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We study the signatures of phase transitions in the time evolution of wave-packets by
analyzing two simple model systems: a graphene quantum dot model in a magnetic
field and a Dirac oscillator in a magnetic field. We have characterized the phase tran-
sitions using the autocorrelation function. Our work also reveals that the description
in terms of Shannon entropy of the autocorrelation function is a clear phase transi-
tion indicator. Copyright 2012 Author(s). This article is distributed under a Creative
Commons Attribution 3.0 Unported License. [http://dx.doi.org/10.1063/1.4764862]

I. INTRODUCTION

The temporal evolution of wave-packets, relativistic and nonrelativistic, can depict interesting
phenomena due to quantum interference and several types of periodicity may appear which depend
on the eigenvalue spectrum of the Hamiltonian. The Jaynes Cummings model shows this type of
periodicities, in particular Rabi oscillations and collapses and revivals of these Rabi oscillations.1

These interference quantum phenomena have been widely investigated theoretically among other in
different atomic and molecular quantum systems,1–5 and observed experimentally in, for example,
Rydberg wave-packets in atoms and molecules, molecular vibrational states, and Bose-Einstein
condensates,6 to name a few. Additionally, revivals of electric currents in graphene and graphene
quantum dots in the presence of a magnetic field7 have been theoretically predicted and an exhaustive
study of quantum wave-packet revivals, fractional revivals and classical periodicity was recently
reported.7–11

In this work, we study the influence of a phase transition (PT) on the time evolution of localized
wave-packets by means of the autocorrelation function. Thus, we will show that in the PT points (the
critical points) an abrupt change in the dynamic of localized wave-packets around the ground state
appears, which includes, as main features, the exhibition of a periodic motion around them, a change
in the direction of wave-packet rotation during these oscillations above and below the critical point,
and a divergence of the period of these oscillations just at the critical point. For a more clear and
deep analysis of the phenomena emerging at these critical points, we will use the Shannon entropy
for a visualization of the changes in the dynamic of the wave packet. In fact, Shannon entropy and
others information measures have been used recently to characterize quantum phase transitions in
Dicke and Vibron models.12–16

To address this study and to see the generality of our findings we will consider two different
model systems: in Section II we will consider a circular graphene quantum dot model and in
section III we will study a Dirac oscillator. They provide a simple and clear framework to study the
connection between PT and wave-packet dynamics.

II. GRAPHENE QUANTUM DOT MODEL

We have investigated the appearance of phase transitions in a graphene quantum dot in a
perpendicular magnetic field when the magnetic field strength B is changed.

2158-3226/2012/2(4)/042121/8 C© Author(s) 20122, 042121-1
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FIG. 1. Energy spectrum of an electron confined in a circular graphene quantum dot in a perpendicular magnetic field for
0 T < B < 5 T, τ = 1, m = −11, . . . , 7 and energies −100 meV ≤ E ≤ 100 meV.

Graphene is a system that, in the last years, has attracted growing interest due to its remarkable
and starling properties and its potential applications in nanoelectronics.17–22 Recently, moreover,
graphene quantum dots have been widely studied, both theoretically and experimentally (see23–26

and references therein), and have been point out to be very attractive as spin qubits in quantum
information processing.25

In the following, we will briefly describe the mathematical framework used to study graphene
quantum dots. Let us consider a Hamiltonian for electrons in the valley-isotropic form by27

Hτ = vF (p + eA) · σ + τ V (r )σz, (1)

and use the symmetric gauge for the vector potential, A = B/2(− y, x, 0) = B/2(− r sin φ, r cos φ,
0), where φ is the polar angle, vF = 106m/s the Fermi velocity, and τ = ±1 differentiates the two
valleys K1 and K2. In (1) σ are the Pauli spin matrices in the basis of the two sublattices of A and B
atoms. On the other hand, the confinement potential is a mass-related potential energy V (r ) coupled
to the Hamiltonian via the σ z Pauli matrix, where V (r ) = 0 for r < R and V (r ) = ∞ for r > R, that
is, tends to infinity at the edge of the dot.

Upon introducing the magnetic length lB = √
�/(eB) and using the fact that Hτ commutes

with the total angular momentum operator Jz = Lz + �

2 σz , [Hτ , Jz] = 0, the solution of the Dirac
equation Hτψ(r, φ) = Eψ(r, φ) (where ψ(r, φ) = [ψ1(r, φ), ψ2(r, φ)] is a two-component spinor)
is given in.27 The characteristic equation for the allowed eigenenergies E of the Quantum Dot using
the boundary condition for a circular confinement27, 28 ψ2/ψ1 = τ exp [iφ] has been obtained in27

and it can be written as (
1 − τ

klB

R/ lB

)
L

(
k2l2

B

2
− (m + 1), m, R2/2l2

B

)
+

L

(
k2l2

B

2
− (m + 2), m + 1, R2/2l2

B

)
= 0, (2)

where L(a, b, z) is the generalized Laguerre function. The spectrum of electrons confined in a circular
graphene quantum dot in a perpendicular magnetic field is given by E(n, m, τ ), as it is depicted in
Fig. 1 for τ = 1, verifying above equation and the energy eigenfunctions are ψ (n, m)(r, φ). On the
other hand, for τ = −1 it can be taken into account that E(n, m, 1) = −E(n, m, −1).
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FIG. 2. (top) Energy levels for the ground and first excited states (in meV) as a function of the magnetic field strength B (in
T) for a graphene quantum dot with R = 70 nm. The magnetic field phase transition (critical) values BPT � 0.945, 1.423,
1.852, 2.256, . . . T are indicated by vertical dashed lines leading an infinite sequence of critical points with different m with
m = 0, −1, −2, −3, . . . (bottom) Magnetic moment (in μB units) of the graphene quantum dot as a function of the applied
magnetic field. The discontinuities are indicated by vertical dashed lines at the above critical points.

Let us investigate now the ground state energy of the system Eg (the lowest positive energy) as a
function of the magnetic field strength for τ = 1. Its value changes from E = 13.6 meV for B = 0 to
the lowest Landau level EL L0 = vF

√
2e�B when B → ∞. As the magnetic field increases, there is a

sequence of phase transitions (critical) points which appear at BPT � 0.945, 1.423, 1.852, 2.256, . . .
(in T) whose quantum numbers m are decreasing following the sequence m = 0, −1, −2, −3, . . . ,
(Fig. 2 (top)) and as a consequence the ground state parity is alternately changing. We can calculate
the magnetic moment of the electron μ(B) = − d Eg

d B (see, e. g.29) whose behavior is depicted in Fig. 2
(bottom) for 0.5 T ≤B ≤ 4 T. This type of PT is a well known feature of electrons in a magnetic
field in a confinement potential, see for instance29, 30 and references therein. It is noticeable the
appearance of discontinuities of μ(B) at the particular magnetic field values BPT where the ground
state energy is not analytical, which is a crucial signature of PT. Furthermore, in order to characterize
these ground state energy PT we have studied the behavior of the energy gap �E ≡ |E1 − Eg| near
to the critical points and we have found that �E ∼ |B − BPT|zν with zν = 1 as it is shown in Fig. 3.

We have also investigated the connection between the evolution of a wave-packet for a particular
election of its initial shape and the phase transition point. For this purpose, we have constructed the
wave-packet as a superposition of eigenstates choosing a Gaussian distribution population of the
energy levels around the ground state positive energy

ψ(r) =
∞∑

n=0

∞∑
m=−∞

cn,mψ(n,m)(r) (3)
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FIG. 3. (Main graph) Scaling of the energy gap �E ≡ |E1 − Eg| around the PT point BPT � 0.945 T which shows a
dependence �E ∼ |B − BPT|−1. (Inset) Divergence of the oscillations period near the same critical point. For each value of
B the period T (symbols) has been computed, from the autocorrelation function of a Gaussian wave-packet centered around
the two first energy levels. with σ ∼ 1.7.

cn,m = ce−(m−m0)2/2σ 2
e−(n−n0)2/2σ 2

and with c such that
∑∞

n=0

∑∞
m=−∞ |cn,m |2 = 1. We have studied

the wave-packet dynamic of this initial wave-packet for different values of the intensity of the
magnetic field B. To analyze the evolution of the wave-packet we used the autocorrelation function
defined as A(t) = ∫

ψ*(r, 0)ψ(r, t)dr. An alternative approach based on uncertainty information
entropies relations has been also proposed.31 The wave-packet regeneration then occurs when |A(t)|2
approximatively returns to its initial value of unity.

We have calculated the time evolution of the autocorrelation function for an initial wave-packet
centered around the ground state with width σ and for R = 70 nm for different values of the magnetic
field B. We have found that for B around the critical values BPT the wave-packet has a oscillation
pattern with a period that is increasing when B is approaching BPT. The time dependence of the
autocorrelation function is illustrated if Fig. 4 for B = 0.9 T < BPT and B = 1.0 T > BPT, respectively.
Clearly the autocorrelation function returns to the value of unity oscillating with a period TB

= 11.49 ps for B = 0.9 T and TB = 10.79 ps for B = 1.0 T. On the other hand, TB ∼ |B − BPT|−θ

for B ∼ BPT with scaling parameter θ = 1. This behavior is clearly shown in Fig. 3 where TB is
displayed as a function of B in a log-log scale for magnetic field strengths around the PT point BPT

� 0.945 T. From the slope of a straight-line fit one easily finds θ = 1. Additionally, when B < BPT the
wave-packet describes a main clockwise rotation and a forward and backward pulsating movement
superimposed to the above one (Fig. 4 (top)). After the PT point B > BPT the wave-packet has an
analogous motion but the main rotating movement is counter clockwise (Fig. 4 (bottom)). On the
other hand, the wave-packet doesn’t rotate at the PT point - in fact it takes an infinite time to do so -
and only the forward and backward pulsating motion remains (Fig. 4 (middle)). For other values of
B far from the critical points the temporal evolution of the wave-packets doesn’t have this oscillation
pattern.

The wave-packet behavior is also clearly illustrated in Fig. 5 (top) where we have shown
simultaneously the temporal evolution of |A(t)|2 at different values of 0.5 T < B < 2.5 T. The
wave-packet has been created with σ = 1. We observe how the periods of motion diverge at the
ground state energy critical points BPT � 0.945, 1.423, 1.852, 2.256 and we have checked that this
behavior remains for different values of σ .
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FIG. 4. Time dependence of the autocorrelation function, for an initial Gaussian wave-packet with σ = 2, near the first critical
point, snapshots of the density function |ψ(r)|2 evolution at the green points and level energy panel with level population,
from red (high probability) to yellow (low probability) color scale, just before the critical point (top panels), in the critical
point (middle panels) and after the critical point (bottom panels).

To confirm the robustness of the results above, we have also calculated the total entropy of the
temporal evolution of the autocorrelation function

S = − 1

Tmax

∫ Tmax

0
|A(t)|2 ln |A(t)|2dt, (4)

which we have numerically computed for 0.5 T < B < 2.5 T and for Tmax = 100 ps great enough
to capture all the wave-packet dynamic for different magnetic field strengths. It is apparent from
Fig. 5 (bottom) that the entropy has maxima at the critical points where the autocorrelation function
is quasi-constant.
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FIG. 5. (Top) Time dependence of the autocorrelation function for an initial Gaussian wave-packet with σ = 1 for all values
of B which shows that when B is around the different critical values BPT � 0.945, 1.423, 1.852, 2.256, . . . , the oscillation
periods are increasing when B is approaching BPT. (Bottom) Total entropy S of the temporal evolution of the autocorrelation
function for the above initial wave-packets as a function of the magnetic field. The entropy shows very sharp maxima at
magnetic field values BPT where the PTs occur.

III. DIRAC OSCILLATOR MODEL

As a second system under study to prove the generality of our findings above and to check
the ground state energy PT characterization, we have considered the case of a fermionic rela-
tivistic harmonic oscillator when an additional constant magnetic field is applied. This relativis-
tic fermion has mass m and charge −e. The relativistic fermion is described by the following
Hamiltonian:

H = cα · (p − imβωr + eA) + βmc2 (5)

where ω is the Dirac oscillator frequency, c the speed of light and β and α the usual Dirac matrices.
We performed our study in the axial gauge where a constant magnetic field B = B	ez is described by
the vector potential A ≡ B

2 (−y, x, 0), and the cyclotron frequency is given by ωc ≡ eB
m . Introducing
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FIG. 6. Time dependence of the autocorrelation function for an initial Gaussian wave-packet with σ = 1 for several values
of the relative coupling strengths ξ̃ /ξ which shows that the oscillation periods are increasing when ξ̃ /ξ is approaching 1.

the quantities

ω̃ ≡ ωc/2, ξ ≡ �ω/mc2 ξ̃ ≡ �ω̃/mc2 (6)

μ = 1

2

(
ω̃

ω
− ω

ω̃

)
(7)

the eigenergies are given32 by

En = ±mc2
√

1 + 2(ξ − ξ̃ − 2μ(ξ ξ̃ )1/2)(n + 1), (8)

for n = 1, 2, . . . and

E0 = ±mc2 (9)

in the case ξ̃ < ξ and by

En = ±mc2
√

1 + 2(ξ̃ − ξ + 2μ(ξ ξ̃ )1/2)(n + 1), (10)

for n = 0, 1, 2, . . . in the case ξ̃ > ξ . It has been proof32 that this system exhibits a PT for a critical
coupling

(
ξ̃ /ξ

)
c = 1 and that there is32 an universal scaling law for the energy gap �E → 0 when∣∣∣ ξ̃

ξ
−

(
ξ̃

ξ

)
c

∣∣∣ → 0 with scaling exponent 1, that is, �E ∼
∣∣∣ ξ̃

ξ
−

(
ξ̃

ξ

)
c

∣∣∣.
Next, we have constructed the wave-packet as in Eq. (3), that is, choosing a Gaussian distribution

population of the energy levels around the ground state positive level. We find the same behavior
in the PT point than in the case of the graphene quantum dot as it can be depicted in the carpet in
Figure 6.

IV. SUMMARY

Summing up, in this work we have provided a new tool to visualize and characterize phase
transitions in terms of wave-packet dynamics using as illustrative systems a graphene quantum dot
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in a perpendicular magnetic field model and a Dirac oscillator in a magnetic field. We have shown
that the autocorrelation function shows that above and below each critical point the wave-packet
has oscillations whose period diverges at the PT point in both models. Furthermore, the Shannon
entropy of the square of the autocorrelation function shows relative maxima at the critical points
which reveals it as a very suitable PT indicator.
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