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Abstract. This work presents the first analysis of long-
term correlative day-to-night columnar aerosol optical prop-
erties. The aim is to better understand columnar aerosol dy-
namic from ground-based observations, which are poorly
studied until now. To this end we have used a combination of
sun-and-star photometry measurements acquired in the city
of Granada (37.16◦ N, 3.60◦ W, 680 m a.s.l.; South-East of
Spain) from 2007 to 2010. For the whole study period, mean
aerosol optical depth (AOD) around 440 nm (±standard de-
viation) is 0.18 ± 0.10 and 0.19 ± 0.11 for daytime and night-
time, respectively, while the mean Angström exponent (α)
is 1.0 ± 0.4 and 0.9 ± 0.4 for daytime and nighttime. The
ANOVA statistical tests reveal that there are no significant
differences between AOD andα obtained at daytime and
those at nighttime. Additionally, the mean daytime values of
AOD andα obtained during this study period are coherent
with the values obtained in the surrounding AERONET sta-
tions. On the other hand, AOD around 440 nm present evi-
dent seasonal patterns characterised by large values in sum-
mer (mean value of 0.20 ± 0.10 both at daytime and night-
time) and low values in winter (mean value of 0.15 ± 0.09
at daytime and 0.17 ± 0.10 at nighttime). The Angström ex-
ponents also present seasonal patterns, but with low values
in summer (mean values of 0.8 ± 0.4 and 0.9 ± 0.4 at day-
and night-time) and relatively large values in winter (mean
values of 1.2 ± 0.4 and 1.0 ± 0.3 at daytime and nighttime).
These seasonal patterns are explained by the differences in
the meteorological conditions and by the differences in the
strength of the aerosol sources. To take more insight about
the changes in aerosol particles between day and night, the

spectral differences of the Angström exponent as function of
the Angstr̈om exponent are also studied. These analyses re-
veal increases of the fine mode radius and of the fine mode
contribution to AOD during nighttime, being more remark-
able in the summer seasons. These variations are explained
by the changes of the local aerosol sources and by the meteo-
rological conditions between daytime and nighttime, as well
as aerosol aging processes. Case studies during summer and
winter for different aerosol loads and types are also presented
to clearly illustrate these findings.

1 Introduction

Atmospheric aerosol is noted by the Fourth Intergovernmen-
tal Panel for Climate Change (IPCC 2007) as a key com-
ponent on the climate (Forster et al., 2007). Atmospheric
aerosol particles directly affect Earth’s radiation budget by
scattering short-wavelengths radiation and absorbing short-
wave and longwave radiation (e.g., Haywood and Shine,
1997; Forster et al., 2007). Furthermore, atmospheric aerosol
particles can act as cloud condensation nuclei and, thus, they
can modify cloud droplet size and cloud albedo (Forster et
al., 2007). In addition, they have effects on air quality and,
thus, on the human health (e.g., Pope et al., 2002; Brunekreef
and Forsberg, 2005; Miller et al., 2007). The IPCC 2007
also reported that due to the lack of adequate information
on aerosol temporal and spatial variability the uncertain-
ties associated with each aerosol effect are much larger than
those associated with greenhouse gases. Therefore, it is really
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important to measure and characterise the aerosol properties
in different sites for better understanding the aerosol impact
at least at regional scale.

Research on the atmospheric effects of the aerosol parti-
cles has become a top priority. In this sense, several satellite
programmes have been developed to study long-term spectral
aerosol optical depth (AOD) on a global scale (e.g., Kauf-
man et al., 1997, 2002; Kahn et al., 2005; Remer et al.,
2005). However, satellite measurements present low tempo-
ral resolution. Surface-based passive measurements allow the
study of columnar aerosol properties, and the global network
AERONET (Holben et al., 1998) has been developed. But
all these instrumentations acquire measurements at daytime.
Currently, Raman lidar systems allow retrieving vertical pro-
files of aerosol optical properties at nighttime, but the high
cost of this technique make these measurements sparse in
time (Bösenberg et al., 2001; Pappalardo et al., 2009). Other
simpler configurations, such as elastic lidar systems, can also
acquire nighttime measurements, but they need constraints as
the extinction-to-backscatter ratio (Sassano et al., 1989; Wel-
ton et al., 2001).

Until now, the knowledge of columnar aerosol properties
at nighttime is quite limited due to the absence of contin-
uous measurements. Although the role of columnar aerosol
at nighttime in radiative forcing is weak because only small
aerosol absorption is expected in the thermal infrared, the
knowledge of nighttime columnar aerosol properties is very
important to evaluate aerosol dynamic. These studies will
allow us to have a whole picture of the daily behaviour of
the atmospheric aerosol, covering the different stages in the
evolution of the planetary boundary layer and pre-convection
and pre-photochemistry processes that affect the atmospheric
aerosol. The knowledge of AOD at nighttime will also con-
tribute to aerosol transport and chemistry models validation
efforts, being important within the air-quality schemes. In ad-
dition, the AOD at nighttime can be also used as constraints
for correlative lidar measurements (e.g., Alados-Arboledas et
al., 2011), both for ground-based and space-borne missions.
Therefore, research studies about columnar aerosol proper-
ties at nighttime are calling for and currently some research
groups are working with ground-based irradiance measure-
ments from stars (e.g., Herber et al., 2002; Perez-Ramirez et
al., 2008a; Baibakov et al., 2009) or from the moon (e.g., Es-
posito et al., 1998; Herber et al., 2002; Berkoff et al., 2011)
to obtain AOD at nighttime.

First attempts in star-photometry were made by Leiterer et
al. (1995) who developed an instrument based on a photo-
detector as measurement device, acquiring very valuable
measurements during 10 days in April 1994 at the Linden-
berg observatory (52.14◦ N; 14.12◦ E; Germany). This de-
sign was also used by Herber et al. (2002) to acquire mea-
surements during the Arctic winter from 1996 to 1999 at the
Koldeway station in Ny-̊Alesund (78.95◦ N; 11.93◦ E; Nor-
way). However, these last studies did not deal with correla-
tive day-to-night measurements due to the characteristics of

the place. Moreover, evaluations of daytime and nighttime
differences in particle sizes (types) were not performed.

To address the problem of the lack of continuous measure-
ments of spectral AOD at nighttime, this work uses the mea-
surements acquired by the star photometer EXCALIBUR
based on a CCD camera as detector device (Perez-Ramirez et
al., 2008a, b). This instrument, together with a sun photome-
ter CIMEL, operates in the Andalusian Center for Environ-
mental Research in the city of Granada (37.16◦ N, 3.60◦ W,
680 m a.s.l.; South-East of Spain). The star photometer EX-
CALIBUR is also a versatile instrument because it is able
to obtain precipitable water vapour (Perez-Ramirez et al.,
2012a) and is also used to estimate the sky quality in As-
tronomical Centers (Sanchez et al., 2007).

Moreover, atmospheric aerosol particles are constantly af-
fected by physical and chemical processes in the atmosphere
that induce changes in the optical and radiative properties
of these particles. The spectral dependence of AOD is re-
lated to the sizes (types) of the predominant particles. Thus,
using sun/star photometry, the possible changes in aerosol
particle sizes (types) can be analysed by means of study-
ing the spectral dependence of AOD (e.g., O’Neill et al.,
2001, 2003; Schuster, 2006; Gobbi et al., 2007) or by study-
ing aerosol size distributions retrieved by inversion methods
using sky radiance measurements (e.g., Dubovik and King,
2000; Dubovik et al., 2006; Olmo et al., 2006, 2008). In this
work, in order to study the possible change in the aerosol
particle sizes between daytime and nighttime, and due to
the lack of sky radiance measurements by star photometry,
we use the simple graphical method proposed by Gobbi et
al. (2007).

The scope of this work is to study day-to-night columnar
aerosol properties which, to our knowledge, have not been
already done. To this end, we use consecutive day-to-night
sun/star photometry measurements acquired between 2007
and 2010 in the city of Granada (Spain). The instruments
used and the experimental site are described in Sect. 2. The
descriptions of the methodologies are in Sect. 3. Later, in
Sect. 4 we present the main results, with an in depth analysis
of intra-annual and seasonal evolutions of columnar aerosol
properties, as well as the spectral analysis of the Angström
exponent, both at daytime and nighttime. We also present two
case studies related to the air-masses origin in order to show
day-to-night columnar aerosol dynamic. Concluding remarks
are given in Sect. 5.

2 Instrumentation and experimental site

Column-integrated characterisation of the atmospheric
aerosol at daytime has been performed by means of a sun-
photometer CIMEL CE-318-4 (Cimel Electronique, France),
while at nighttime a star-photometer EXCALIBUR (As-
tronómica S.L.) has been used. The CIMEL CE-318-4 makes
solar extinction measurements with a 1.2◦ full field-of-view
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at 340, 380, 440, 670, 870, 940 and 1020 nm. The full-
width at half-maximum (FWHM) of the interference fil-
ters are 2 nm at 340 nm, 4 nm at 380 nm and 10 nm for
the other wavelengths. More details about the CIMEL CE-
318-4 can be found in e.g., Holben et al. (1998); Alados-
Arboledas et al. (2008). On the other hand, for nighttime
the star photometer EXCALIBUR acquires direct star irra-
diance measurements at 380, 436, 500, 670, 880, 940 and
1020 nm (nominal wavelengths). The FWHM range between
7.7 and 11.2 nm for the different filters. EXCALIBUR star
photometer presents the difference to those previously de-
veloped by Leiter et al. (1995) that uses a CCD camera as
detector device. Further details about this instrument can be
found in Perez-Ramirez et al. (2008a, b). Both instruments
operated in the Andalusian Center for Environmental Re-
search (CEAMA) located in the city of Granada (37.16◦ N,
3.60◦ W, 680 m a.s.l.; South-East of Spain). Granada is a
non-industrialised and medium-sized city, with a munici-
pal population around 250 000 inhabitants and twice includ-
ing its metropolitan area. The city is situated in a natu-
ral basin surrounded by mountains, with the highest hills
over 3000 m a.s.l. located at the Southeast of the basin. The
Mediterranean-Continental climate conditions prevailing at
this site are responsible for large seasonal temperature dif-
ferences, providing mild winters and hot summers. On the
other hand, most of the rainfall is registered in spring–winter.
The summers are usually very dry, with very few rainfall
events. For the past 50 yr, according to Spanish Meteorolog-
ical Agency (AEMET;http://www.aemet.es), the mean an-
nual rainfall in this area is 370 mm. The relative humidity
(RH) is larger in winter (with average values of 60 % and
70 % for daytime and nighttime, respectively) than in sum-
mer (38 % and 49 % for daytime and nighttime, respectively).
Finally, the RH shows a clear diurnal cycle in all the seasons
with the largest values at night and the lowest values at noon.

Due to its location in the Iberian Peninsula, the study area
is usually affected by air-masses with different origins. By
one hand, air-masses with origin in the Sahara desert (North
Africa) are usually associated with large amounts of mineral
dust particles (e.g., Lyamani et al., 2005, 2006a, b; Guerrero-
Rascado et al., 2009; Valenzuela et al., 2012a, b). These air-
masses are more frequent during the summer season (Valen-
zuela et al., 2012b). On the other hand, the air-masses com-
ing from Europe or from the Mediterranean basin can trans-
port large loads of anthropogenic particles to the study area
(e.g., Lyamani et al., 2006a, b). Atlantic air-masses affecting
the study area are usually associated with low aerosol loads
(e.g., Lyamani et al., 2010), being more frequent in the winter
season. Furthermore, the main local anthropogenic source of
aerosol particles is traffic, and also domestic heating (based
on fuel oil combustion) in winter (e.g., Lyamani et al., 2008,
2010, 2011; Titos et al., 2012).

3 Methodology

Attenuation of sun or star irradiance through the Earth’s at-
mosphere follows the Beer-Bouger-Lambert law that is given
by (for an average Sun/star-Earth distance):

V (λ) = V0(λ)exp(−mrδatm(λ)) (1)

whereV (λ) is the signal measured by the photometer,V0(λ)

is the extraterrestrial signal (what is known as calibration
constant),mr is the optical relative air mass andδatm(λ) is
the total atmospheric optical depth. The calibration of the
star photometer EXCALIBUR was performed at the high
mountain site of Calar Alto (37.2◦ N, 2.5◦ W, 2168 m a.s.l.),
once a year (Perez-Ramirez et al., 2011). Calibration of sun
photometer Cimel was performed twice a year in “Ahı́ de
Cara” (37.1◦ N, 3.4◦ W, 2100 m a.s.l.) (Alados-Arboledas et
al., 2008) following the same calibration procedures of the
AERONET network (Holben et al., 1998). Using equation
1 and sun/star photometer measurements, the aerosol optical
depth (AOD(λ)) at the selected spectral channels have been
computed following the methods described in the works of
Alados-Arboledas et al. (2003, 2008) and Perez-Ramirez et
al. (2008a), for sun- and star-photometers, respectively. Un-
certainties in AOD(λ) for the star-photometer EXCALIBUR
are 0.02 forλ < 800 nm and 0.01 forλ > 800 nm (Perez-
Ramirez et al., 2011), and for sun-photometer CIMEL are
0.02 forλ < 400 nm and 0.01 forλ > 400 nm (Holben et al.,
1998).

From the Angstr̈om turbidity formula AOD(λ) = βλ−α,
least-squares fits (in a log-log scale) were applied to deter-
mine the coefficientsα and β. The β parameter is related
to particle concentration and represents the aerosol optical
depth at 1 µm. In the solar spectrum, the Angström expo-
nent α characterises the spectral features of aerosol parti-
cles and is related to the size of the particles;α > 1.5 are
mainly determined by the fine mode (submicron aerosol par-
ticles), whileα < 0.5 are largely determined by the coarse
mode (e.g., Dubovik et al., 2002; Gobbi et al., 2007). In this
work, the Angstr̈om exponent,α(436–880 nm), obtained at
nighttime is computed from AOD at 436, 667, 880 nm and
the Angstr̈om exponent,α(440–870 nm), obtained at daytime
is calculated from AOD at 440, 670 and 870 nm.

Several authors have discussed how the spectral curva-
ture of the Angstr̈om exponentα can provide further infor-
mation about the aerosol size distribution (e.g., Eck et al.,
1999; O’Neill et al., 2001, 2003; Schuster, 2006; Gobbi et
al., 2007). In this work, we use the simple graphical method
proposed by Gobbi et al. (2007). In this method, for a bi-
modal size distribution with different fine (rf) and coarse
(rc) modal radius and fixed widths of fine and coarse modes
of σf = 1.5 µm andσc = 1.8 µm, respectively, the difference
δα = α(440–670 nm)−α(670–870 nm) was computed and
represented versusα(440–870 nm). This computation was
also made taking into account different contributions of the
fine mode to AOD at 670 nm (η). The computations were
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9722 D. Ṕerez-Raḿırez et al.: Columnar aerosol properties from sun-and-star photometry

done using the Mie theory with a fixed aerosol refractive
index m = 1.4–0.001i (Gobbi et al., 2007). Moreover, this
method assumes that the particles are spherical, which has
no significant impact on the results (Gobbi et al., 2007). It
is important to note that due to the large uncertainties in the
Angstr̈om exponent for low AOD(λ), this method is only ap-
plicable for AOD(670 nm)> 0.15 (Gobbi et al., 2007).

Although sun- and star-photometers have filters centred
at the same wavelengths, there are small differences in
those around 440 and 880 nm. We have studied the ef-
fects of these small differences by evaluating AOD(λ) =

βλ−α. The parameterα was set at 0.2, 0.5, 0.75, 1.0, 1.25,
1.5, 1.75, 2.0 and 2.5 while the parameterβ was set at
0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.25,
1.5 and 2.0. From these computed AOD(λ), the Angstr̈om
parameterα(440–870 nm),α(436–880 nm),α(440–670 nm),
α(436–670 nm),α(670–870 nm) andα(670–880 nm) were
after computed, reproducing each one same initialα val-
ues. To take more insight of the effect of these slight differ-
ences in filters between both instruments, we also evaluated
the relative differences (AOD(440) – AOD(436))/AOD(440)
and (AOD(870) – AOD(880))/AOD(870). No differences
were found out for fixed values ofα and variableβ. How-
ever, there were slight differences varyingα and being
β fixed: for α < 1 we obtained that both relative differ-
ences are lower than 1 %, while forα > 1 they are lower
than 2 %. Taking into account that1α ∼ (1AOD1/AOD1 +

1AOD2/AOD2) (where the subscripts 1 and 2 refer to
the different wavelength used in the computations), we
obtained1α(440–870 nm)< 2 %, 1α(440–670 nm)< 1 %,
1α(670–880 nm)< 1 % and 1δα < 2 % for α < 1, while
1α(440–870 nm)< 4 %, 1α(440–670 nm)< 2 %, 1α(670–
880 nm)< 2 % and1δα < 4 % for α > 1. These uncertain-
ties are lower than those associated with the sun- and star-
photometers used in this work.

Finally, five-day backward-trajectories of the air-masses
affecting the study area are calculated by the HYSPLIT-4
model (Draxler and Rolph, 2003). The meteorological data
used to run the model are 6-hourly GDAS (Global Data
Assimilation System,ftp://www.arl.noaa.gov/pub/archives/
gdas1/). The HYSPLIT model has been run twice a day at
00:00 and 12:00 UTC at 1500 m a.g.l.; this altitude was se-
lected as representative of the whole atmospheric column
(e.g., Toledano et al., 2009). To classify the air-masses that
affected the study area we follow the classification scheme
developed by Toledano et al. (2009). This method is based
on the residence time of the trajectory within geographic sec-
tors. We defined five major air-mass sectors: North Atlantic
Ocean (maritime-polar), South Atlantic Ocean (maritime-
tropical), European Continent and Iberian Peninsula (conti-
nental), Mediterranean Sea (Eastern), North Africa (South-
ern) and the Local one.

4 Results

The data used in this work were acquired from 2007 to 2010.
Aerosol optical depths obtained by the sun-photometer were
cloud-screened using the algorithm proposed by Smirnov et
al. (2000) (used in AERONET network). For nighttime, the
star photometer cloud-free data were obtained applying the
algorithm proposed by Perez-Ramirez et al. (2012b). Addi-
tionally, the days and nights that present less than 2 h of mea-
surements were eliminated from the database. Monthly val-
ues with less than 8 days/nights of measurements were also
eliminated.

4.1 Temporal evolution of columnar aerosol optical
depth and Angström exponent

Figure 1 shows the temporal evolutions of daytime mean
values of AOD(440 nm) and nighttime mean values of
AOD(436 nm) acquired at Granada during the study period.
Monthly values are also plotted. There are some gaps in both
AOD(λ) data series which are due to instruments mainte-
nance and calibration as well as to bad meteorological con-
ditions.

From Fig. 1, both at daytime and nighttime, there are varia-
tions in AOD(λ) which are generally of random nature. How-
ever, these random variations are modulated by more regular
longer period variations. Low values of AOD(λ) are more
frequently found during the winter months, while large val-
ues are frequently obtained in summer months, both at day-
time and nighttime.

Figure 2 shows the temporal evolutions of daytime mean
values of α(440–870 nm) and nighttime mean values of
α(436–880 nm). Monthly values are also plotted. As for
AOD(λ), there is an important variability in the Angström
exponent values between day-to-day and night-to-night. Dur-
ing the daytime,α(440–870 nm) shows large values in win-
ter and low values in summer months. However, during the
nighttime these seasonal differences are not so remarkable.

Table 1 presents a statistical summary of daytime and
nighttime mean values of AOD(λ) and α for the whole
study period; particularly the mean value, standard devi-
ation (STD), median, maximum and minimum values, as
well as the corresponding percentiles at 10, 25, 75 and
90 % (P10, P25, P75 and P90). ANOVA statistical tests were
used to compare daytime and nighttime datasets. These tests
are based on the analysis of variances. The null hypothe-
sis indicates that day and night data series are not differ-
ent. The ANOVA statistical tests reveal that at 95 % level
the datasets of AOD(λ) andα obtained at daytime are sta-
tistically equal to those obtained at nighttime. During day-
time, AOD(440 nm) ranges from 0.02 to 0.95 with a mean
value of 0.18 ± 0.10, whileα(440–870 nm) varies between
0.01 and 1.8 with a mean value of 1.0 ± 0.4. During night-
time, AOD(436 nm) varies from 0.02 to 0.68 with a mean
value of 0.19 ± 0.11, whileα(436–880 nm), varies from 0.1
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Table 1.Daytime and nighttime spectral aerosol optical depth AOD(λ) and Angstr̈om exponentα statistics for the 4-year data series in the
city of Granada; STD is the standard deviation; P10, P25, P75 and P90 are the corresponding percentiles at 10, 25, 75 and 90 %.

Parameter Aerosol Optical Depth (AOD) at different wavelenghts (nm) Angstr̈om exponent

Wavelenght (nm) 380 380 440 436 670 670 870 880 1020 1020α(440–870) α(436–880)

Time period Day Night Day Night Day Night Day Night Day Night Day Night

Mean 0.21 0.21 0.18 0.19 0.12 0.13 0.10 0.10 0.09 0.09 1.0 0.9
STD 0.11 0.13 0.10 0.11 0.08 0.09 0.08 0.08 0.08 0.07 0.4 0.4
P25 0.14 0.13 0.11 0.11 0.07 0.07 0.05 0.05 0.04 0.05 0.6 0.7
P75 0.26 0.27 0.22 0.24 0.14 0.16 0.12 0.13 0.10 0.11 1.3 1.2
P10 0.10 0.09 0.08 0.07 0.05 0.05 0.04 0.03 0.03 0.03 0.4 0.4
P90 0.34 0.38 0.29 0.32 0.22 0.24 0.20 0.19 0.20 0.17 1.5 1.4
Minimum 0.03 0.02 0.02 0.02 0.01 0.02 0.01 0.01 0.01 0.01 0.01 0.1
Maximum 1.07 0.90 0.95 0.68 0.94 0.63 0.91 0.62 0.90 0.59 1.8 2.1
Median 0.19 0.19 0.16 0.17 0.10 0.10 0.08 0.08 0.07 0.07 1.0 1.0
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Figure 1: Temporal evolutions of daytime aerosol optical depth at 440 nm (a) and nighttime 

aerosol optical depth at 436 nm (b). Fully circles linked by dash lines corresponds to day/night 

mean values, while open circles linked by solid lines represents monthly day/night values and 

their standard deviations. All the data were acquired at Granada from 2007 to 2010. 

 

 

 

 

 

 

 

 

Fig. 1. (a)Temporal evolutions of daytime aerosol optical depth at
440 nm and(b) nighttime aerosol optical depth at 436 nm. Fully
circles linked by dash lines corresponds to day/night mean val-
ues, while open circles linked by solid lines represents monthly
day/night values and their standard deviations. All the data were
acquired at Granada from 2007 to 2010.

up to 2.1 with a mean value of 0.9 ± 0.4. Thus, there are no
statistical significant differences in the sets of daytime and
nighttime data of AOD(λ) andα.

The standard deviations and percentiles of AOD(λ) and
α are large, both at daytime and nighttime, indicating the
large variability of the atmospheric aerosol loads and types,
and associated with the variability in the synoptic condi-
tions. In fact, as mentioned before, the different air-masses
affecting the study area are responsible of aerosol variability
(e.g., Atlantic air-masses are very clean while North African
air-masses can transport large loads of mineral dust; Con-
tinental and Mediterranean air-masses usually transport an-
thropogenic particles). Another factor that can explain the
large variability is the changeable meteorological conditions.

 

 

0.0

0.5

1.0

1.5

2.0

2.5

01/01/2007
01/01/2008

01/01/2009
01/01/2010

01/01/2011

0.0

0.5

1.0

1.5

2.0

2.5

a) day

 

 

(
4

4
0

-
8

7
0

 
n

m
)

b) night

 

 

(
4

3
6

-
8

8
0

 
n

m
)

 

 

Figure 2: Temporal evolutions of daytime Angström exponent α(440-870 nm) (a) and nighttime 

Angström exponent α(436-880 nm) (b). Fully circles linked by dash lines corresponds to 

day/night mean values, while open circles linked by solid lines represents monthly day/night 

values and their standard deviations. All the data were acquired at Granada from 2007 to 

2010. 

 

 

 

 

 

 

Fig. 2. (a) Temporal evolutions of daytime Angstrom exponent
α(440–870 nm) and(b) nighttime Angstrom exponentα(436–880
nm). Fully circles linked by dash lines corresponds to day/night
mean values, while open circles linked by solid lines represents
monthly day/night values and their standard deviations. All the data
were acquired at Granada from 2007 to 2010.

Rainfall events favour the aerosol wet deposition, leading to
the reduction of the aerosol load. Additionally, very high val-
ues of AOD(λ), both at daytime and nighttime, can be also
associated with extreme events such as pollution or biomass
burning (e.g., Alados-Arboledas et al., 2011).

For the whole study period, Fig. 3 shows the frequency
distributions of AOD(440 nm) andα(440–870 nm) obtained
at daytime, and AOD(436 nm) andα(436–880 nm) obtained
at nighttime. Both AOD(λ) frequency distributions are uni-
modal with strong skewness at low values of AOD(λ). The
AOD(λ) modal value is 0.13 both at daytime and nighttime.
On the other hand, the Angström exponent shows bimodal
distributions both at daytime and nighttime. The first mode
is centred at 0.55 and 0.45 with 6 % and 7 % frequencies of

www.atmos-chem-phys.net/12/9719/2012/ Atmos. Chem. Phys., 12, 9719–9738, 2012
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Fig. 3.Frequency histograms of AOD(440 nm) andα(440–870 nm)
obtained at daytime and of AOD(436 nm) andα(436–880 nm) ob-
tained at nighttime for the period 2007–2010.

occurrence at daytime and nighttime, respectively, which re-
flects the contribution of large particles associated with long-
range transport of dust particles and with local re-suspended
soil dust. The second mode is located at 1.25 and 1.05 with
approximately 10 % frequencies of occurrence at daytime
and nighttime, respectively, and evidences cases associated
with a mixture of fine (mainly from anthropogenic origin)
and coarse particles.

However, analysing onlyα values does not provide clear
information about the changes of fine/coarse mode to the
aerosol load. To take more insight about the day-to-night
changes ofα, we use the simple graphical method proposed
by Gobbi et al. (2007). Figure 4 shows both daytime and
nighttime δα versusα. The data presented in Fig. 4 corre-
spond to daily or nightly mean values. The data that fall out
of the diagrams in the upper region can be explained because
they have fine mode radius (rf) lower than 0.05 µm, while
those in the bottom region can be explained by the use of a
fixed refractive index (Gobbi et al., 2007).

From Fig. 4 changes in the fine mode fraction and radius
between daytime and nighttime are observed, with increases
of η andrf at nighttime. For AOD(670 nm) ranging between
0.15 and 0.3, at daytime most of the data presentrf values
ranging from 0.10 to 0.15 µm, while the fine mode fraction
(η) varies a lot with values up to 70 % (Fig. 4a). The vari-
ability of rf andη, and also ofα(440–870 nm) (from 0.07
to 1.63) indicate large variability in the aerosol types and
sizes. At nighttime a clockwise rotation toward largerrf (up
to 0.3 µm) andη (up to 99 %) is observed. For other ranges
of AOD(670 nm),α is lower than 0.7 both at nighttime and
daytime, and the clockwise rotation at nighttime is observed
as well. Changes inη can be associated with differences in

the aerosol supplies either by natural or anthropogenic emis-
sions, and must be studied detailed for every season (see
Sect. 4.3). The increase ofrf at nighttime might be associated
with aerosol aging (e.g., Reid et al., 1998, 1999; Dubovik et
al., 2002; Eck et al., 2001, 2003a, b).

4.2 Inter-comparison with surrounding AERONET
stations

For the study period, Table 2 shows the mean AOD(440 nm)
and α(440–870 nm) values obtained at 14 AERONET sta-
tions located in the Iberian Peninsula, Western Mediter-
ranean Basin, North West Africa and Canary Island. For
small urban areas in the Iberian Peninsula like Evora,
Cáceres and Palencia, lower values of AOD(440 nm) than in
the city of Granada are obtained. Theα(440–870 nm) val-
ues at Granada are lower than those at Cáceres and Palen-
cia. Atlantic flow advections are much more frequent in the
West than in the East of the Iberian Peninsula (e.g., Querol et
al., 2009), and the low aerosol load associated with these air-
masses can explain the low values of AOD(440 nm) at Evora,
Cáceres and Palencia. Additionally, the larger impact of Sa-
haran dust outbreaks over the South of Spain (e.g., Querol
et al., 2009; Toledano et al., 2007a, 2009) with large aerosol
loads and low values of the Angström exponent (e.g., Lya-
mani et al., 2006a, b; Toledano et al., 2007a; Cachorro et
al., 2008; Valenzuela et al., 2012a, b) can also explain the
results obtained at Granada. On the other hand, although El
Arenosillo is a remote station, the AOD in this site is quite
similar to that obtained in Granada. This can be explained
by the effects of anthropogenic industrial emissions in the
South-West of Spain and by the Saharan dust intrusions over
this remote station (e.g., Toledano et al., 2007b; Prats et al.,
2008; Ćordoba-Jabanero et al., 2011; Bennouna et al., 2011).
The stations of Valencia and Barcelona present larger values
of AOD(440 nm) andα(440–870 nm) than those at the station
of Granada. These two sites correspond to bigger cities in
Spain with considerable levels of local anthropogenic emis-
sions. These sites are also affected by Saharan dust intru-
sions, but with less frequency compared to that at the station
of Granada because Barcelona and Valencia are further to
the dust sources in North Africa (e.g., Rodriguez et al., 2001;
Estelles et al., 2007; Querol et al., 2009).

In other sites in the Western Mediterranean like Avignon,
Ispra, Rome, Toulon and Lecce, AOD(440 nm) andα(440–
870 nm) are larger than those obtained in Granada and in
other more polluted sites in the Iberian Peninsula such as Va-
lencia and Barcelona. This is because these cities (Avignon,
Ispra, Rome, Toulon and Lecce) are urban areas with high
local anthropogenic emissions and quite affected by highly
polluted air-masses from Europe (e.g., Pace et al., 2006; San-
tese et al., 2008; Mazzola et al., 2010). In addition, they
are also affected by Saharan dust intrusions (e.g., Perrone
et al., 2005; Santese et al., 2008; Meloni et al., 2007; Pavese
et al., 2009). It is worth noting that the station of Blida is
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Table 2. Mean values of aerosol optical depths at 440 nm andα(440–870 nm) obtained during the period 2007–2010 at 14 AERONET
stations. A brief description of each AERONET site is also included. The stations are defined as Desert areas (D), Remote (R), Urban sites
(U) and Costal areas (C).

AERONET site Coordinates Class Dataset AOD (440nm)α(440–870)

Iberian Peninsula

El Aeronosillo 37.1◦ N, 6.7◦ W, 0 m a.s.l. R/C 963 0.17 ± 0.12 1.0 ± 0.4
Cáceres 39.5◦ N, 6.3◦ W, 347 m a.s.l. U 792 0.14 ± 0.09 1.3 ± 0.4
Evora 38.6◦ N, 7.9◦ W, 293 m a.s.l. U 1097 0.15 ± 0.12 1.1 ± 0.5
Palencia 42.0◦ N, 4.5◦ W, 750 m a.s.l. U 788 0.14 ± 0.12 1.3 ± 0.5
Valencia 39.5◦ N, 0.4◦ W, 30 m a.s.l. UC 916 0.21 ± 0.14 1.1 ± 0.4
Barcelona 41.4◦ N, 2.1◦ E, 125 m a.s.l. UC 1077 0.22 ± 0.13 1.3 ± 0.3

Western Mediterranean Basin

Avignon 43.9◦ N, 4.9◦ E, 32 m a.s.l. U 1108 0.20 ± 0.13 1.4 ± 0.4
Toulon 43.1◦ N, 6.0◦ E, 50 m a.s.l. UC 1146 0.20 ± 0.14 1.3 ± 0.5
Roma 41.8◦ N, 12.6◦ E, 130 m a.s.l. U 949 0.24 ± 0.13 1.2 ± 0.4
Ispra 45.8◦ N, 8.6◦ E, 235 m a.s.l. U 806 0.29 ± 0.23 1.4 ± 0.3
Lecce 40.3◦ N, 18.1◦ E, 30 m a.s.l. UC 875 0.24 ± 0.14 1.2 ± 0.5
Blida 36.5◦ N, 2.9◦ E, 230 m a.s.l. UC 1048 0.26 ± 0.17 0.9 ± 0.4

North-West Africa and Canary Islands

Saada 31.6◦ N, 8.2◦ W, 420 m a.s.l. D 1216 0.26 ± 0.17 0.7 ± 0.4
La Laguna 28.5◦ N, 16.3◦ E, 568 m a.s.l. UC 837 0.17 ± 0.16 0.6 ± 0.3 

 

 

 

 

 

 

 

 

Figure 4: (a) Angström exponent difference δα = α(440-670 nm) - α(670-870 nm) as function 

of α(440-870 nm) at daytime and (b) Angström exponent difference δα = α(436-670 nm) - 

α(670-880 nm) as function of α(436-880 nm) at nighttime. Both δα and the Angström exponents 

are the mean day or night values for the period 2007-2010. Different symbols indicate the 

ranges of aerosol optical depth at 670 nm used. 
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Fig. 4. (a)Angstr̈om exponent differenceδα = α(440–670 nm)−α(670–870 nm) as function ofα(440–870 nm) at daytime and(b) Angstr̈om
exponent differenceδα = α(436–670 nm)−α(670–880 nm) as function ofα(436–880 nm) at nighttime. Bothδα and the Angstr̈om exponents
are the mean day or night values for the period 2007–2010. Different symbols indicate the ranges of aerosol optical depth at 670 nm used.

located in North Africa and is less affected by European air-
masses. This station presents mean value of AOD(440 nm) of
0.26 ± 0.17 and mean value ofα(440–870 nm) of 0.9 ± 0.4.
These values are mainly explained by the large influence of
Saharan air-masses and also by the increase of the anthro-
pogenic activity in the Magreb countries (Rodrı́guez et al.,
2011). The stations of Saada (in the North West of Africa)
and La Laguna (Canary Islands) are quite affected by Sa-
haran air-masses (e.g., Alastuey et al., 2005; Garcia et al.,
2009), which explain their large values of AOD(440 nm) and
low values ofα(440–870 nm).

For the nighttime, to our knowledge currently there are
no systematic measurements of AOD(λ) in the surrounding
areas to our station and, thus, it is not possible to make any
comparison. However, AOD(λ) andα mean values obtained
in this work at nighttime are quite similar to those obtained
during daytime (Table 1). But it is important to note that these
findings are only relevant to sites with similar characteristics
to that in the station of Granada.
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Figure 5: Seasonal Box-Whisker diagrams of (a) AOD(440 nm) and AOD(436 nm) 

(b) α(440-870 nm) and α(436-880 nm) obtained at daytime and nighttime, respectively, 

during the period from 2007 to 2010 at the station of Granada. Dashed Box is for night-

time data and empty Box is for day-time data. In these box diagrams the mean is 

represented by an open square. The line segment in the box is the median. The top limit 

represents the 75
th

 percentile (P75) and the bottom limit the 25
th

 percentile (P25). The 

box bars are related to the 1
st
 (P1) and 99

th
 (P99) percentiles, and the crosses represent 

the maximum and minimum values respectively. The lines perpendicular to the box 

diagrams are 1.5 the interquartile range.  

 

 

Fig. 5. Seasonal Box-Whisker diagrams of(a) AOD(440 nm) and
AOD(436 nm)(b) α(440–870 nm) andα(436–880 nm) obtained at
daytime and nighttime, respectively, during the period from 2007 to
2010 at the station of Granada. Dashed Box is for night-time data
and empty Box is for day-time data. In these box diagrams the mean
is represented by an open square. The line segment in the box is the
median. The top limit represents the 75th percentile (P75) and the
bottom limit the 25th percentile (P25). The box bars are related to
the 1st (P1) and 99th (P99) percentiles, and the crosses represent
the maximum and minimum values, respectively. The lines perpen-
dicular to the box diagrams are 1.5 the interquartile range.

4.3 Seasonal evolution of aerosol optical properties

To analyse the seasonal variations of aerosol optical prop-
erties, the data are grouped in four seasons: winter (January,
February and December of the previous year), spring (March,
April and May), summer (June, July and August) and autumn
(September, October and November). For the study period,
Table 3 shows the seasonal mean values of AOD(440 nm)
andα(440–870 nm) obtained at daytime, and AOD(436 nm)
andα(436–880 nm) obtained nighttime.

Figure 5 shows the seasonal Box-Whisker diagrams of
AOD(440 nm) andα(440–870 nm) obtained at daytime, and
AOD(436 nm) andα(436–880 nm) obtained at nighttime dur-
ing the study period. Figure 5a reveals an evident seasonal
pattern in AOD(λ), characterised by large values in spring–
summer and low values in autumn–winter. Forα Fig. 5b also
reveals a seasonal pattern characterised by low values in sum-
mer and in early-autumn and large values in winter and early
spring, both at daytime and nighttime. Although there are no
statistical differences between day and night seasonal pat-
terns of AOD(λ) andα, according to the mean values ofα

(Table 3) this parameter shows slightly more remarkable pat-
tern at daytime than at nighttime.

The seasonal patterns of AOD(λ) andα can be explained
by several reasons. In late-spring, summer and early au-
tumn, the higher frequency of Saharan dust intrusions in the
study area and the low ventilation rates of air-masses in the
Western-Mediterranean basin (e.g., Millan et al., 1997; Ro-
driguez et al., 2001; Lyamani et al., 2006a, b) can explain
the large values of AOD(λ) and the relatively low values of
α. Moreover, the intense atmospheric convective activity pre-
vailing in this area in these months, together with the aridity
of the soil during this particular period, provides a mineral
dust (coarse particles) loading to the atmosphere from local
soil. Another reason of these high AOD(λ) is the low rainfall
rates, which are responsible of the aerosol load reduction. On
the other hand, in late-autumn, winter and early-spring the
aridity of the soil is quite reduced mainly by the rainfall and
there are also less Saharan dust intrusions in the study area.
In addition, the rain and clean Atlantic air-masses are more
frequent in this period. All these reasons can explain the low
values of AOD(λ) and largeα values.

In the hot months the convective activity is more intense at
daytime than at nighttime. As the convective activity ceases
during the nighttime large particles can deposit, which can
induce an increase inα (explaining their slightly larger val-
ues at nighttime). During the late-autumn and winter, local
anthropogenic emissions are more relevant, which mainly
supplies fine particles in the atmosphere. These emissions are
more active during daytime, which can explain the larger val-
ues ofα obtained during daytime compared to nighttime.

Figure 6 shows the frequency distributions of daytime
and nighttime AOD(λ) andα for the different seasons. For
AOD(440 nm) and AOD(436 nm) obtained at daytime and
nighttime, respectively, all the distributions are unimodal
with skewness at low AOD(λ) values. This skewness changes
to slightly larger AOD(λ) values in summer. In all the sea-
sons, the differences of the AOD(λ) modal values between
daytime and nighttime are negligible. On the other hand, for
α both at daytime and nighttime they present similar shape,
and can be adjusted to a bimodal distribution. The first mode
is ∼ 0.1–0.5 and can be associated with the presence of dust
particles either from long range transport or local soil. Actu-
ally, this mode presents larger frequencies in summer when
the influence of dust particles is more relevant. The second
mode is observed at larger values ofα (∼ 1.1–1.4) and is as-
sociated with the presence of anthropogenic particles. Addi-
tionally, differences in the modal values ofα can be observed
between daytime and nighttime. But these differences are
very low (∼ 0.1) to obtain any conclusion about the changes
in particle types between daytime and nighttime. Actually,
only in autumn relevant differences are observed with the
lack of the first mode at nighttime (corresponding to coarse
particles), which can be associated with the presence of a
strong Saharan dust outbreak on 6 September 2007 at day-
time (Guerrero-Rascado et al., 2009). However, the study of
δα can reveal further differences. In this sense, Fig. 7 and
Fig. 8 showδα versusα at daytime and nighttime for summer

Atmos. Chem. Phys., 12, 9719–9738, 2012 www.atmos-chem-phys.net/12/9719/2012/



D. Pérez-Raḿırez et al.: Columnar aerosol properties from sun-and-star photometry 9727
Please replace figure 6 of the current version by this new one 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.0 0.5 1.0 1.5 2.0

0.0

0.1

0.2

0.3
 AOD(440 nm)  AOD(436 nm)

b) summer

Ångström exponent

Å
ngström

 exponent frequency

 

Night

 α(436-880 nm)

Day

 α(440-870 nm)

0.0

0.1

0.2

0.3

0.40.0 0.5 1.0 1.5 2.0

Night
 AOD(436 nm) AOD(440 nm)

a) spring

A
O

D
 (
λ)

 f
re

qu
en

cy

 α(436-880 nm)

Day

 α(440-870 nm)

Ångström exponent

 

0.0 0.2 0.4 0.6 0.8
0.0

0.1

0.2

0.3

0.4
c) autumn

 

 

Day

 α(440-870 nm)

Night

 α(436-880 nm)
 AOD(436 nm) AOD(440 nm)

AOD(λ)

A
O

D
(λ

) 
fr

eq
ue

nc
y

0.0 0.2 0.4 0.6 0.8
0.0

0.1

0.2

0.3
 AOD(440 nm)d) winter

AOD(λ)

 AOD(436 nm)
Night

 α(436-880 nm)

Å
ngström

 exponent frequency

 

 

Day

 α(440-870 nm)

Fig. 6. Frequency histograms of AOD(440 nm) andα(440–870 nm) obtained at daytime and of AOD(436 nm) andα(436–880 nm) obtained
at nighttime for:(a) spring(b) summer(c) autumn(d) winter.

Table 3.Seasonal mean values and standard deviations of AOD(λ) and Angstr̈om exponentα, obtained at daytime and nighttime at Granada.

Mean values and standard deviations

Parameter Spring Summer Autumn Winter

AOD(440 nm) Day 0.18 ± 0.08 0.20 ± 0.10 0.15 ± 0.10 0.15 ± 0.10
AOD(436 nm) Night 0.16 ± 0.08 0.20 ± 0.11 0.15 ± 0.11 0.17 ± 0.09
α(440–870 nm) Day 1.1 ± 0.4 0.8 ± 0.4 1.0 ± 0.4 1.2 ± 0.4
α(436–880 nm) Night 1.1 ± 0.4 0.9 ± 0.4 0.9 ± 0.4 1.0 ± 0.3

and winter season, respectively. We focus on these seasons to
avoid the changeable synoptic and meteorological conditions
in spring and autumn and, thus, study the differences in parti-
cle types between day and night for hot and cold months, re-
spectively. Every point presented in the figures corresponds
to a single measurement by the sun-photometer or 30 min
average measurements by the star-photometer.

For the data plotted in Fig. 7, taking into account that
only data with AOD(670 nm)> 0.15 are used, there are
no important differences between daytime and nighttime
AOD(λ). Actually, mean values of AOD(440 nm) at daytime
are 0.34 ± 0.11, 0.33 ± 0.12, 0.30 ± 0.06, 0.32 ± 0.10 for the
summers of 2007, 2008, 2009 and 2010, while during the
nighttime mean AOD(436 nm) are 0.35 ± 0.11, 0.30 ± 0.09,
0.28 ± 0.07, 0.27 ± 0.09 for the summers of 2007, 2008, 2009
and 2010, respectively.

From Fig. 7 during the daytime, although there are dif-
ferences among the different summers, two patterns ofδα

are clearly differentiated. The first one presentsα(440–
870 nm)< 0.5 and corresponds toη < 30 %, rf < 0.2 µm
and δα > 0. Backward-trajectories analysis and images of
MODIS sensor on board of TERRA and AQUA satellites
(http://modis.gsfc.nasa.gov) (graphs not shown) revealed that
these data are mainly associated with Saharan dust intru-
sions. The work of Basart et al. (2009) showed that for sun-
photometry measurements at the Sahara-Sahel deserts, min-
eral dust particles presentedδα approximately between−0.5
and 0.1,α < 0.3,η < 40 % andrf ∼ 0.3. The differences be-
tween these values and those obtained in this study can be ex-
plained by the mixture of dust with local anthropogenic parti-
cles, and by the deposition of the larger particles during their
transport to the study area. This pattern is more remarked

www.atmos-chem-phys.net/12/9719/2012/ Atmos. Chem. Phys., 12, 9719–9738, 2012
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Figure 7: Angström exponent difference δα = α(440-670 nm) - α(670-870 nm) as function of 

α(440-870 nm) at daytime and δα = α(436-670 nm) - α(670-880 nm) as function of α(436-880 

nm) at nighttime, for summer season. a) For year 2007. b) For year 2008. c) For year 2009. d) 

For year 2010. Each point presented in that figure corresponds to a single measurement 

with sun-photometry or 30 minute average measurements with star-photometry. 

 

 

-1.0

-0.5

0.0

0.5

1.0

 

 

 day

 night

99%

90%

70%

50%

30%

10%

0.5 m

0.4 m

0.3 m
0.2 m

0.15 m

0.10 m

 

 

A
n

g
s
t
r
ö

m
 
d

i
f
f
e

r
e

n
c

e

0.05 m

a) 2007

 

 

 day

 night

 

 

99%

90%

70%

50%

30%

10%

0.5 m

0.4 m

0.3 m 0.2 m

0.15 m

0.10 m

 

 

0.05 m

b) 2008

 

 

-0.5 0.0 0.5 1.0 1.5 2.0 2.5
-1.0

-0.5

0.0

0.5

1.0
 day

 night

 

 

99%

90%

70%

50%

30%

10%

0.5 m

0.4 m

0.3 m 0.2 m

0.15 m

0.10 m

 Angström exponent

 

 

A
n

g
s
t
r
ö

m
 
d

i
f
f
e

r
e

n
c

e

0.05 m
c) 2009

 

 

-0.5 0.0 0.5 1.0 1.5 2.0 2.5

99%

90%

70%

50%
30%

10%

0.5 m

0.4 m

0.3 m

0.2 m

0.15 m

0.10 m

 

 

0.05 m
d) 2010

 Angström exponent

 

 

 day

 night

 

 

Fig. 7. Angstr̈om exponent differenceδα = α(440–670 nm)−α(670–870 nm) as function ofα(440–870 nm) at daytime andδα = α(436–
670 nm)−α(670–880 nm) as function ofα(436–880 nm) at nighttime, for summer season.(a) For year 2007.(b) For year 2008.(c) For year
2009.(d) For year 2010. Each point presented in that figure corresponds to a single measurement with sun-photometry or 30 min average
measurements with star-photometry.

during the years 2007 and 2008 which was affected by more
intense and frequent Saharan dust outbreaks.

The second pattern is characterised byα(440–
870 nm)> 0.75, and most of the data presentδα > 0
and η of ∼ 30–70 %, andrf of ∼ 0.10–0.15 µm. These
data are usually associated with predominance of fine
particles (e.g., Basart et al., 2009). Particularly, the influence
of sporadic biomass-burning events in this season and
anthropogenic particles transported from polluted Mediter-
ranean and European areas can explain these values of
δα, α(440–870 nm) andη (e.g., Lyamani et al., 2006a, b;
Alados-Arboledas et al., 2011). In fact, in summers 2009 and
2010 the larger influence of continental and Mediterranean
air-masses explains the larger presence of this pattern. The
clustering is toward arf line and the extension to higher
AOD happens perpendicular therf line, into larger fine
mode fraction. This indicates growth of the fine mode by
aging processes (Gobbi et al., 2007). The study of Gobbi
et al. (2007) also showed patterns like that one for highly
polluted places like Beijing (China), Kanpur (India), Ispra
(Italy), Mexico DC (Mexico) or Goddard Space Flight
Centre (USA).

During nighttime, the two patterns of daytime data in
Fig. 7 are not observed, being found a clockwise rotation of
the data (η ranging from 30 to 99 %,rf ranging from 0.1 to
0.3 µm andδα < 0). This implies changes in the fine mode
particle characteristics between daytime and nighttime. Al-
though quick changes of the synoptic conditions between day
and night can be found, no systematic differences of day-to-
night air-masses affecting the study area are expected and,
thus, differences of air-masses can not explain these day-to-
night changes. The supply of local mineral particle from the
ground during daytime by the strong convective activity can
explain the lower values ofη. The increase ofrf at night-
time can be explained by aerosol aging processes such as
coagulation and condensation (Seinfeld and Pandis, 1998).
The combined increase inη and rf can be associated with
hygroscopic growth (Gobbi et al., 2007). Although the rel-
ative humidity at the surface is low (∼ 50 %), larger values
can be obtained at higher altitudes and favour hygroscopic
growth processes. However, we must be careful about this
statement because of the absence of relative humidity verti-
cal profiles, information about mixing conditions and aerosol
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Figure 8: Angström exponent difference δα = α(440-670 nm) - α(670-870 nm) as function of 

α(440-870 nm) at daytime and δα = α(436-670 nm) - α(670-880 nm) as function of α(436-880 

nm) at nighttime, for the winter season. a) For year 2008. b) For year 2009. Each point 

presented in that figure corresponds to a single measurement with sun-photometry or 30 

minute average measurements with star-photometry. 
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Fig. 8. Angstr̈om exponent differenceδα = α(440–670 nm)−α(670–870 nm) as function ofα(440–870 nm) at daytime andδα = α(436–
670 nm)−α(670–880 nm) as function ofα(436–880 nm) at nighttime, for the winter season.(a) For year 2008.(b) For year 2009. Each point
presented in that figure corresponds to a single measurement with sun-photometry or 30 min average measurements with star-photometry.

vertical distribution. Many processes compete, and the use of
the Gobbi diagrams does not allow their separation.

For the winter season, Fig.8 shows the results in 2008 and
2009 (in winter 2007 the star photometer was not available,
while bad meteorological conditions during winter 2010 ex-
plain the lack of data). There are no very large differences
of AOD(λ) between both years. For the data plotted in
Fig. 8a mean value of AOD(440 nm) is 0.22 ± 0.09 at day-
time, while during nighttime mean value of AOD(436 nm)
is 0.21 ± 0.06. On the other hand, for the data presented in
Fig. 8b, mean AOD(440 nm) is 0.26 ± 0.14 at daytime and
mean AOD(436 nm) is 0.28 ± 0.10 at nighttime. However, the
patterns ofδα versusα between both years are very different.

The inter-annual variation of the air-masses affecting the
study area explains the differences of the aerosol particles be-
tween 2008 and 2009. According to the five-day backward-
trajectories analysis and MODIS satellite images, during the
late winter of 2008 some Saharan dust intrusions affected
the study area (approximately 35 % of the days and nights
used in Fig. 8a). From Fig. 8a, at daytime two patterns can
be observed. The first one presentsδα > 0,α < 0.5,η < 30 %
andrf < 0.2 µm, and is mainly associated with dust particles
transported from North Africa. The second one is charac-
terised byδα >−0.5,α > 0.75,η up to 90 % and most data
with rf below 0.15 µm. This last pattern is associated with
a mixture of different aerosol types, both mineral dust and
anthropogenic particles. For nighttime, the two patterns pre-
viously mentioned are also observed and in both casesη val-
ues are lower than those observed at daytime. As commented
before, anthropogenic emissions are more active during the
daytime than during the nighttime, and can explain the pre-
dominance of the fine mode particles at daytime. This re-
sult is in good agreement with the comment before about the
slightly larger values ofα observed during daytime in winter
(Fig. 5b).

In winter 2009 (Fig. 8b) the synoptic conditions were
different to those in 2008, with a lot of rain periods. The
AOD(670 nm)> 0.15 were obtained only during the period
from 18 to 26 February. For this short period, the air-masses
affecting the study area were mainly of continental origin.
Particularly, larger values ofη andrf are obtained at night-
time. During the daytime,η ranges between 30 % and 70 %,
rf between 0.1 µm and 0.2 µm, andδα between−0.25 and
0.25, while at nighttimeη ranges between 50 % and 99 %,
rf between 0.15 µm and 0.25 µm, andδα between−0.75 and
0.1. Aging processes can again explain this increase of the
fine mode radius. Particularly the hygroscopic growth is an
important factor at high relative humidity for anthropogenic
particles (e.g., Kotchenruther et al., 1999; Raut and Chazette,
2007; Randriamiarisoa et al., 2006; Veselovskii et al., 2009).
But again we have to insist on the limitations of the method-
ology proposed that does not allow the separation between
any processes. On the other hand, from 24 to 25 February
(stars symbol in Fig. 8b) there were quick and intense pollu-
tion plumes associated with air-masses originated in the Eu-
ropean continent and in the Mediterranean Sea, which can
explain the differences ofrf andη to those observed for the
other days and nights during this winter.

The differences in the results between years 2008 and 2009
do not allow for the obtaining of any conclusion about the
day-to-night aerosol types in winter. It is associated with the
complexity of the atmosphere during this season at the study
area, which includes changes in the synoptic conditions, in
the planetary boundary layer and in aerosol emission sources.

4.4 Columnar aerosol properties dynamic: study cases

The comment above showed the similarity in AOD(λ) and
α between daytime and nighttime for aerosol climatology.
In spite of the continuity in the mean values, shorter time
scales are needed to study “day-to-night” aerosol dynamic

www.atmos-chem-phys.net/12/9719/2012/ Atmos. Chem. Phys., 12, 9719–9738, 2012
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Figure 9: Daytime and nighttime evolutions of columnar aerosol properties for the 

period from 18 June to 2 July 2008. a) Aerosol optical depth (AOD). b) Angström 

exponent α. 
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Fig. 9.Daytime and nighttime evolutions of columnar aerosol prop-
erties for the period from 18 June to 2 July 2008.(a) Aerosol optical
depth (AOD).(b) Angstr̈om exponentα.

and also to know the effects of the changes of the air-masses.
Two studies are presented focussing on summer and winter
seasons with very different atmosphere characteristics.

4.4.1 (a) Summer season: 18 June–2 July 2008

Figure 9 shows, for the period between 18 June and 2 July
2008, the time evolutions of AOD(440 nm) at daytime and
AOD(436 nm) at nighttime (Fig. 9a), and also time evolu-
tions of α(436–880 nm) at daytime andα(436–880 nm) at
nighttime (Fig. 9b).

From Fig. 9 can be observed a good continuity in day-to-
night AOD(λ) values. Similar continuity is also observed in
α (Fig. 9b). Mean values of AOD(λ) andα and the origin of
the air-masses for the days and nights of Fig. 9 are showed in
Table 4. As can be observed mean values of AOD(440 nm)
andα(440–870 nm) at daytime are similar to those obtained
at nighttime, with smooth variations in day-to-night evolu-
tions. Day-to-night differences between mean values are re-
markable only when there are changes in the origins of the
air-masses between day and night, although these variations
of AOD(λ) andα are coherent with the smooth time evolu-
tions showed in Fig. 9. However, the variability in the air-
mass affecting the study area induces important differences
in the day-to-day and night-to-night evolutions of AOD(λ)

andα. Atlantic air-masses present low AOD(λ) while those
from Sahara desert present large AOD(λ) and low values of
α. Continental and Mediterranean air-masses are usually re-
sponsible of large values of AOD(λ) andα.

On 18 June the study area was affected by Atlantic air-
masses while on the following days and nights, the air-
masses came from the North of Morocco and later from the
South of the Iberian Peninsula with implies changes in the
time-evolutions (Fig. 9), increasing AOD(λ) (maximum val-
ues up to 0.25 on 20 June) andα (maximum values up to 1.5
on 20 June). On 22 and 23 June the air-masses affecting the
area were originated in the Sahara desert transporting mineral
dust particles and inducing a sharp increase of AOD(436 nm)
on 22–23 June night (maximum values up to 0.7), while the
posterior changes to Atlantic air-masses cleaned the atmo-
sphere explaining the sharp decrease of AOD(λ) (minimum
values down to 0.14). From 25 June afternoon the air-masses
over the study area changed to those with origin in the Iberian
Peninsula increasing the aerosol load. However,α reaches
very low values (∼ 0.45) that in the study area are usually
associated with long-range transport of Saharan dust parti-
cles (Lyamani et al., 2005, 2006; Valenzuela et al., 2012a,
b). The more in depth analysis of backward-trajectories for
this night revealed that the air-masses reaching the study area
at 4000 m a.s.l. on 25, 26 and 27 June came from the Sa-
hara desert. In this sense, the work of Guerrero-Rascado et
al. (2009) showed that long-range transport of mineral Sa-
haran dust particles can reach altitudes above 3000 m a.s.l.
in the study area. For this particular case, range corrected
signals of correlative lidar measurements during these days
and nights showed strong backscattered signal at these high
altitudes (graphs not shown, but can be consulted athttp:
//atmosferera.ugr.es). Therefore, presence of Saharan dust
particles at these altitudes can explain the low values ofα

for these days and nights.
On 27–28 June night, the air-mass precedence moves to

the East, with origin between the South of the Iberian Penin-
sula and the North African countries. No transport of Saha-
ran dust particles is observed (again by checking correlative
lidar measurements), andα(436–880 nm) increases (∼ 1.2–
1.5). These values ofα can be explained by the increase in
the anthropogenic emissions in the North Africa countries
(Rodŕıguez et al., 2011). From 28 June to 1 July the study
area was affected by Mediterranean air-masses which are as-
sociated with very variable aerosol loads and types (Pandolfi
et al., 2011) because this sea can be a reservoir of pollu-
tants from the surrounding countries (Lyamani et al., 2006;
Rodŕıguez et al., 2011) and also of dust particles transported
from the Sahara desert (Meloni et al., 2007; Rodrı́guez et al.,
2011). During this short period, large AOD(λ) remain. How-
ever, there is variability ofα. Until 29 June large values of
α (values up to 1.6) suggest predominance of fine particles
associated with anthropogenic particles, while the decrease
of α from late 29 to early 30 June (values∼ 0.75) suggest
some influence of Saharan dust particles over the Mediter-
ranean. This last has been checked by MODIS images and
also explains the sharp increase of AOD(λ) (maximum val-
ues up to 0.55 on 30 June). Finally, the decrease of AOD(λ)

Atmos. Chem. Phys., 12, 9719–9738, 2012 www.atmos-chem-phys.net/12/9719/2012/
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Table 4. Mean values of day- and night-time aerosol optical depth (AOD) and Angström exponent as well as the associated air-mass types
that affected the study area for every day and night between 18 June and 1 July 2008. Air-masses backward-trajectories were computed by
HYSPLIT model at 1500 m a.g.l.

Day-time Night-time

Date (2008) AOD(440 nm) α(440–870 nm) Air-mass origin Date (2008) AOD(440 nm) α(440–870 nm) Air-mass origin

18 June 0.09 ± 0.01 0.69 ± 0.22 North Atlantic 18–19 June 0.12 ± 0.01 0.88 ± 0.18 South Atlantic
19 June 0.15 ± 0.01 0.79 ± 0.13 North Africa 19–20 June 0.18 ± 0.01 1.19 ± 0.10 North Africa
20 June 0.17 ± 0.01 1.00 ± 0.07 Iberian Peninsula20–21 June 0.17 ± 0.04 1.13 ± 0.06 North Africa
21 June 0.13 ± 0.01 1.01 ± 0.07 Iberian Peninsula21–22 June 0.13 ± 0.01 1.09 ± 0.07 Iberian Peninsula
22 June 0.24 ± 0.11 0.40 ± 0.21 Sahara Desert 22–23 June 0.34 ± 0.02 0.47 ± 0.06 Sahara Desert
23 June 0.58 ± 0.07 0.24 ± 0.09 Sahara Desert 23–24 June 0.24 ± 0.03 0.71 ± 0.16 South Atlantic
24 June 0.15 ± 0.02 1.04 ± 0.07 South Atlantic 24–25 June 0.13 ± 0.02 1.06 ± 0.18 South Atlantic
25 June 0.21 ± 0.06 0.5 ± 0.3 South Atlantic 25–26 June 0.34 ± 0.02 0.44 ± 0.05 Iberian Peninsula
26 June 0.30 ± 0.04 0.33 ± 0.04 Iberian Peninsula26–27 June 0.28 ± 0.03 0.59 ± 0.07 Iberian Peninsula
27 June 0.22 ± 0.18 0.89 ± 0.18 Iberian Peninsula27–28 June 0.33 ± 0.04 1.35 ± 0.08 North Africa
28 June 0.28 ± 0.02 1.36 ± 0.09 Iberian Peninsula28–29 June 0.29 ± 0.03 1.40 ± 0.14 Mediterranean Sea
29 June 0.25 ± 0.03 1.35 ± 0.11 Mediterranean Sea29–30 June 0.46 ± 0.05 1.03 ± 0.09 Mediterranean Sea
30 June 0.50 ± 0.03 0.78 ± 0.05 Mediterranean Sea30 June–1 July – – Mediterranean Sea
1 July 0.22 ± 0.03 0.56 ± 0.11 Atlantic 1–2 July – – Atlantic

Table 5.Mean values of day- and night-time aerosol optical depth (AOD) and Angström exponent as well as the associated air-mass types that
affected the study area for every day and night between 21 January and 1 February 2008. Air-masses backward-trajectories were computed
by HYSPLIT model at 1500 m a.g.l.

Day-time Night-time

Date (2008) AOD(440 nm) α(440–870 nm) Air mass origin Date (2008) AOD(440 nm) α(440–870 nm) Air mass origin

21 January 0.08 ± 0.02 1.05 ± 0.18 European Continent 21–22 January 0.11 ± 0.02 1.14 ± 0.20 Iberian Peninsula
22 January 0.12 ± 0.02 1.21 ± 0.05 North Atlantic 22–23 January 0.16 ± 0.05 0.70 ± 0.14 North Atlantic
23 January 0.09 ± 0.02 0.95 ± 0.11 North Atlantic 23–24 January 0.17 ± 0.02 0.66 ± 0.14 North Atlantic
24 January 0.21 ± 0.02 0.82 ± 0.24 North Atlantic 24–25 January 0.19 ± 0.03 0.92 ± 0.18 North Atlantic
25 January 0.27 ± 0.03 0.82 ± 0.17 Atlantic – Iberian Peninsula25–26 January – – European Continent
26 January 0.20 ± 0.03 1.20 ± 0.14 European Continent 26–27 January 0.23 ± 0.05 1.06 ± 0.08 European Continent
27 January 0.19 ± 0.03 1.28 ± 0.10 European Continent 27–28 January 0.24 ± 0.06 1.28 ± 0.15 European Continent
28 January 0.21 ± 0.02 1.36 ± 0.08 Mediterranean Sea 28–29 January 0.21 ± 0.02 1.08 ± 0.13 Mediterranean Sea –

North Africa
29 January 0.20 ± 0.03 1.26 ± 0.10 Mediterranean Sea 29–30 January 0.21 ± 0.05 1.11 ± 0.17 Local
30 January 0.12 ± 0.03 1.02 ± 0.17 Iberian Peninsula 30–31 January 0.15 ± 0.02 0.97 ± 0.08 Atlantic –

Iberian Peninsula
31 January 0.15 ± 0.03 1.05 ± 0.13 Iberian Peninsula 31 January–1 February 0.19 ± 0.02 1.09 ± 0.13 Iberian Peninsula
1 February 0.16 ± 0.03 1.11 ± 0.18 North Atlantic 1–2 February – – North Atlantic

(values down to 0.1) during the following days and nights is
explained by the changes towards North Atlantic air-masses.

In spite of the continuity ofα between daytime and night-
time, the changes in the day-to-night evolutions make us
study the behaviour ofα in detail. In this sense, Fig. 10 shows
δα versusα for the data showed in Fig. 9, both at daytime and
nighttime.

From 19 to 20 June (Fig. 10a, b, c) with relatively low
aerosol load,α is larger than 1 both at daytime and nighttime,
but there are remarkable differences inδα. Daytime values
presentrf < 0.1 µm andη < 50 %, being around one half of
the data withη < 30 %. However, during nighttime the pat-
tern is very different, presenting all the datarf > 0.1 µm and
η > 50 %, and around one half of data withrf > 0.15 µm and
η > 75 %. On 22 and 23 June (Fig. 10d, e), with presence of
Saharan dust particles, at daytimerf is lower than 0.15 µm

andη lower than 30 %, while at nighttime the opposite oc-
curs (rf > 0.15 µm andη > 30 %). On 24 June (Fig. 10f) the
Atlantic air-masses affecting the study area induced lower
aerosol load and largerα values, being the values ofrf andη

similar to those just discussed for Fig. 10a, b, c.
From 25 afternoon to 27 morning, (with dust particles

above 3000 m a.s.l.) Fig. 10g, h shows that at daytimerf is
lower than 0.15 µm, andη is below than 30 % on 25 and 26
June (except some data at the beginning of 25 June associ-
ated with the changes in the air-masses), and below 50 % on
27 June. During nighttimes there are again differences with
larger values ofrf (values up to 0.3 µm) andη (up to 90 %).
On the night of 27–28, there were changes of the air-masses
that induces larger values ofrf andη as well. For the fol-
lowing period from 28 to 29 June affected by transport of
fine particles from the Mediterranean sea, Fig. 10j, k show

www.atmos-chem-phys.net/12/9719/2012/ Atmos. Chem. Phys., 12, 9719–9738, 2012
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Figure 10: Angström exponent difference δα = α(440-670 nm) - α(670-870 nm) as function of 

α(440-870 nm) at daytime and δα = α(436-670 nm) - α(670-880 nm) as function of α(436-880 

nm) at nighttime, for summer case study. The data corresponds to the period from 18 June to 1 

July 2008. 
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Fig. 10.Angstr̈om exponent differenceδα = α(440–670 nm)−α(670–870 nm) as function ofα(440–870 nm) at daytime andδα = α(436–
670 nm)−α(670–880 nm) as function ofα(436–880 nm) at nighttime, for summer case study. The data corresponds to the period from 18
June to 1 July 2008.

at daytimerf < 0.1 µm andη < 70 %. The more variability
of η on these days might be associated with the contribu-
tion of coarse particles from the ground as the convective
activity increase. On the night of 28–29,η does not change
significantly, butrf present important changes toward larger
values (between 0.15 and 0.20 µm). Finally, on the night of
29–30 June and on 30 June (daytime) the Mediterranean air-
masses transported Saharan dust particles. In this case, the
pattern observed is again of larger values ofrf andη during
the nighttime.

The findings of Fig. 10 reveal increases ofrf and ofη dur-
ing nighttime for the different aerosol loads and types. This
has been found for different types of air-masses, and also
when there are changes in the air-masses between day and
night. These results also agree with the general results ob-
tained in Fig. 7 for the summer season, and can be explained
by the same reasons. Again, with the methodology used here
we can not differentiate between the different processes that
induce changes in particle types between day and night.

Atmos. Chem. Phys., 12, 9719–9738, 2012 www.atmos-chem-phys.net/12/9719/2012/
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Figure 11: Daytime and nighttime evolutions of columnar aerosol properties for the 

period from 21 January to 2 February 2008. a) Aerosol optical depth (AOD). b) 

Angström exponent α. 
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Fig. 11. Daytime and nighttime evolutions of columnar aerosol
properties for the period from 21 January to 2 February 2008.(a)
Aerosol optical depth (AOD).(b) Angstr̈om exponentα.

4.4.2 (b) Winter season: 21 January–1 February 2008

Figure 11 shows for the period between 21 January and
1 February 2008 the temporal evolutions of AOD(440 nm)
at daytime and AOD(436 nm) at nighttime (Fig. 11a), and
also temporal evolutions ofα(436–880 nm) at daytime and
α(436–880 nm) at nighttime (Fig. 11b). Table 5 shows mean
values of AOD(λ) andα, and also the origin of the air-masses
for these days and nights.

Again, from Fig. 11, we can observe a good continuity in
day-to-night evolutions of AOD(λ) andα. Particularly,α is
usually slightly lower at nighttime and agrees with the com-
ment in Fig. 5 for the winter season. The larger errors in
AOD(λ) at nighttime can explain the fluctuations ofα in the
nights with low aerosol load (error inα are larger for low
AOD(λ)).

As for the previous study case during the summer, mean
values of AOD andα at daytime are similar to those ob-
tained at nighttime and only the differences are notable when
changes in the air-masses origin are presented (although the
differences are smoothed as shown in Fig. 11). However,
there are again large day-to-day and night-to-night variations
associated with the changes of the air-masses that reach the
study area. On 21 January the air-masses that affected the
study area were from European origin. On 22–25 January
the study area was under the influence of clean Atlantic air-
masses, which explain the low aerosol loads (AOD(λ) < 0.2
for these days and nights) with large variability ofα.

From 26 to 29 January the situation changed and the air-
masses came from the European and Mediterranean sectors
which transported anthropogenic particles to the study area.
These air-masses produced an increase of AOD(λ) andα (Ta-

ble 5). The larger aerosol loads during these days and nights
allow the study ofδα versusα (Fig. 12). On 26 January,
at day time, it is observed thatδα > 0, rf < 0.1 µm andη
between 30 % and 50 % (Fig. 12a). However, at nighttime
we observeδα > 0 and most data presentrf < 0.1 µm and
η < 30 %. On 27 January very similar results to those ob-
tained in the previous day and night are observed (Fig. 12b).
The larger contribution of fine mode particles at daytime can
be explained by the larger anthropogenic emissions during
daytime. It is worth noting that althoughrf is very small
(< 0.1 µm) both at daytime and nighttime (Fig. 12), daytime
values are generally larger than nighttime ones, which can
be explained by the contribution of larger particles by road
traffic or by secondary aerosol originated from primary an-
thropogenic emissions (Lyamani et al., 2010).

On 28 and 29 January the study area was under the influ-
ence of Mediterranean air-masses influence, with large val-
ues ofα (between 1.2 and 1.5 at daytime and from 0.8 to
1.35 at night-time) indicating the predominance of fine par-
ticles. Furthermore, on 28–29 Januaryrf andη patterns are
similar to those obtained on 26 and 27 January (Fig. 12c).
Finally, from 30 January to 1 February the air-masses prece-
dence changed to Atlantic which made AOD(λ) andα de-
crease.

This study case remarked the continuity of day-to-night
columnar aerosol properties in winter, but do not allow con-
clusions about theδα. Indeed, together with Fig. 8, remarked
the complexity of any general conclusion for winter due to
the presence of different aerosol types, different intensity of
aerosol aerosol sources (natural and anthropogenic) and dif-
ferences in the atmosphere’s temperature in planetary bound-
ary layer and the changeable synoptic conditions in terms of
rain and wind velocity. Thus, more efforts are needed using
high technology instrumentations to characterise vertical at-
mosphere thermodynamics and vertical aerosol properties.

5 Conclusions

An analysis of correlative day-to-night columnar aerosol
properties at Granada (South-East of Spain) has been pre-
sented. This study was possible thanks to the recent develop-
ments in star photometry combined with the well-known sun
photometry technique (particularly using the CIMEL instru-
ment). The combination of correlative measurements with
both techniques has allowed the study of day-to-night aerosol
optical depth (AOD), Angstr̈om exponentα, and spectral de-
pendence of the Angström exponent (δα).

Time evolutions of AOD andα have revealed good con-
tinuity and coherence between daytime and nighttime val-
ues, both for the whole database and for special study cases.
Moreover, the statistical analyses have shown no significant
differences between daytime and nighttime for both param-
eters. For daytime values, the comparison carried out with
other AERONET surrounded stations has revealed that the

www.atmos-chem-phys.net/12/9719/2012/ Atmos. Chem. Phys., 12, 9719–9738, 2012
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Fig. 12.Angstr̈om exponent differenceδα = α(440–670 nm)−α(670–870 nm) as function ofα(440–870 nm) at daytime andδα = α(436–
670 nm)−α(670–880 nm) as function ofα(436–880 nm) at nighttime, for a winter case study. The data corresponds to the period from 26 to
29 January 2008.

values obtained at Granada do not by differentiate remark-
ably with those obtained in the surrounded areas, in spite of
the differences in synoptic conditions and aerosol sources.
However, at nighttime no comparisons have been possible
due to the lack of continuous measurements and, thus, the
continuity observed in the long-term columnar aerosol prop-
erties at Granada cannot be extrapolated to other aerosol
sites because of differences in meteorological conditions and
aerosol sources. In this sense, the development of continu-
ous nighttime measurements worldwide is needed to better
understand aerosol dynamics globally.

A seasonal pattern for AOD has been obtained, both at
daytime and nighttime, characterised by lower values in win-
ter and larger values in summer. The Angström exponent has
also presented a seasonal pattern but with lower values in
summer and larger values in winter. No statistical differences
in AOD andα seasonal pattern between day and night have
been found out. These patterns have been associated with the
different soil conditions at each season, with changes in the
synoptic conditions and rainfall, and with the intensity of the
local aerosol sources.

The spectral difference of the Angström exponent (δα) as
function of α has been studied, both at daytime and night-
time. Particular studies cases have showed the evolution of
δα detailed. In summer, an increase of the fine mode radius
(rf) and of the fine mode contribution to AOD (η) has been
observed at nighttime. This has been obtained for many dif-
ferent air-masses and aerosol loads and types, and has been
explained by the changes of the local aerosol source emis-
sions and meteorological conditions between daytime and
nighttime. Moreover, the increase ofrf during nighttime has
been also associated with aerosol aging processes. In the
winter season, forδα the situation is more complex due to
the more variability of the synoptic conditions and aerosol
sources. For low-polluted aerosol load, the special cases
analysed have shown largerrf andη during daytime. It has
been associated with the more intensive local anthropogenic
sources, aerosol secondary aerosol formation and ground-
based particles supplies by traffic. However, for highly pol-

luted air-masses it is observed just the opposite, with an in-
crease ofrf andη at nighttime. This has been explained by
aging processes or deposition of coarse particles during air-
mass transport. However, the reduced data points obtained
under these conditions make us be careful. We would like
to remark that the study of spectral variation ofα alone does
not allow distinguishing between different aerosol aging pro-
cesses. Many of such processes compete, including changes
in the aerosol load due to meteorological conditions, dry/wet
deposition, coagulation/condensation processes, hygroscopic
growth or the supply of particles from the ground or from an-
thropogenic activities.

The results presented allow the scientific community to ad-
vance in the knowledge of day-to-night columnar aerosol dy-
namics, both for large database and shorter temporal scales.
However, we would like to point out that the differences
between daytime and nighttime aerosol particles are only
referred to a particular site with particular conditions, and
these results cannot be extrapolated to any other place. In
this sense, more efforts of the scientific community should
be done to improve the knowledge of columnar aerosol prop-
erties at nighttime.
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Navas-Guzḿan, F., and Alados-Arboledas, L.: Cloud screen-
ing and quality control algorithm for star photometer data: as-
sessment with lidar measurements and with all-sky images, At-
mos. Meas. Tech., 5, 1585–1599,doi:10.5194/amt-5-1585-2012,
2012b.

Perrone, M. R., Santese, M., Tafuro, A. M., Holben, B., and
Smirnov, A.: Aerosol load characterization over South-East Italy
for one year of AERONET sun-photometer measurements, At-
mos. Res., 75, 111–133,doi:10.1016/j.atmosres.2004.12.003,
2005.

Pope, C. A., Burnett, R. T., Thun, M. J., Calle, E. E., Krewski,
D., Ito, K., and Thurston, G. D.: Lung cancer, cardiopul-
monary mortality, and long-term exposure to fine particulate
air pollution, JAMA-J. Am. Med. Assoc., 287, 1132–1141,
doi:10.1001/jama.287.9.1132, 2002.

Prats, N., Cachorro, V. E., Sorribas, M., Mogo, S., Berjon, A.,
Toledano, C., de Frutos, A. M., de la Rosa, J., Laulainen, N., and
de la Morena, B. A.: Columnar aerosol optical properties during
“El Arenosillo 2004 summer campaign”, Atmos. Environ., 42,
2643–2653,doi:10.1016/j.atmosenv.2007.07.041, 2008.

Querol, X., Pey, J., Pandolfi, M., Alastuey, A., Cusack, M., Perez,
N., Moreno, T., Viana, M., Mihalopoulos, N., Kallos, G., and
Kleanthous, S.: African dust contributions to mean ambient
PM(10) mass-levels across the Mediterranean Basin, Atmos.
Environ., 43, 4266–4277,doi:10.1016/j.atmosenv.2009.06.013,
2009.

Randriamiarisoa, H., Chazette, P., Couvert, P., Sanak, J., and
Mégie, G.: Relative humidity impact on aerosol parameters in
a Paris suburban area, Atmos. Chem. Phys., 6, 1389–1407,
doi:10.5194/acp-6-1389-2006, 2006.

Raut, J.-C. and Chazette, P.: Retrieval of aerosol complex refractive
index from a synergy between lidar, sunphotometer and in situ
measurements during LISAIR experiment, Atmos. Chem. Phys.,
7, 2797–2815,doi:10.5194/acp-7-2797-2007, 2007.

Reid, J. S., Hobbs, P. V., Ferek, R. J., Blake, D. R., Martins, J. V.,
Dunlap, M. R., and Liousse, C.: Physical, chemical, and optical
properties of regional hazes dominated by smoke in Brazil, J.
Geophys. Res.-Atmos., 103, 32059–32080, 1998.

Reid, J. S., Eck, T. F., Christopher, S. A., Hobbs, P. V., and Hol-
ben, B.: Use of the Angstrom exponent to estimate the vari-
ability of optical and physical properties of aging smoke par-
ticles in Brazil, J. Geophys. Res.-Atmos., 104, 27473–27489,
doi:10.1029/1999jd900833, 1999.

Remer, L. A., Kaufman, Y. J., Tanre, D., Mattoo, S., Chu, D. A.,
Martins, J. V., Li, R. R., Ichoku, C., Levy, R. C., Kleidman, R. G.,
Eck, T. F., Vermote, E., and Holben, B. N.: The MODIS aerosol
algorithm, products, and validation, J. Atmos. Sci., 62, 947–973,
2005.
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la Rosa, J.: Transport of desert dust mixed with North African
industrial pollutants in the subtropical Saharan Air Layer, At-
mos. Chem. Phys., 11, 6663–6685,doi:10.5194/acp-11-6663-
2011, 2011.

Sanchez, S. F., Aceituno, J., Thiele, U., Perez-Ramirez, D., and
Alves, J.: The night sky at the Calar Alto observatory, Publ. As-
tron. Soc. Pac., 119, 1186–1200,doi:10.1086/522378, 2007.

Santese, M., De Tomasi, F., and Perrone, M. R.: Advection patterns
and aerosol optical and microphysical properties by AERONET
over south-east Italy in the central Mediterranean, Atmos. Chem.
Phys., 8, 1881–1896,doi:10.5194/acp-8-1881-2008, 2008.

Sasano, Y., Browell, E. V., and Ismail, S.: Error caused by using
a constant extinction/backscattering ratio in the lidar solution,
Appl. Optics, 24, 3929–3932, 1985.

Schuster, G. L., Dubovik, O., and Holben, B. N.,: Angström ex-
ponent and bimodal aerosol size distributions, J. Geophys. Res.,
111, D07207,doi:10.1029/2005JD006328, 2006.

Seinfeld, J. H. and Pandis, S. N.: Atmospheric chemistry and
physics from air pollution to climate change John Wiley & Sons,
1998.

Smirnov A., Holben, B. N., Eck, T. F., Dubovik, O., and Slutsker,
I.: Cloud screening and quality control algorithms for the
AERONET data base, Remote Sens. Environ., 73, 337–349,
2000.

www.atmos-chem-phys.net/12/9719/2012/ Atmos. Chem. Phys., 12, 9719–9738, 2012

http://dx.doi.org/10.5194/acp-6-697-2006
http://dx.doi.org/10.5194/acp-11-8189-2011
http://dx.doi.org/10.5194/acp-11-8189-2011
http://dx.doi.org/10.1029/2009JD012147
http://dx.doi.org/10.1016/j.atmosres.2009.02.003
http://dx.doi.org/10.1016/j.atmosenv.2007.06.009
http://dx.doi.org/10.1080/01431160802036425
http://dx.doi.org/10.1029/2011JD016450
http://dx.doi.org/10.5194/amt-5-1585-2012
http://dx.doi.org/10.1016/j.atmosres.2004.12.003
http://dx.doi.org/10.1001/jama.287.9.1132
http://dx.doi.org/10.1016/j.atmosenv.2007.07.041
http://dx.doi.org/10.1016/j.atmosenv.2009.06.013
http://dx.doi.org/10.5194/acp-6-1389-2006
http://dx.doi.org/10.5194/acp-7-2797-2007
http://dx.doi.org/10.1029/1999jd900833
http://dx.doi.org/10.1016/s1352-2310(00)00496-9
http://dx.doi.org/10.5194/acp-11-6663-2011
http://dx.doi.org/10.5194/acp-11-6663-2011
http://dx.doi.org/10.1086/522378
http://dx.doi.org/10.5194/acp-8-1881-2008
http://dx.doi.org/10.1029/2005JD006328
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