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Abstract
In a recently published paper in JMLR, Demšar (2006) recommends a set of non-parametric sta-
tistical tests and procedures which can be safely used for comparing the performance of classifiers
over multiple data sets. After studying the paper, we realize that the paper correctly introduces the
basic procedures and some of the most advanced ones when comparing a control method. How-
ever, it does not deal with some advanced topics in depth. Regarding these topics, we focus on more
powerful proposals of statistical procedures for comparing n×n classifiers. Moreover, we illustrate
an easy way of obtaining adjusted and comparable p-values in multiple comparison procedures.

Keywords: statistical methods, non-parametric test, multiple comparisons tests, adjusted p-values,
logically related hypotheses

1. Introduction

In the Machine Learning (ML) scientific community there is a need for rigorous and correct statisti-
cal analysis of published results, due to the fact that the development or modifications of algorithms
is a relatively easy task. The main inconvenient related to this necessity is to understand and study
the statistics and to know the exact techniques which can or cannot be applied depending on the
situation, that is, type of results obtained. In a recently published paper in JMLR by Demšar (2006),
a group of useful guidelines are given in order to perform a correct analysis when we compare a
set of classifiers over multiple data sets. Demšar recommends a set of non-parametric statistical
techniques (Zar, 1999; Sheskin, 2003) for comparing classifiers under these circumstances, given
that the sample of results obtained by them does not fulfill the required conditions and it is not
large enough for making a parametric statistical analysis. He analyzed the behavior of the pro-
posed statistics on classification tasks and he checked that they are more convenient than parametric
techniques.

Recent studies apply the guidelines given by Demšar in the analysis of performance of classifiers
(Esmeir and Markovitch, 2007; Marrocco et al., 2008). In them, a new proposal or methodology is
offered and it is compared with other methods by means of pairwise comparisons. Another type of
studies assume an empirical comparison or review of already proposed methods. In these cases, no
proposal is offered and a statistical comparison could be very useful in determining the differences
among the methods. In the specialized literature, many papers provide reviews on a specific topic
and they also use statistical methodology to perform comparisons. For example, in a review of
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ensembles of decision trees, non-parametric tests are also applied in the analysis of performance
(Banfield et al., 2007). However, only the rankings computed by Friedman’s method (Friedman,
1937) are stipulated and authors establish comparisons based on them, without taking into account
significance levels. Demšar focused his work in the analysis of new proposals, and he introduced
the Nemenyi test for making all pairwise comparisons (Nemenyi, 1963). Nevertheless, the Nemenyi
test is very conservative and it may not find any difference in most of the experimentations. In
recent papers, the authors have used the Nemenyi test in multiple comparisons. Due to the fact
that this test posses low power, authors have to employ many data sets (Yang et al., 2007b) or
most of the differences found are not significant (Yang et al., 2007a; Núñez et al., 2007). Although
the employment of many data sets could seem beneficial in order to improve the generalization of
results, in some specific domains, that is, imbalanced classification (Owen, 2007) or multi-instance
classification (Murray et al., 2005), data sets are difficult to find.

Procedures with more power than Nemenyi’s one can be found in specialized literature. We
have based on the necessity to apply more powerful procedures in empirical studies in which no
new method is proposed and the benefit consists of obtaining more statistical differences among
the classifiers compared. Thus, in this paper we describe these procedures and we analyze their
behavior by means of the analysis of multiple repetitions of experiments with randomly selected
data sets.

On the other hand, we can see other works in which the p-value associated to a comparison
between two classifiers is reported (Garcı́a-Pedrajas and Fyfe, 2007). Classical non-parametric tests,
such as Wilcoxon and Friedman (Sheskin, 2003), may be incorporated in most of the statistical
packages (SPSS, SAS, R, etc.) and the computation of the final p-value is usually implemented.
However, advanced procedures such as Holm (1979), Hochberg (1988), Hommel (1988) and the
ones described in this paper are usually not incorporated in statistical packages. The computation of
the correct p-value, or Adjusted P-Value (APV) (Westfall and Young, 2004), in a comparison using
any of these procedures is not very difficult and, in this paper, we show how to include it with an
illustrative example.

The paper is set up as follows. Section 2 presents more powerful procedures for comparing all
the classifiers among them in a n×n comparison of multiple classifiers and a case study. In Section 3
we describe the procedures for obtaining the APV by considering the post-hoc procedures explained
by Demšar and the ones explained in this paper. In Section 4, we perform an experimental study
of the behavior of the statistical procedures and we discuss the results obtained. Finally, Section 5
concludes the paper.

2. Comparison of Multiple Classifiers: Performing All Pairwise Comparisons

In the paper Demšar (2006), referring to carrying out comparisons of more than two classifiers, a set
of useful guidelines were given for detecting significant differences among the results obtained and
post-hoc procedures for identifying these differences. Friedman’s test is an omnibus test which can
be used to carry out these types of comparison. It allows to detect differences considering the global
set of classifiers. Once Friedman’s test rejects the null hypothesis, we can proceed with a post-hoc
test in order to find the concrete pairwise comparisons which produce differences. Demšar described
the use of the Nemenyi test used when all classifiers are compared with each other. Then, he focused
on procedures that control the family-wise error when comparing with a control classifier, arguing
that the objective of a study is to test whether a newly proposed method is better than the existing
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ones. For this reason, he described and studied in depth more powerful and sophisticated procedures
derived from Bonferroni-Dunn such as Holm’s, Hochberg’s and Hommel’s methods.

Nevertheless, we think that performing all pairwise comparisons in an experimental analysis
may be useful and interesting in different cases when proposing a new method. For example, it
would be interesting to conduct a statistical analysis over multiple classifiers in review works in
which no method is proposed. In this case, the repetition of comparisons choosing different control
classifiers may lose the control of the family-wise error.

Our intention in this section is to give a detailed description of more powerful and advanced
procedures derived from the Nemenyi test and to show a case study that uses these procedures.

2.1 Advanced Procedures for Performing All Pairwise Comparisons

A set of pairwise comparisons can be associated with a set or family of hypotheses. Any of the post-
hoc tests which can be applied to non-parametric tests (that is, those derived from the Bonferroni
correction or similar procedures) work over a family of hypotheses. As Demšar explained, the test
statistics for comparing the i-th and j-th classifier is

z =
(Ri −R j)
√

k(k+1)
6N

,

where Ri is the average rank computed through the Friedman test for the i-th classifier, k is the
number of classifiers to be compared and N is the number of data sets used in the comparison.

The z value is used to find the corresponding probability (p-value) from the table of normal dis-
tribution, which is then compared with an appropriate level of significance α (Table A1 in Sheskin,
2003). Two basic procedures are:

• Nemenyi (1963) procedure: it adjusts the value of α in a single step by dividing the value of
α by the number of comparisons performed, m = k(k−1)/2. This procedure is the simplest
but it also has little power.

• Holm (1979) procedure: it was also described in Demšar (2006) but it was used for compar-
isons of multiple classifiers involving a control method. It adjusts the value of α in a step
down method. Let p1, ..., pm be the ordered p-values (smallest to largest) and H1, ...,Hm be
the corresponding hypotheses. Holm’s procedure rejects H1 to H(i−1) if i is the smallest in-
teger such that pi > α/(m− i + 1). Other alternatives were developed by Hochberg (1988),
Hommel (1988) and Rom (1990). They are easy to perform, but they often have a similar
power to Holm’s procedure (they have more power than Holm’s procedure, but the difference
between them is not very notable) when considering all pairwise comparisons.

The hypotheses being tested belonging to a family of all pairwise comparisons are logically
interrelated so that not all combinations of true and false hypotheses are possible. As a simple
example of such a situation suppose that we want to test the three hypotheses of pairwise equality
associated with the pairwise comparisons of three classifiers Ci, i = 1,2,3. It is easily seen from the
relations among the hypotheses that if any one of them is false, at least one other must be false. For
example, if C1 is better/worse than C2, then it is not possible that C1 has the same performance as C3

and C2 has the same performance as C3. C3 must be better/worse than C1 or C2 or the two classifiers
at the same time. Thus, there cannot be one false and two true hypotheses among these three.
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Based on this argument, Shaffer proposed two procedures which make use of the logical relation
among the family of hypotheses for adjusting the value of α (Shaffer, 1986).

• Shaffer’s static procedure: following Holm’s step down method, at stage j, instead of rejecting
Hi if pi ≤ α/(m− i+1), reject Hi if pi ≤ α/ti, where ti is the maximum number of hypotheses
which can be true given that any (i−1) hypotheses are false. It is a static procedure, that is,
t1, ..., tm are fully determined for the given hypotheses H1, ...,Hm, independent of the observed
p-values. The possible numbers of true hypotheses, and thus the values of ti can be obtained
from the recursive formula

S(k) =
k

[

j=1

{

(

j
2

)

+ x : x ∈ S(k− j)},

where S(k) is the set of possible numbers of true hypotheses with k classifiers being compared,
k ≥ 2, and S(0) = S(1) = {0}.

• Shaffer’s dynamic procedure: it increases the power of the first by substituting α/ti at stage i
by the value α/t∗i , where t∗i is the maximum number of hypotheses that could be true, given
that the previous hypotheses are false. It is a dynamic procedure since t∗i depends not only
on the logical structure of the hypotheses, but also on the hypotheses already rejected at step
i. Obviously, this procedure has more power than the first one. In this paper, we have not
used this second procedure, given that it is included in an advanced procedure which we will
describe in the following.

In Bergmann and Hommel (1988) was proposed a procedure based on the idea of finding all
elementary hypotheses which cannot be rejected. In order to formulate Bergmann-Hommel’s pro-
cedure, we need the following definition.

Definition 1 An index set of hypotheses I ⊆ {1, ...,m} is called exhaustive if exactly all H j, j ∈ I,
could be true.

In order to exemplify the previous definition, we will consider the following case: We have three
classifiers, and we will compare them in a n×n comparison. We will obtain three hypotheses:

• H1 = C1 es equal in behavior than C2.

• H2 = C1 es equal in behavior than C3.

• H3 = C2 es equal in behavior than C3.

and eight possible sets Si:

• S1: All H j are true.

• S2: H1 and H2 are true and H3 is false.

• S3: H1 and H3 are true and H2 is false.
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• S4: H2 and H3 are true and H1 is false.

• S5: H1 is true and H2 and H3 are false.

• S6: H2 is true and H1 and H3 are false.

• S7: H3 is true and H1 and H2 are false.

• S8: All H j are false.

Sets S1, S5, S6, S7 and S8 can be possible, because their hypotheses can be true at the same time,
so they are exhaustive sets. Set S2, basing on logically related hypotheses principles, is not possible
because the performance of C1 cannot be equal to C2 and C3, whereas C2 has different performance
than C3. The same consideration can be done to S3 and S4, which are not exhaustive sets.

Under this definition, it works as follows.

• Bergmann and Hommel (1988) procedure: Reject all H j with j /∈ A, where the acceptance set

A =
[

{I : I exhaustive, min{Pi : i ∈ I} > α/|I|}

is the index set of null hypotheses which are retained.

For this procedure, one has to check for each subset I of {1, ...,m} if I is exhaustive, which
leads to intensive computation. Due to this fact, we will obtain a set, named E, which will
contain all the possible exhaustive sets of hypotheses for a certain comparison. A rapid algo-
rithm which was described in Hommel and Bernhard (1994) allows a substantial reduction in
computing time. Once the E set is obtained, the hypotheses that do not belong to the A set are
rejected.

Figure 1 shows a valid algorithm for obtaining all the exhaustive sets of hypotheses, using
as input a list of classifiers C. E is a set of families of hypotheses; likewise, a family of
hypotheses is a set of hypotheses. The most important step in the algorithm is the number
6. It performs a division of the classifiers into two subsets, in which the last classifier k al-
ways is inserted in the second subset and the first subset cannot be empty. In this way, we
ensure that a subset yielded in a division is never empty and no repetitions are produced. For
example, suppose a set C with three classifiers C = {1,2,3}. All possible divisions without
taking into account the previous assumptions are: D1 = {C1 = {},C2 = {1,2,3}},D2 = {C1 =
{1},C2 = {2,3}},D3 = {C1 = {2},C2 = {1,3}},D4 = {C1 = {1,2},C2 = {3}},D5 = {C1 =
{3},C2 = {1,2}},D6 = {C1 = {1,3},C2 = {2}},D7 = {C1 = {2,3},C2 = {1}},D8 = {C1 =
{1,2,3},C2 = {}}. Divisions D1 and D8, D2 and D7, D3 and D6, D4 and D5 are equivalent,
respectively. Furthermore, divisions D1 and D8 are not interesting. Using the assumptions in
step 6 of the algorithm, the possible divisions are: D1 = {C1 = {1},C2 = {2,3}},D2 = {C1 =
{2},C2 = {1,3}},D3 = {C1 = {1,2},C2 = {3}}. In this case, all the divisions are interesting
and no repetitions are yielded. The computational complexity of the algorithm for obtaining
exhaustive sets is O(2n2

). However, the computation requirements may be reduced by means
of using storage capabilities. Relative exhaustive sets for k − i, 1 ≤ i ≤ (k − 2) classifiers
can be stored in memory and there is no necessity of invoking the obtainingExhaustive func-
tion recursively. The computational complexity using storage capabilities is O(2n), so the
algorithm still requires intensive computation.
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An example illustrating the algorithm for obtaining all exhaustive sets is drawn in Figure 2.
In it, four classifiers, enumerated from 1 to 4 in the C set, are used. The comparisons or hy-
potheses are denoted by pairs of numbers without a separation character between them. This
illustration does not show the case in which the set |Ci|< 2, for simplifying the representation.
When |Ci| < 2, no comparisons can be performed, so the obtainExhaustive function returns
an empty set E.

An edge connecting two boxes represents an invocation of this function. In each box, the list
of classifiers given as input and the first initialization of the E set are displayed. The main
edges, whose starting point is the initial box, are labeled by the order of invocation. Below
the graph, the resulting E subset in each main edge is denoted. The final E will be composed
by the union of these E subsets. At the end of the process, 14 distinct exhaustive sets are
found: E = {(12,13,14,23,24,34),(23,24,34),(13,14,34),(12,14,24),(12,13,23),
(12),(13),(14),(23),(24),(34),(12,34),(13,24),(23,14)}.

Table 1 gives the number of hypotheses (m), the number (2n) of index sets I and the number
of exhaustive index sets (ne) for k classifiers being compared.

Function obtainExhaustive(C = {c1,c2, ...,ck}: list of classifiers)
1. Let E = /0
2. E = E ∪{set of all possible and distinct pairwise comparisons using C}
3. If E == /0

4. Return E
5. End if
6. For all possible divisions of C into two subsets C1 and C2, ck ∈C2 and C1 6= /0

7. E1 = obtainExhaustive(C1)
8. E2 = obtainExhaustive(C2)
9. E = E ∪E1

10. E = E ∪E2

11. For each family of hypotheses e1 of E1

12. For each family of hypotheses e2 of E2

13. E = E ∪ (e1 ∪ e2)
14. End for

15. End for
16. End for
17. Return E

Figure 1: Algorithm for obtaining all exhaustive sets

The following subsections present a case study of a n × n comparison of some well-known
classifiers over thirty data sets. In it, the four procedures explained above are employed.

2.2 Performing All Pairwise Comparisons: A Case Study

In the following, we show an example involving the four procedures described with a comparison
of five classifiers: C4.5 (Quinlan, 1993); One Nearest Neighbor (1-NN) with Euclidean distance,
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C = {1, 2, 3, 4}

E = {(12,13,14,23,24,34)}

C2 = {1, 2, 3}

E = {(12,13,23)}

C1 = {1, 2}

E = {(12)}

C2 = {1, 3}

E = {(13)}

C2 = {2, 3}

E = {(23)}

1: E = {(12,13,23),(23),(13),(12)}

2: E = {(12),(34),(12,34)}

3: E = {(13),(24),(13,24)}

4: E = {(23,24,34),(23),(24),(34)}

5: E = {(23),(14),(23,14)}

6: E = {(13,14,34),(13),(14),(34)}

7: E = {(12,14,24),(12),(14),(24)}

C1 = {1, 2}

E = {(12)}

C2 = {3, 4}

E = {(34)}

C1 = {1, 3}

E = {(13)}

C2 = {2, 4}

E = {(24)}

C2 = {2, 3, 4}

E = {(23,24,34)}

C2 = {3, 4}

E = {(34)}

C2 = {2, 4}

E = {(24)}

C1 = {2, 3}

E = {(23)}

C1 = {1, 4}

E = {(14)}

C1 = {2, 3}

E = {(23)}

C2 = {1, 3, 4}

E = {(13,14,34)}

C2 = {3, 4}

E = {(34)}

C2 = {1, 4}

E = {(14)}

C1 = {1, 3}

E = {(13)}

C2 = {1, 2, 4}

E = {(12,14,24)}

C2 = {2, 4}

E = {(24)}

C2 = {1, 4}

E = {(14)}

C1 = {1, 2}

E = {(12)}

1

2

3

4
5

6

7

Figure 2: Example of the obtaining of exhaustive sets of hypotheses considering 4 classifiers

k m =
(k

2

)

2m ne

4 6 64 14
5 10 1024 51
6 15 32768 202
7 21 2097152 876
8 28 2.7 ·108 4139
9 36 6.7 ·1010 21146

Table 1: All pairwise comparisons of k classifiers
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NaiveBayes, Kernel (McLachlan, 2004)1 and, finally, CN2 (Clark and Niblett, 1989).2 The parame-
ters used are specified in Section 4. We have used 10-fold cross validation and standard parameters
for each algorithm. The results correspond to average accuracy or 1− class error in test data. We
have used 30 data sets.3 Table 2 shows the overall process of computation of average rankings.

Friedman (1937) and Iman and Davenport (1980) tests check whether the measured average
ranks are significantly different from the mean rank R j = 3. They respectively use the χ2 and the
F statistical distributions to determine if a distribution of observed frequencies differs from the
theoretical expected frequencies. Their statistics use nominal (categorical) or ordinal level data,
instead of using means and variances. Demšar (2006) detailed the computation of the critical values
in each distribution. In this case, the critical values are 9.488 and 2.45, respectively at α = 0.05, and
the Friedman’s and Iman-Davenport’s statistics are:

χ2
F = 39.647,FF = 14.309.

Due to the fact that the critical values are lower than the respective statistics, we can proceed
with the post-hoc tests in order to detect significant pairwise differences among all the classifiers.
For this, we have to compute and order the corresponding statistics and p-values. The standard

error in the pairwise comparison between two classifiers is SE =
√

k(k+1)
6N =

√

5·6
6·30 = 0.408. Table

3 presents the family of hypotheses ordered by their p-value and the adjustment of α by Nemenyi’s,
Holm’s and Shaffer’s static procedures.

• Nemenyi’s test rejects the hypotheses [1–4] since the corresponding p-values are smaller than
the adjusted α’s.

• Holm’s procedure rejects the hypotheses [1–5].

• Shaffer’s static procedure rejects the hypotheses [1–6].

• Bergmann-Hommel’s dynamic procedure first obtains the exhaustive index set of hypotheses.
It obtains 51 index sets. We can see them in Table 4. From the index sets, it computes the A
set.4 It rejects all hypotheses H j with j /∈ A, so it rejects the hypotheses [1–8].

Bergmann-Hommel’s dynamic procedure allows to clearly distinguishing among three groups
of classifiers, attending to their performance:

• Best classifiers: C4.5 and NaiveBayes.

• Middle classifiers: 1-NN and CN2.

• Worst classifier: Kernel.

1. Kernel method is a bayesian classifier which employs a non-parametric estimation of density functions through a
gaussian kernel function. The adjustment of the covariance matrix is performed by the ad-hoc method.

2. NaiveBayes and CN2 are classifiers for discrete domains, so we have discretized the data prior to learning with them.
The discretizer algorithm is Fayyad and Irani (1993).

3. Data sets marked with ’*’ have been subsampled being adapted to slow algorithms, such as CN2.
4. We have considered that each classifier follows the order: 1 - C4.5, 2 - 1-NN, 3 - NaiveBayes, 4 - Kernel, 5 - CN2.

For example, the hypothesis 13 represents the comparison between C4.5 and NaiveBayes.
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C4.5 1-NN NaiveBayes Kernel CN2
Abalone* 0.219 (3) 0.202 (4) 0.249 (2) 0.165 (5) 0.261 (1)

Adult* 0.803 (2) 0.750 (4) 0.813 (1) 0.692 (5) 0.798 (3)
Australian 0.859 (1) 0.814 (4) 0.845 (2) 0.542 (5) 0.816 (3)

Autos 0.809 (1) 0.774 (3) 0.673 (4) 0.275 (5) 0.785 (2)
Balance 0.768 (3) 0.790 (2) 0.727 (4) 0.872 (1) 0.706 (5)

Breast 0.759 (1) 0.654 (5) 0.734 (2) 0.703 (4) 0.714 (3)
Bupa 0.693 (1) 0.611 (3) 0.572 (4.5) 0.689 (2) 0.572 (4.5)

Car 0.915 (1) 0.857 (3) 0.860 (2) 0.700 (5) 0.777 (4)
Cleveland 0.544 (2) 0.531 (4) 0.558 (1) 0.439 (5) 0.541 (3)

Crx 0.855 (2) 0.796 (4) 0.857 (1) 0.607 (5) 0.809 (3)
Dermatology 0.945 (3) 0.954 (2) 0.978 (1) 0.541 (5) 0.858 (4)

German 0.725 (2) 0.705 (4) 0.739 (1) 0.625 (5) 0.717 (3)
Glass 0.674 (4) 0.736 (1) 0.721 (2) 0.356 (5) 0.704 (3)

Hayes-Roth 0.801 (1) 0.357 (4) 0.520 (2.5) 0.309 (5) 0.520 (2.5)
Heart 0.785 (2) 0.770 (3) 0.841 (1) 0.659 (5) 0.759 (4)

Ion 0.906 (2) 0.359 (5) 0.895 (3) 0.641 (4) 0.918 (1)
Led7Digit 0.710 (2) 0.402 (4) 0.728 (1) 0.120 (5) 0.674 (3)

Letter* 0.691 (2) 0.827 (1) 0.667 (3) 0.527 (5) 0.638 (4)
Lymphography 0.743 (3) 0.739 (4) 0.830 (1) 0.549 (5) 0.746 (2)

Mushrooms* 0.990 (1.5) 0.482 (5) 0.941 (3) 0.857 (4) 0.990 (1.5)
OptDigits* 0.867 (3) 0.098 (1) 0.915 (2) 0.986 (1) 0.784 (4)
Satimage* 0.821 (3) 0.872 (2) 0.815 (4) 0.885 (1) 0.778 (5)

SpamBase* 0.893 (2) 0.824 (4) 0.902 (1) 0.739 (5) 0.885 (3)
Splice* 0.799 (2) 0.655 (4) 0.925 (1) 0.517 (5) 0.755 (3)

Tic-tac-toe 0.845 (1) 0.731 (2) 0.693 (4) 0.653 (5) 0.704 (3)
Vehicle 0.741 (1) 0.701 (2) 0.591 (5) 0.663 (3) 0.619 (4)
Vowel 0.799 (2) 0.994 (1) 0.603 (4) 0.269 (5) 0.621 (3)
Wine 0.949 (4) 0.955 (2) 0.989 (1) 0.770 (5) 0.954 (3)
Yeast 0.555 (3) 0.505 (4) 0.569 (1) 0.312 (5) 0.556 (2)

Zoo 0.928 (2.5) 0.928 (2.5) 0.945 (1) 0.419 (5) 0.897 (4)
average rank 2.100 3.250 2.200 4.333 3.117

Table 2: Computation of the rankings for the five algorithms considered in the study over 30 data
sets, based on test accuracy by using ten-fold cross validation
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i hypothesis z = (R0 −Ri)/SE p αNM αHM αSH

1 C4.5 vs. Kernel 5.471 4.487 ·10−8 0.005 0.005 0.005
2 NaiveBayes vs. Kernel 5.226 1.736 ·10−7 0.005 0.0055 0.0083
3 Kernel vs. CN2 2.98 0.0029 0.005 0.0063 0.0083
4 C4.5 vs. 1NN 2.817 0.0048 0.005 0.0071 0.0083
5 1NN vs. Kernel 2.654 0.008 0.005 0.0083 0.0083
6 1NN vs. NaiveBayes 2.572 0.0101 0.005 0.01 0.0125
7 C4.5 vs. CN2 2.49 0.0128 0.005 0.0125 0.0125
8 NaiveBayes vs. CN2 2.245 0.0247 0.005 0.0167 0.0167
9 1NN vs. CN2 0.327 0.744 0.005 0.025 0.025

10 C4.5 vs. NaiveBayes 0.245 0.8065 0.005 0.05 0.05

Table 3: Family of hypotheses ordered by p-value and adjusting of α by Nemenyi (NM), Holm
(HM) and Shaffer (SH) procedures, considering an initial α = 0.05

Size 1 Size 2 Size 3 Size 4 Size ≥ 6
(12) (12,34) (12,13,23) (12,13,23,45) (12,13,14,15,23,24,25,34,35,45)
(13) (13,24) (12,14,24) (12,14,24,35) (12,13,14,23,24,34)
(23) (14,23) (13,14,34) (12,34,35,45) (12,13,15,23,25,35)
(14) (12,35) (23,24,34) (13,14,25,34) (12,14,15,24,25,45)
(24) (13,25) (12,15,25) (13,15,24,35) (13,14,15,34,35,45)
(34) (15,23) (13,15,35) (13,24,25,45) (23,24,25,34,35,45)
(15) (12,45) (23,25,35) (14,15,23,45)
(25) (13,45) (14,15,45) (14,23,25,35)
(35) (23,45) (24,25,45) (15,23,24,34)
(45) (14,25) (34,35,45)

(15,24)
(14,35)
(24,35)

Table 4: Exhaustive sets obtained for the case study. Those belonging to the Acceptance set (A) are
typed in bold.
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In Demšar (2006), we can find a discussion about the power of Hochberg’s and Hommel’s pro-
cedures with respect to Holm’s one. They reject more hypothesis than Holm’s, but the differences
are in practice rather small (Shaffer, 1995). The most powerful procedures detailed in this paper,
Shaffer’s and Bergmann-Hommel’s, work following the same method of Holm’s procedure, so it
is possible to hybridize them with other types of step up procedures, such as Hochberg’s, Hom-
mel’s and Rom’s methods. When we apply these methods by using the logical relationships among
hypothesis in a static way, they do not control the family-wise error (Hochberg and Rom, 1995).
In opposite, when applying these methods by detecting dynamical relationships, they control the
family-wise error. In Hochberg and Rom (1995), several extensions were given in this way. Fur-
thermore, a small improvement of power in the Bergmann-Hommel procedure described here can
be achieved when using Simes conjecture (Simes, 1986) in the obtaining of A set (see Hommel and
Bernhard, 1999, for more details).

3. Adjusted P-Values

The smallest level of significance that results in the rejection of the null hypothesis, the p-value,
is a useful and interesting datum for many consumers of statistical analysis. A p-value provides
information about whether a statistical hypothesis test is significant or not, and it also indicates
something about ”how significant” the result is: The smaller the p-value, the stronger the evidence
against the null hypothesis. Most important, it does this without committing to a particular level of
significance.

When a p-value is within a multiple comparison, as in the example in Table 3, it reflects the
probability error of a certain comparison, but it does not take into account the remaining compar-
isons belonging to the family. One way to solve this problem is to report APVs which take into
account that multiple tests are conducted. An APV can be compared directly with any chosen sig-
nificance level α. In this paper, we encourage the use of APVs due to the fact that they provide more
information in a statistical analysis.

In the following, we will explain how to compute the APVs depending on the post-hoc procedure
used in the analysis, following the indications given in Wright (1992) and Hommel and Bernhard
(1999). We also include the post-hoc tests explained in Demšar (2006) and other for comparisons
with a control classifier. The notation used in the computation of the APVs is the following:

• Indexes i and j correspond each one to a concrete comparison or hypothesis in the family of
hypotheses, according to an incremental order by their p-values. Index i always refers to the
hypothesis in question whose APV is being computed and index j refers to another hypothesis
in the family.

• p j is the p-value obtained for the j-th hypothesis.

• k is the number of classifiers being compared.

• m is the number of possible comparisons in an all pairwise comparisons design; that is, m =
k·(k−1)

2 .

• t j is the maximum number of hypotheses which can be true given that any ( j−1) hypotheses
are false (see the description of Shaffer’s static procedure in Section 2.1).
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The procedures of p-value adjustment can be classified into:

• one-step.

– Bonferroni APVi: min{v;1}, where v = (k−1)pi.

– Nemenyi APVi: min{v;1}, where v = m · pi.

• step-up.

– Hochberg APVi: max{(k− j)p j : (k−1) ≥ j ≥ i}.

– Hommel APVi: see algorithm at Figure 3.

• step-down.

– Holm APVi (using a control classifier): min{v;1}, where v = max{(k− j)p j : 1 ≤ j ≤ i}.

– Nemenyi APVi: min{v;1}, where v = m · pi.

– Holm APVi (using it in all pairwise comparisons): min{v;1}, where v = max{(m− j +
1)p j : 1 ≤ j ≤ i}.

– Shaffer static APVi: min{v;1}, where v = max{t j p j : 1 ≤ j ≤ i}.

– Bergmann-Hommel APVi: min{v;1}, where v = max{|I|·min{p j, j ∈ I} : I exhaustive, i∈
I}.

1. Set APVi = pi for all i.
2. For each j = k−1,k−2, ...,2 (in that order)

3. Let B = /0.
4. For each i, i > (k−1− j)

5. Compute value ci = ( j · pi)/( j + i− k +1).
6. B = B∪ ci.

7. End for
8. Find the smallest ci value in B; call it cmin.
9. If APVi < cmin, then APVi = cmin.
10. For each i, i ≤ (k−1− j)

11. Let ci = min(cmin, j · pi).
12. If APVi < ci, then APVi = ci.

13. End for

Figure 3: Algorithm for calculating APVs based on Hommel’s procedure

Table 5 shows the results in the final form of APVs for the example considered in this section. As
we can see, this example is suitable for observing the difference of power among the test procedures.
Also, this table can provide information about the state of retainment or rejection of any hypothesis,
comparing its associated APV with the level of significance previously fixed.
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i hypothesis pi APVNM APVHM APVSH APVBH

1 C4.5 vs .Kernel 4.487 ·10−8 4.487 ·10−7 4.487 ·10−7 4.487 ·10−7 4.487 ·10−7

2 NaiveBayes vs .Kernel 1.736 ·10−7 1.736 ·10−6 1.563 ·10−6 1.042 ·10−6 1.042 ·10−6

3 Kernel vs .CN2 0.0029 0.0288 0.023 0.0173 0.0115
4 C4.5 vs .1NN 0.0048 0.0485 0.0339 0.0291 0.0291
5 1NN vs .Kernel 0.008 0.0796 0.0478 0.0478 0.0319
6 1NN vs .NaiveBayes 0.0101 0.1011 0.0506 0.0478 0.0319
7 C4.5 vs .CN2 0.0128 0.1276 0.0511 0.0511 0.0383
8 NaiveBayes vs .CN2 0.0247 0.2474 0.0742 0.0742 0.0383
9 1NN vs .CN2 0.744 1.0 1.0 1.0 1.0
10 C4.5 vs .NaiveBayes 0.8065 1.0 1.0 1.0 1.0

Table 5: APVs obtained in the example by Nemenyi (NM), Holm (HM), Shaffer’s static (SH) and
Bergmann-Hommel’s dynamic (BH)

4. Experimental Framework

In this section, we want to determine the power and behavior of the studied procedures through
the experiments in which we repeatedly compared the classifiers on sets of ten randomly chosen
data sets, recording the number of equivalence hypothesis rejected and APVs. We follow a similar
method used in Demšar (2006).

The classifiers used are the same as in the case study of the previous subsection: C4.5 with
minimum number of item-sets per leaf equal to 2 and confidence level fitted for optimal accuracy
and pruning strategy, naive Bayesian learner with continuous attributes discretized using Fayyad
and Irani (1993) discretization, classic 1-Nearest-Neighbor classifier with Euclidean distance, CN2
with Fayyad-Irani’s discretizer, star size = 5 and 95% of examples to cover and Kernel classifier
with sigmaKernel = 0.01, which is the inverse value of the variance that represents the radius of
neighborhood. All classifiers are available in KEEL software (Alcalá-Fdez et al., 2008).5

For performing this study, we have compiled a sample of fifty data sets from the UCI machine
learning repository (Asuncion and Newman, 2007), all of them valid for a classification task.6 We
measured the performance of each classifier by means of accuracy in test by using ten-fold cross
validation. As Demšar did, when comparing two classifiers, samples of ten data sets were randomly
selected so that the probability for the data set i being chosen was proportional to 1/(1 + e−kdi),
where di is the (positive or negative) difference in the classification accuracies on that data set and
k is the bias through which we can regulate the differences between the classifiers. With k = 0, the
selection is purely random and as k is being higher, the selected data sets are favorable to a particular
classifier.

In comparisons of multiple classifiers, samples of data sets have to be selected with the prob-
abilities computed from the differences in accuracy of two classifiers. We have chosen C4.5 and
1-NN, due to the fact that we have found significant differences between them in the study con-
ducted before (Section 2.2) which involved thirty data sets. Note that the repeated comparisons
done here only involve ten data sets each time, so the rejection of equivalence of two classifiers is
more difficult at the beginning of the process.

5. It is also available at http://www.keel.es.
6. The data sets used are: abalone, adult, australian, autos, balance, bands, breast, bupa, car, cleveland, dermatol-

ogy, ecoli, flare, german, glass, haberman, hayes-roth, heart, iris, led7digit, letter, lymphography, magic, monks,
mushrooms, newthyroid, nursery, optdigits, pageblocks, penbased, pima, ring, satimage, segment, shuttle, spambase,
splice, tae, thyroid, tic-tac-toe, twonorm, vehicle, vowel, wine, wisconsin, yeast, zoo.
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Figure 4 shows the results of this study considering the pairwise comparison between C4.5
and 1-NN. It gives an approximation of the power of the statistical procedures considered in this
paper. Figure 4(a) reflects the number of times they rejected the equivalence of C4.5 and 1-NN.
Obviously, the Bergmann-Hommel procedure is the most powerful, followed by Shaffer’s static
procedure. The graphic also informs us about the use of logically related hypothesis, given that the
procedures that use this information have a bias towards the same point and those which do not use
this information, tend to a lower point than the first. When the selection of data sets is purely random
(k = 0), the benefit of using the Bergmann-Hommel procedure is appreciable. Figure 4(b) shows
the average APV of the same comparison of classifiers. As we can see, the Nemenyi procedure is
too conservative in comparison with the remaining procedures. Again, the benefit of using more
sophisticated testing procedures is easily noticeable.
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Figure 4: C4.5 vs. 1-NN

Figure 5 shows the results of this study considering all possible pairwise comparisons in the
set of classifiers. It helps us to compare the overall behavior of the four testing procedures. Figure
5(a) presents the number of times they rejected any comparison belonging to the family. Although
it could seem that the selection of data sets determined by the difference of accuracy between two
classifiers may not influence on the overall comparison, the graphic shows us that it occurs. Further-
more, the lines drawn follow a parallel behavior, indicating us the relation and magnitude of power
among the four procedures. In Figure 5(b) we illustrate the average APV for all the comparisons of
classifiers. We can notice that the conservatism of the Nemenyi test is obvious with respect to the
rest of procedures. The benefit of using a more advanced testing procedure is similar with respect
to the following less-powerful procedure, except for Holm’s procedure.

Finally, our recommendation on the usage of a certain procedure depends on the results obtained
in this paper and in our experience in understanding and implementing them:

• We do not recommend the use of Nemenyi’s test, because it is a very conservative procedure
and many of the obvious differences may not be detected.

• When we use a considerable number of data sets with regards to number of classifiers, we
could proceed with the Holm procedure.

2690



AN EXTENSION ON “STATISTICAL COMPARISONS OF CLASSIFIERS OVER MULTIPLE DATA SETS”

0

500

1000

1500

2000

2500

3000

3500

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

k

re
je

ct
ed

 h
yp

o
th

es
es

Nemenyi Holm Shaffer Bergmann

(a) Total number of hypotheses rejected

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

k

av
er

ag
e 

p
-v

al
u

e

Nemenyi Holm Shaffer Bergmann

(b) Average APV in all comparisons

Figure 5: All comparisons

• However, conducting the Shaffer static procedure means a not very significant increase of the
difficulty with respect to the Holm procedure. Moreover, the benefit of using information
about logically related hypothesis is noticeable, thus we strongly encourage the use of this
procedure.

• Bergmann-Hommel’s procedure is the best performing one, but it is also the most difficult
to understand and computationally expensive. We recommend its usage when the situation
requires so (i.e., the differences among the classifiers compared are not very significant),
given that the results it obtains are as valid as using other testing procedure.

5. Conclusions

The present paper is an extension of Demšar (2006). Demšar does not deal in depth with some
topics related to multiple comparisons involving all the algorithms and computations of adjusted
p-values.

In this paper, we describe other advanced testing procedures for conducting all pairwise com-
parisons in a multiple comparisons analysis: Shaffer’s static and Bergmann-Hommel’s procedures.
The advantage that they obtain is produced due to the incorporation of more information about
the hypotheses to be tested: in n× n comparisons, a logical relationship among them exists. As a
general rule, the Bergmann-Hommel procedure is the most powerful one but it requires intensive
computation in comparisons involving numerous classifiers. The second one, Shaffer’s procedure,
can be used instead of Bergmann-Hommel’s in these cases. Moreover, we present the methods for
obtaining the adjusted p-values, which are valid p-values associated to each comparison useful to
be compared with any level of significance without restrictions and they also provide more infor-
mation. We have illustrated them with a case study and we have checked that the new described
methods are more powerful than the classical ones, Nemenyi’s and Holm’s procedures.
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Appendix A. Source Code of the Procedures

The source code, written in JAVA, that implements all the procedures described in this paper, is
available at http://sci2s.ugr.es/keel/multipleTest.zip. The program allows the input of
data in CSV format and obtains as output a LATEX document.
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J. Demšar. Statistical comparisons of classifiers over multiple data sets. Journal of Machine Learn-
ing Research, 7:1–30, 2006.

S. Esmeir and S. Markovitch. Anytime learning of decision trees. Journal of Machine Learning
Research, 8:891–933, 2007.

U. M. Fayyad and K. B. Irani. Multi-interval discretization of continuous valued attributes for
classification learning. In Proceedings of the 13th International Joint Conference on Artificial
Intelligence, pages 1022–1029. Morgan-Kaufmann, 1993.

M. Friedman. The use of ranks to avoid the assumption of normality implicit in the analysis of
variance. Journal of the American Statistical Association, 32:675–701, 1937.

2692



AN EXTENSION ON “STATISTICAL COMPARISONS OF CLASSIFIERS OVER MULTIPLE DATA SETS”

N. Garcı́a-Pedrajas and C. Fyfe. Immune network based ensembles. Neurocomputing, 70(7-9):
1155–1166, 2007.

Y. Hochberg. A sharper bonferroni procedure for multiple tests of significance. Biometrika, 75:
800–802, 1988.

Y. Hochberg and D. Rom. Extensions of multiple testing procedures based on Simes’ test. Journal
of Statistical Planning and Inference, 48:141–152, 1995.

S. Holm. A simple sequentially rejective multiple test procedure. Scandinavian Journal of Statistics,
6:65–70, 1979.

G. Hommel. A stagewise rejective multiple test procedure. Biometrika, 75:383–386, 1988.

G. Hommel and G. Bernhard. A rapid algorithm and a computer program for multiple test proce-
dures using procedures using logical structures of hypotheses. Computer Methods and Programs
in Biomedicine, 43:213–216, 1994.

G. Hommel and G. Bernhard. Bonferroni procedures for logically related hypotheses. Journal of
Statistical Planning and Inference, 82:119–128, 1999.

R. L. Iman and J. M. Davenport. Approximations of the critical region of the friedman statistic.
Communications in Statistics, pages 571–595, 1980.

C. Marrocco, R. P. W. Duin, and F. Tortorella. Maximizing the area under the ROC curve by pairwise
feature combination. Pattern Recognition, 41:1961–1974, 2008.

G. J. McLachlan. Discriminant Analysis and Statistical Pattern Recognition. Wiley Series in Prob-
ability and Mathematical Statistics, 2004.

J. F. Murray, G. F. Hughes, and K. Kreutz-Delgado. Machine learning methods for predicting
failures in hard drives: A multiple-instance application. Journal of Machine Learning Research,
6:783–816, 2005.

P. B. Nemenyi. Distribution-free Multiple Comparisons. PhD thesis, Princeton University, 1963.
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