) elliptical annulus requires another parameter 0 1h≤ < , that 
is the proportionality constant between its inner and outer elliptical boundaries, 

/ /h a A b B= =  ( a hA=  and b hB= are the inner semiaxes). Finally the angular sector will be 
the area inside the angular interval [ ]

1 2
,θ θ . Thus, our general mapping will be determined by 

six parameters: A, B, α, h, 
1

θ  and
2

θ . This also includes the mapping of the unit circle into 

another circle with arbitrary radius 1R A= ≠ . 
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We can obtain a more compact expression for the mapping ϕ  by considering it as the 

composition of two mappings 
2 1

ϕ ϕ ϕ=  . In the second mapping 
2

ϕ we apply a rotation by 

angle α so that: 

 
2

( , ) ( , ) ( cos sin , sin cos )x y X Y X Y X Yϕ α α α α= = − +  (11a) 

and 

 1

2
( , ) ( , ) ( cos sin , sin cos )X Y x y x y x yϕ α α α α−= = + − +  (11b) 

that is a change to the scaled variables ( , ) : ( , ) : ( cos , sin )X Y AX BY Ar Brθ θ′ ′ ′ ′ ′ ′= = , that is 
2 2

: ( / ) ( / )r X A Y B′ = + , : arc tan(( ) / ( ))AY BXθ ′ = . 

Now we can apply the mapping 1ϕ  that transforms the unit circle into the angular ring 

sector: 

 ( ) 2 1 2 1

1 1 1
( , ) , ( [ (1 ) ] cos[ ], [ (1 ) ]sin[ ])

2 2
X Y u v A h h B h h

θ θ θ θ
ϕ ρ θ φ ρ θ φ

π π

′ ′ ′ ′− −′ ′= = + − + + − + (12a) 

and 

 1 1 1

1

2 1 2 1

2 ( ( , ) ) 2 ( ( , ) )( , ) ( , )
( , ) ( , ) cos , sin

1 1

X Y X Yr X Y h r X Y h
u v X Y

h h

π θ θ π θ θ
ϕ

θ θ θ θ
−

′ ′ ′ ′′ ′− −− −
= =

′ ′ ′ ′− − − −

     
         

(12b) 

where 2 2

: u vρ = + , : arc tan( / )v uφ = ; ( ),r X Y′  and ( ),X Yθ ′ were defined above. Then, the 

complete inverse mapping 1 1 1

1 2
ϕ ϕ ϕ− − −=  is: 

 
( ) ( ) ( ) ( )

1 1 1

2 1 2 1

2 ( , ) 2 ( , ), ,
( , ) ( , ) cos , sin

1 1
,

x y x yr x y h r x y h
u v x y

h h

π θ θ π θ θ
ϕ

θ θ θ θ

−

′ ′ ′ ′′ ′− −− −
= =

′ ′ ′ ′− − − −

    
        

 (13) 

with ( ) ( ) ( )2 2

cos sin sin cos
,

x y x y
r x y

A B

α α α α+ − +
′ = + ; ( ) ( sin cos )

, arc tan
( cos sin )

A x y

B
x y

x y

α
θ

α

α α

−′ +
=

+

  
 

; 

1 1
arc tan tan( )A

B
θ θ α′ = −   ; and 

2 2

arc tan tan( )A
B

θ θ α′ = −   . As a result of the composition of two 

transformations, we have an intermediate change of variables ( ) ( ) ( ), , ,x y X Y u v′ ′→ → or in 

polar coordinates: ( ) ( ) ( ), , ,r rθ θ ρ φ′ ′→ → . 
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Fig. 2. General angular sector [ ]
1 2

,θ θ  of an elliptical (semiaxes A, B) annulus (h = a/A = b/B) 

with orientation α. 

We can see that ( , ) ( cos , sin )x y r rθ θ= , with 2 2
, arc tan( / )r x y y xθ= + = , are now confined 

within the sector G depicted in Fig. 2. The angular interval is [ ]
1 1 2 2

,: :θ α θ θ α θ= + = +  where 

1 2
,θ θ are angles with the X axis. On the one hand, we have arc tan(( / ) tan )B Aθ θ ′= so that 

1 1
arc tan(( / ) tan )B Aθ θ ′=  and 

2 2
arc tan(( / ) tan )B Aθ θ ′=  with 

1 2
θ θ<  and [ ]

1 2
, 0, 2θ πθ ∈ . On the other 

hand 0 1ρ≤ ≤  and 0 2φ π≤ ≤ . Then we have: 

 
2 2

2 2 2
[ (1 ) ] 1

X Y
h h h r

A B
ρ ′≤ + = + − = ≤      

   
 (14a) 

and 

 2 1

1 1 2
arc tan

2
.

AY

BX

θ θ
θ θ θ φ θ

π

′ ′−′ ′ ′ ′≤ = = + ≤  
 

 (14b) 

In Eq. (14a), we can see that (1 )r h h ρ′ = + − . Since [ ]0,1ρ ∈ , then [ ],1r h′ ∈ and Eq. (14b) 

means that [ ]
1 2
,θ θ θ′ ′ ′∈ and hence ( , ) ( cos , sin )x y r rθ θ=  take values within the 

sector
1 2

: {( , ), 1, }G x y h r θ θ θ′ ′ ′ ′= ≤ ≤ ≤ ≤ . The Jacobian of this transform is 

 
2

2 1

2 ( )
( , )

(1 ) ( )
.

r h
J x y

ABr h

π

θ θ

′ −
=

′ ′ ′− −
 (15) 

It is noteworthy that the Jacobian is not constant only for annuli and annular sectors (see 
Table 1). 

3.1. General system 

Now, we can write the new basis functions on G. We will consider ( , ) 1Q x y = : 

 

( )
( )

1 1

2 1 2 1

( , ) : ( , ) cos sin , sin cos

cos cos sin sin , cos sin sin cos

2 ( ) 2 ( )
: cos , sin .

1 1

j j j

j

j

G x y K x y K X Y X Y

K Ar Br Ar Br

r h r h
Z

h h

α α α α

θ α θ α θ α θ α

π θ θ π θ θ

θ θ θ θ

= = − +

′ ′ ′ ′ ′ ′ ′ ′= − +

′ ′ ′ ′′ ′− −− −
=

′ ′ ′ ′− − − −

     
         

 (16) 

Functions Gj form a complete orthonormal system on G, the general angular sector of the 
elliptical ring, with metric (differential of surface area) 
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: ( , ) ( cos , sin )ds J x y dxdy J r r rdrdθ θ θ= = . It is straightforward to show that functions Gj: (1) are 

orthonormal (i.e. their inner products are Kronecker's deltas); (2) any square-integrable 
function, defined on G can be expressed as a linear combination of functions Gj; and (3) when 
the general sector of an elliptical annulus tends to the unit circle, that is when 1A → , 

1B → , 0α → , 0h → , 
1

0θ → and 
2

2θ π→ , then ( , ) ( , )
j j

G x y Z x y→ . Table 1 lists the ranges of 

the parameters as well as the Jacobian (Eq. (15) for the different particular geometries 
(annulus, sectors, ellipses, etc.) 

Table 1. Range or constant values for the parameters corresponding to the different 
mappings of the unit circle. All parameters are positive. 

 
Basis 

Functions 
Jacobian A B α h θ1 

θ2 

Circle Dj 2
1 A  > 0 A 0 0 0 2π 

Annulus Oj 
2 2

(1 )

r hA

rA h

−

−
* > 0 A 0 < 1 0 2π 

Ellipse Ej 1 ( )AB  > 0 < A < π 0 0 2π 

Elliptical Annulus Oj 
2

(1 )

r h

r AB h

′ −

′ −
* > 0 < A < π < 1 0 2π 

Circular sector Sj 
2

2 1

2

( )A −

π

θ θ
 > 0 A 0 0 < θ2 ≤ 2π

Elliptical sector Sj 
2 1

2

( )AB ′ ′−

π

θ θ
 > 0 < A < π 0 < θ2 ≤ 2π

Annular sector Aj 
2 2

2 1

2 ( )

(1 ) ( )

r hA

rA h

−

′ ′− −

π

θ θ
* > 0 A 0 < 1 < θ2 ≤ 2π

Elliptical annular 
sector 

Gj 
2

2 1

2 ( )

(1 ) ( )

r h

r AB h

′ −

′ ′ ′− −

π

θ θ
* > 0 < A < π < 1 < θ2 ≤ 2π

*Non Euclidean metric 

3.2. Zernike polynomials 

In what follows we will consider that m

j n
Z Z=  are ZPs (here j is a combination of the two 

indexes: the order of the polynomial n, and the angular frequency m. Different authors use 
different ordering, and hence different j. Probably the most accepted ordering is the one 

proposed by Noll [8]). Their expression in polar coordinates 2 2
: u vρ = + , : arc tan( / )v uφ =  is: 

 
| |

| |

( ) cos( ), 0,
( , ) :

( ) sin( ), 0,

m m

m n n

n m m

n n

N R m m

N R m
Z

m

ρ φ
ρ φ

ρ φ

≥
=

− <





 (17a) 

where 

 
( )

( ) 2

2

00

2( 1) ( 1) ( )!
( )

| | | |1
! ! !

2 2

and
sn m

m m n s

n n

sm

n n s
N R

n m n m
s s s

ρ ρ
δ

−
−

=

+ − −
= =

− ++ − −      
   

      (17b) 

If we apply the mapping described above, then we obtain 
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| | 1

2 11

| | 12 1

2 1

2 ( )
( ) cos( ), 0,

12 ( )
( , )

2 ( )1
( ) sin( ), 0,

1

m m

n n

m

n

m m

n n

r h
N R m m

hr h

r hh
N R m m

h

Z

π θ θ

θ θπ θ θ

π θ θθ θ

θ θ

′ ′′ −−
≥

′ ′′ ′′ − −−−
=

′ ′′′ ′ −−− −
− <

′ ′− −







 (18) 

with ( )( ) ( )( )2 2

cos sinr r A Bθ α θ α′ = +− − ; ( )( )arc tan tanA
Bθ θ α′ = − ; 

1 1
arc tan tan( )A

B
θ θ α′ = −   ; and 

2 2
arc tan tan( )A

B
θ θ α′ = −   . 

Figure 3 shows one example for the particular case of 3

3
Z  (trefoil). 

4. Particular cases: ellipses and annuli 

In this Section we analyze in detail two cases mostly relevant in optics: ellipses and annuli, 
departing from the system of Zernike circle polynomials. 

4.1. Elliptical apertures 

As we said above, the mapping from the unit circle into an ellipse is a linear transformation 

involving three parameters A, B (it is common to use the eccentricity 2 2
1e B A= − as a 

measure of the elongation. This parameter will be used for the explicit expressions of the 
polynomials listed in Table 2), and α, and thus: 
( , ) ( , ) ( cos sin , sin cos )x y u v Au Bv Au Bvϕ α α α α= = − + , and its inverse mapping: 

1
( , ) ( , ) (( cos sin ) / , ( sin cos ) / )u v x y x y A x y Bϕ α α α α−= = + − + . The Jacobian ( , ) 1 ( )J x y AB=  is 

constant (i.e. Euclidean metric), so it is possible to use ( , ) 1 /Q J x y AB= =  as a simple re-

normalization factor. The set of basis functions on the ellipse 
2 2

,

2

,

2
: {( , ), ( cos sin ) ( sin cos ) 1}

A B
E x y x y A x y Bα α α α α= + + − + ≤  will be: 

 
1 1

( , ) : ( , ) (( cos sin ) / , ( sin cos ) / )
m m m

n n n
x y x y Z x y A x y B

A
E E

B AB
α α α α= = + − +  (19) 
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Fig. 3. Basis functions obtained for the particular case of the Zernike circle polynomial 
3

3

Z (trefoil) corresponding to the different cases listed in Table 1. The fringes in the 

interferograms correspond to 1 wavelength of optical path difference. 

For the particular case of ZPs ( , )
m

n
Z ρ φ , we only need to simplify Eq. (18) by setting 

0h = ;
1
' 0θ = ; and 

2
' 2θ π=  to obtain the system ( , )

m

n
rE θ′ ′ : 

 

| |

| |

( ) cos( ), 0,

( , )
( ) sin( ), 0,

1

1

m m

n n

m

n
m m

n n

N R r m m

r
N R r

E
m m

AB

AB

θ
θ

θ

′ ′ ≥
′ ′ =

′ ′ <






 (20) 

where m

n
N and | |m

n
R were given in Eq. (17b) and the variables ( , )r θ′ ′  were defined right after Eq. 

(18). Since this is a particular case of G, these functions (1) are orthonormal; (2) any square-
integrable function, defined on E can be expressed as a linear combination of functions m

n
E ; 

and (3) when the ellipse transforms to the unit circle, that is when 1A → , 1B → and 0α → , 

then ( , ) ( , )
m

n

m

n
E x y Z x y→ . The specific orthogonal elliptical polynomials are listed in Table 2 up 

to order 4. Several representative examples, corresponding to various Zernike wavefront 
aberrations: tilt, defocus, astigmatism, coma, trefoil and spherical aberration are represented 
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in Fig. 4 for the particular case of α = 137.5° and e = 0.74. This would correspond to the 
effective pupil for an off-axis (skew) wavefront passing through a circular aperture at field 
angle 32.4° and azimuth 54.3° (Only positive values of m are shown since m < 0 are rotated 
versions of the same aberration modes). 

B. Annular apertures 

The mapping of the unit circle into the annulus : D Oϕ → , with a and A (with a = hA) being 

the radii of the inner and outer circular boundaries respectively, can be expressed as: 

 ( , ) ( , ) ( [ (1 ) ]cos , [ (1 ) ]sin )x y u v A h h A h hϕ ρ φ ρ φ= = + − + −  (21) 

and its inverse: 

 
( ) ( )

1
( , ) ( , ) ( cos , sin ).

1 1

r hA r hA
u v x y

A h A h
ϕ θ θ− − −

= =
− −

 (22) 

With this mapping ( )[ ]1r A h h ρ= + − ; since [ ]0,1ρ ∈ , then [ ],r hA A∈ . This means that the 

Jacobian 
( )22

( , )
1

r hA
J x y

rA h

−
=

−
 is positive, but it is not constant, and hence the metric is not 

Euclidean (unless we set 
( )

( , )
1

r hA
Q J x y

r A h

−
= =

−
). The functions: 

 
( ) ( )

( , ) : ( cos , sin )
1 1

m m

n n

r hA r hA
O r Z

A h A h
θ θ θ

− −
=

− −
 (23a) 

or 

 
( ) ( ) ( )

( , ) : ( cos , sin )
1 11

m m

n n

r hA r hA r hA
O r Z

A h A hr A h
θ θ θ

− − −
=

− −−
 (23b) 

form complete orthonormal systems on the annulus : {( , ), , 0 2 }O x y a hA r A θ π= = ≤ ≤ ≤ ≤  with 

metric 
( ) ( )2 22 2

:
1 1

r hA r hA
ds dxdy drd

rA h A h
θ

− −
= =

− −
 for system { }m

n
O  or :ds dxdy rdrdθ= =  for system 

{ }m

n
O . The general expression in polar coordinates for { }m

n
O results: 

 

( )

( )

( )

( )

( )

( )

2

2

00

2

2

00

2( 1) ( 1) ( )!
( ) cos( ), 0,

| | | |1 1
! ! !

2 2
( , )

2( 1) ( 1) ( )!
( ) sin( ), 0.

| | | |1 1
! ! !

2 2

sn m

n s

sm

m

n
sn m

n s

sm

n n s r hA
m m

n m n m A h
s s s

r
n n s r hA

m m
n m n m A h

s s

O

s

θ
δ

θ

θ
δ

−
−

=

−
−

=

+ − − −
≥

+ −+ −− −

=
+ − − −

− <
+ −+ −− −


        
    


           




(24) 
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Table 2. Expressions of the orthogonal elliptical polynomials up to order n = 4 where A is 

the major semi axis; 
2 2

1e B A= −  is the eccentricity; and α  is the orientation of the 

ellipse. 

Elliptical polynomials 

0

0 1E =  
1

1

2( cos sin )x y
E

A
=

+α α
 

2

1

1

2( cos sin )

1

y x
E

A e

− −
=

−

α α
 

( ) ( ) ( )( )
( )

2 2 2 2 2

0

2

2

2 2

2 2

3 1 2 (2 sin 2 cos 2 ( ))

1

A e e x y e xy x

A e
E

y− − + − + + + −
=

−

α α
 

( )( )2 2

2

2
2 2

6 sin 2 2 cos 2

1

y x xy

e

E

A

−
− +

=
−

α α
 

( ) ( )( )
( )

2 2 2 2 2 2

22 2

2
3 2 (2 sin 2 cos 2 ( ))

2 1

e x y e xy x y

A e
E

+ + − + −

−
=

α α
 

( ) ( ) ( )( )
( )

2 2 2 2 2 2

1

2 2 2

2
3 2

3
2

1 ( cos sin ) 4 1 3 2 3 (2 sin 2 cos 2 ( ))

1

e y x A e e x y e xy x y

A
E

e

−
− − − − − − + −

−
=

+α α α α
 

( ) ( ) ( )( )
( )

2 2 2 2 2 2 2 2

1

3 3 2

2 ( cos sin ) 4 1 3 2 3 (2 sin 2 cos 2 ( ))

1

x y A e e x y e xy x y

A
E

e

+ − − + − + +
=

+ −

−

α α α α
 

( ) ( ) ( )( )
( )

2 2 2 2 2 2

3 /

3

3 2
3 2

2 ( cos sin ) 3 2 3 4 (2 sin 2 cos 2 ( ))

1

y x e x y e xy x y

A e
E

−
− − − + − − −

=
+

−

α α α α
 

( ) ( )( )
( )

2 2 2 2 2 2

3 2

3

3

2 ( cos sin ) 2 ( 4)(2 sin 2 cos 2 ( ))

1

x y e x y e xy x y

A
E

e

+ + + + − −
=

+

−

α α α α
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( )

( ) ( ) ( )( )
( ) ( ) ( )( )

( )
( ) ( ) ( ) ( )

2 2 2 2 2

2
4 2 2 2 2 2 2 2 2 2

2 2 4 2 2 4 2 2 2
4 2

2
2 4 2 2 2 2

4

4 2 2

0

8 sin 2 2 1

4 1 3 4 cos 2 ( ) 2 15

cos 4 6 4 sin 4 ( )4 1

12 3 2 3 3 8 8

xy e x y A e

A e e x y e x y A e

e x x y y e xy x yA e

A e e x y e e

E

x y
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− + + − − + − −

+ − + + −−

− − + + + − + +

=

  
  
  
  

  
 
 

α

α
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Fig. 4. Orthogonal elliptical polynomials corresponding to Zernike wavefront aberrations: tilt 
1

1
E , defocus 

0

2
E , astigmatism

2

2
E , coma 

1

3
E , trefoil

3

3
E and spherical aberration

0

4
E . The 

fringes in the interferograms correspond to 1 wavelength of optical path difference. 

Again, this system is complete, orthonormal and reduces to m

n
Z when 0h →  and 1A → . The 

specific annular functions (polynomial quotients) are listed in Table 3 up to order 4, and 
representative examples are shown in Fig. 5 for h = 0.33 which is close to that of the central 
obscuration of the Hubble telescope. 

5. Discussion and conclusions 

We presented a general method to obtain complete orthonormal systems in any connected set 
M. This consists of applying a diffeomorphism to a given (complete and orthonormal) system 
on the unit circle to transform the circle basis functions into the new system on the desired 
geometry. This type of mapping is a bijection, so that it is invertible. In addition, its inverse is 
differentiable, so it has an associated Jacobian. All these properties are essential for 
establishing a rigorous and robust theoretical framework. We then particularized the method 
to circles, ellipses and their standard portions: annuli and angular sectors, etc. The general 
mapping of the unit circle into an angular sector of an elliptical ring can be obtained by the 
composition of four mappings: for the annuli: ( ) ( )1r r h h→ − −  where h and 1 are the radii of 

the inner and outer (unit disk) boundaries of the annulus. Similarly for the angular sectors: 
( )

1 2 1
2 ( )θ π θ θ θ θ→ − − . The scaling: x Ax→  and y By→  transforms the unit circle into a 

horizontal ellipse. Finally the in-plane rotation by angle α permits to have an arbitrary 
orientation. The eight geometries, listed in Table 1, are obtained by composing one, two, 
three or four of these transformations. The associated Jacobians are constant except for the 
radial mapping ( ) ( )1r r h h→ − − , since the Jacobian to pass from Cartesian to polar 
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Table 3. Expressions of the orthogonal annular basis functions (polynomial quotients) up 
to order n = 4. A and a = hA are the outer and inner radii. 

Annular basis functions 

0

0
1O =  

( ) ( )1 2 2

1

2
1

1

x
O x y

A h
hA= − +

−
 ( )1 2 2

1

2
1

( 1)

y
O x y

A h
hA

− = + −
−

 

( )( )2 2 2 2 2

2

2 2 2

3 ( ( 2) 1) 4 2

( 1)

A h h hA x y x y
O
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+ − − + + +
=

−
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2 2 2 2 2 2

2

2 2 2 2 2

2 6 2

( 1)
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O
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− +
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2

2 2 2 2 2

6 ( ) 2
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O
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O
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=
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Fig. 5. Orthogonal annular polynomials corresponding to equivalent Zernike wavefront 
aberrations. 

coordinates is not constant. Thus, the simplicity of this framework, based on simple changes 
of variables is another interesting aspect (even though the composition of up to four of these 
changes may yield to long expressions). 

These systems are especially important in the wave theory of aberrations and optical 
image formation [5, 7]. As we said in the Introduction, there is not a complete agreement on a 
unified theory yet. Nevertheless, the good mathematical properties of ZPs are making that 
they are becoming a standard among the scientific community, but even more in technologies 
embedded in many industrial tools (optical design), devices (surface metrology, optical 
testing) and even in clinical apparatus in ophthalmology (corneal topographers, ocular 
aberrometers, etc.) In addition to form a complete orthonormal system they have compact 
expressions both in polar and Cartesian coordinates, and they also show an interesting list of 
additional properties. The main drawbacks come from the fact that ZPs represent a highly 
convenient but arbitrary choice, and from some difficulties for unification with the Seidel 
(third order and further extensions to 5th and higher orders) theory of aberrations. The wave 
aberration theory based on orthogonal systems, such as Zernike polynomials, is superior to 
the Seidel theory for nearly diffraction-limited optical system because the image quality, as 
measured by the Strehl ratio, Sr, (peak of the point spread function normalized to that of the 
Airy disk) [5] can be predicted from the wavefront variance, and hence from the expansion 
coefficients as: 2 2 2 2

0
11 jj

Sr k k cσ
>

−≈ =−  (where 2k π λ=  is the wave number). However 

this approximation is valid only when the aberrations are small, i.e. when σ  is not much 
greater than 14λ  (Maréchal criterion for diffraction-limited optical quality) [5]. Thus, the 

wavefront variance 2σ , or the root mean square (RMS) wavefront errorσ , are good metrics 

for optical image only when σ λ<< . Thus the quadratic sum of the wavefront coefficients 2σ , 
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or the RMS σ , are good metrics for the wavefront quality, but in aberrated systems they are 
not good metrics for predicting image quality. 

Nevertheless, the need for a unified theoretical framework for describing wavefronts 
(optical aberrations) and optical surfaces, in terms of complete orthogonal systems, is patent. 
Even in the context of ZPs one can find that different authors use a variety of units 
(wavelengths, micrometers, etc.), normalizations (use of m

n
N  or not), ordering (since they 

have two indexes n, m there are many different possibilities to define a single index j which 
were used by different authors), or even opposite sign conventions. Among all these 
possibilities the ordering proposed by Noll [8] seems widely accepted, but the Optical Society 
of America adopted a different ordering for reporting aberrations in the human eye (ANSI 
standard Z80.28). This disparity of criteria existing even for the ZPs may explode when 
extending the Zernike theory to other optical apertures, such ellipses, annuli, sectors, etc. In 
fact there is a large list of publications with different polynomials which are ad hoc solutions 
for every type of optical apertures [11–18]. Most of these polynomials are obtained through 
G-S orthonormalization. A relevant improvement over the classical G-S method can be 
obtained by a non-recursive algorithm [19] which shows better numerical stability. It consists 
of inverting the Gram matrix, but considering only up to a given order n, and using the 
Cholesky decomposition. Additional numerical stability can be obtained through re-
orthogonalization [20] or by an iterative process [21] up to machine precision accuracy. This 
non-recursive G-S algorithm provided probably the best results published in the literature 
[18]. The main limitation is that the symbolic implementation of these methods requires 
heavy loads of computer memory [11]. We want to remark that the systems of orthogonal 
polynomials obtained with these improved G-S methods are perfectly valid for ad hoc 
applications. However, uniqueness is not guaranteed as the result depends on the initial 
ordering (index j), or on the particular algorithm. In addition, the physical meaning of each 
polynomial could change after orthogonalization, especially for higher order polynomials, due 
to the cumulative effect inherent to the G-S method. As a result, the basis functions obtained 
for different apertures may have different properties and physical meaning, which seems far 
from the goal of a unified theory. 

We believe that the mapping method proposed here, implemented as a change of 
variables, overcomes most of these difficulties and drawbacks, and provides a common 
framework, especially well-suited for a unified theory of aberrations. In addition to the 
theoretical relevance, the unified formulation may be the starting point for developing 
standards for academic, industrial or even clinical (ophthalmic optics) use. 

The two particular cases of Section 4 are especially relevant. In the first case, the 
importance is clear if we realize even the circular aperture (most common in optics) becomes 
elliptical off-axis. The size (A) eccentricity (e) and orientation (α) of the ellipse changes 
continuously with field angle and azimuth. These changes can be large in wide angle optical 
systems, and especially important in vision (both biological and artificial), where the field of 
view can be of the order of 180° or even more. Thus, the need for having a unified method to 
describe wavefronts corresponding to different field angles seems clear. The proposed change 
of variables (mapping) is a simple affine transformation from the circle to the ellipse, to adapt 
the modes (polynomials) to the scales (A and B) and orientation of the effective aperture, 
which changes as we move from the optical axis to a peripheral field angle. This affine 
transformation (scaling and rotation) is general for virtually any type of aperture (annuli, 
polygons, etc.) while it keeps a reasonable level of invariance, and hence a similar physical 
meaning of the expansion coefficients. This mapping should be applied for representing off-
axis wavefronts, especially when the field of view is significantly wide. 

The case of annular apertures is relevant not only for being a typical aperture in 
telescopes, but also due to important differences associated to its particular topology. Other 
apertures, such as circles, ellipses, or even angular sectors are simply connected sets, whereas 

#212485 - $15.00 USD Received 20 May 2014; revised 27 Jun 2014; accepted 22 Jul 2014; published 26 Aug 2014
(C) 2014 OSA 8 September 2014 | Vol. 22,  No. 18 | DOI:10.1364/OE.22.021263 | OPTICS EXPRESS  21278



the central obscuration of annuli makes that they are connected (but not simply) sets. This has 
important consequences. The deformation (mapping) of the circle necessary to arrive at the 
annulus (intuitively this would be a sort of stretching of an infinitesimal central hole to form 
the finite obscuration) is not uniform, as it depends on the distance to the center (ρ). This lack 
of uniformity makes that the original polynomials become polynomial quotients (see Table 3) 
and that the Jacobian is not a simple constant normalization factor. Thus, in this case, we have 
a non-Euclidean metric and hence the original plane element of area becomes curved now. 
That curvature becomes patent if we compare the upper left panels of Figs. 4 and 5 which 
represent 1

1E  (ellipse) and 1
1O  (annulus) respectively. In 1

1E  the mapping is linear and hence 

we can see tilted (rotated) but straight fringes, whereas 1
1O  shows vertical but curved fringes. 

As we said in Section 2, it is possible to choose ( , ) ( , )Q x y J x y= but this does not eliminate 

the curvature of the fringes. This choice does not seem compatible with a unified framework 
as it can potentially change the properties of the basis functions and the physical meaning of 
the associated coefficients. 
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