
Universidade de Aveiro
Departamento de Eletrónica,
Telecomunicações e Informática

2015

Ana Patrícia
Gonçalves dos
Santos

Protocolo de comunicações sem-fios em malha
para redes de iluminação pública

Street Lighting Mesh Network Protocol

Universidade de Aveiro
Departamento de Eletrónica,
Telecomunicações e Informática

2015

Ana Patrícia
Gonçalves dos
Santos

Protocolo de comunicações sem-fios em malha
para redes de iluminação pública

Street Lighting Mesh Network Protocol

Dissertação apresentada à Universidade de Aveiro para cumprimento dos
requisitos necessários à obtenção do grau de Mestre em Engenharia Elec-
trónica e Telecomunicações, realizada sob a orientação científica do Doutor
Paulo Pedreiras, Professor auxiliar do Departamento de Eletrónica, Teleco-
municações e Informática da Universidade de Aveiro, e do Doutor Paulo Bar-
tolomeu, Diretor Técnico da Globaltronic - Electrónica e Telecomunicações,
S.A.

o júri / the jury

presidente / president Professor Doutor Alexandre Manuel Moutela Nunes da Mota
Professor Associado da Universidade de Aveiro

vogais / examiners committee Prof. Doutor Luís Miguel Moreira Lino Ferreira
Professor Adjunto do Instituto Superior de Engenharia do Porto

Doutor Paulo Jorge de Campos Bartolomeu
Diretor Técnico da Globaltronic - Electrónica e Telecomunicações, S.A.

agradecimentos /
acknowledgements

Cada uma das pessoas com as quais me cruzei durante estes anos desempe-
nhou um papel imprescindível para a minha evolução e crescimento pessoal.
Deste modo, no final deste ciclo cabe-me atribuir o devido mérito a todas as
pessoas que de uma maneira ou de outra contribuíram para me mudar e me
tornar quem hoje sou.
Ao meu professor e orientador Paulo Pedreiras pela excelente orientação e
coordenação deste trabalho, pelos conselhos e pela permanente disponibili-
dade.
Ao meu co-orientador Paulo Bartolomeu pela sua incansável e inestimável ori-
entação e por ser uma fonte constante de inspiração e motivação. Agradeço-
lhe ainda a oportunidade que me ofereceu de desenvolver este trabalho na
Globaltronic, onde consegui expandir os meus horizontes e conhecimentos
de forma exponencial.
A todos os colaboradores da Globaltronic pelas trocas de ideias, aprendiza-
gem, conselhos ou apenas conversas, opiniões e perspetivas de vida diferen-
tes. Sem dúvida que aprendi bastante com cada um deles, o que me permitiu
evoluir bastante como profissional.
A todos os meus professores e colegas de curso por todo o conhecimento
transmitido ao longo destes anos.
A todos os meus amigos pelo apoio, amizade e pela força que me deram nos
momentos mais críticos.
A toda a minha família com um destaque especial para os meus pais e irmãos,
por todo o apoio e compreensão. Sem eles nada disto seria possível.

Palavras Chave Internet das Coisas, Cidades Inteligentes, WSN, serviços Web embutidos,
Contiki, RPL, 6LoWPAN, CoAP, OMA LWM2M

Resumo A revolução digital do século 21 contribuiu para o surgimento da Internet das
Coisas (IoT). Em breve triliões de dispositivos embutidos usando o Internet
Protocol (IP) serão parte integrante da Internet. De modo a suportar tal gama
de endereços, um novo protocolo de Internet, chamado Internet Protocol ver-
são 6 (IPv6) está a ser adoptado. O IPv6 over Low power Wireless Perso-
nal Area Networks (6LoWPAN) acelerou a integração das redes sem-fios de
sensores na Internet. Ao mesmo tempo, o Constrained Application Protocol
(CoAP) tornou possível fornecer funcionalidades de serviços Web RESTful
a dispositivos com recursos limitados. Este trabalho baseia-se em experiên-
cias anteriores em redes de iluminação pública, para os quais um protocolo
proprietário, elaborado pelo Lighting Living Lab, foi implementado e usado
durante vários anos. O protocolo proprietário tem sido utilizado numa ampla
gama de placas de controlo de iluminação. De modo a suportar aplicações
heterogéneas com requisitos de comunicação mais exigentes além de me-
lhorar o processo de desenvolvimento de aplicações, adaptou-se o Contiki
OS à placa LED driver de 4 canais (4LD) da Globaltronic. Esta dissertação
descreve o trabalho conduzido para adaptar o Contiki OS ao microprocessa-
dor Microchip TM PIC24FJ128GA308 e apresenta uma solução baseada em
IP para integrar sensores e atuadores em aplicações de iluminação inteligen-
tes. Além da descrição da arquitetura e da implementação do sistema, este
trabalho apresenta vários resultados que mostram que o desempenho do pro-
tocolo CoAP na placa 4LD é adequado para suportar serviços Web em redes
de iluminação pública.

Keywords Internet of Things, Smart Cities, embedded Web services, WSN, Contiki, RPL,
6LoWPAN, CoAP, OMA LWM2M

Abstract The digital revolution of the 21st century contributed to stem the Internet of
Things (IoT). Trillions of embedded devices using the Internet Protocol (IP),
also called smart objects, will be an integral part of the Internet. In order
to support such an extremely large address space, a new Internet Protocol,
called Internet Protocol Version 6 (IPv6) is being adopted. The IPv6 over Low
Power Wireless Personal Area Networks (6LoWPAN) has accelerated the in-
tegration of WSNs into the Internet. At the same time, the Constrained Appli-
cation Protocol (CoAP) has made it possible to provide resource constrained
devices with RESTful Web services functionalities. This work builds upon pre-
vious experience in street lighting networks, for which a proprietary protocol,
devised by the Lighting Living Lab, was implemented and used for several
years. The proprietary protocol runs on a broad range of lighting control
boards. In order to support heterogeneous applications with more demand-
ing communication requirements and to improve the application development
process, it was decided to port the Contiki OS to the four channel LED driver
(4LD) board from Globaltronic. This thesis describes the work done to adapt
the Contiki OS to support the Microchip TM PIC24FJ128GA308 microproces-
sor and presents an IP based solution to integrate sensors and actuators in
smart lighting applications. Besides detailing the system’s architecture and
implementation, this thesis presents multiple results showing that the perfor-
mance of CoAP based resource retrievals in constrained nodes is adequate
for supporting networking services in street lighting networks.

Contents

Contents . i

List of Figures . v

List of Tables . ix

Glossary . xi

1 Introduction . 1
1.1 Purpose and Goals . 1
1.2 Structure of this Thesis . 3

2 Key Technologies . 5
2.1 Wireless Sensor Networks . 5

2.1.1 Hardware Components . 6
2.1.2 Networking . 7

2.2 Operating Systems . 8
2.2.1 Architecture . 9
2.2.2 Programming model . 10
2.2.3 Scheduling . 10

2.3 Network Protocols . 12
2.3.1 6LoWPAN . 12
2.3.2 RPL - A Mesh Networking Solution 14

2.4 Application Protocols . 17
2.4.1 CoAP . 18
2.4.2 OMA Lightweight M2M . 20

3 Operating Systems for Wireless Sensor Networks 25
3.1 Design Issues and Challenges . 25

3.1.1 Restricted Resources . 25
3.1.2 Portability . 26
3.1.3 Customizability . 26
3.1.4 Multitasking . 26
3.1.5 Network Dynamics . 27
3.1.6 Distributed Nature . 27

3.2 Design Characteristics . 27
3.2.1 Flexible Architecture . 27

i

3.2.2 Efficient Programming Model and Scheduling 28
3.2.3 Clear Application Programming Interface 28
3.2.4 Reprogramming . 29
3.2.5 Resource Management . 30
3.2.6 Real Time Nature . 30

3.3 Existing Operating Systems . 30
3.3.1 Tiny OS . 31
3.3.2 Contiki OS . 32
3.3.3 Lite OS . 33
3.3.4 Nano-RK . 35
3.3.5 MANTIS . 36

3.4 Evaluation of the Operating Systems . 37

4 The Contiki Operating System . 39
4.1 Brief Introduction . 39
4.2 Main Features . 39
4.3 Kernel and Processes . 40

4.3.1 Events . 42
4.3.2 Process Polling . 43
4.3.3 The Process Scheduler . 43

4.4 Protothreads . 44
4.4.1 Protothreads in Processes . 45

4.5 Preemptive Multi-threading . 45
4.6 Memory Allocation . 46
4.7 File Systems . 48
4.8 The Dynamic Loader . 49
4.9 Libraries . 49

4.9.1 Timers . 49
4.9.2 Leds API . 50
4.9.3 The Serial I/O API . 50

4.10 Communication . 51
4.10.1 uIP Communication Stack . 51
4.10.2 Rime Communication Stack . 52

4.11 Global Overview . 53

5 Implementation . 55
5.1 Introduction . 55
5.2 Hardware . 56

5.2.1 The Giore Platform . 56
5.2.2 The 4LD Platform . 57

5.3 Porting the Hardware to Contiki OS . 57
5.3.1 A General Port . 58
5.3.2 Porting the Giore Platform . 59
5.3.3 Porting the 4LD Platform . 61
5.3.4 RFM69H Device Driver . 63

5.4 The Network Stack . 65
5.4.1 Physical, Framer, RDC and MAC Layers 65
5.4.2 Network Layer . 66
5.4.3 Application Layer . 67

5.5 Gateway . 68

ii

5.5.1 The Giore as Border Router . 69
5.5.2 The SLIP tunnel . 70
5.5.3 Functional Tests . 71

5.6 Sensor Node . 72
5.6.1 Experimental Setup using Erbium-CoAP and Copper 72
5.6.2 Experimental Setup using OMA LWM2M and Leshan Server 78

5.7 Development Tools . 85
5.8 Difficulties during implementation . 85

5.8.1 Stack Issues . 85

6 Evaluation of the implementation 87
6.1 Memory Usage . 87
6.2 Network: Performance Evaluation . 88
6.3 CoAP transactions: Performance Evaluation 91

7 Conclusions . 95
7.1 Conclusions . 95
7.2 Future Work . 96

References . 97

iii

List of Figures

1.1 Wireless Sensor Networks Applications. Adapted from [3]. 1

2.1 Wireless sensor network. 6
2.2 Hardware components of a sensor node. Adapted from [8]. 6
2.3 WSN Topologies. 7
2.4 Conceptual view of an Operating System. Adapted from [12]. 9
2.5 Header Compression Example. Adapted from [21]. 13
2.6 Neighbor Discovery message exchange. Adapted from [22]. 14
2.7 DODAG building process. The link quality means that on average, a packet

sent on a specific path requires X transmissions before it reaches its destination.
Adapted from [25]. 16

2.8 CoAP frame format. 18
2.9 CoAP request/response model. Confirmable (left) and Non-confirmable (right).

Adapted from [6]. 19
2.10 The Lightweight M2M architecture with the LWM2M Client and the LWM2M

Server. Taken from [33]. 20
2.11 Standard Objects from LWM2M Technical Specification. 21
2.12 Abstract message flow example between a LWM2M Client and Server, the actual

messages are mapped to CoAP requests and responses. Taken from [33] 22
2.13 IPSO Temperature and Light Control Objects Overview. Adapted from [35]. . . 23

3.1 The reprogramming flexibility and update cost, depending on the level of granu-
larity. Adapted from [13]. 30

3.2 Contiki architecture overview. Adapted from [46]. 32
3.3 LiteOS architecture. Adapted from [41]. 34
3.4 MANTIS architecture. Adapted from [41]. 36
3.5 Operating Systems Summary. 37

4.1 Contiki execution contexts. Adapted from [56]. 42
4.2 Synchronous event. 42
4.3 Asynchronous event. 43
4.4 Process scheduling and process polling in Contiki. Adapted from [57]. 44
4.5 State chart of threads. Adapted from [59]. 46
4.6 The managed memory allocator. Adapted from [60]. 48
4.7 Contiki’s communication model. Adapted from [45]. 51
4.8 Contiki’s operation overview. Adapted from [57]. 53

v

5.1 The 4LD platform as led controller. 55
5.2 The Giore Board. 56
5.3 The 4LD Board. 57
5.4 Contiki’s directory structure. 58
5.5 Giore Port main files. 60
5.6 PIC24 port main files. 62
5.7 4LD Platform port main files. 62
5.8 Radio device driver overview. 64
5.9 RFM69H packet fields. 64
5.10 Contiki OS network stack. 65
5.11 Network Stack used in the first experiment. 67
5.12 Network Stack used in the second experiment. 68
5.13 Overview of the gateway implemented in this thesis. 68
5.14 Terminal print after creating the SLIP tunnel. 70
5.15 Border router ping test. 71
5.16 4LD Nodes ping test. 71
5.17 Neighbors and routes defined in the border router. 72
5.18 Overview of the experimental setup using Erbium-CoAP and Copper Plugin. . . 73
5.19 CoAP resources implemented in the 4LD Server. 74
5.20 Server response to the GET action on the resource /.well-know/core. 75
5.21 Copper output from 4LD Node 3. 76
5.22 Copper output from 4LD Node 4. Since the 4LD LED channels are not mounted

in this platform, the light_on and light_dim resources are not implemented. . . 76
5.23 Available actions in each resource. 77
5.24 GET message to request the sensor temperature value. 77
5.25 ACK message from the 4LD CoAP server with the temperature value. 78
5.26 Experimental setup using OMA LWM2M overview. 78
5.27 LWM2M implementation files. 79
5.28 LWM2M Client side implementation files. 80
5.29 Message sent from the 4LD LWM2M Client (Node 4) to make the registration in

the Leshan Server. 81
5.30 Acknowledge sent from Leshan to the 4LD Client (Node 4) with the Registration ID. 81
5.31 Registration message sent from the 4LD LWM2M Client (Node 4) to the Leshan

Server. The "j5DH4jpBKF" is the registration ID. 82
5.32 List of the connected clients in the Leshan Server. 82
5.33 List of objects defined in the 4LD Node 3. 83
5.34 List of resources defined in the IPSO Light Control object. 83
5.35 List of resources defined in the IPSO Temperature object. 84
5.36 List of resources defined in the LWM2M Server object. 84
5.37 List of resources defined in the Device object. 84

6.1 Firmware size comparison of the experimental setup using Erbium-CoAP and
Copper. 88

6.2 Firmware size comparison of the experimental setup using OMA LWM2M and
Leshan. 88

6.3 RTT and PLOSS evolution according to ICMP payload size for the experimental
setup using Erbium-CoAP and Copper. 89

6.4 RTT and PLOSS evolution according to ICMP payload size for the experimental
setup using OMA LWM2M and Leshan. 90

vi

6.5 Response time of the CoAP resource requests for the experimental setup using
Erbium-CoAP and Copper. The response time shown is the average result of 100
samples. 91

6.6 Total number of bytes needed to retrieve all the information from each resource.
These results are for the experimental setup using Erbium-CoAP and Copper. . 92

6.7 Response time of the CoAP resource requests for the experimental setup using
OMA LWM2M and Leshan. The response time shown is the average result of 100
samples. 92

6.8 Total number of bytes needed to retrieve all the information from each resource.
These results are for the experimental setup using OMA LWM2M and Leshan. . 92

vii

List of Tables

2.1 Comparison between event-based and thread-based. Adapted from [13]. 10

4.1 Process control block fields description. 41
4.2 Process-specific protothread macros. Adapted from [56]. 45
4.3 The memb API functions. 47
4.4 The malloc API functions. 47
4.5 The memm API functions. 48
4.6 The LEDs API functions. 50

ix

Glossary

WSN Wireless Sensor Network

OS Operating System

API Application Programming Interface

RF Radio Frequency

TOS TinyOS

CPU Central Processing Unit

MANTIS MultimodAl system for NeTworks of
In-situ wireless Sensors

MIPS Million Instructions Per Second

EEPROM Electrically Erasable Programmable
Read-Only Memory

TCB Thread Control Block

FIFO First-In First-Out

SPI Serial Peripheral Interface

TYMO DYMO protocol on TinyOS

6LoWPAN IPv6 over Low power Wireless
Personal Area Networks

IPv6 Internet Protocol version 6

IPv4 Internet Protocol version 4

IP Internet Protocol

uIP Micro Internet Protocol

uIPv6 Micro Internet Protocol version 6

TCP Transmission Control Protocol

RPL Routing Protocol for Low-Power
and Lossy Networks

MAC Media Access Control

USB Universal Serial Bus

UDP User Datagram Protocol

ICMP Internet Control Message Protocol

ICMPv6 Internet Control Message Protocol
version 6

PC Personal Computer
CFS Coffee File system
CTK Contiki Toolkit
ELF Executable Linkable Format
RFC Request for Comments
WPAN Wireless Personal Area Network
IEEE Institute of Electrical and Electronic

Engineers
OSI Open Systems Interconnection
IETF Internet Engineering Task Force
CoAP Constrained Application Protocol
HTTP Hypertext Transfer Protocol
URI Uniform Resource Identifier
OMA Open Mobile Alliance
LWM2M Lightweight Machine-to-Machine
MCU Microcontroller
UART Universal asynchronous

receiver/transmitter
ISR Interrupt Service Routine
RDC Radio Duty Cycle
LLN Low Power and Lossy Network
LoWPAN Low-power Wireless Area Network
MTU Maximum Transfer Unit
IPHC IP Header Compression
NHC Next Header Compression
RA Router Advertisement
RS Router Solicitation
NS Neighbor Solicitation

xi

NA Neighbor Advertisement

ARO Address Registration Option

DAR Duplicate Address Request

DAC Duplicate Address Confirmation

ROLL Routing Over Low Power and Lossy
Links

DODAG Destination Oriented Directed
Acyclic Graph

DIO DODAG Information Object

DIS DODAG Information Solicitation

DAO DODAG Advertisement Object

OF Objective Function

REST Representational State Transfer

XML eXtensible Markup Language

TLV Type-Length-Value

IPSO Internet Protocol Security Option

SLIP Serial Line over Internet Protocol

DAG Directed Acyclic Graph

JSON JavaScript Object Notation

DTLS Datagram Transport Layer Security

RTT Round Trip Time

PLOSS Packet Loss

RAM Random Access Memory

ROM Read Only Memory

QoS Quality of Service

IoT Internet of Things

xii

chapter 1
Introduction

1.1 purpose and goals
In the recent years, there has been a significant increase in the use of Wireless Sensor Networks

(WSNs) in industry [1], [2]. The spectrum of applications is very vast, as can be seen in Figure 1.1.

Figure 1.1: Wireless Sensor Networks Applications. Adapted from [3].

1

In addition to the application domains refered to in Figure 1.1, many others can be found, as
shown in [4] and [5]. The inumerous areas where the WSNs are applied has pushed the research and
development in embedded operating systems to support heterogeneous applications. In fact, an embed-
ded OS will turn the applications hardware independent, and will allow the reuse of communication
stacks, rather than developing one from scratch, which would undoubtedly be a very consuming task.
These features will enable very significant gains across the applications’ development process.

This work was developed in partnership with Globaltronic S.A.. Globaltronic has expertise in
various areas and has developed a range of products for control and lighting management. One of
these products is the platform 4LD, which has been used to control street and industrial lighting
networks. The communication between nodes of this network is made using a proprietary RF protocol.
In order to support applications with more demanding communication requirements and to improve
the application development process, it was decided to adapt the Contiki Operating System (OS) to
the 4LD platform. Chapter 3 discusses why we have chosen this OS for our application.

The 4LD platform is based on the PIC24FJ128GA308 processor, thus this dissertation describes
the work carried on to adapt the Contiki operating system to support this microprocessor. Afterwards,
the goal was to connect the nodes to a Wireless Mesh Network, so that they can be reached from the
Internet. Nowadays IPv4 is the main protocol used on the Internet, however a transition to IPv6 is
being gradually implemented. The reason that led to this transition is related to the limited addressing
capabilities of IPv4. IPv4 has only 232 possible addresses. Given that in the future it is estimated that
trillions of devices will be connected to the Internet, it would be completely impossible to use the IPv4
for this purpose. IPv6 solves this problem by enlarging the address space to 2128 possible addresses.
This should make it possible for every device to have a unique address.

The final goal of this thesis is to actually send useful data using IP over the wireless mesh network.
There are several of application layer technologies that can be useful for this purpose. One of these
technologies is CoAP, or Constrained Application Protocol. CoAP is a Web application layer protocol
that is specially designed for devices with constrained resources. CoAP is quite similar with the HTTP
protocol, widely used on the Internet nowadays. The main difference is that CoAP, as it was designed
taking into account limited devices, it is far more compact when compared to HTTP. However, both
use URIs to locate resources, they offer the possibility of adding a Content Type header that describes
the format of data and both use mechanisms to ensure that the message is reliably transferred [6].
HTTP and CoAP also share a common set of request methods: GET, POST, PUT and DELETE. All
mentioned features make CoAP easy to understand and integrate into the current architecture of the
Web.

This work is aimed at evaluating the possibility of supporting smart light applications in embedded
systems connected by wireless communications over IP. Such embedded devices are characterized by
severe resource constraints, but will benefit significantly in having an operating system supporting the
key functionalities. Several aspects of the implementation should also be examined, such as memory
usage and network performance. An evaluation of the CoAP requests, in terms of response time, will
also be performed.

2

1.2 structure of this thesis
In Chapter 1 we contextualize the motivations that led to the development of this thesis and also

the objectives proposed in this work.
In Chapter 2 we present the key concepts pertaining to the technical field in which this thesis is

developed. Concepts like Wireless Sensor Networks and Operating Systems are introduced, since they
will be very useful in the following chapters. The protocols used in each layer of the network stack
implemented are also introduced.

In Chapter 3 we present an overview of several different operating systems for WSNs. First, the
challenges and design issues that may affect the design of an operating system for WSNs are presented.
The main design characteristics of the OS are also considered. Then, a small description of the different
operating systems is provided, taking into account these design characteristics. After looking at the
various operating systems available in the literature, a comparison was made and it was decided to use
the Contiki OS.

In Chapter 4 we describe the Contiki operating system in more detail, demonstrating their unique
characteristics and the advantages that such characteristics brought to Wireless Sensor Networks.

In Chapter 5 our implementation is presented from a hardware and software perspective. We also
discuss the problems encountered during the implementation phase.

In Chapter 6 we evaluate the implementation. The memory usage and the network performance
are evaluated in terms of round trip time and packet loss finally, the response time for the different
implemented CoAP resources is also assessed.

In Chapter 7 the results of this thesis are summarised, and possible future work is discussed.

3

chapter 2
Key Technologies

The following section aims to present the basic concepts related to the technologies and protocols
used during this work. Firstly, the concepts related to Wireless Sensor Networks and Operating
Systems will be introduced. Secondly, the protocols that will be used to implement the network stack
of our lighting mesh network will be addressed. Protocols used in the network layer, such as 6LoWPAN
and RPL, and also the CoAP and OMA LWM2M, used in the application layer, will be discussed. The
key technologies presented in this section are crucial for a proper understanding of the implementation
developed in this thesis.

2.1 wireless sensor networks
The smart environments are undoubtedly the next evolutionary development step for cities, utilities,

industrial, home, transportation and agriculture [7]. In the future all of these smart devices will be
interconnected, creating a network on a global scale. Thus, the interest in WSNs is steadily growing.
Wireless Sensor Networks (Figure 2.1) consist of several wireless devices, extremely efficient in terms
of energy usage, and capable of transmitting sensor data using low-power and low-bandwidth links [7].

A WSN generally encompasses the following key elements:

• Sensors: elements that have the capability to transduce (or detect) a given characteristic on
the environment, providing an output in the electrical form;

• Nodes: elements that collect the information of their sensors and sends it to the base station;

• Gateway: element that bridges the communications between the sensor network and the
Internet;

• Base station: element that gathers all the data that comes from the sensor nodes and processes
it according to the application requirements.

5

Figure 2.1: Wireless sensor network.

2.1.1 hardware components
Each sensor node of a WSN is defined both by its physical construction (the hardware) and by its

behaviour (the software). The typical sensor node encompasses the following hardware components
(Figure 2.2) [7]:

• Communication device: Typically is a radio transceiver responsible for providing communi-
cation capabilities to the node;

• Microcontroller: Runs the software of the smart object. This software will define the behavior
of the sensor node;

• Set of sensors or actuators: Responsible for providing the node a way to interact with their
surroundings;

• Power source: A crucial element of the sensor node. Without it his electrical circuits will be
useless.

POWER UNIT SENSOR UNIT PROCESSING UNIT RADIO UNIT

A
D

 C
O

N
V

E
R

T
E

R
D

A
 C

O
N

V
E

R
T

E
R

S
E

N
S

O
R

S
A

C
T

U
A

T
O

R
S

MEMORY

CPU

TRANSCEIVER

Figure 2.2: Hardware components of a sensor node. Adapted from [8].

6

2.1.2 networking
Two main networking topologies are used in the WSNs: star and mesh topologies. Star networks

are constituted by an aggregation of point-to-point links, with a master node that manages a specific
number of slave nodes [9]. This master node acts as the root for all the upstream communications
(Figure 2.3). If one of the slave nodes needs to communicate, it must forward the message to the root
node. One of the disadvantages of the star topology is his lack of robustness. Given that all network
packets pass through the master node, this node becomes a single point of failure. If he fails, the entire
sub-network will fail.

In a mesh topology (Figure 2.3), each node has several possible routes for a given node, which
provides the most flexibility and robustness. Most practical mesh networks use a type of mesh with
peer-to-peer communication links that support routing. Messages cross the network using a multi-hop
routing algorithm that can be optimized for the lowest latency, lowest power consumption or any other
desired metric [9]. Given that each of the sensor nodes must have a routing table for the remaining
nodes of the mesh network, the memory requirements and processing overhead required in each node
are higher in mesh topologies.

Figure 2.3: WSN Topologies.

A wide variety of proprietary wireless low-power networking technologies have been released since
the 1990s until early 2000s. However, it was only in 2003 that the Institute of Electrical and Electronic
Engineers (IEEE) launched the first low-power wireless personal area network (WPAN) standard: the
IEEE 802.15.4. This standard defined the Physical and Media Access Control (MAC) layers from the

7

OSI model [10]. Based on that standard, the ZigBee Alliance provided commercial wireless embedded
networking solutions for various areas [11].

The majority of the WSN solutions that currently exist do not provide support for IP. To provide
interoperability between these WSNs and external networks it is necessary to use specially designed
gateways. Furthermore, the protocol used over the Internet these days, IPv4, can not be adopted
due to being unable to address such a wide range of smart devices. With the emergence of IPv6,
the address space available increased considerably in order to support billions of embedded devices.
However, the complexity of providing IPv6 for devices with highly constrained memory and processing
power has become a great challenge. The IETF has assigned two different working groups to integrate
IPv6 in WSN devices:

• 6LoWPAN: Adaptation layer for IPv6 packets on IEEE 802.15.4 MAC messages;

• RPL: Routing protocol for low-power and lossy networks, that provides efficient routing
mechanisms in terms of energy.

In the scope on this work, it is beneficial to use open-source software, since we want to be able to
adapt the software to our specific needs without any additional costs. Currently, there are a variety
of open-source implementations for WSNs. After an analysis of all existing implementations, we
highlight the operating systems specially built for embedded systems, such as TinyOS and Contiki.
These operating systems are open-source and provide implementations of the IEEE 802.15.4, IETF
6LoWPAN and RPL routing for several different memory and power constrained devices. Using an
open-source operating system to implement our network will definitely offer more freedom in developing
solutions for specific networking requirements.

The basic functionality of an operating system is to provide an abstraction layer that hides the
low-level details of the sensor node. This layer will provide a clear interface to the application(s).
An OS is also responsible for offering low-level services such as processor management, scheduling
policies, multi-threading, multitasking, etc. These services are quite similar to those presented in
traditional operating systems. However, their implementation in WSN is a non-trivial problem, due to
the resource constraints of the sensors [7].

Chapter 3 discusses the challenges and issues that may affect the design of an operating system for
WSNs. In section 2.2 some important concepts related to operating systems, like programming models,
architectures and scheduling policies are introduced.

2.2 operating systems
An operating system aims to provide its users an environment where they can execute programs

conveniently and efficiently. In technical terms, it is a software which manages hardware [12]. Therefore,
an operating system is responsible for the allocation of resources and services, such as memory,
processors, devices and information.

Operating Systems generally consist of several parts. The principal ones are [12]:

• The Kernel, which is the "core" of the OS. It is responsible for running programs, and ensures
that these programs access the hardware safely. As there are several programs to dispute the
resources not always abundant, the kernel is also responsible for deciding which program has

8

more priority to run and how long should it run. This is called scheduling. Scheduling concepts
are introduced in Subsection 2.2.3;

• The Libraries, which provide a set of functions that can be used by applications;

• The Drivers, which are responsible for controlling external hardware.

Figure 2.4 represents the conceptual view of an Operating System.

Figure 2.4: Conceptual view of an Operating System. Adapted from [12].

2.2.1 architecture
The organization of an OS constitutes its structure. The architecture of an OS will not only

influence the size of the OS kernel, but also the way it provides services to the programs. Some of the
well known OS architectures are [13]:

• Monolithic - Application + Necessary OS components = Single system image;

• Modular - Application and OS are built as a set of interacting modules;

• Virtual Machine - Application as a set of static and dynamic components = Network wide single
system image.

Monolithic: This type of architecture differs from the others because it defines a high abstraction
layer over the computer hardware [12]. All operating system services such as process management,
concurrency and memory management, are implemented using a set of primitives/system calls. This
architecture allows the grouping of all the required services in a single system image, thus resulting
in a smaller OS memory footprint. However, a monolithic OS is hard to understand and modify, is
unreliable and also difficult to maintain [13].

9

Modular: In a modular architecture the operating system components are described as com-
municating object-oriented modules. The kernel only has the necessary core components to start
itself and the ability to load modules. The core module is the only module that is always in memory.
Whenever any other additional modules are required, the module loader is responsible for loading the
correct module. The main advantage is the possibility of runtime reconfiguration, however, there is an
overhead in loading and unloading modules [13].

Virtual Machine: Virtual machines run inside user programs on top of another OSs. The main
advantage is its portability, however, the system performance is typically poor [12].

2.2.2 programming model
Traditionally, programming models for concurrent processes can be of two types:

• Thread-based: Each process is defined by implementing a thread-specific method. The execution
state of the processes threads is maintained by an associated thread stack;

• Event-based: Each process is implemented by event handlers which are called from inside an
event loop. The execution state of the process is stored within an associated record or object.

Thread-based models are easier to use, but when it comes to performance, they are less efficient,
due to context switches, memory consumption, etc. [14]. Event-based models are more efficient, but
hard to use in complex designs [15]. The comparison between the two can be found in Table 2.1.

Event-based Thread-based

Computation is handled by event handlers Computation is divided between threads
No stack overhead Context switch overhead
Used when applications require efficiency Used when applications require flexibility
Allows high concurrency Not well suited for concurrency

Table 2.1: Comparison between event-based and thread-based. Adapted from [13].

2.2.3 scheduling
One important part of an Operating System’s kernel is the CPU scheduler. The scheduler is

responsible for deciding when and for how long a process is allowed to execute. Since the CPU has to
offer the illusion of concurrent processing, the scheduler must ensure that performance is not hindered
and that processes run according to a set of policies [12]. The scheduling policies are defined in
scheduling algorithms. These fall into two categories: preemptive and nonpreemptive.

Tasks are usually assigned with priorities and sometimes it may be necessary to perform a certain
task that has a higher priority before another task already running. In preemptive scheduling, the
running task is interrupted for some time and resumed later when the higher priority task has finished
its execution [12]. In the case of nonpreemptive scheduling, when a process enters the running state,

10

it is not suspended until it finishes its service time. So, basically, in this type of scheduling, tasks of
lower priority can block tasks of higher priority [12].

A scheduling algorithm, to be useful, must enforce the system policies and allocate the CPU to
ready processes. Different policies can be used to select which processes to execute.

Preemptive algorithms:

• Round-robin;

• Priority scheduling;

• Shortest remaining time next;

• Shortest process next;

• Multiple queues;

• Guaranteed scheduling;

• Lottery scheduling;

In round-robin scheduling a certain amount of time to run is allocated to each process and a linked
list contains all the ready processes. Then, the CPU is assigned to the process that is at the top of the
list. This process will run during the time that was allocated to it and when the time is up the process
goes to the back of the list [12].

The only critical issue with this algorithm is that it does not differentiate between compute-based
operations and I/O-based ones. The I/O operations clearly must have a higher priority, because these
operations can be critical to the proper functioning of the system. The solution is to create multiple
queues for each priority level and then the scheduler executes them in a round-robin fashion, giving
priority to those in the higher priority queues [12].

Nonpreemptive algorithms:

• First-come First-served;

• Shortest job first;

In First-come First-served scheduling, a single queue contains all the ready proceses [12]. When it
is done, the next process on the queue runs.

In systems where temporal constraints are critical, such as real-time systems, the tasks must
execute before deadlines, or it may lead to catastrophic situations. In these cases proper scheduling
algorithms must be used (e.g., Earliest Deadline First or Rate Monotonic, which support preemption).

The Rate Monotonic is a fixed priority scheduling algorithm that consists of assigning the highest
priority to the highest frequency tasks in the system, and lowest priority to the lowest frequency tasks.
Logically, the scheduler will always choose to execute the task with the highest priority. Using this
algorithm the behavior of the system can be analized apriori, since the period and computational
time required by each of the tasks is specified. One problem with the rate monotonic is that the
schedulable bound is less than 100 % and also does not support dynamically changing periods [16].
The disadvantages associated to this algorithm encourage the use of dynamic priority algorithms, like
Earliest Deadline First.

The Earliest Deadline First algorithm uses the deadline of a task as its priority. The task with the
earliest absolute deadline has the highest priority, while the task with the latest absolute deadline has
the lowest priority. One advantage of this algorithm is that the schedulable bound is 100 % for all task
sets and because priorities are dynamic, the periods of tasks can be changed at any time [16].

11

2.3 network protocols

2.3.1 6lowpan
The kind of devices used in this thesis, especially the 4LD, do not allow the transmission of very

large packets, due to limitations in the radio transceiver FIFO, not to mention the issues related to the
processing overhead and insufficient memory to buffering these packages. Given that the Maximum
Transfer Unit (MTU) of an IPv6 packet is 1280 bytes, these devices cannot use this protocol directly.
Therefore, we need an adaptation layer in order to use the IPv6 protocol in our implementation. For
this purpose, we used the 6LoWPAN protocol. 6LoWPAN is an acronym that stands for IPv6 over
Low power Wireless Personal Area Networks (WPAN). 6LoWPAN enables the use of IPv6 in Low
Power and Lossy Networks (LLNs), such as those based on the IEEE 802.15.4 standard [17].

The 6LoWPAN architecture is made up of low-power wireless area networks (LoWPANs), which
are connected to other IP networks through border routers. The border router plays an important role
as it routes traffic in and out of the LoWPAN, while handling 6LoWPAN compression and Neighbor
Discovery. In Section 5.5 the border router importance as part of the gateway node will be discussed.
Each node is identified by a unique IPv6 address, and is capable of sending and receiving IPv6 packets.
Typically, LoWPAN nodes support ICMPv6 traffic and employ the User Datagram Protocol (UDP)
as the transport protocol.

Taking into account that the MTU size in IPv6 networks is 1280 bytes and that the maximum
size for a IEEE 802.15.4 packet is just 127 bytes, header compression and message fragmentation must
be performed in order to adapt IPv6 communications to IEEE 802.15.4 devices [18].

Fragmentation: Packet fragmentation is possible using a subheader in all fragments, encompassing
fields such as Datagram Tag and Datagram offset. The Datagram Tag is used to identify the set
of unfragmented payload the fragments belong and the Datagram offset identifies the offset of the
fragmented packet within the unfragmented payload. However, the applications should avoid the
transmission of big packets that require fragmentation, due to performance issues. Considering that
these networks are lossy networks, if a fragment of a packet is lost, the whole packet will have to be
retransmitted [19].

Header Compression: IPv6 addresses are composed by 128 bits. The first 64 bits are the prefix,
common to all devices on the network, and the remaining 64 are the interface ID. The RFC4944
introduced the concept of IPv6 header compression (HC1) and UDP header compression (HC2) [18].
The prefix is known to all devices, therefore can be omitted. The interface IDs can also be omitted for
link-local communication. An UDP/IPv6 header is usually composed of 48 bytes. If we use both HC1
and HC2 mechanisms, the header can be compressed to only 7 bytes, considering the case where a
datagram is sent inside the 6LoWPAN network using the 16-bit addresses. However, outside of the
unicast link-local scope, the HC1 and HC2 mechanisms cannot perform an efficient header compression.
In a link-local multicast IPv6 packet the full destination address must be included, imposing a 23-byte
header in the best situation. When communicating with nodes from an external network, the IPv6
source address prefix and full IPv6 destination address must be carried inline, resulting in a 31-bytes
long header [18].

To address the previously reported problem, RFC6282 has introduced new header compression
mechanisms [20]:

12

• IP Header compression (IPHC) - is used to efficiently compress fields in the IPv6 header such
as Traffic Class, Flow Label and Hop Limit, using shared context information to omit the prefix
from IPv6 addresses;

• Next Header Compression (NHC) - uses a similar mechanism to compress UDP headers, however
it allows future definitions of arbitrary next header compressions.

Using the mechanisms introduced in the RFC6282, as can be seen in Figure 2.5, the UDP/IPv6
headers can be compressed to 6 bytes in the link-local scope, 7 bytes to known multicast addresses and
10 bytes with global addresses [21].

Figure 2.5: Header Compression Example. Adapted from [21].

Network Autoconfiguration: 6LoWPAN also allows network automatic configuration, using
the neighbor discovery protocol [21]. As in normal IPv6 networks, there are several types of messages
that are exchanged to perform this automatic configuration. Examples are:

• Router Advertisement (RA) - are sent to automatically propagate router information across the
6LoWPAN network;

• Router Solicitation (RS) - are sent by end nodes to locate a router in the network;

• Neighbor Advertisement (NA) - are used by nodes to respond to a NS message;

• Neighbor Solicitation (NS) - are sent by end nodes to determine the link layer address of a
neighbor, or to verify that a neighbor is still reachable via a cached link layer address.

End Nodes can also send Neighbor Solicitation messages with Address Registration Option (ARO)
to register their addresses to routers. 6LoWPAN routers may also send a specific type of NS messages

13

to border routers to perform Duplicate Address Detection, with the use of the ICMP messages DAR
(Duplicate Address Request) and DAC (Duplicate Address Confirmation) [22]. In Figure 2.6 a typical
neighbor discovery message exchange is presented, between the WSN nodes, the border router and an
IPv6 base station.

Figure 2.6: Neighbor Discovery message exchange. Adapted from [22].

Routing: There are two distinct options to be considered, when talking about routing in a
6LoWPAN network: mesh-under and route-over. Mesh-under techniques do not perform any IP
routing within the LoWPAN. They typically use the layer 2 functions, such as IEEE 802.15.4, to
perform the multi-hop forwarding [23]. In the route-over mechanisms, the routing functions are
performed on the network layer, with every node acting as an IP router, and each link-layer hop as a
single IP hop. The IETF did not develop any mesh-under routing protocols, but 6LoWPAN supports
several route-over routing protocols, such as mobile ad-hoc network protocols like AODV and DYMO
[19]. However, these protocols are not optimized to operate on LLNs, thus IETF created the workgroup
ROLL (Routing Over Low Power and Lossy Links) to deal with this drawback. As an answer, the
RPL protocol emerged [24]. In the following subsection this routing protocol will be introduced.

2.3.2 rpl - a mesh networking solution
RPL is a Distance Vector IPv6 routing protocol for LLNs that specifies how to build a Destination

Oriented Directed Acyclic Graph (DODAG) using an Objective Function (OF) and a set of metrics/-
constraints. The objective function will compute the best path, based on the combination of those
metrics/constraints. Since a single mesh network may need to carry traffic with different requirements
in terms of path quality, there could be several objective functions in operation on the same mesh
network [7]. For example, several DODAGs may be used with the objective to:

14

• Find paths with best expected transmissions values (metric) and avoid non-encrypted links
(constraint);

• Find the best path in terms of latency (metric) while avoiding battery-operated nodes (con-
straint).

The OF will provide some rules for the formation of the DODAG, such as the number of parents,
backup parents, etc. The DODAG building process is done using ICMPv6 control messages, such as:

• DIO - DODAG Information Object

• DIS - DODAG Information Solicitation

• DAO - DODAG Advertisement Object

The DODAG building process starts always by designating one node as the root node. In our
specific experimental setups the root node is the border router. Therefore, the border router will be
responsible for determining the configuration parameters for the network. These parameters will be
packed into a DIO message, which is then used to disseminate the information in the network. The
DIO messages contain many options that can be configured to tailor the network configuration to the
application’s requirements. The compulsory information contained in a DIO mainly comprises[24]:

• RPLInstanceID - unique identifier of an RPL Instance in a network;

• The DODAGID - unique identifier of an DODAG in an RPL Instance;

• The current DODAG version number;

• The node’s rank - the logical distance from the root node within the DODAG.

DODAG Building Process: During the DODAG building process, each node is required to
select parent nodes from its neighbors and must calculate its rank. The rank of each node must be
larger that the rank of all its parents, so we can prevent the formation of loops in the routing structure.
Thus, if we traverse the DODAG from the root node to the end nodes, the node’s rank is monotonically
increasing [24]. It is important to mention that rank is not necessarily related to the physical distance,
nor to the distance in hops between a node and the root node, but a metric determining a node’s
desirability as a next hop on a route to the root node. A node’s rank is calculated based on the OF,
which is specified according to the DODAG’s application goals [25]. The various steps of the graph
building process are represented in Figure 2.7.

15

Figure 2.7: DODAG building process. The link quality means that on average, a
packet sent on a specific path requires X transmissions before it reaches its destination.
Adapted from [25].

Types of communication: There are three types of communication in RPL networks:

• Multipoint-to-point (MP2P) - The model presented before is a type of MP2P forwarding model,
where each end node has connectivity towards the root node of the DODAG graph. Each node
forwards every packet to its corresponding parent node. This forwarding process is performed
until the packet reaches the root node. This is also referred to as UPWARD routing.

• Point-to-multipoint - In contrast to what happens with MP2P, where the traffic is forwarded
from the end nodes to the root node, there is also a need for traffic to flow in the opposite or
"down" direction. This traffic could be originated, for example, if the root node wants to send a
message to an end node. This will require a routing table to be built at every node. In order to
support traffic in the "down" direction, the DAO messages are used. These messages advertise
prefix reachability towards the end nodes. Therefore, these messages will usually carry: the
prefix information, the valid lifetime and information about the distance of the prefix [25]. As
each node joins the graph it will send a DAO message to its parent node. Each node, upon
receiving this message, will process the prefix information and add a new route to the routing
table. Once this information reaches the root node, an entire path to the prefix is setup. This
mode is called the storing mode of operation. In this mode, the DODAG nodes should have
available memory to store the routing tables, otherwise it is not possible to support traffic in this
direction [24]. Since these nodes typically are resource constrained devices, they do not support

16

the maintenance of large routing tables. To resolve this issue RPL also supports another mode
called non-storing mode where the nodes do not need to store any routes. Instead, only the root
node will compute and maintain a routing table to each node in the DODAG, based on DAO
messages received from the remaining nodes. So, when the root wants to send a packet to a
specific node, it will include the route in the source routing header and will send it to the next
child node. Each child node will examine that field to know the next hop. This process will be
repeated until the packet reaches its destination [24]. This mode of operation is more efficient
in memory constrained devices, however it has the tradeoff of having a larger overhead, due to
an increased packet size, which will use more power, processor resources and bandwidth [25].

• Point-to-Point - The data packets in RPL can also be forwarded from any node to any other
one in the graph. In this case, the packet travels ’up’ to the root node and then it is forwarded
in the "down" direction to the destination node.

Topology repair: RPL implements two mechanisms of topology repair: local and global repair.
If a node detects that one of his neighbors has failed and the node has no route towards the root node,
a local repair is performed in order to find an alternate route. A local repair has no implications on
the global topology. However, successive repairs may lead to a less efficient global topology and the
root node may have to perform a global repair, reshaping the entire tree [24].

The trickle timer: In LLNs the network may be composed of battery-operated devices that must
save energy. Therefore, it becomes imperative to limit the control traffic in the network. Most of the
routing protocols use periodic keepalives to keep the routing tables up to date. This would be costly
in LLNs, since the energy resources are scarce. To avoid energy waste, RPL uses an adaptive timer
mechanism called the "trickle timer" [24]. This timer will control the sending rate of DIO messages. In
the beggining, when building the DODAG this rate will be higher, so more DIO messages are sent.
As the network stabilizes, the interval of the trickle timer will increase, which results in fewer DIO
messages being sent in the network. If inconsistencies are detected, for example when a node joins the
network or moves within the network, the nodes reset the trickle timer and will send DIOs messages
more often. The frequency is increased only in the vicinity where the inconsistency is detected. So,
using this mechanism the frequency of the DIO messages will depend on the stability of the network.
As the network becomes stable, the number of RPL messages will gradually decrease. One of the main
benefits of the trickle timer is that it does not require complicated code and it is also straightforward to
implement. This is particulary necessary taking into account the usually resource constrained devices,
that are comprised in these kind of networks.

2.4 application protocols
As stated before, the final goal of this thesis is to actually send useful data using IP over the

wireless media. One of the key advantages of IP based networking in WSNs is to enable the use of
standard Web services without the need to add special designed gateways. The ideia is to integrate
these smart objects into the Web on top of Representational State Transfer (REST) architectures [26].
In REST architectures each Web resource is identified by a Universal Resource Identifier (URI). These
resources are manipulated using an application protocol. REST is not tied to a particular application

17

protocol, however, the vast majority of REST architectures nowadays use the HTTP protocol. The
HTTP protocol is considered to be a heavy-weight resource representation format, designed to be used
with devices with abundant resources. For resource constrained devices, like the ones used in this work,
the HTTP protocol is not well suited [27]. Thus, there is a need for an application protocol integrated
with REST architectural design, so we can be able to connect Internet-enabled embedded devices and
access them through universally accepted standards-based methods. In this subsection we highlight the
CoAP and OMA LWM2M application protocols, since both protocols have been especially designed
with the limitations of these devices in mind.

2.4.1 coap
CoAP is a specialized Web transfer protocol optimized for resource constrained networks defined

by the IETF CoRE Working Group [6]. CoAP is similar to HTTP but its goal is not to simply
compress HTTP, but also implement a subset of REST operations optimized for M2M interactions.
The interaction model is similar to the client/server model of the HTTP protocol. Clients request
an action to a resource and then, the server sends the response with the status code. Messages are
exchanged asynchronously over UDP.

CoAP has the following main features [6]:

• Use of the UDP binding to avoid costly TCP handshakes;

• Support for the methods defined in HTTP: GET, POST, PUT and DELETE. And also three
types of response codes: 2.xx (success), 4.xx (client error), 5.xx (server error);

• URI based resource representation;

• Support for different payload content types;

• Support for Blockwise Transfers. It allows the transmission of larger amounts of data by splitting
the data into blocks;

• A Resource Observe mechanism built using a publish/subscribe pattern;

• Resource discovery capabilities to allow clients to discover all resources handled by servers.

CoAP Messages: The CoAP frame format has a 4 byte fixed header and optional fields in
Type-Length-Value (TLV) format as can be seen in Figure 2.8 [6].

Figure 2.8: CoAP frame format.

To establish a message exchange between client and server, different message types can be used [6]:

18

• Confirmable (CON): this type of message is used when a reliable transmission is needed. Since
messages are transported using UDP, this reliability is achieved with packet retransmission
if a response is not received within a given timeout. However, the packet may be lost if the
maximum number of retransmissions is reached;

• Non-Confirmable (NON): this type of message is used when a reliable transmission is not needed.
It is quite useful for resources that are sent periodically;

• Acknowledge (ACK): this type of message is used as a response to acknowledge a CON request.
It may carry response data (piggy-backed response) or not (separate response). The separate
response is used when the server is not able to process the request immediately, but will process
and send the response later;

• Reset (RST): this message indicates that a CON request has arrived but there is no context to
process it.

An example of how CoAP works with request/response model and how it uses the type of messages
and methods available are shown in Figure 2.9.

Figure 2.9: CoAP request/response model. Confirmable (left) and Non-confirmable
(right). Adapted from [6].

In the rest of this subsection we will discuss some of the main CoAP features, such as: Blockwise
Transfers, Resource Observe Pattern and Resource Discovery.

Blockwise Transfer: Since the maximum payload of 6LoWPAN packets is very constrained
(about 81 bytes), applying even more network fragmentation might be even worse. So, in order to
avoid operations that could cause fragmentation at the network level, with the use of this feature it is

19

possible to carry the data fragmentation from the network to the application layer [28]. This feature is
particularly useful when a resource representation exceeds the number of bytes that can be transmitted
in a single 6LoWPAN frame. Thus, one REST operation can be fragmented into multiple packets,
without compromising the performance of the constrained 6LoWPAN network [29].

Resource Observe Pattern: In HTTP, the transactions are always initiated by the client. If a
client wants to stay up-to-date about a specific resource status, it should perform GET operations
again and again. In this type of networks, with limited resources, this polling model becomes very
expensive. CoAP addresses this problem by providing an enhancement to the REST model: adding
the observer pattern. Using this pattern, a client can indicate its interest in further updates from a
resource by specifying the Observe option in a GET request. If the server accepts the option, the client
becomes an observer of this resource and receives an asynchronous notification message each time it
changes [30].

Resource Discovery: In typical CoAP applications the devices must be able not only to discover
other devices on the network, but also the resources available on each one of them. This feature
is already common on the Web, also called Web discovery in the HTTP community. The need for
standardized way to perform resource discovery is much greater in constrained networks than on the
current Web. As an answer, the IETF introduced a method for discovering and advertising resource
descriptions, available through the /.well-known/core path (RFC5785) [31]. CoAP servers should
include this method, so CoAP clients can be able to access all resource descriptions available on that
server by simply performing a GET request on the /.well-know/core URI. The resource description
retrieved by the server must be formatted according to the HTTP link header format [32].

2.4.2 oma lightweight m2m

Figure 2.10: The Lightweight M2M architecture with the LWM2M Client and the
LWM2M Server. Taken from [33].

20

The OMA Lightweight M2M (LWM2M) [34] was design with constrained devices in mind. This
protocol provides a lightweight and compact secure communication interface along with an efficient
data model, which together enable device management and service enablement for M2M devices. As
with other device management standards, the Lightweight M2M solution is called an Enabler. The
LWM2M Enabler defines the application layer communication protocol between a server and a client.
The LWM2M Client typically resides on the embedded device and is integrated as a software library.
The typical architecture diagram can be seen in Figure 2.10.

The LWM2M protocol has at least four distinguishing characteristics [33]:

• Features a modern architectural design based on REST, appealing to software developers;

• Defines a resource and data model that is extensible;

• Designed with performance and the constraints of M2M devices in mind;

• Uses for communication an efficient protocol already presented, the CoAP.

The LWM2M Enabler defines a simple Object/Instance/Resource model where each piece of
information provided by the LWM2M Client is a resource. The resources are further organized
into objects. The LWM2M Client can have several different resources, where each one of them
belongs to an object [34]. The Objects/Resources are accessed with simple URIs: /Object ID/Object
Instance/Resource ID.

The first release of the OMA LWM2M standard specifies, in addition to the Enabler itself, an
initial set of objects for device management purposes [35]:

Figure 2.11: Standard Objects from LWM2M Technical Specification.

A typical message flow between a LWM2M Client and Server is shown in Figure 2.12.

21

Figure 2.12: Abstract message flow example between a LWM2M Client and Server, the
actual messages are mapped to CoAP requests and responses. Taken from [33]

One of the major benefits of LWM2M protocol is the abstraction that exists between the COAP
protocol used for communication and the LWM2M data model. The creation of this standard data
model enables interoperability between devices from different vendors. In addition, it is possible at
any time to extend the data model, in order to support other type of functionalities for a particular
application [33]. For example the IPSO Alliance has already created compatible object descriptions
related to smart city applications. In the scope of this thesis, besides the set of objects for device
management purposes presented before, we only implemented two more: the IPSO Temperature Sensor
and the IPSO Light Control. In Figure 2.13 it’s presented an overview of these two IPSO objects. All
the information about LWM2M objects can be consulted in [35].

22

Figure 2.13: IPSO Temperature and Light Control Objects Overview. Adapted from
[35].

23

chapter 3
Operating Systems for
Wireless Sensor Networks

3.1 design issues and challenges
A Wireless Sensor Network operates at two levels: the network level and the node level. In the

network level focus is on the connectivity, routing protocols, communication channel characteristics,
etc. In the node level focus is on hardware, radio, CPU, sensors and limited power [7]. This section
discusses the important issues and challenges to be considered while choosing an operating system for
a street lighting mesh network. Such issues motivate the design requirements of an operating system
needed for this specific WSN implementation. These design requirements are presented in section 3.2.

3.1.1 restricted resources
A typical sensor node for WSNs is constrained by limited battery power, processing capability,

memory and bandwidth. The platform used in this thesis is not different. The 4LD is equipped with
the PIC24FJ128GA308 processor, which has only 128Kb of flash program memory, 8kb of RAM and a
maximum operating frequency of 32 MHz. This hardware platform is going to be introduced in more
detail in Chapter 5.

Power: Power consumption is quite crucial to the life span of most WSN based applications,
especially the ones that are battery powered. A typical node with a limited power supply has to
operate for months to years [36]. In this specific implementation the power consumption is not a
critical issue so far, mostly because the main application is street lighting control, therefore the sensor
node is going to be connected to the mains electricity network. In other cases the sensor node and the
street lighting system can be powered by solar panels. In this case, the power consumption becomes a
very important issue and should be taken into account when designing an operating system for WSNs.

25

When compared to computation and sensing, the main source of power consumption in a WSN
embedded device is the communication support [37]. For example, when transmitting one data bit
over the RF is being spent energy that would be sufficient to execute thousands of instructions by the
microprocessor. Besides the transceiver, readings and writings to the flash are also responsible for a
significant energy consumption. So, when dealing with modular operating systems it is important to
consider the energy consumption associated with the load/unload of modules into program memory
[13].

The operating system must ensure the existence of efficient energy management and optimization
mechanisms, in order to prolong the lifetime of the sensor nodes, especially of those that are battery
operated. One of the mechanisms to conserve power is the periodic sleeping of the sensor nodes. Sensor
nodes can typically operate in one of three sleep modes: idle, power down and power save. In the idle
mode only the processor shuts off. In power down mode the sensor node shuts off everything except
tha watchdog timer and interrupt logic. The power save mode is similar to power down mode except
that it keeps the timer running [37] [13].

Processing Power and Memory: Sensor nodes have a reduced processing power, usually in the
order of a few MIPS [37]. In this specific case, a PIC24 microcontroller working only at 16 MIPS and
operating at 32 MHz. Therefore, the computation of intensive operations must be properly scheduled.
Otherwise, higher priority tasks can get delayed/starved [13].

Other main constraint for the developer is this available program memory. As already mentioned,
the PIC24 only includes 128Kb of program memory. Hence, the operating system choosed for the
WSN implementation should fit within this memory.

3.1.2 portability
Portability is one of the key features required in an OS for WSNs. Taking into account the rapid

evolution of the platforms these days, a software must be functional in a wide range of platforms.
Thus, the OS should allow the port to different platforms without having to make major changes [13].

3.1.3 customizability
As mentioned in Chapter 1, applications in WSN are spread across a wide range of disciplines

(Figure 1.1). Different applications demand different requirements from the OS. These requirements
may be reconfigurability and real-time guarantees, among others [13]. Hence, the OS design should
allow for an easy customization and extension to different types of applications.

3.1.4 multitasking
At a given point of time, a sensor node may have to perform more than one task/operation. Some

of these are concurrent operations. Thus, if not handled carefully, higher priority tasks/operations may
be delayed, beyond acceptable limits. The physical parallelism that is provided by the microcontrollers

26

is limited and the context switch overhead must not be neglected. Therefore, the OS must have a good
execution model and an efficient mechanism to switch between different tasks [13].

3.1.5 network dynamics
In terms of network dynamics in WSNs there are some aspects that must be taken into account,

such as mobility, possible communication failures in channels/nodes, segmentation on the network,
among others. Sensor nodes may be subjected to communication failures, which can be related to
interference in the RF channel. That may lead the network to diverge from its normal behavior.
Therefore, the operating system must provide mechanisms to facilitate the easy adaptation of the
sensor node to the most diverse network conditions. This will provide transparency to the application
from network dynamics [13].

3.1.6 distributed nature
In most cases, WSNs consist of thousands of nodes, usually spread over a wide geographic area.

Thus, the operating system must handle this distributed environment, providing efficient management
of the distributed nodes in order to make them look as a single virtual entity. This entails [13]:

• Inter-node communication and Failure Handling - Potential problems, such as low bandwidth,
link failures and inaccessible nodes should be masked from the application point of view. Thus,
the OS must be robust in order to handle these communication failures so that they do not
interfere with the normal operation of the application;

• Heterogeneity - Heterogeneity is a feature presented in most of the WSNs deployments. They
are usually composed by sensor nodes with different capabilities in terms of memory, processing
power and may also have different sensing capabilities. Therefore, the OS must be capable of
distributing the system load according to the capabilities of each node in order to mask this
heterogeneity from the application user;

• Scalability - The OS must implement efficient algorithms, in order to avoid a large degradation
of the network performance as the number of nodes increases.

3.2 design characteristics
After discussing the key issues to be considered while choosing an operating system for a street

lighting network implementation, following the desired key OS characteristics are presented.

3.2.1 flexible architecture
As already mentioned in section 2.2 the architecture of the kernel plays a major role in the way

the OS provides services. The kernel architecture must ensure the possibility of adding new services

27

or modify existing ones at runtime - reconfiguration. It will also have an influence in the memory
footprint of the core kernel [13].

Monolithic arhitectures form a single system image that agglutinates all the required OS services,
resulting in a higher kernel size. This type of architecture doesn’t offer flexibility when it comes to
make changes to the kernel or to the application, since the entire system image must be replaced.

Modular architectures, in turn, have the ability to dynamically load/unload service modules.
Because of that it is possible to bundle only the required services for an application, that are needed
in a specific moment, in a single system image. This will slightly degrade the OS performance, since
it introduces overheads when loading and unloading service modules. On the other hand, the kernel
memory size is smaller when compared to monolithic architectures. Since this type of architecture
allows to add services at run-time, they offer flexibility when updating or replacing the kernel without
the need to replace the entire system image.

Virtual machine architectures also offer flexibility in the application development. As the application
is constituted by specific instructions to the virtual machine, reconfiguration becomes easy [13].

In sum, we can say that the chosen architecture presupposes a compromise between performance
and flexibility. The monolithic architecture is not ideal for applications that require regular updates.
The modular and virtual machine architectures, in turn, are more suited if the application requirement
is reconfiguration. It will simplify the code maintenance and modification problems. So, an OS for
Wireless Sensor Networks should allow to easily add new services or updating the existent ones if
required, maintaining the kernel memory footprint as small as possible.

3.2.2 efficient programming model and scheduling
The programming model used by most of the embedded systems is event-based. However, the

thread-based programming model can also be used. As already discussed, the thread-based models are
usually easier to use, but less efficient, due to context switches overhead, memory consumption, etc
[14]. On the other hand, event-based models are usually more efficient, but very difficult to use in
large designs [15]. The comparison between the two can be found in Table 2.1.

The programming model must define efficient synchronization mechanisms during the access to
shared resources or information, so as to avoid race conditions. It should also provide an efficient
scheduler, that performs concurrent intensive tasks and prevents tasks from being blocked from
execution [13].

The scheduling of computational units must also be performed efficiently, especially in critical
applications. In these applications, the tasks must be executed within certain time limits, otherwise it
may lead to catastrophic situations. In our specific application temporal requirements are not hard,
because the result of the task execution retains some utility to the application, even after a temporal
limit, although it will lead to a degradation of Quality of Service (QoS). In subsection 3.2.6 this issue
is discussed in more detail.

3.2.3 clear application programming interface
APIs are responsible for providing a layer of abstraction between the low-level functionalities and

the application. The OS must have a broad range of APIs to interact with the system and its I/Os.

28

This will be crucial for the application developer, since he/she will not need to consider the low level
functionalities of the sensor node hardware [13]. The chosen OS may include various APIs, such as:

• Networking API;

• Sensor data reading API;

• Memory management API;

• Power management API;

• Task management API (Set delays, set priorities, post events).

The APIs that are responsible for memory management are important if the developer wants
to reconfigure the software running on the node dynamically. APIs related to posting of events and
setting the delays of tasks gives greater flexibility when scheduling them. With these and other APIs
the developer can then build applications and use the available resources efficiently.

3.2.4 reprogramming
Reprogramming is a crucial feature that the chosen OS must have, since it will simplify the software

management in the sensor nodes. This feature, which allows dynamic updating of the sensor nodes
software, is crucial in WSNs because the sensors are often deployed in locations that are difficult to
access and also due to the fact that these networks usually are composed by hundreds or even thousands
of nodes [13]. In the target street lighting network, reprogramming is also an important characteristic.
Without reprogramming it is difficult to add, modify or delete software from the running system, not
to mention that manual reprogramming not only entails high monetary costs, but also takes a lot of
time to update/upgrade the full network, especially if the network has a high number of nodes.

To avoid all of these costs, the code should be distributed over the air using code dissemination
protocols [38] [39]. These protocols will perform the splitting and compression of the code to be sent
to update the nodes. For this operation be successfully carried out the code should be relocatable,
which means that the code should run in any location of the memory. Therefore, the operating system
must provide mechanisms for dynamic allocation of memory in order to facilitate loading/unloading of
software components at run-time.

Reprogramming can be performed with different granularities, which can range from the setting of
a variable to changing the entire software image of the node. Application level reprogramming will
replace the entire application image of the node. Modular level reprogramming only replaces a module
for an application. Instruction level and variable level reprogramming gives more flexibility if tuning
parameters of the application is needed. Figure 3.1 shows the different levels of granularity that each
OS is able to support in reprogramming.

29

Figure 3.1: The reprogramming flexibility and update cost, depending on the level of
granularity. Adapted from [13].

3.2.5 resource management
The OS of election should perform the management of its resources (processor, memory, battery,

etc.) efficiently. An efficient use of the processor can be achieved by using a scheduler with an optimal
scheduling policy. Regarding the efficient memory use, it requires the existence of memory protection
mechanisms, dynamic memory allocation, etc. The battery should also be treated as a special resource,
therefore the use of the sleep modes becomes imperative in order to avoid unnecessary energy wastes
[13]. The power management interfaces that are provided by an OS should impose an optimized
management of the available energy, in order to prolong the life span of the embedded devices.

3.2.6 real time nature
This design characteristic may or may not be required, depending on the specific application.

Real-time tasks can be classified into periodic and aperiodic. A task that is responsible for monitoring
temperatures is an example of a periodic task. Smoke detection is an example for an aperiodic task.
These tasks can also be classified into critical and non-critical. A critical task requires that its execution
must occur in a stipulated time, otherwise it may lead to catastrophic consequences [13].

As stated before, in our specific application temporal requirements are not critical, although in
order to improve the quality of the network communication and to offer Quality of Service (QoS)
guarantees to the users, the round trip time (RTT) should be analyzed. The RTT is the length of
time it takes for a signal to be sent plus the length of time it takes for an acknowledgment of that
signal to be received. In our case, even a RTT in order of 1s is feasible, but since we want to provide a
good QoS, this metric should be optimized as much as possible.

3.3 existing operating systems
In recent years, we have seen the emergence of multiple operating systems specially designed

for applications in WSNs. Those who had more prominence within the community are: TinyOS,
Contiki, Nano RK, MANTIS and LiteOS. These operating systems will be stricly analized in the next
subsections taking into account the design characteristics identified in section 3.2.

30

3.3.1 tiny os
TinyOS [40], developed at UC Berkeley, was one of the first operating systems that have emerged

for WSNs. TinyOS can support concurrent programs with very low memory requirements. The OS
has a footprint that fits in 400 bytes [41].

Architecture: TinyOS (TOS) has a monolithic architecture. It is composed by components
that may have three possible computational abstractions: commands, events and tasks. Commands
and events are used to provide inter-component communication. Tasks, in turn, are used to provide
intra-component concurrency. An event indicates the completion of a service, while a command signals
a request to perform a particular service. Since this OS provides a single shared stack, there is no
separation between kernel space and user space [41].

Programming Model: Older versions of this OS did not provide support for multithreading, the
programming model was strictly event-driven. However, version 2.1 already supports multithreading.
A high priority kernel thread is allocated to the scheduler. Message passing is used for communication
between the applications threads and the kernel threads. The applications make system calls by posting
tasks to the kernel thread. The kernel, in turn, will preempt the thread that is currently running
and will execute the system call. Using this mechanism it is guaranteed that only the kernel executes
TinyOS code [41], however, it introduces an overhead of 0.92% [40].

Scheduling: Regarding scheduling, TinyOS uses the FIFO technique. The scheduler does not
allow running tasks to be preempted by other tasks, however, a running task can be preempted by
interrupt handlers, commands or events. One of the main disadvantages of the FIFO scheduling used
is that it can be unfair for short tasks that are waiting behind time-consuming tasks [41].

Resource Management: The sensor nodes hardware don’t offer memory protection mechanisms,
so it is the responsibility of the OS to provide such mechanisms. The TinyOS uses a static memory
management approach and the version 2.1 also incorporates memory safety [41]. Since the embedded
devices are resource-constrained, the use of low level languages like nesC is strictly necessary [42]. In
terms of energy management, the TinyOS provides an API in order to conserve and manage power
properly. This API enables the processor to sleep whenever possible upon the next clock after the
following conditions are met: the radio is off, all clocks interrupts are disabled and task queue is empty
[13].

Communication Protocol Support: This OS implements two multi-hop protocols [41]:

• Dissemination - Reliably data transfers to every node in the network [43]. It enables reconfigu-
ration and reprogramming;

• TYMO - Implementation of the DYMO protocol, a routing protocol for mobile ad hoc networks.
TYMO protocol is implemented on the top of the active messaging stack [44].

TinyOS supports application level reprogramming. If the developer wants to make updates to the
TinyOS application, he must do it by modifying the source code directly. Then, he must recompile
the TinyOS and place the new image on the sensor node [39]. As the entire image has to be flashed,
reprogramming causes a high communication overhead. This is due to the monolithic architecture of
this OS [13]. Recent versions of this OS (version 2.1.1) also incorporates a 6LoWPAN/IPv6 stack.

31

3.3.2 contiki os
Contiki is a lightweight, portable and open-source OS written in C, specially tailored for WSN

applications. Contiki’s memory footprint is about 2 kB of RAM and 40 kB of ROM [45].

Architecture: This OS follows a modular architecture, while the programming model is event-
driven. Contiki comprises an event scheduler, which is responsible for dispatching events to running
processes. An event handler, in most cases, will run until completion, however, these handlers can
use internal mechanisms to allow preemption. In Contiki there are two types of events: asynchronous
and synchronous. Synchronous events resemble a call of a function. They are dispatched immediately,
being delivered directly to the target process. In turn, assynchronous events are held on an event queue
and dispatched later. The kernel will loop through this queue and will deliver the event to the target
process or processes. Process execution as well as being triggered by events, can also be triggered by
polling mechanisms. The Contiki’s polling mechanisms can be seen as special type of events that are
scheduled between each asynchronous event. If a poll is scheduled, all processes that implement a poll
handler are called, according to their priority [41]. These mechanism is used to invoke a process from
an interrupt context. Figure 3.2 shows an overview of the Contiki OS architecture.

Figure 3.2: Contiki architecture overview. Adapted from [46].

Programming Model: Contiki has a hybrid kernel, hence follows the event-driven model, but at
the same time supports multi-threading. In Contiki multi-threading is supported using a library that
runs on top of the event-driven kernel. Whenever an application needs multi-threading, this library
can be linked. This library has two essential parts: one part is responsible for interaction with the
kernel - platform independent part - and the other part is responsible for implementing mechanisms of
stack switching and preemption - platform specific part [41]. Contiki uses protothreads to implement
the multithreading library [47]. The Contiki protothreads were specially tailored for application in

32

resource-constrained devices. They allow to wait for any incoming events without blocking the whole
system. They don’t require a separate stack for each thread, thus the overhead and the large memory
consumption introduced when allocating multiple stacks is avoided. In sum, protothreads have the
following benefits:

• Very lightweight;

• A very small overhead of only two bytes per protothread;

• No need for a separate stack;

• Highly portable, since they are written in C.

Scheduling: As mentioned earlier, Contiki comprises an event scheduler, that dispatchs the events
to the respective processes. Usually they run to completion, but can be preempted by interrupts [41].

Resource Management: The memory management in Contiki is performed in dynamic form,
which allows also the dynamic linking of programs [41]. Contiki comprises several modules for
allocate/deallocate memory. The most important one is the Managed Memory Allocator as it avoids
memory fragmentation problems [48].

Communication Protocol Support: Contiki was the first operating system that opened up the
possibility of using wireless sensor nodes along with IP communications. This was achieved through
the uIP, a TCP/IP protocol stack. In 2008, this OS incorporated the uIPv6, the world’s smallest IPv6
stack [41]. In terms of memory size, the footprints of these two stacks are very small. The uIP stack
consumes less than 5kB and the uIPv6 stack approximately 11kB. This makes them ideal for use in
constrained environments. Besides uIP and uIPv6 stacks, Contiki also provides another protocol stack
for network-based communication, called Rime. Rime protocol offers single hop unicast, single hop
broadcast, and multi-hop communication support [41]. Contiki also has an implementation of the RPL
protocol already introduced in Section 2, called ContikiRPL [49].

3.3.3 lite os
LiteOS [50] is a Unix-based OS also tailored for WSNs applications. It was developed at the

University of Illinois. LiteOS has a very small memory footprint, which makes possible its operation in
sensors with only 8 MHz of CPU frequency, 128 bytes of program flash, and 4 kB of RAM.

Architecture: This OS has a modular architecture and is divided into three subsystems [41]:

• LiteShell - LiteShell is very similar to the well-known Unix shell. It also allows file and
process management using shell commands. As this shell resides on a PC it is possible the
implementation of more complex commands, since it has more available resources. Some of the
processing is done in this local PC, like the parse of the user commands by the shell, and then
it is transmitted over the air to the target node;

• LiteFS - It is the LiteOS file system. In this OS, a WSN can be seen as a directory, which has
within a file with a list of all neighboring sensor nodes;

• Kernel - Offers multi-threading support and dynamic loading of components. It also provides
registration of event handlers through callback functions and synchronization mechanisms.

33

In Figure 3.3 the LiteOS architecture is presented.

Figure 3.3: LiteOS architecture. Adapted from [41].

Programming Model: As previously stated, LiteOS supports multi-threading. In order to avoid
potential errors that could occur when using shared memory space, each LiteOS thread has its own
memory space. Besides support for multi-threading, LiteOS also offers event handling mechanisms [41].

Scheduling: Regarding scheduling policies, LiteOS implements round robin and priority-based
algorithms. When a task is ready to be executed is added to the ready queue. Among all the tasks
listed in this queue, the scheduler using a priority-based scheduling, will choose the next one to execute.
Tasks only run to completion if all resources needed are available in the moment. Otherwise, it will
enable the interrupts and enter in sleep mode. The task will resume its execution from where it had
left, as soon as the required resources become available. As happens with other OSs mentioned above,
it is possible that a high-priority task may have to wait behind a low priority one. This happens if
the high-priority task enters the ready queue when the low priority one is running. In this case the
low-priority task will run to completion, while the high-priority may miss its deadline. Therefore, the
LiteOS should not be used for real-time applications [41].

Resource Management: In terms of memory management, LiteOS implements dynamic memory
allocation functions (C-like malloc and free functions). The applications can use these functions to
allocate or de-allocate memory at run-time. The dynamic memory will grow in the opposite direction
of the LiteOS stack [41].

Communication Protocol Support: This OS provides support for communication through
files. For each device on the sensor node LiteOS will create a file. For example, the radio interface will
have a specific file. Each time data needs to be sent over the radio interface, the data is placed in this
file, and only then transmitted [50].

34

3.3.4 nano-rk
Nano-RK [51] is a preemptive multitasking OS, that can used for hard and soft real-time applications.

It has a very small memory footprint: consumes 2 Kb of RAM and 18 Kb of ROM.

Architecture: Nano-RK has a monolithic architecture [51]. The main applications of this OS
are critical applications in which tasks must necessarily meet its deadlines. In order to be able to
achieve this, the priority of each task, the deadlines and periods must be defined statically offline. In
this way it is possible to ensure before execution if the deadlines are being met or not. It also has
APIs providing dynamic configuration at runtime of the different task parameters - priority, period,
deadline. However, the use of these APIs is not recommended since it is not possible to know a-priori
if the deadlines will be met [41].

Programming Model: Nano-RK is a preemptive multitasking OS. The scheduler before selecting
a task to be executed need to safeguard the current status of the running task. And as discussed
earlier, these context switches may lead to a memory consumption and energy increase, as well as a
perfomance decrease. In this OS each task has a corresponding Thread Control Block (TCB). The
TCB stores different information, such as [41]:

• Register contents;

• Task priority;

• Task period;

• Reservation sizes;

• Port identifiers.

Based on the task period, this OS has two linked lists of TCB pointers, so it can be able to order
the set of active and suspended tasks. In order to maintain the correct state of shared data/resources,
Nano-RK also offers synchronization primitives: mutexes and semaphores.

Scheduling: Since Nano-RK uses a preemptive priority driven scheduling algorithm OS, the CPU
is always allocated to the highest priority task. In this case, if a low priority taks is running when
a higher one dispares, the low priority one will be preempted and the CPU will be allocated to the
highest priority one. For real-time periodic tasks, Nano-RK uses a rate monotonic scheduling algorithm.
It also implements a rate harmonized scheduling algorithm for energy saving [52]. This algorithm
attempts to group the execution of different tasks, so the CPU idle cycles can be eliminated [41].

Resource Management: Regarding memory management, Nano-RK uses a static approach. In
Nano-RK, both the OS and applications reside in a single address space [41].

Communication Protocol Support: Regarding communication, Nano-RK has a protocol stack
that provides an abstraction very similar to sockets. Whenever an application needs to send data,
to initiate the communication it must create a socket. An application can also bind and listen to a
particular port number to receive data [41].

35

3.3.5 mantis
The MultimodAl system for NeTworks of In-situ wireless Sensors (MANTIS) is a multithreaded,

lighweight and energy efficient operating system specially designed for WSNs [53]. The memory
footprint, including kernel, scheduler and network stack, is only 500 bytes.

Architecture: As shown in Figure 3.4, the MANTIS owns an architecture organized in layers.
Each of these layers is responsible for providing a range of services. In Figure 3.4 the services
implemented in each layer are presented.

Figure 3.4: MANTIS architecture. Adapted from [41].

The only responsibility of the MANTIS kernel is dealing with the timer interrupts. All remaining
interrupts are directly forwarded to the corresponding device driver. This device driver will post a
semaphore, whenever it receives an interrupt. The semaphore, in its turn, will activate a waiting
thread, that is responsible for handling the interrupt [41].

Programming Model: The MANTIS programming model is thread-based. MANTIS has a
part of the RAM that works as a heap. When a thread is created, stack space is allocated from this
heap. This stack space is freed when the thread exits. The MANTIS kernel is responsible to manage
the thread table, which contains one entry for each thread. Since the MANTIS statically allocates
memory for this table, there can only be a fixed maximum of threads. By default it is 12, although
this maximum can be adjusted at compilation. The thread table contains different data, such as [41]:

• Current stack pointer;

• Stack boundary information;

• Pointer to thread function;

• Thread priority;

• Pointer to next thread.

36

This OS uses semaphores and binary mutexes, in order to avoid race conditions.

Scheduling: MANTIS makes use of priority-based scheduling algorithms, also allowing preemption.
In this OS there are several priority classes: Kernel, Sleep, High, Normal and Idle. Within each of
these classes round-robin scheduling algorithms are used. The CPU will always execute the highest
priority thread in the ready queue. To each thread is assigned one time slice to run of 10ms. After
that the CPU will preempt the running thread and will execute another thread for more 10ms. This
context switch is done using timers. A system call or a semaphore post can also be able to trigger a
context switch. If there are no threads ready to execute, the system will enter sleep mode in order
to save energy. As already stated, the scheduler uses round robin scheduling, which may mean that
higher priority tasks can cause the lower priority tasks to be ignored. This OS may also be able to
accomodate real-time tasks, but it still needs to support a real-time scheduler, like the Rate Monotonic
or the Earliest Deadline First [41].

Resource Management: In terms of memory management, MANTIS uses a dynamic approach.
However, its use is not recommended since it could introduce a significant overhead [41].

Communication Protocol Support: This OS has the network stack divided in two main parts:

• Layer 3 (and above) protocols - implemented in user space, so it offers flexibility. However,
the performance is reduced, since the network stack has to use the APIs provided by MANTIS
instead of communicating directly with the hardware. This will lead to many context switches,
introducing computational and memory overheads;

• COMM layer - implements synchronization, MAC an PHY layer mechanisms, also providing a
clear interface to communicate with device drivers.

3.4 evaluation of the operating systems
After looking at the available operating systems for WSNs in the literature and taking into account

the main issues and requirements of our application, as presented in section 3.1, we compare and
evaluate the supported features in Figure 3.5.

Figure 3.5: Operating Systems Summary.

37

After analysing the documented features the OSs that have recently attracted more attention are
TinyOS and Contiki OS. Since the main goal of this thesis is to implement a Wireless Mesh Network
using IPv6, the only OS that encompasses a certified IPv6 stack is the Contiki OS. In fact, the Contiki
operating system is the one that aroused more interest in the industry field and is Europe’s leading
operating system for sensor networks. The Contiki’s IPv6 stack was contributed by Cisco and was, at
the time of its release, the smallest IPv6 stack to receive the IPv6 Ready certification. Contiki also has
a full implementation of IPv6 with TCP, UDP, RPL and ICMP. It supports IPv6 over IEEE 802.15.4
by providing a 6LoWPAN adaptation layer, a variety of duty cycled MAC layers and radio drivers for
a variety of sensor motes and hardware platforms.

As stated before, Contiki also incorporates energy saving features, a lightweight multi-threading
library (the protothreads), a straight forward programming style in C and a rich API library. One of
these APIs measures the time spent running the various sensor node components (energy profiling
library). This library eases the development of low power applications, since it gives accurate insights
about where the energy is spent when an aplication is running. In addition to all the benefits highlighted
above, also provides efficient mechanisms of energy management and has a very small memory footprint.
Therefore, Contiki is the perfect operating system to implement the street lighting mesh network
desired. In the next chapter all the features and functionalities offered by this OS will be presented
and discussed.

38

chapter 4
The Contiki Operating
System

4.1 brief introduction
Nowadays, of all the microprocessors that are sold, only 2% are used in PCs, while the remaining

98% are used in embedded systems [54]. Unlike PC computers that have plenty of resources, the
embedded devices are very resource-constrained (memory, processing power, etc). Moore’s Law predicts
that in the future these devices will become increasingly smaller and cheaper. This means that it will
be possible to deploy sensor networks in large areas with competitive prices. However, it does not
imply that the resources will be less constrained [45]. So, the chosen operating system, the Contiki,
must perform an efficient management of the available resources.

The operating system detailed in this Chapter is tailored to be used in embedded systems based
on the MSP430, AVR, ARM, x86 and other architectures. This OS aims for maximum portability and,
therefore, it is written in C. It is a feature-rich operating system. However, only some of its features
are described and actually used on our implementation.

Contiki is developed by a group of talented engineers from industry and academia, lead by
Adam Dunkels from the Swedish Institute of Computer Science [48]. The actual development can
be followed in an online repository that can be accessed through the Contiki homepage at http:
//www.contiki-os.org/.

4.2 main features
The Contiki OS comprises several features that are used on hundreds of embedded devices in

diverse industry applications: car engines, oil boring equipments, satellites, container security systems,

39

http://www.contiki-os.org/
http://www.contiki-os.org/

among others [54]. It is also used in academic research projects and in university project courses all
over the world. In this section we highlight the more interesting features and, also, those that were
crucial to the development of this thesis, namely:

• Protothreads - Lightweight stackless threads in C [45]. Protothreads are discussed in more
detail in Section 4.4;

• uIP stack - TCP/IP communication stack, that allows Contiki to communicate over both
IPv4 and IPv6 [48]. Before Contiki’s uIP stack, the embedded world considered IP to be too
heavyweight. The IP implementations used in general computers could not fit in the constrained
memories of the embedded devices [7]. The uIP stack is explained in more detail in Section 4.10;

• Rime stack - Layered communication stack that uses much thinner layers than traditional
architectures [55]. Provides a set of communication primitives such as: single-hop unicast,
single-hop broadcast and multi-hop [48], [55]. The Rime stack is presented with more detail in
Section 4.10;

• Coffee File system (CFS) - Small and easy to use filesystem. The CFS is explained in Section
4.7;

• Contiki Toolkit (CTK) - A graphical user interface;

• Executable Linkable Format (ELF) Loader - Loads object files into a running Contiki system.
This loader will be introduced in more detail in Section 4.8.

4.3 kernel and processes
The Contiki is an event-driven kernel, but also supports preemptive multi-threading. The multi-

threading feature is achieved through a library that could be linked with programs that require
multi-threading [45]. The kernel doesn’t contain any platform specific code. It implements only CPU
multiplexing and lets the device drivers and the applications communicate directly with the sensor
node hardware [45]. Each application in Contiki is implemented and run as a process. To implement
a process in Contiki, protothreads are used. Both the kernel and applications use the protothreads
extensively, in order to achieve cooperative multitasking. Every Contiki process is composed by:

• Process control block (PCB) - has run-time information about the process, such as: a textual
name of the process, a pointer to the process thread and the information about the process state.
The PCB is not defined directly, but through the PROCESS() macro [56]. The process control
block is shown in Listing 1. Each field of the process control block is described in Table 4.1;

• Process thread - contains the code of the process and is implemented as a single protothread,
that is invoked from the Contiki process scheduler [56]. An example process thread is shown in
Listing 2.

40

struct proce s s {
struct proce s s ∗ next ;
const char ∗name ;
int (∗ thread) (struct pt ∗ , process_event_t , process_data_t) ;
struct pt pt ;
unsigned char s ta te , n e e d s p o l l ;

} ;

Listing 1: Process control block in Contiki OS. Taken from [56].

PROCESS_THREAD(hel lo_world_process , ev , data)
{

PROCESS_BEGIN() ;

p r i n t f ("Hello ,␣world\n") ;

PROCESS_END() ;
}

Listing 2: Process thread example in Contiki OS. Taken from [56].

Field Description

next Points to the next PCB in the linked list of active processes
name Points to the textual name of the process
thread Points to the process thread
pt Holds the state of the protothread in the process thread
state Internal flag that keep the state of the process
needspoll Set by the process_poll() function when the process is polled

Table 4.1: Process control block fields description.

In Contiki, the code can run in either two execution contexts:

• Cooperative - Code never preempts other code. The processes always run in this execution
context [56];

• Preemptive - Can preempt the execution of cooperative code. Only interrupt service routines
and real-time timers run in this execution context [56].

The code running in both execution contexts is presented in Figure 4.1.

41

Figure 4.1: Contiki execution contexts. Adapted from [56].

4.3.1 events
The communication between processes in Contiki is achieved by posting events [45]. There are two

types of events in this OS: synchronous and asynchronous events.

Synchronous events: This type of events is directly delivered to the target process, and can
only be posted to a specific process [56]. Since they are delivered immediately, posting this type of
events is similar to a function call: the process to which the event is delivered is directly invoked, and
the process that has posted the event is blocked until the receiving process has finished processing the
event [56].

Figure 4.2: Synchronous event.

Asynchronous events: Unlike synchronous events, the asynchronous events are not directly
delivered to the receiving process, but only some time after they have been posted. Before the event
has been delivered, this type of events are held on an event queue inside the kernel, as can be seen in
Figure 4.3. The kernel will loop through this event queue and then will deliver the event. The receiver
of an asynchronous event can be a specific process or all running processes. If the event receiver is a
specific process: the kernel will deliver the event by invoking this process. But if the event receiver is
set to be all the running processes: the kernel sequentially delivers the same event to all the processes
[56].

42

The asynchronous events are posted through the process_post() function. This function will check
first if there is space for more events in the queue, by checking the current event queue size. If there is
space, it will insert the event at the end of the event queue. If not, the function will return an error
[56].

Figure 4.3: Asynchronous event.

4.3.2 process polling
The process poll requests are special type of events. A process can be polled by calling the

process_poll() function. When this function is called on a specific process, this process will be
scheduled as soon as possible. Process polling is useful to make a process run from an interrupt handler.
The process_poll() is the only function that is safe to call from the preemptive execution context [56].

4.3.3 the process scheduler
The process scheduler is responsible for invoking processes when it’s their time to execute. This is

done by calling the function that implements the process thread. The scheduler will invoke processes
either in response to an event that has been posted to a process, or a poll that has been requested
for the process. When invoking a process in response to an event that has been posted, the scheduler
passes the event identifier to the invoked process and also will pass an opaque pointer, that may be set
to NULL to indicate that no data is to be passed. On the other hand, when a poll is requested for a
process, no data can be passed [56].

The Contiki scheduler will make sure that the processes that have the field needspoll active, will
have higher priority, and in the case that there are more than one process with this field active, these
processes will be dispatched sequentially. By observing the variable poll_requested, the scheduler will
know about the existence of processes that have the field needspoll active. If this variable is active, the
scheduler will run the do_poll command to schedule the process that needs to be polled. Otherwise, if
the variable poll_requested is NULL, there are no processes to be polled, so the scheduler will schedule
the next event in the asynchronous event list [56]. In Figure 4.4 an general overview of the Contiki
scheduler operation is presented.

43

Starting Processes: Start a process in Contiki is done through the process_start() function.
This function is responsible for setting up the process control structure, place the process on the list of
active processes and, also, call the initialization code in the process thread [56].

Autostarting Processes: In Contiki it is also possible to start the processes automatically when
the system is booted, or when a specific module is loaded. This is done through the autostart module.
When a specific module is loaded into Contiki, the autostart module will be responsible to inform the
system about all the active processes the module contains [56].

Exiting and Killing Processes: Contiki processes can exit in one of two ways: either the process
itself exits or it is killed by another process. A process can exit itself by calling the PROCESS_EXIT()
function or when its execution reaches a PROCESS_END() statement. A process can kill another
process through the process_exit() function. Whenever a process exits, the kernel will inform all
the running processes of the process exiting (sends an event), so the other processes can free up any
resource allocations made by this process. Then, the process will be removed from the list of active
processes [56].

Figure 4.4: Process scheduling and process polling in Contiki. Adapted from [57].

4.4 protothreads
The Contiki protothreads allow to wait for any incoming events without blocking the whole system.

This solution is achieved using a C switch statement and a variable containing the position where the
function was blocked [58]. The function will continue from this position when it is later invoked and
will run until blocking or exiting.

44

The greatest benefit of protothreads over ordinary threads is, since it doesn’t require a separate
stack, the overhead and the large memory consumption introduced when allocating multiple stacks is
avoided [58]. Each protothread only needs a few bytes for storing the execution state.

The protothreads API has four main operations [54] [58]:

• PT_INIT() - Initializes the protothread;

• PT_BEGIN() - Begins the protothread execution;

• PT_WAIT_UNTIL() - Conditional blocks the protothread;

• PT_YIELD() - Unconditional blocks the protothread;

• PT_END() - Exits the protothread.

Since the protothreads are implemented in C, the library can be used everywhere, where the C
toolchain is available. However there are some constraints associated [56] [58]:

• Since they are stackless, a protothread can only run within a single C function;

• They don’t offer a way to store local variables. We need to prepend them with the static
keyword. Using this keyword these variables will be stored into the data segment;

• Since they are implemented using a C switch statement that cannot be nested, the protothreads
can not use switch statements.

4.4.1 protothreads in processes
Each one of the Contiki’s processes implements its own version of protothreads. However, the

statements used in processes are slightly different than the pure protothread statements presented in
the section 4.4. Process-specific protothread macros that are used in Contiki processes are shown in
Table 4.2.

Macro Description

PROCESS_BEGIN() Declares the beginning of a process’ protothread
PROCESS_END() Declares the end of a process’ protothread
PROCESS_EXIT() Exit the process
PROCESS_WAIT_EVENT() Wait for any event.
PROCESS_WAIT_EVENT_UNTIL() Wait for an event, but with a condition
PROCESS_YIELD() Wait for any event, equivalent to PROCESS_WAIT_EVENT()
PROCESS_WAIT_UNTIL() Wait for a given condition. May not yield the process
PROCESS_PAUSE() Temporarily yield the process

Table 4.2: Process-specific protothread macros. Adapted from [56].

4.5 preemptive multi-threading
As already stated before, Contiki is an event-driven OS, but also supports preemptive threads.

The preemptive threads are implemented through the mt library [45]. This library offers an alternative
method for concurrent programming in Contiki. The mt threads have private stack segments and

45

program counters that are stored when a context switch happens. Unlike protothreads, the mt library
allows preemptive scheduling with the possibility to yield from nested functions in a thread [59]. A mt
thread can have three different states throughout its lifetime [59]:

1. MT_STATE_READY - Once a thread is first started by applying mt_start() on it, the mt
library sets its state to MT_STATE_READY. This state specifies that the thread is ready to
execute. The thread can be executed by calling the mt_exec() function. When the thread is
yielded by calling the mt_yield() function, the ready state is reseted;

2. MT_STATE_RUNNING - is the state of a thread that is currently being executed;

3. MT_STATE_EXITED - is the final state of a thread, specifying that it can not be executed
anymore.

The Figure 4.5 shows the state chart of threads.

Figure 4.5: State chart of threads. Adapted from [59].

4.6 memory allocation
Contiki provides three ways to allocate and deallocate memory [48]:

1. The memb memory block allocator - the allocator most frequently used;

2. The standard C library malloc heap memory allocator - the use of this allocator is discouraged.
The reasons for it are going to be discussed further on this section;

3. The mmem managed memory allocator - almost not used.

In the rest of this section these three memory allocators are going to be present in more detail.

46

The memb Memory Block Allocator: In this allocator the memory blocks are allocated as
an array of objects of constant size and are placed in static memory [60]. The memb offers a set of
memory block management functions that are presented and explained in Table 4.3.

Function Description

MEMB(name, structure, num) Declares a memory block
void memb_init(struct memb *m) Initializes a memory block
void *memb_alloc(struct memb *m) Allocates a memory block
int memb_free(struct memb *m, void *ptr) Frees a memory block
int memb_inmemb(struct memb *m, void *ptr) Checks if an address is in a memory block

Table 4.3: The memb API functions.

Using the MEMB() macro a memory block is declared. This block is tipically placed at the top of
the C source file that uses the memory blocks. The arguments that should be passed into this function
are [60]:

• name - identifies the memory block;

• structure - specifies the C type of the memory block;

• num - represent the amount of objects that the block accomodates.

Once the memory block is declared, it must be initialized through the memb_init() function.
The argument that should be passed into this function, the pointer to a struct memb, identifies the
memory location of the block [60]. After initialization, we can now use the memb_alloc() function
to start allocating objects. This function returns a pointer to the allocated object if the operation
was successful. If there are no available space to allocate the object, this function will return a NULL
pointer. It is also possible to deallocate objects previously allocated by using the memb_free() function
[60].

The malloc Heap Memory Allocator: The malloc allocator offers a set of functions to allocate
and deallocate memory in the heap memory space [60]. These functions are presented and explained
in Table 4.4.

Function Description

void *malloc(size_t size) Allocates uninitialized memory
void *calloc(size_t number, size_t size) Allocates zero-initialized memory
void *realloc(void *ptr, size_t size) Changes the size of an allocated object
void free(void *ptr) Frees the memory

Table 4.4: The malloc API functions.

It is important to mention that most of the target Contiki platforms specify a small area of memory
for the heap. The static memory allocations have a better performance in this type of constrained
platforms, since dynamic allocations often incur in memory fragmentation. Allocation and deallocation
of objects with different sizes may be problematic in these malloc implementations [60].

The mmem Managed Memory Allocator: This allocator provides a dynamic memory man-
agement quite similar to malloc. But it also offers a level of indirection in order to enable automatic
deframentation of the managed memory area [60]. In Table 4.5 the set of functions provided by this
allocator are presented.

47

Function Description

MMEM_PTR(m) Provides a pointer to managed memory
void mmem_init(void) Initializes the managed memory library
int mmem_alloc(struct mmem *m, unsigned int size) Allocates managed memory
void mmem_free(struct mmem *) Frees managed memory

Table 4.5: The memm API functions.

Every managed memory block is represented by an object of type struct mmem, as shown in Figure
4.6. The mmem library organizes the struct mmem objects in a list named mmemlist. In the struct
mmem object, the ptr variable refers to the size of the allocated chunk in the contiguous memory pool
reserved for the mmem library and the size variable indicates the amount of bytes that the memory
block can store [60].

Figure 4.6: The managed memory allocator. Adapted from [60].

4.7 file systems
The Contiki file system (CFS) defines an abstract API for reading/writing files and also for

extrating directory contents. Contiki offers a set of file systems implementations that can be used with
different kinds of storage in resource constrained devices. These file systems implement a subset of the
CFS API, and two of them provide full functionality, namely [61]:

• CFS-POSIX - used in platforms running in native mode. This file system directly calls the
POSIX file API that is provided by the host OS;

• Coffee - tailored to run in embedded platforms with flash memories or EEPROM.

Coffee was specially designed to make the file structure simple. For this purpose it makes use of
extensions to the CFS API, in order to reduce the RAM memory usage. Coffee extends the CFS API
with three functions [61]:

• cfs_coffee_format() - creates the initial empty file system;

• cfs_coffee_reserve() - reserves space for a file;

48

• cfs_coffee_configure_log() - configures a microlog file.

The microlog file structure is used to accomodate file modifications. This invisible file is a log
structure and contains all the most recently written data. Whe this micro log eventually fills up, Coffee
will merge the content of the original file and the micro log into a new file [61]. The main advantages
associated to this file system are: requires very little metadata in RAM, and allows optimization on a
per-file basis.

4.8 the dynamic loader
In order to support reprogramming and code swapping, Contiki provides dynamic linking and

loading of modules. It is possible to load/unload a module, using one of two programming interfaces
[62]:

• The executable Linkable Format (ELF) Loader - the dynamic loader will link and relocate ELF
objects files into the Contiki system image. An ELF file consists of: a section for binary code
(.text), a section for statically allocated data with pre-assigned values (.data), and a section for
zero-initialized data (.bss);

• The native executable format of the host system when running a native platform - programs
compiled in this format can be loaded by using the dlloader_load() function. This function is
part of a module that can load software within systems, the dlloader. This module uses the
dynamic linker provided by the host operating system.

4.9 libraries

4.9.1 timers
The Contiki implements a set of timer libraries, which are responsible for: checking if a time period

has passed, waking up the system from sleep mode at scheduled times, and scheduling real-time tasks
[63]. Contiki has one clock module and a set of timer modules [48]:

• timer and stimer - are the simplest form of timers and are used to check if a time period has
passed. They are used in low level drivers, since they can be safely called from interrupts.
Regarding time resolution, the timer module uses system clock ticks and the stimer module
uses seconds to allow longer periods;

• etimer - this module provides event timers. It is used in Contiki processes to wait for a time
period while the rest of the system runs;

• ctimer - this module provides callback timers. It is used to schedule calls to callback functions
after a time period. The ctimer is very useful in code that does not have a explicit process, like
some protocol implementations. Therefore is used through the Rime stack implementation, to
handle communication timeouts;

• rtimer - provides scheduling of real-time tasks. This timer module can preempt any running
process, so that the real-time tasks can be executed within the scheduled time.

49

The Contiki clock module handles the system time, but also allows to block the CPU for short
time periods. The timer libraries presented before are implemented with the functionality of the clock
module as base [63].

4.9.2 leds api
LEDs are a simple but important tool to communicate with users or to debug purposes. The LEDs

API functions are shown and explained in Table 4.6 [64].

Function Description

void leds_init(void) Initializes the LEDs driver
unsigned char leds_get(void) Gets the status of a LED
void leds_on(unsigned char ledv) Turns on a set of LEDs
void leds_off(unsigned char ledv) Turns off a set of LEDs
void leds_toggle(unsigned char ledv) Toggles a set of LEDs
void leds_invert(unsigned char ledv) Toggles a set of LEDs

Table 4.6: The LEDs API functions.

4.9.3 the serial i/o api
In Contiki, the serial output is supported with the standard C library API for printing. On the

other hand, the serial input relies on a Contiki specific mechanism [64].

Printing: The printing function - printf() - is supported with the linking of the standard C library
provided by the compiler. After formatting the output string, printf() will simply call the putchar()
function. The putchar() has an implementation part that depends on the specific hardware. This part
must direct one byte at a time to the serial port [64].

Receiving: Contiki has an interface for serial line communication, available in core/dev/serial-
line.h [48]. This interface has several functions [64]:

• serial_line_init() - initializes the process and ring buffer used;

• serial_line_input_byte() - when a character is ready to be read from the serial port, an interrupt
is generated. The interrupt handler will then call this function, that will buffer data, until a
line break is received;

• serial_line_process() - when a line break is received the serial_line_input_byte will poll the
serial_line_process();

• serial_line_event_message() - The serial_line_process() is responsible for broadcasting a
serial_line_event_message() to all processes in the system.

50

4.10 communication
Since communication is a crucial concept in WSNs, Contiki implements communication as a

service in order to enable run-time replacement. Therefore, it is possible in this OS to load multiple
communication stacks at the same time [45]. The communication stack itself may be split into
different services, as can be seen in Figure 4.7. This makes possible to replace individual parts of the
communication stack at run-time.

Figure 4.7: Contiki’s communication model. Adapted from [45].

The Contiki’s communication services use services mechanisms to communicate with each other
and sychronous events to communicate with application services. They also use a single buffer for all
communication processing. Hence, not needing data copying.

Basically when the radio receives a new data packet, the respective device driver will read this
packet into the communication buffer. After that, it will call the upper layer associated service using
the service mechanisms. After processing the packet headers the communication stack will post a
synchronous event to the target application program. The application program will read the contents
of the packet and, if necessary, will put a reply in the buffer before the communication stack takes
control again. The communication stack, in turn, will add the respective header to the outgoing packet
and will return the control to the device driver for the packet to be transmitted [45].

Contiki contains two communication stacks: uIP and Rime [48]. uIP is a small RFC-compliant
TCP/IP stack that makes it possible for Contiki to communicate over the Internet. Rime is a lightweight
communication stack designed for low-power radios. These two communication stacks are introduced
with more detail in the next subsections.

4.10.1 uip communication stack
The uIP is a TCP/IP stack implemented in Contiki to support communication over the Internet.

This stack was specially tailored to be used in resource constrained devices. Before uIP, the IP protocol

51

was seen as too heavyweight to be used in this constrained devices. The existing implementations of
the IP protocol for general computers would need hundreds of kilobytes of memory, however a typical
constrained device offers only a few kilobytes of memory [7]. Several non-IP stacks that could fit into
this constrained memory were developed.

However, it was only in the early 2000’s that this view was changed by the emergence of lightweight
implementations of the IP protocol for smart objects, such as the uIP stack. With uIP stack it
was possible to fit the IP protocol in constrained devices, without the need to remove essential IP
mechanisms. Since its inital release, the uIP stack has become widely used in WSN applications [7]
[54]. The uIP stack has the main following features [48]:

• It can only handle a single network interface;

• It implements the IP, ICMP, UDP and TCP protocols;

• It uses an event-based API in order to reduce code size and memory requirements;

• It uses a single global buffer for holding the packets and it has a fixed table for holding the
connection state. This global buffer is large enough to contain one packet of maximum size;

• It is RFC compliant, but also IPv6 Ready Phase 1 certified;

• It is written in C language and it is fully integrated with the Contiki OS.

As stated, whenever a packet arrives, the device driver will place it in the buffer and the uIP stack
will be responsible to call the target application service. Since the data in the buffer will be overwritten
if a new data packet arrives, the application has to act immediately on the data by processing the
packet or copying the data to its own buffer for later processing [48]. If a packet arrives when the
application is processing the last incoming packet, the new packet must be queued by the network
device or by the device driver. This means that uIP relies on the hardware when it comes to buffering.

Measurements show that the uIP stack provides very low throughput, particularly when communi-
cating with a PC host [65]. However, the target constrained devices usually don’t produce enough
data to make the performance degradation a relevant problem [65].

4.10.2 rime communication stack
Besides the uIP communication stack, Contiki also supports the Rime communication stack that

provides a set of lightweight communication primitives [48] [66]:

• Single-hop primitives;

• Multi-hop primitives - these primitives do not specify how packets are routed in the network.
Instead, the upper layer protocol is invoked at every node to determine the next-hop neighbor
of the packet. This offers the possibility to run arbitrary routing protocols using these multi-
hop primitives. So, if a protocol or application running on top of the Rime stack needs a
communication primitive that is not currently implemented, the application or protocol can
implement it directly on top of the stack.

52

4.11 global overview
In this chapter all essencial aspects of Contiki’s operation were presented and discussed. For a

proper understanding, the Figure 4.8 shows a general overview of Contiki’s operation, regarding crucial
mechanisms like event scheduling and process management.

Figure 4.8: Contiki’s operation overview. Adapted from [57].

In this Figure it’s represented one of the most important functions of Contiki: the main() function.
This function is responsible for most of the system initializations. Among other responsabilities, it
initializes the process management API, by calling the autostart_start function. All the processes listed
in the autostart_processes will be initialized by calling that function. After the initialization phase the
system enters in infinite loop. In this loop, the function process_run() is called periodically. If the
function process_run() returns a value greater than "0", there are pending events in the asynchronous
event queue or processes in need of poll. In that case, the scheduler will invoke the corresponding
process, either in response to an event that has been posted to the process, or a poll that has been
requested for the process. The Figure also presents the main functions of the process management
API already introduced before.

53

chapter 5
Implementation
5.1 introduction

Figure 5.1: The 4LD platform as led controller.

Figure 5.1 presents one street lamp, powered by solar panels and controlled by the 4LD platform.
The main components of the 4LD board are also depicted. In section 5.2 the 4LD platform is introduced
with more detail.

The main goal of this implementation is establish a Wireless Mesh Network encompassing 4LD
nodes that can be reached from the Internet. For this purpose we use the IPv6 support embedded in
Contiki OS. After implementing the IPv6 Mesh Network, the goal is to send useful information over
IP using application protocols like CoAP and OMA LWM2M.

As discussed, at least one gateway node that will translate and forward packets from one network
to the other is required. In our experiments we used the Giore platform to implement the gateway
node. In Section 5.2 the Giore platform is introduced with more detail.

55

5.2 hardware
Two different hardware platforms were available for the experiments conducted for this thesis. One

is the Giore platform, which was used to implement the gateway node. The other is the 4LD platform,
which was used as part of the wireless sensor network.

5.2.1 the giore platform

Figure 5.2: The Giore Board.

The hardware used to implement the gateway node is a module developed by Globaltronic S.A..
The module is equipped with a PIC32MX795F512L microprocessor, a TC1047AVNBTR temperature
sensor and an external antenna. The radio interface for the 868 MHz ISM frequency is the RFM69HCW
transceiver from Hope Electronics. This device offers the unique advantage of programmable narrow
and wide-band communication modes and is also optimized for low power consumption while offering
a high RF output power and channelized operation. This transceiver power consumptions are: 0.1
uA in Sleep Mode, 1.2 uA in Idle or Standby Modes, 16 mA in Rx Mode and 130 mA in Tx Mode,
assuming a maximum output power of 20 dBm.

The PIC32MX microprocessor has 524KB of ROM, and includes 12KB of Boot Flash and 128KB
of RAM. The PIC32 is a 32 bit microcontroller with a maximum operating frequency of 80 MHz. The
MCU also includes a UART interface, which can be used to communicate over a serial link. Besides
UART, it also has a SPI interface, which is strictly necessary to communicate with the RF transceiver.
A picture of the platform can be seen in Figure 5.2.

A Microchip ICD3 development tool is used for programming this platform. In the experiments
reported on this thesis the node was powered using the USB interface, but it can also be powered using
an external power supply. The Giore platform also encompasses expansion slots for all the unused
ports of the microcontroller. This allows attaching new modules and devices to the platform, offering
new features. The platform features three LEDs, one green, one orange and one red, which mostly
serve as visual flags for debug purposes.

The Giore platform is connected through SLIP (Serial Line over IP) to a computer running
InstantContiki virtual machine. The computer has an Intel Core i3 processor and 4GB of RAM, with

56

only 1GB available for the virtual machine. This is more than enough for our purposes, and it should
not force any restrictions on our solution. We will discuss the gateway implementation in more detail
in Section 5.5.

5.2.2 the 4ld platform

Figure 5.3: The 4LD Board.

The 4LD platform, as mentioned before, was also developed by Globaltronic S.A. and is used to
control street and industrial lighting systems. A picture of the platform can be seen in Figure 5.3. The
board is equipped with a PIC24FJ128GA308 microprocessor, a TC1047AVNBTR temperature sensor,
a ST Microelectronics LIS2DHTR accelerometer and, also, the Hope Electronics RFM69HCW RF
transceiver. One of the most important features of this board is the 4 channels available to drive LED
lights in current mode.

The PIC24 is a 16 bit microcontroller with a maximum operating frequency of 32 MHz. It
encompasses 128KB of ROM and only 8KB of RAM. The MCU includes the UART and SPI interfaces
as well.

The Microchip ICD3 is also used as the core programming tool. The 4LD was powered using an
external power supply. The platform also features one red LED, which mostly serves as a visual flag
for debug purposes. This LED will be used to test the implementation using CoAP as application
protocol.

5.3 porting the hardware to contiki os
WSNs are highly application dependent and there are lots of available platforms. Each platform

has its own set of sensors and may have different processors or radio transceivers. Since a WSN might

57

be composed of different hardware platforms which ideally have to run the same OS, it is clear to see
why portability has become a crucial requirement for WSN operating systems.

Contiki’s approach to the portability issue is limiting the abstraction provided by the system to
just the basic: CPU multiplexing, event handling and support for loading programs and services. All
the remaining abstractions are provided by the libraries that have nearly full access to the underlying
hardware.

In our case we have two different platforms and the two have to run the Contiki OS. Thus, the
first part of this thesis work was porting these two platforms to Contiki. Since Contiki doesn’t offer
support for the RFM69H transceiver, the second part was the development of the RF transceiver
device driver. In the next subsections all the work needed to port the Giore and the 4LD platform,
and also the development of the RF device driver, will be described.

In theory, porting Contiki to a platform requires only several modifications depending on the
underlying hardware. However, in practice, it might be difficult to debug low-level hardware issues.

5.3.1 a general port
Before presenting the specific details of the Giore and 4LD ports, it is important to discuss first

the essential steps for porting a new platform to Contiki. In Figure 5.4 we can see the Contiki’s OS
directory structure. There are basically two relevant directories when porting a new platform: the
platform and cpu directories.

Figure 5.4: Contiki’s directory structure.

The first thing to do is to create a subdirectory in the platform directory. In some ports it may be
easier to copy and modify the files from /platform/native, which contains the simplest Contiki port. In
other ports it might be more useful to use ports from platforms that are similar to the platform to be
ported, whenever available. For example in the case of the Giore board the /platform/seedeye directory
was used, since it contained the port to the SEED-EYE Board (which is similar to the Giore because
it uses the same CPU - PIC32MX). The SEED-EYE port, which includes the PIC32 port to Contiki,
was developed by the Networks of Embedded Systems Group of the Scuola Superiore Sant’Anna [67].
The CPU specific code is found in /cpu/cpuname, which in this case is the /cpu/pic32 directory.

58

In order to integrate the new platform into Contiki some important files need to be created in the
/platform/platformname directory, such as:

• contikiconf.h - contains all platform specific configurations, such as: C types, compiler options,
clock configurations, uIP configurations, pin configurations, etc;

• Makefile.platformname - contains platform specific options required to compile the platform. It
usually defines the files containing low-level code, the type of processor used and the path to
its source. Basically, this makefile usually specifies which files are to be compiled and includes
Makefile.include, which includes all the other options needed;

• contiki-platformname-main.c - initializes the harware and then schedules and runs the defined
processes.

Besides the files in the /platform/platformname directory, for every new type of CPU we must
create a new subdirectory in the cpu directory. Inside this subdirectory some files need to be created,
such as clock.c, which contains the clock driver functions: clock-init(), clock-delay() and clock-time().
It also contains a makefile to take care of the cross-compiler rules and specifies the path where to look
for source files. In our case, the Giore platform uses the PIC32MX microprocessor and the Contiki
OS already had this port implemented in the cpu directory. However, it was necessary to make some
modifications to the initial port for proper integration. We will describe these modifications with more
detail later in this section. In the case of the 4LD platform that uses the PIC24FJ microprocessor,
it was necessary to write all the CPU port, because Contiki didn’t offer support for the PIC24. The
PIC24 port will also be described later in this section.

After creating all the previous files and directories, the next step to worry about is communication.
We must ensure that the proper interface between uIP and low-level hardware code exists. In other
words, we need to write the device driver for the platform’s transceiver. The radio device driver specific
code will be located in the directory /platform/platformname/dev/radioname. In our specific case,
it was necessary to write all the low level functions to interact with the RFM69H transceiver and to
adapt the device driver to both platforms used in this thesis. Later in this section all work required to
develop this device driver is described.

After all this is done, we should be able to successfully upload the Contiki OS into the new platform.
In practice, beyond what was mentioned earlier, it may be necessary to add other features to the
port, such as sensor support, for example. The code for the general sensor implementation is found in
/core/lib/sensors.c. The low-level code for controlling sensors should be located in a different directory:
the /platform/platformname/dev directory (usually).

5.3.2 porting the giore platform
Porting to the Giore platform implied making some changes to the SEED-EYE port. However, no

low-level code changes had to be done. Basically, the work done was towards system integration, in
particular fixing makefiles and performing modifications to several files in order to provide higher level
functionalities.

As stated, the Microchip PIC32 was, at the time this project started, already supported by Contiki
OS. However, it was necessary to make some modifications in the SPI libraries because, due to some
revisions, SPI register names were not up-to-date.

59

The resulting Giore port is complete and incorporates all the functionalities of a Contiki system.
The code for the port can be found in /platform/giore and in /cpu/pic32 directories. If we look into
/platform/giore, we will find the platform part of the port. Below is the explanation of the main files
we will find therein.

Figure 5.5: Giore Port main files.

The main() function for the specific platform is defined in the contiki-giore-main.c file. It is in
this function that the initialization of the drivers, processes and libraries necessary to the proper
functioning of Contiki is realized.

The main() function calls the pic32_init() function, defined in the file pic32.c in the directory
/cpu/pic32, to set the mode operation of the quartz oscillator, which generates the clock signal used by
the microcontroller timers with an oscillation frequency of 80 MHz. Then it also calls the clock_init()
function, defined in the file clock.c, which will set Timer 1 to generate an interrupt at each 0.9766
ms. This period will be the lowest operating system unit of time in the platform. For each interrupt
generated, Timer 1 will increase the variable count to keep the number of ticks that have elapsed since
the operating system startup.

The function main() is also responsible to make the initialization of the LED API, so Contiki
can be able to manage the platform LEDs. It also initializes the serial port and the process libraries.
In order to unify the process of initialization of wireless communications a file called init-net.c was
created on the Giore platform in the platform directory. This file defines the necessary steps to startup
the radio transceiver driver, as well as defining the platform MAC and IPv6 addresses, after TCP/IP
library startup.

After that, it also starts the process for the different OS timers (etimer, ctimer and rtimer), as well
as the processes listed in the autostart_processes, calling the function autostart_start. After executing
this initialization, the system progresses to an infinite loop and calls the function process_run()
periodically. If the function process_run() returns zero, there are no pending events or processes in
need of polling.

60

In order to generate a binary executable, the Microchip XC32 Compiler needs to be installed.
Once this compiler is installed, we can use: make TARGET=giore to compile the application needed
and it will generate one hex file with extension .giore. This hex file can be loaded into the platform
using an ICD3 tool and the MPLAB IDE.

5.3.3 porting the 4ld platform
Since at the time this project started there were no ports for the 4LD microprocessor in the

community, the first phase of this port consisted in porting the Contiki OS to the Microchip PIC24
(PIC24FJ128GA308) MCU. The work developed is also relevant to other research groups, since Contiki
will now support an additional processor.

This PIC24 port focused on the:

1. Analysis of the hardware capabilities offered by the Microchip PIC24;

2. Implementation of the timer routines required by Contiki using the existing hardware timers;

3. Implementation of a radio driver for the RFM69H transceiver. This part was important not
only for this port, but was also necessary in the Giore Port. Therefore, this will be explained in
more detail later in this section;

4. Development of some low-level drivers for peripherals like UART (e.g., for debugging purposes)
and SPI (e.g., used by the radio transceiver communication with the MCU);

5. Development of other drivers such as the ones for LEDs and ADC.

The code for the 4LD port can be found in /platform/leddriver and in /cpu/pic24. If we look into
/cpu/pic24, we will find the PIC24 port developed in this thesis. The description of the main files
found there is presented in Figure 5.6.

The clock module, represented in Figure 5.6, has a crucial role to ensure the correct execution of
the operating system, as it is responsible for the measurement of system time and defines a macro
CLOCK_SECOND, which corresponds to one second in system ticks. A second on this platform
corresponds to 64 system ticks, i.e., an elapsed second corresponds to 64 interrupts generated by
microcontroller Timer 1. In the case of the 4LD platform the smallest unit of time is approximately
15.6 ms .

In the file clock.c we can find the following functions: clock_init() , clock_delay() , clock_time(),
clock_seconds() and clock_delay_usec(). The clock_init() function is responsible for initializing the
clock library, and must be called in the main() function. It will set the frequency of the microcontroller
Timer 1, defining the minimum time resolution for the operating system.

The function clock_time() is responsible for reading and returning the global time value in system
ticks when invoked. The clock_seconds() has the same features of clock_time(), only returning the
system time in seconds. The operating system time values are stored in the global variable count for
the system ticks and the variable seconds for the system seconds. The functions clock_delay() and
clock_delay_usec() are responsible for providing the functionality to create delays in the system time.

At every 15.6 ms an interrupt is generated by the microcontroller and is handled by an interrupt
service routine defined in the file clock.c. This ISR is responsible for increasing the overall system
variable number of system ticks, check for timers etimer whose time has expired and each 64 ticks it
will increase the global variable seconds.

61

Figure 5.6: PIC24 port main files.

If we look into /platform/leddriver, we will find the platform part of the port. Below is the
explanation of the main files we will find therein.

Figure 5.7: 4LD Platform port main files.

In the file contiki-leddriver-main.c is implemented the main() function for the 4LD platform. In
the this port, the function main() calls the pic24_init() function (defined in the file pic24.c) to set the
mode operation of the quartz oscillator, which generates the clock signal used by the microcontroller
timers (oscillation frequency of 32 MHz).

62

The function main() is also responsible to make the initialization of the LED API, so the Contiki
can manage the platform LEDs. It also initializes the serial port, the process libraries and the process
for the different OS Timers, as well as the processes listed in the autostart_processes. After executing
this initialization, the system enters an infinite loop and calls the function process_run() periodically.
If the function process_run() returns zero, there are no pending events or processes in need of poll.

In order to build an executable binary for the 4LD platform, the Microchip XC16 Compiler needs to
be installed. Once this is concluded, we can use: make TARGET=leddriver to compile the application
needed and it will generate one hex file with extension .leddriver. This hex file can then be loaded into
the platform using an ICD3 tool and the MPLAB IDE.

5.3.4 rfm69h device driver
After porting the two platforms into Contiki and having implemented the SPI low level functions,

the next part of this work is to develop the RFM69H device driver for Contiki. First it’s important
to know the structure of a device driver for a radio in Contiki. After taking a look at [68], the radio
device driver functions that we need to implement are:

/* Prepare the radio with a packet to be sent */
int (∗ prepare) (const void ∗ payload , unsigned short payload_len)

/* Send the packet that has previously been prepared */
int (∗ t ransmit) (unsigned short transmit_len)

/* Prepare & transmit a packet */
int (∗ send) (const void ∗ payload , unsigned short payload_len)

/* Read a received packet into a buffer */
int (∗ read) (void ∗buf , unsigned short buf_len)

/* Perform a Clear -Channel Assessment (CCA) to find out if there is a packet
in the air or not */

int (∗ channe l_c lear) (void)

/* Check if the radio driver is currently receiving a packet */
int (∗ rece iv ing_packet) (void)

/* Check if the radio driver has just received a packet */
int (∗ pending_packet) (void)

/* Turn the radio on */
int (∗ on) (void)

/* Turn the radio off */
int (∗ o f f) (void)

Listing 3: Radio Driver struct reference.

63

The file rfm69.c located at /platform/platformname/dev/rfm69 is the main file of the RFM69H
radio driver developed and there we can find the implementation of the low level functions mentioned
before. In Figure 5.8 a scheme explaining the developed device driver operation is presented. The
RFM69H_ISR() is the interrupt service routine. This interrupt routine acts whenever the radio FIFO
has some bytes that need to be read. When this happens the rfm69h_process is polled to read the
packet received.

Figure 5.8: Radio device driver overview.

The RFM69H transceiver initialization is also an important part of this device driver. The RFM69H
was configured with the following parameters:

1. Operation frequency of 868 MHz;

2. FSK Modulation;

3. Preamble of 5 bytes;

4. Sync word of 3 bytes.

An illustration of a RFM69 packet is shown below. The Preamble and Sync Word are added by
the packet handler during the transmission process and removed during reception. The length byte is
the first byte of the FIFO and indicates the length of the payload.

Figure 5.9: RFM69H packet fields.

64

It is important to mention that, in the beginning, this device driver was implemented in such a
way that the maximum packet that could be received/transmitted was 66 bytes, due to the RFM69H
FIFO size. Later, it was necessary to receive/transmit packets with more than 66 bytes. The solution
was to use on-the-fly FIFO readings and writes. Because of that it was necessary to rewrite the device
driver functions.

5.4 the network stack
In Chapter 4 we described the main features and protocols available in the Contiki OS. Now these

protocols are combined to implement our network stack. The Contiki stack is slighty different than the
usual 5-layer model typically adopted in TCP/IP. Between the Physical and the Network layers, where
usually is located the MAC, we have 3 different layers: Framer, Radio Duty-Cycle (RDC) and Media
Access Control (MAC). The figure below shows the organization of these layers in the Contiki OS.

Figure 5.10: Contiki OS network stack.

Now we define which protocols will be used in each of the network stack layers. In Chapter 2 we
already introduced in detail these protocols.

5.4.1 physical, framer, rdc and mac layers
These layers can be defined through the global variables NETSTACK_RADIO, NET-

STACK_FRAMER, NETSTACK_RDC and NETSTACK_MAC specified in the file contiki-conf.h.

65

Physical Layer: This layer orresponds to the RFM69H device driver presented in Section 5.2.

Framer Layer: This layer is responsible for creating frames with the data to be transmitted and
for parsing the received data. The framer implementations in Contiki can be found in /core/net/mac
directory. There are two types of framer layers: framer-802154.c and framer-nullmac.c. In our
experiments we used the framer-802154.c. This framer type creates and parses frames compatible
with the standard IEEE 802.15.4 [18]. The framer functions, located in the framer-802154.c file, are
responsible for reading the data from the receive/transmit buffer, and insert/extract the same data
into the packetbuf structure.

RDC Layer: This layer is responsible to determine the sleep period of the nodes. Basically, it
decides when the packets must be transmitted and ensures that the node is awake when there are packets
to be received from other neighbors. The RDC implementations are located in the /core/net/mac
directory. There are several RDC protocols implemented in Contiki, such as: contikimac.c, xmac.c,
lpp.c, nullrdc-noframer.c, nullrdc.c and sicslowmac.c. In our experiments we decide to use the nullrdc
module to ensure that the transceiver remains always on. This module uses the functions from the
framer layer for header creation and parsing. Despite what happens with the remaining RDC protocols,
the nullrdc does not save energy and only acts as a pass-through layer. Other RDC implementations
in Contiki, such as ContikiMAC, provides an efficient management of the energy spent. Due to the
preliminary nature of this implementation we opted for not using such modules, thus simplifying the
performance evaluation of our network.

MAC Layer: This layer takes care of addressing and retransmission of lost packets. The MAC
implementations are located in the /core/net/mac directory. There are two types of MAC protocols
implemented in Contiki: csma.c and nullmac.c. In our case we opted to use the nullmac module. This
MAC layer is a simple pass-through protocol that simply calls the appropriate RDC function.

5.4.2 network layer
At the network layer we adopted the 6LoWPAN protocol, to take advantage of the IPv6 protocol

implemented by the Contiki’s uIPv6 stack [48]. The network layer is configured with UDP and ICMPv6
protocols, and the routing protocol was the routing protocol for low-power and lossy IPv6 networks
(RPL).

The 6LoWPAN implementation in Contiki corresponds to an adaptation layer called SICSlowPAN.
Whenever a Contiki device receives an IPv6 packet, the MAC layer will call the SICSlowPAN to adapt
the packets to be used by the IPv6 layer (being implemented by the uIPv6 stack) and when uIPv6
needs to send an IPv6 packet it also calls SICSlowPAN to adapt it for the IEEE 802.15.4 standard
frames.

Since the Contiki implementation of 6LoWPAN does not provide mesh-under or route-over mech-
anisms [69], the routing is provided by the RPL implementation called ContikiRPL. ContikiRPL
forwards the packets to the uIPv6 stack, providing routing tables based on the different objective
functions selected [70].

66

5.4.3 application layer
In this work two different experiments using 4LD boards (as sensor nodes) and the Giore platform

(as border router) are analysed and discussed. The first experiment employs the Erbium (Er) REST
Engine and a CoAP implementation at the application layer. Erbium (Er) is a low-power REST
engine developed for Contiki. It includes an embedded CoAP implementation and supports blockwise
transfers and an observation mechanism.

In the second experiment we also use CoAP, but with the OMA LWM2M protocol, OMA LWM2M
standard objects and IPSO objects in top of the CoAP implementation. LWM2M utilizes the CoAP as
an underlying transfer protocol across UDP. The CoAP defines the message header, request/response
codes, message options, and retransmission mechanisms. The LWM2M protocol only uses the set of
features provided by CoAP. These two application protocols, the LWM2M and CoAP, were already
introduced in Chapter 2.

To summarise, in the first experimental setup the network stack will follow the architecture shown
in Figure 5.11.

Figure 5.11: Network Stack used in the first experiment.

In the second experimental setup we added more layers on the top of the CoAP protocol, as can
be seen in Figure 5.12.

67

Figure 5.12: Network Stack used in the second experiment.

5.5 gateway
In order to be able to access the WSN over the Internet using the IPv6 protocol it is necessary

that one of the nodes in the network ensures the interconnection of the WSN network and the IPv6
network. As can be seen in Figure 5.13, the implemented gateway consists of two parts: the Border
Router and the Base Station.

Figure 5.13: Overview of the gateway implemented in this thesis.

68

Border Router: The border router should be a device that has a high level of processing power
and resources, in contrast to the WSN nodes. Therefore, we have choosen the Giore platform to
implement the border router, which is responsible for converting between IPv6 and 6LoWPAN. IPv6
is used in almost every communication link, but the final step from the border router to the sensor
nodes use 6LoWPAN. The conversion is handled by Contiki. The border router is connected to the
base station via a USB-dongle that provides a serial interface. Through a SLIP tunnel, the serial
interface becomes the connection between the two parts of the gateway. The SLIP tunnel is a part of
Contiki OS and it is used to encapsulate IP packets and send them over a serial link. The application
connects to a serial port and creates a virtual network interface, which can be used by the base station
as any other network interface.

Base Station: The base station is a personal computer that runs Instant Contiki, a Linux based
operating system. Through the tool tunslip6 available in the Contiki’s directory tools, we can create a
"tun" network interface on the base station with the address aaaa::1 on the LAN.

Using these two parts together, the IPv6 packets can be routed between the WSN network and
the Internet. Thus, the packets received over the SLIP tunnel will be forwarded and sent wirelessly to
the 4LD nodes. The opposite direction is also possible: data received on the wireless interface will be
forwarded and sent over the SLIP tunnel to the base station. Further ahead on this section we will
explain with more detail the process required to create the "tun" interface.

5.5.1 the giore as border router
The Giore platform is programmed using the border-router solution available in the

/examples/ipv6/rpl-border-router directory. This solution is composed by 3 main files:

1. border-router.c

2. slip-bridge.c (It contains the callback function for processing a SLIP connection request)

3. httpd-simple.c (A simple Web server)

As previously aborded when presenting the RPL routing protocol, the 4LD nodes will form a DAG
with the border router set as the root node. The border router will receive the prefix through the SLIP
connection and will communicate it to the rest of the nodes in the RPL network.

Listing 4 presents a code snippet from the file border-router.c. In this piece of code the border
router waits for the prefix to be set. Once it receives the prefix, the border router is set as the root of
the DAG.

/* Request prefix until it has been received */
while (! p r e f i x _ s e t) {

et imer_set (&et , CLOCK_SECOND) ;
r eque s t_pre f i x () ;
PROCESS_WAIT_EVENT_UNTIL(et imer_expired(&et)) ;

}

69

aaaa::1

dag = rpl_set_root (RPL_DEFAULT_INSTANCE, (uip_ip6addr_t ∗) dag_id) ;
if (dag != NULL) {

rp l_se t_pre f i x (dag , &p r e f i x , 64) ;
PRINTF("created␣a␣new␣RPL␣dag\n") ;

}

Listing 4: Code snippet from border-router.c.

By default, the border router hosts a simple Web page. However, this can be disabled through the
macro WEBSERVER. The webpage is displayed when the IPv6 address of the border router is entered
in the browser.

For test purposes, to check if our border router is working as desired, we programmed two 4LD
nodes with the code udp-server.c available in the /examples/ipv6/rpl-udp directory. At the end of this
section we will show the results of pinging these nodes to test the connection between the WSN nodes
and our base station.

5.5.2 the slip tunnel
As mentioned earlier, in order to connect the WSN network and the base station, we need to

create a SLIP tunnel, using the tunslip utility provided in Contiki. To create the SLIP tunnel, it
is required to compile the tunslip6 code, using the command: make tunslip6. Second, we make the
connection between the WSN network and our base station, through the command: sudo ./tunslip6
-s /dev/ttyUSB0 aaaa::1/64. If this command is executed with sucess, the following output will be
printed on the terminal:

Figure 5.14: Terminal print after creating the SLIP tunnel.

70

5.5.3 functional tests
We can verify that the address of the border router has been set by using the ping command.

Figure 5.15: Border router ping test.

We can also ping one of the other nodes in the network. In Figure 5.16 we are pinging the two
4LD nodes.

Figure 5.16: 4LD Nodes ping test.

We can enter the address of the border router in the Web browser. The border router hosts a page
that will be displayed on the browser as shown in Figure 5.17. In this webpage we have access to the
routing table of the border router:

71

Figure 5.17: Neighbors and routes defined in the border router.

5.6 sensor node
As mentioned above, we implemented two experimental setups using sensor nodes based on 4LD

boards and the Giore board as border router. For the first experiment we employed the Erbium
(Er) REST Engine and CoAP. In this experiment we based our implementation in the example code
er-example-server.c available in the examples directory of Contiki OS. This code is a RESTful server
example showing how to use the REST layer to develop server-side applications. In the client-side
application we used the Copper Plugin for Firefox. Copper is a Firefox extension allowing direct access
to CoAP resources from a Web browser.

In the second experiment we also used CoAP, but with the OMA LWM2M protocol, OMA LWM2M
objects and IPSO objects in top of the CoAP implementation. In this experiment we based our work
in the Wakaama project source code. After making several modifications, we adapted the Wakaama
code to run as an application in Contiki OS. Using this application, we developed an example of
a client-side implementation that was used to program the 4LD nodes. In the server-side we used
Leshan to interact with the LWM2M clients. Leshan is an LWM2M server implementation in Java.
Basically, the LWM2M server manipulates resources on LWM2M clients using commands like Read,
Write, Execute, Create or Delete. The LWM2M client may have any number of resources, each of
which belongs to an object. In addition to the LWM2M standard objects we also implemented some
IPSO objects, like the IPSO Temperature and IPSO Light Control.

These experiments are described in detail in the next subsections.

5.6.1 experimental setup using erbium-coap and copper
An overview of the setup implemented using the Erbium REST Engine, CoAP implementation

and the Copper Plugin can be seen in the following figure:

72

Figure 5.18: Overview of the experimental setup using Erbium-CoAP and Copper
Plugin.

the 4ld nodes as coap servers
In this work, we have used Erbium-CoAP implementation that is provided by Contiki. The REST

engine defined in this OS includes framework for developing both CoAP server and CoAP client
applications.

CoAP resources are easily defined using predefined macros. For each resource, we simply have to
define its name, path, interface description, resource type and the actual code to provide the data. For
periodic resources, we also have to provide the period and for actuator resources, we have to provide
the callback function performing the action. For example, the following code will instanciate a periodic
resource, returning the temperature value with a period of 10 seconds and also an actuator resource
that turns one light on/off:

/* Temperature sensor - periodic resource definition */
PERIODIC_RESOURCE(res_temperature , //Resource name

"title=\"Temperature␣sensor\";obs" , //Resource attributes
res_get_handler , //Get handler
NULL, //Put handler
NULL, //Post handler
NULL, //Delete handler
10 ∗ CLOCK_SECOND, //Resource period
res_per iod ic_handler) ; //Periodic handler

/* Light on/off - actuator resource definition */
RESOURCE(res_l ight_contro l , //Resource name

"title=\"Light␣Control\";rt=\"Control\"" , //Resource attributes
res_get_handler , //Get handler
res_post_put_handler , //Put handler
res_post_put_handler , //Post handler
NULL) ; //Delete handler

Listing 5: Resource definitions.

73

All the resources are statically defined and the respective functions are registered when the REST
engine (in the CoAP server) starts. Each resource has to implement a handler function with the name
[resource_name]_handler. For example, when the CoAP client sends a GET request to the CoAP
server for the URI /temperature, the temperature_handler function will be called by the REST engine.
The handler implements actions for reading the temperature sensor and returning the temperature
value. The CoAP response message is formatted according to the client requested format, which can
be plain text, XML or JavaScript Object Notation (JSON).

A typical RESTful Web service application consists of one main C-file, the er-example-server.c
available in the directory /examples/setup-er-rest. It contains one Contiki process that initializes the
REST Engine and activates the resources, as can be seen in Listing 6. In the subdirectory resources
the resource’s files are available. The resource macros together with their handler functions are defined
for each resource in these files.

#if PLATFORM_HAS_LEDS
re s t_act iva t e_re source (&res_togg le , "actuators/led_toggle") ;

#endif

#if PLATFORM_HAS_LIGHT_CONTROL
res t_act iva t e_re source (& res_l ight_contro l , "actuators/light_on") ;
r e s t_act iva t e_re source (&res_light_dimmer , "actuators/light_dim") ;

#endif

#if PLATFORM_HAS_TEMPERATURE_SENSOR
res t_act iva t e_re source (&res_temperature , "sensors/temperature") ;

#endif

r e s t_act iva t e_re source (&res_device_info , "device/info") ;
r e s t_act iva t e_re source (&res_device_uptime , "device/uptime") ;

Listing 6: Resource activations.

In terms of resource discovery, the CoRE Link Format is generated automatically for all resources.
Our handler for the /.well-known/core URI respects chunk-wise processing and generates the required
substrings without exceed the size of the buffer provided by the REST Engine. The application
developed in this thesis implements seven different resources, as can be seen in Figure 5.19.

Figure 5.19: CoAP resources implemented in the 4LD Server.

74

copper plugin as coap client
The Copper (Cu) CoAP user-agent for Firefox browser installs a handler for the CoAP URI scheme

and allows users to interact with Internet of Things devices. It includes several features, such as:

• URI handling for the CoAP scheme (address bar and links);

• Interactions using the GET, POST, PUT, and DELETE requests;

• Resource discovery;

• Blockwise transfers;

• Observing resources.

To use Copper we only need to enter in the browser address bar: coap://
[ipv6addressofthecoapserver]:udp_port. After opening the location of the CoAP server a
click on "Discover" button will retrieve the available resources from /.well-known/core. At a resource
location (e.g., coap://[aaaa::203:53c3:7d78:8eb4]:5683/actuator/light_dim) we only need to
use the buttons GET, POST, PUT, DELETE to perform the desired action. The response will then
be displayed in the browser.

functional tests
After entering the addresses coap://[aaaa::203:53c3:7d78:8eb4] and coap://[aaaa::204:

1966:fb7f:2f90] in the browser address bar, and after clicking in the "Discover" button, we obtain
the resources available in each server. 4LD nodes will respond with a CoAP message with the following
payload:

Figure 5.20: Server response to the GET action on the resource /.well-know/core.

After receive this message, the following outputs will be displayed in Copper:

75

coap://[ipv6 address of the coap server]:udp_port
coap://[ipv6 address of the coap server]:udp_port
coap://[aaaa::203:53c3:7d78:8eb4]:5683/actuator/light_dim
coap://[aaaa::203:53c3:7d78:8eb4]
coap://[aaaa::204:1966:fb7f:2f90]
coap://[aaaa::204:1966:fb7f:2f90]

Figure 5.21: Copper output from 4LD Node 3.

Figure 5.22: Copper output from 4LD Node 4. Since the 4LD LED channels are not
mounted in this platform, the light_on and light_dim resources are not implemented.

After, we only need to use the buttons GET, POST and PUT to perform actions. An overview of
the available actions in each resource are documented in Figure 5.23.

76

Figure 5.23: Available actions in each resource.

Hence, for example, to request the temperature we should go to the resource location /sensor/tem-
perature and perform a GET action. Using Wireshark to capture the packets in the SLIP tunnel,
Copper will send the following message to the CoAP Server requesting the temperature value:

Figure 5.24: GET message to request the sensor temperature value.

The CoAP server will reply with the ACK message documented in Figure 5.25, in this case the
temperature is 26 degrees Celsius:

77

Figure 5.25: ACK message from the 4LD CoAP server with the temperature value.

In the next chapter, a more in-depth evaluation of this experiment will be conducted, regarding
topics such as memory usage, round trip time and packet loss.

5.6.2 experimental setup using oma lwm2m and leshan server
An overview of the setup implemented using the OMA LWM2M protocol, IPSO objects and the

Leshan server can be seen in the following figure:

Figure 5.26: Experimental setup using OMA LWM2M overview.

78

the 4ld nodes as lwm2m clients
As mentioned, the LWM2M client implementation was based on the Wakaama project. The

Wakaama project covers the LWM2M protocol, CoAP, and DTLS layers of the LWM2M protocol stack
for three components: LWM2M client, LWM2M server and LWM2M bootstrap server. Wakaama is not
a library but a set of files that must be built together with an application. It is written in the C language
and designed to be portable on POSIX compliant systems. Two compilation switches are available:
LWM2M_CLIENT_MODE and LWM2M_SERVER_MODE. Defining LWM2M_CLIENT_MODE
enables the LWM2M client interfaces. Defining LWM2M_SERVER_MODE enables the LWM2M
server interfaces.

In our case, we ported the Wakaama files to run as an application on top of Contiki OS and we
implemented an OMA LWM2M client application to program the 4LD nodes. In the /apps/lwm2m
directory the main files ported from Wakaama project are listed, as can be seen in the following figure:

Figure 5.27: LWM2M implementation files.

It is worth mentioning that this LWM2M implementation uses dynamic memory allocation. Due
to this feature, it was necessary to reserve memory space for the heap. Since 70% of the RAM was
needed to store data memory from the program, we only have reserved 1024 bytes for the heap,
because we need at least 2kB for the stack. This use of dynamic memory sometimes can cause memory
fragmentation and can lead to unexpected crashes. So, this ported implementation is more a proof
of concept than a perfect solution. Furthermore, in the Future Work Section we present some lines
for further development which includes the rewriting of the LWM2M implementation to use static
memory instead of dynamic, avoiding the memory fragmentation problem.

In the directory /examples/LWM2M-Tests/client all the files necessary to implement the OMA
LWM2M Client are listed:

79

Figure 5.28: LWM2M Client side implementation files.

The main implementation file is the lwm2mclient.c. This file is responsible for creating the LWM2M
objects and it also initializes the lwm2m library. Before it initializes the lwm2m library, it will wait 1
minute, so the platform can be able to configure all RPL routes. This lwm2mclient opens the UDP
port 5683 and tries to register to a LWM2M server. In this case, it will make the registration in the
Leshan server. The registration phase is explained in more detail furthermore on this Section.

The following files object_access_control.c, object_connectivity_moni.c, object_connectivity_stat.c,
object_device.c, object_firmware.c, object_location.c, object_security.c and object_server.c are respon-
sible to implement the OMA LWM2M standard objects for device managemente purposes, already
presented in Chapter 2. The files IPSO_Light_Control.c and IPSO_Light_Control.h are responsible to
implement the light control object from IPSO specification. This object is used to control a light source,
as already mentioned before. The files IPSO_Temperature_Object.c and IPSO_Temperature_Object.h
are also responsible to implement another IPSO object, but in this case the IPSO temperature object.
These IPSO objects were already introduced in Chapter 2.

Due to memory constraints in the 4LD platform, it is not possible to implement all the objects
mentioned above. The Makefile makes it possible to choose which objects are going to be available in
LWM2M client. In both 4LD Nodes only the mandatory objects from OMA LWM2M standard are
defined: LWM2M Security, LWM2M Server and Device.

leshan as lwm2m server
Leshan is an OMA LWM2M implementation in Java. The Leshan project provides a complete

infrastructure for building IoT solutions, such as: a device management server library, a device
management client library and a device management server with a Web user interface. In this specific
case we will only use the device managemente server with a Web user interface to test our LWM2M
clients.

To use this device managament server we should run the following command: java -jar ./leshan-
standalone.jar. Afterwards, to use the server user interface it is only necessary to enter in the browser
address bar: http://localhost:8080. Leshan provides a very simple user interface to list the
connected clients and interact with the clients resources.

80

http://localhost:8080

functional tests
The first thing that the LWM2M Client should do is to register in the Leshan Server. For that it

will send the following message:

Figure 5.29: Message sent from the 4LD LWM2M Client (Node 4) to make the
registration in the Leshan Server.

This message contains the name of the client, which in this case is "LED DRIVER - NODE 4". It
also contains the Objects IDs defined in the client. The Leshan server will reply with the following
message:

Figure 5.30: Acknowledge sent from Leshan to the 4LD Client (Node 4) with the
Registration ID.

This is an acknowledgement message with the registration ID. The LWM2M Client should then
send a registration message with the Registration ID each 300s, otherwise the Leshan Server will
deregister the client. This message is shown in Figure 5.31.

81

Figure 5.31: Registration message sent from the 4LD LWM2M Client (Node 4) to the
Leshan Server. The "j5DH4jpBKF" is the registration ID.

It is important to mention that the server timeout in the LWM2M Server object defined in both
clients can be modified to another desired value. After the registration, the Web interface shows the
list of connected clients:

Figure 5.32: List of the connected clients in the Leshan Server.

In the Leshan user interface we should click in the name of the client desired to interact with the
LWM2M objects and respective resources. For example, by clicking in the "LED DRIVER - NODE 3",
the following window will open with all the objects defined in this client:

82

Figure 5.33: List of objects defined in the 4LD Node 3.

To interact with the resources of each object we only need to click in the name of the object desired.
For example, by clicking in the "IPSO Light Control" we can see all resources defined in this object:

Figure 5.34: List of resources defined in the IPSO Light Control object.

If we read the On/Off resource it is possible to check if the light is on or off. If we write "1" to
this resource, the light will be turned on. Otherwise if we write "0" it will be turned off. By reading
the Dimmer resource it is possible to obtain the actual PWM duty cycle applied to the light. We can
modify this duty cycle by writing values from "0" to "100" on this resource. The On Time resource
retrieves the time (in seconds) that the light has been on. We can reset this counter, writing "0" on
this resource.

Besides the "IPSO Light Control", if we click in the "IPSO Temperature" it is shown:

83

Figure 5.35: List of resources defined in the IPSO Temperature object.

The resources defined in this object and their functionality were already introduced in Chapter
2. Besides these two IPSO objects, we can interact with two additional objects in each client: the
LWM2M Server and the Device objects. These LWM2M standard objects are shown in Figures 5.36
and 5.37.

Figure 5.36: List of resources defined in the LWM2M Server object.

Figure 5.37: List of resources defined in the Device object.

For each resource it is possible to require a notification message each time the resource value
changes - CoAP observation feature. This feature can be enabled in the "Observe" button in the

84

respective resource. When we press the button to stop the observation, the server will send a RST
message (empty message) to the client.

5.7 development tools
As previously stated in the porting of Contiki OS to the supported hardware platforms and in

the two setup experiments, we used the MPLAB R© C compiler XC16 for the 4LD platform and the
MPLAB R© C compiler XC32 for the Giore platform. During the operating system implementation for
these new platforms we created four new Makefiles: Makefile.giore, Makefile.leddriver, Makefile.pic32
and Makefile.pic24, which were already explained in Section 5.3.

The build of the operating system and applications developed was conducted through a UNIX
terminal available in InstantContiki virtual machine. To compile one application for a specific platform
it is only required to use the following command: make TARGET=platformname. For the Giore
we need to use make TARGET=giore, and for the 4LD platform we use make TARGET=leddriver.
This command will generate one hex file with extension .platformname. This hex file can then be
programmed into the platform using the MPLAB IDE and MPLAB ICD3 tool.

Wireshark is a very popular network analyzer tool used during the entire process of development
and evaluation. It is perhaps one of the best open source packet analyzers tools that are available
nowadays. It allows the user to capture and browse running traffic on the network and it is widely used
in educational institutions and also in the industry. Recent implementations include IEEE 802.15.4,
6LoWPAN and CoAP packets dissectors. Other debugging software extensively used for network
debugging is ping6 and traceroute6.

5.8 difficulties during implementation
The implementation of several elements addressed in this thesis were not straightforward. In this

section the main problems that emerged during the development and the best ways to dealt with them
are discussed.

5.8.1 stack issues
The lack of sufficient stack space has caused a lot of trouble during the whole project development,

specially in the 4LD board. The reason is that this platform only has 8KB of RAM, and in both
implementations at least 70% of the memory was nedded to store program data, leaving only 2kB to
the stack. This limited stack space caused very frequent stack overflows, which resulted in crashes
and unexpected behaviour. However, to avoid these problems, stack usage optimisations can be made.
Using these optimisations it is possible to reduce the stack usage.

Basically if a function call is made, memory is allocated at the stack. Later, this memory is freed
when the function returns. This allocated memory depends on the memory position of the function
within the ROM, the number of arguments the functions has and the size of their data types, the

85

number of local variables in the functions and their sizes. Taking into account these factors, several
methods can be used to reduce the stack usage, such as:

1. Avoid the use of function calls - instead it is better to define the function as inline. Using this
method we avoid a function call, thus the stack usage is reduced. However, declaring a function
as inline can also increase the total RAM and ROM usage if not used with care. This method
should be used with precaution and preferably should only be applied for nested function calls.
The ROM footprint will eventually increase if an inline function is called from more than one
location in the code;

2. Use few function arguments - reducing the number of arguments passed to a function will save
some stack space, especially if the arguments have large data types. Whenever an argument is
passed along several nested function calls, it might be better to declare this variable as global,
instead of passing it to each new function call;

3. Use few local variables - it is possible to allocate the variables with automatic storage duration
(on the stack) or with static storage duration (in RAM). Therefore, if we declare local variables
as static, stack usage can be reduced. However, we cannot store all local variables into RAM, so
we have to define which ones to store in RAM, and which ones to store on the stack. Functions’
variables that are reentrant cannot be moved to RAM. In the other hand, variables that are
usend in frequent called functions and also large variables, should preferable be stored in RAM;

4. Do not use larger data types - this method is applicable for all parts of the code. Memory
resources can be efficiently used, if we don’t use larger data types than necessary.

Some of the optimisations and improvements must be used with caution, since they may reduce
stack usage but at the same time an increase of the remaining memory usage could happen. However,
after applying these methods, the code can become harder to understand and maintain.

86

chapter 6
Evaluation of the
implementation

In order to evaluate the performance of the two implementations and to analyze the capabilities of
the system, several tests have been performed. The tests can be classified into three groups: firstly we
have verified the memory cost of the two setups implemented, secondly we have analysed the network
performance in terms of round trip time and packet loss using the ping6 command and, finally, we
evaluated the response time for the different CoAP resources implemented on the 4LD nodes. This
last test was conducted in order to evaluate the implemented CoAP communication stack.

6.1 memory usage
The memory usage is a crucial aspect of the implementation, thus it should be analyzed. We want

to measure the memory cost of the Internet of Things applications. The results obtained in this section
can be used to compare with other implementations, but also to specify memory requirements when
designing a new product. There are mainly three different memory types that should be analyzed:
RAM, ROM and stack. The stack is actually a reserved part of RAM. In the rest of this section we
will refer to RAM as the area of RAM excluding the reserved stack area.

Figure 6.1 shows the Flash and RAM required by the firmware in the first experimental setup.
This setup was already presented in Chapter 5. An architecture overview of this setup can be seen in
Figure 5.18.

87

Figure 6.1: Firmware size comparison of the experimental setup using Erbium-CoAP
and Copper.

Figure 6.2 shows the Flash and RAM required by the firmware in the second experimental setup.
This setup was already presented in Chapter 5. An architecture overview of this setup can be seen in
Figure 5.26. It’s important to mention that, as said before, this application uses dynamic memory, so
we reserved 1024 bytes for the heap.

Figure 6.2: Firmware size comparison of the experimental setup using OMA LWM2M
and Leshan.

We have tried to break the memory usage down to as many components as possible. For example
we tried to understand the capabilities of the 4LD board in terms of memory and related CPU usage.
In particular, in order to get the two applications running on the 4LD nodes we had to reduce the
routing table for a maximum of 5 neigbors and 5 routes and we also had to reduce the maximum
packets that can be holded by the MAC layer. Otherwise, the applications developed would not fit in
the 4LD memory resources.

The results of the RAM and stack usage are very similar in both applications. In terms of ROM
usage we can see an increase in ROM usage of 30 006 bytes from the first to the second setup.

6.2 network: performance evaluation
The target application of the presented architecture is non-critical services. To evaluate if the

system is capable to deliver an adequate quality of service level, we analyzed the network response in
terms of Round Trip Time (RTT) and Packet Loss (PLOSS) metrics.

1. Round Trip Time: is the time it takes for a signal to be sent plus the time it takes for an
acknowledgment of that signal to be received. In the field of computer networks, the signal is
generally a data packet, and the RTT is also known as the ping time;

88

2. Packet Loss: occurs when one or more data packets traveling across a computer network fail to
reach their destination.

Using the experimental setups represented in Figures 5.18 and 5.26, we evaluated the RTT and
PLOSS between the Base Station and the 4LD Node making 1000 ping requests for each variation of
the IPv6 packet payload. For this purpose we used the ping6 command that uses the Internet Control
Message Protocol 6 (ICMPv6).

Figure 6.3: RTT and PLOSS evolution according to ICMP payload size for the experi-
mental setup using Erbium-CoAP and Copper.

89

Figure 6.4: RTT and PLOSS evolution according to ICMP payload size for the experi-
mental setup using OMA LWM2M and Leshan.

Figures 6.3 and 6.4 show an increasing packet loss starting from 55 bytes of ICMP payload in both
setups implemented, which corresponds to a packet with a total of 103 bytes, including the 48 bytes of
the IPv6 header. The maximum packet size for IEEE 802.15.4 is 127 bytes and IPv6 requires that the
underlying layers support packets of at least 1280 bytes. This means that the link layer fragmentation
support must exist. Taking into account that the IEEE 802.15.4 header has at least 25 bytes and the
IEEE 802.15.4 maximum packet size is 127 bytes, we only can send a maximum of 102 bytes of data in
one packet. So, if a packet payload has more than 102 bytes, the packet must be fragmented. Hence,
we can conclude that the packet loss increase after the 55 bytes of ICMP payload is caused by the IP
fragmentation mechanism.

Another characteristic that can be responsible for the packet loss increase is related to limited
capacity for buffering packets at physical and MAC layers, since the transceiver resources and main
memory can accomodate few packets at a time. In the case of the 4LD CoAP server the MAC layer
can hold only 3 packets.

90

If we look at the round trip time graphics, we can see that the RTT gradually increases as the
payload increases. This was expected since the payload data to process by the CoAP server is increasing.
We can also check some peaks in the maximum RTT, that we attributed to the fact that we are facing
a system triggered by timers. If, when sending the ICMP request, the platform is busy processing
other information, the response may take longer to be received. We can also see that there areas where
the RTT increases faster. This is due to the packet fragmentation. For example at 55 bytes of ICMP
payload, the packet is sent using two fragments, so it is clear that the processing will take more time.

Despite the packet loss issue, solved by the CoAP protocol through Blockwise Transfers pattern,
the graphics clearly demonstrate that the implemented 6LoWPAN networking stack is working and
that the experimental values of RTT and PLOSS are small enough to allow non-critical applications.

6.3 coap transactions: performance evaluation
This section presents some tests that have been made in order to evaluate the implemented CoAP

communication stack. The parameter that has been measured is the response time, which describes
how fast a CoAP transaction is completed for the different resources.

Figures 6.5 and 6.7 show a few results taken to evaluate the performance when retrieving different
resources on the CoAP server, for both setups implemented (5.18 and 5.26). The retrieval time is
measured on the base station to show the time taken to retrieve a given resource. Figures 6.6 and 6.8
shows the total number of packets needed to retrieve all the information from a specific resource and
the number of bytes transmitted (requests + acknowledges).

Figure 6.5: Response time of the CoAP resource requests for the experimental setup
using Erbium-CoAP and Copper. The response time shown is the average result of 100
samples.

91

Figure 6.6: Total number of bytes needed to retrieve all the information from each
resource. These results are for the experimental setup using Erbium-CoAP and Copper.

Figure 6.7: Response time of the CoAP resource requests for the experimental setup
using OMA LWM2M and Leshan. The response time shown is the average result of 100
samples.

Figure 6.8: Total number of bytes needed to retrieve all the information from each
resource. These results are for the experimental setup using OMA LWM2M and Leshan.

From these figures it is clear that GET /.well-known/core is the resource request that takes more
time. This was expected since it is the resource that has the highest number of bytes to be transmitted.
It is important to mention that for Figure 6.7, instead of individual resources the retrieval time for
two IPSO Objects (IPSO Temperature and IPSO Light Control) is shown. As documented in Figure
2.13, the IPSO Temperature object has 7 resources implemented and the IPSO Light Control has 3

92

resources implemented. The retrieval time presented in this graphic is the time nedeed to retrieve the
data from all resources available in each object. From the collected data we can conclude that the
implementation using OMA LWM2M is more efficient, since it can retrieve the information from 7
different resources with only 2 packets and a total of 132 bytes transmitted. This is achieved using the
TLV (Type-Length-Value) message encoding supported by the Leshan Server.

93

chapter 7
Conclusions

This chapter summarizes the contributions of this project providing some conclusions to take into
consideration. Afterwards, some ideas for future enhancements and upgrades are presented.

7.1 conclusions
This thesis presented and evaluated an architecture that supports WSNs applications in the field

of Intelligent Street Lighting. This architecture was built using a set of promising protocols. Based
on the results presented in Chapter 6, we can state that it is possible to deploy an Intelligent Street
Lighting network and develop complex applications on top of it.

The preliminary results obtained are rather satisfying. The Contiki port to the PIC24FJ mi-
crocontroller along with a 6LoWPAN stack has been implemented and tested. The analysis shows
that 6LoWPAN and the RPL software available on Contiki, and also the remaining features available,
matches the application requirements in a vast spectrum of application domains.

The use of CoAP together with 6LoWPAN performs satisfactorily. It significantly reduces the size
of the packets sent, which is important for wireless transmissions in resource constrained devices. An
HTTP and TCP implementation would not have been possible to fit in our devices, especially in the
4LD board.

Using the OMA LWM2M objects on top of the CoAP implementation prooved to be very efficient.
CoAP and OMA LWM2M protocols are considered the key components of the future global standardized
M2M architecture. The results found in this work show that the interoperability provided by the
LWM2M protocol is excellent and is showing good maturity on a basic level.

Choosing Contiki for implementing our WSN has significantly simplified our work, since it already
includes support for most of the protocols required in each layer. It would not be reasonable to write a
solution starting from scratch, since this would require a significant amount of time and would be less
stable than more mature and well-tested software. In this work we have tried to use as many pre-written
pieces of software as possible, and focused on integrating them on Contiki. Using open-source software

95

was a requirement, since we wanted to be able to adapt the software to our specific needs without
additional costs. Besides, Contiki is a well-supported OS and there is a lot of activity on its mailing
list and on their code repository. This is crucial because it shows that the project is actively developed,
used and tested.

We can claim that, at least for non-critical applications, the presented architecture can compete
with other solutions based on expensive and general purpose technologies. This architecture can be
readily deployed and interconnected with a legacy infrastructure. Moreover, due to the scalability
and versatility of the protocols used and the adoption of an IPv6 addressing for the sensor nodes,
the presented architecture is easy to be maintained and upgraded in order to support additional
functionalities.

7.2 future work
There is a significant amount of work that could be conducted in possible future implementations.

Using our current hardware, there are some improvements that can be made:

1. Try to optimise the stack usage even further. It should be noted that this probably requires
widespread changes in code, with patches that are unsuitable for other platforms;

2. Add a SRAM to the actual PIC24F so we can extend the data memory space. Through this we
can extend the stack size and also be able to support more CoAP resources;

3. Try to implement the LWM2M application using only static memory, so we can prevent memory
fragmentation problems and solve the unexpected crashes in the long stability tests. We can
also try to use a deterministic dynamic memory manager;

4. Add support in the current implementation for upgrading the firmware over-the-air, since it
would be very useful when deploying this type of sensor networks on the field;

5. Use a different RDC driver, for example, the ContikiRPL. Provided that in our implementation
the radio transceiver is always on (nullrdc driver), the energy is not spent efficiently. Using the
ContikiRPL the radio is kept off as much as possible.

Another option is to use different hardware, presumably hardware that has more resources available,
especially more stack memory and processing power. Insteand of using the 4LD with the PIC24F
microprocessor as CoAP server, we can use the Giore that has the PIC32MX. We already ported
Contiki to this platform and because of the increase of stack, RAM and processing power, we believe
that it would solve several issues with our current implementation.

96

References
[1] K. S. Low, W. Win, and M. J. Er, “Wireless sensor networks for industrial environments”, in

Computational Intelligence for Modelling, Control and Automation, 2005 and International
Conference on Intelligent Agents, Web Technologies and Internet Commerce, International
Conference on, vol. 2, Nov. 2005, pp. 271–276. doi: 10.1109/CIMCA.2005.1631480.

[2] V. Gungor and G. Hancke, “Industrial wireless sensor networks: Challenges, design principles,
and technical approaches”, Industrial Electronics, IEEE Transactions on, vol. 56, no. 10,
pp. 4258–4265, Oct. 2009, issn: 0278-0046. doi: 10.1109/TIE.2009.2015754.

[3] T. Arampatzis, J. Lygeros, and S. Manesis, “A survey of applications of wireless sensors
and wireless sensor networks”, in Intelligent Control, 2005. Proceedings of the 2005 IEEE
International Symposium on, Mediterrean Conference on Control and Automation, Jun. 2005,
pp. 719–724.

[4] V. Potdar, A. Sharif, and E. Chang, “Wireless sensor networks: A survey”, in Advanced Infor-
mation Networking and Applications Workshops, 2009. WAINA ’09. International Conference
on, May 2009, pp. 636–641. doi: 10.1109/WAINA.2009.192.

[5] N. Xu, “A survey of sensor network applications”, IEEE Communications Magazine, vol. 40,
2002.

[6] Z. Shelby, K. Hartke, C. Bormann, and B. Frank, “Constrained application protocol (coap)”,
IETF Secretariat, Fremont, CA, USA, Tech. Rep. draft-ietf-core-coap-13.txt, Dec. 6, 2012.
[Online]. Available: https://tools.ietf.org/html/draft-ietf-core-coap-13.

[7] J.-P. Vasseur and A. Dunkels, Interconnecting Smart Objects with IP: The Next Internet. San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2010, isbn: 0123751659, 9780123751652.

[8] P. Sausen, A. Sausen, F. Salvadori, R. E. Júnior, and M. de Campos, Development and
implementation of wireless sensor network for the electricity substation monitoring, 2012.

[9] S. Kosmerchock, Wireless sensor network topologies. [Online]. Available: k5systems.com/
TP0001_v1.pdf.

[10] J. Gutierrez, M. Naeve, E. Callaway, M. Bourgeois, V. Mitter, and B. Heile, “Ieee 802.15.4: A
developing standard for low-power low-cost wireless personal area networks”, Network, IEEE,
vol. 15, no. 5, pp. 12–19, Sep. 2001, issn: 0890-8044. doi: 10.1109/65.953229.

[11] P. Baronti, P. Pillai, V. W. Chook, S. Chessa, A. Gotta, and Y. F. Hu, “Wireless sensor
networks: A survey on the state of the art and the 802.15.4 and zigbee standards”, Computer
Communications, vol. 30, no. 7, pp. 1655–1695, 2007, Wired/Wireless Internet Communications,
issn: 0140-3664. doi: http://dx.doi.org/10.1016/j.comcom.2006.12.020. [Online].
Available: http://www.sciencedirect.com/science/article/pii/S0140366406004749.

[12] A. Silberschatz, P. B. Galvin, and G. Gagne, Operating System Concepts, 8th. Wiley Publishing,
2008, isbn: 0470128720.

97

http://dx.doi.org/10.1109/CIMCA.2005.1631480
http://dx.doi.org/10.1109/TIE.2009.2015754
http://dx.doi.org/10.1109/WAINA.2009.192
https://tools.ietf.org/html/draft-ietf-core-coap-13
k5systems.com/TP0001_v1.pdf
k5systems.com/TP0001_v1.pdf
http://dx.doi.org/10.1109/65.953229
http://dx.doi.org/http://dx.doi.org/10.1016/j.comcom.2006.12.020
http://www.sciencedirect.com/science/article/pii/S0140366406004749

[13] A. Mallikarjuna, R. V, P. Kumar, D. Janakiram, and G. A. Kumar, “Operating systems for
wireless sensor networks: a survey technical report”,

[14] J. Ousterhout, “Why threads are a bad idea (for most purposes)”, in USENIX Winter Technical
Conference, Jan. 1996. [Online]. Available: http://www.cs.utah.edu/~regehr/research/
ouster.pdf,%20http://home.pacbell.net/ouster/threads.ppt.

[15] R. von Behren, J. Condit, and E. Brewer, “Why events are a bad idea (for high-concurrency
servers)”, in Proceedings of the 9th Conference on Hot Topics in Operating Systems - Volume
9, ser. HOTOS’03, Lihue, Hawaii: USENIX Association, 2003, pp. 4–4. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1251054.1251058.

[16] G. C. Buttazzo, “Rate monotonic vs. edf: Judgment day”, Real-Time Syst., vol. 29, no. 1,
pp. 5–26, Jan. 2005, issn: 0922-6443. doi: 10.1023/B:TIME.0000048932.30002.d9. [Online].
Available: http://dx.doi.org/10.1023/B:TIME.0000048932.30002.d9.

[17] N. Kushalnagar, G. Montenegro, and C. P. Schumacher, “IPv6 over low-power wireless personal
area networks (6LoWPANs): Overview, assumptions, problem statement, and goals”, RFC
Editor, Fremont, CA, USA, RFC 4919, Aug. 2007. [Online]. Available: http://www.rfc-
editor.org/rfc/rfc4919.txt.

[18] N. Kushalnagar, G. Montenegro, D. E. Culler, and J. W. Hui, “Transmission of ipv6 packets
over ieee 802.15.4 networks”, RFC Editor, Fremont, CA, USA, Tech. Rep. 4944, Sep. 2007.
[Online]. Available: http://www.rfc-editor.org/rfc/rfc4944.txt.

[19] Z. Shelby and C. Bormann, 6LoWPAN: The Wireless Embedded Internet. Wiley Publishing,
2010, isbn: 0470747994, 9780470747995.

[20] E. J. Hui and P. Thubert, “Compression format for ipv6 datagrams over ieee 802.15.4-based
networks”, RFC Editor, Tech. Rep. 6282, Sep. 2011. [Online]. Available: https://tools.ietf.
org/html/rfc6282.

[21] D. C. J. Hui and S. Chakrabarti, “6lowpan: Incorporating IEEE 802.15.4 into the IP architecture,
IPSO alliance white paper”, 2009.

[22] E. Z. Shelby, S. Chakrabarti, E. Nordmark, and C. Bormann, “Neighbor discovery optimization
for ipv6 over low-power wireless personal area networks (6lowpans)”, RFC Editor, Tech. Rep.
6775, Nov. 2012. [Online]. Available: https://tools.ietf.org/html/rfc6775.

[23] A. H. Chowdhury, M. Ikram, H.-S. Cha, H. Redwan, S. M. S. Shams, K.-H. Kim, and S.-W. Yoo,
“Route-over vs mesh-under routing in 6lowpan”, in Proceedings of the 2009 International Con-
ference on Wireless Communications and Mobile Computing: Connecting the World Wirelessly,
ser. IWCMC ’09, Leipzig, Germany: ACM, 2009, pp. 1208–1212, isbn: 978-1-60558-569-7. doi:
10.1145/1582379.1582643. [Online]. Available: http://doi.acm.org/10.1145/1582379.
1582643.

[24] T. Winter, P. Thubert, A. Brandt, J. Hui, R. Kelsey, P. Levis, K. Pister, R. Struik, J. Vasseur, and
R. Alexander, Rpl: ipv6 routing protocol for low-power and lossy networks, RFC 6550 (Proposed
Standard), Mar. 2012. [Online]. Available: http://www.ietf.org/rfc/rfc6550.txt.

[25] J. Vasseur, N. Agarwal, J. Hui, Z. Shelby, P. Bertrand, and C. Chauvenet, “Rpl: The ip routing
protocol designed for low power and lossy networks, IPSO alliance white paper”, 2011.

[26] W. Colitti, K. Steenhaut, and N. D. Caro, “De integrating wireless sensor networks with
the web”, in In Proceedings of Workshop on Extending the Internet to Low power and Lossy
Networks, 2011.

[27] C. Bormann, A. P. Castellani, and Z. Shelby, “Coap: An application protocol for billions of
tiny internet nodes”, IEEE Internet Computing, vol. 16, no. 2, pp. 62–67, 2012, issn: 1089-7801.
doi: http://doi.ieeecomputersociety.org/10.1109/MIC.2012.29.

98

http://www.cs.utah.edu/~regehr/research/ouster.pdf,%20http://home.pacbell.net/ouster/threads.ppt
http://www.cs.utah.edu/~regehr/research/ouster.pdf,%20http://home.pacbell.net/ouster/threads.ppt
http://dl.acm.org/citation.cfm?id=1251054.1251058
http://dx.doi.org/10.1023/B:TIME.0000048932.30002.d9
http://dx.doi.org/10.1023/B:TIME.0000048932.30002.d9
http://www.rfc-editor.org/rfc/rfc4919.txt
http://www.rfc-editor.org/rfc/rfc4919.txt
http://www.rfc-editor.org/rfc/rfc4944.txt
https://tools.ietf.org/html/rfc6282
https://tools.ietf.org/html/rfc6282
https://tools.ietf.org/html/rfc6775
http://dx.doi.org/10.1145/1582379.1582643
http://doi.acm.org/10.1145/1582379.1582643
http://doi.acm.org/10.1145/1582379.1582643
http://www.ietf.org/rfc/rfc6550.txt
http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/MIC.2012.29

[28] E. Z. Shelby, “Block-wise transfers in coap”, Tech. Rep., Mar. 2015. [Online]. Available: https:
//www.ietf.org/id/draft-ietf-core-block-17.txt.

[29] M. Castro, A. J. Jara, and A. Skarmeta, “Architecture for improving terrestrial logistics
based on the web of things”, Sensors, vol. 12, no. 5, p. 6538, 2012, issn: 1424-8220. doi:
10.3390/s120506538. [Online]. Available: http://www.mdpi.com/1424-8220/12/5/6538.

[30] K. Hartke, “Observing resources in coap”, IETF Secretariat, Fremont, CA, USA, Tech. Rep.
draft-ietf-core-observe-08.txt, Feb. 25, 2013. [Online]. Available: http://www.rfc-editor.org/
internet-drafts/draft-ietf-core-observe-08.txt.

[31] M. Nottingham and E. Hammer-Lahav, “Defining well-known uniform resource identifiers (uris),
rfc 5785 (proposed standard)”, 2010.

[32] Z. Shelby, “Constrained restful environments (core) link format, rfc 6690 (proposed standard)”,
2012.

[33] G. Klas, F. Rodermund, Z. Shelby, S. Akhour, and J. Höller, Lightweight m2m: enabling
device management and applications for the internet of things, 2014. [Online]. Available: http:
//archive.ericsson.net/service/internet/picov/get?DocNo=1/28701-FGB101973.

[34] Open mobile alliance - lightweight m2m v1.0 technical information. [Online]. Available: http:
//technical.openmobilealliance.org/Technical/technical- information/release-
program/current-releases/oma-lightweightm2m-v1-0.

[35] Open mobile alliance - lightweight m2m object and resource registry. [Online]. Available:
http://technical.openmobilealliance.org/Technical/technical-information/omna/
lightweight-m2m-lwm2m-object-registry.

[36] K. Romer and F. Mattern, “The design space of wireless sensor networks”, Wireless Communi-
cations, IEEE, vol. 11, no. 6, pp. 54–61, Dec. 2004, issn: 1536-1284. doi: 10.1109/MWC.2004.
1368897.

[37] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and K. Pister, “System architecture
directions for networked sensors”, SIGARCH Comput. Archit. News, vol. 28, no. 5, pp. 93–
104, Nov. 2000, issn: 0163-5964. doi: 10.1145/378995.379006. [Online]. Available: http:
//doi.acm.org/10.1145/378995.379006.

[38] T. Stathopoulos, J. Heidemann, and D. Estrin, “A remote code update mechanism for wireless
sensor networks”, Tech. Rep., 2003.

[39] J. W. Hui and D. Culler, “The dynamic behavior of a data dissemination protocol for network
programming at scale”, in Proceedings of the 2Nd International Conference on Embedded
Networked Sensor Systems, ser. SenSys ’04, Baltimore, MD, USA: ACM, 2004, pp. 81–94, isbn:
1-58113-879-2. doi: 10.1145/1031495.1031506. [Online]. Available: http://doi.acm.org/10.
1145/1031495.1031506.

[40] P. Levis, S. Madden, J. Polastre, R. Szewczyk, A. Woo, D. Gay, J. Hill, M. Welsh, E. Brewer,
and D. Culler, “Tinyos: An operating system for sensor networks”, in In Ambient Intelligence,
Springer Verlag, 2004.

[41] M. O. Farooq and T. Kunz, “Operating systems for wireless sensor networks: A survey”, Sensors,
vol. 11, no. 6, pp. 5900–5930, 2011, issn: 1424-8220. doi: 10.3390/s110605900. [Online].
Available: http://www.mdpi.com/1424-8220/11/6/5900.

[42] D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer, and D. Culler, “The nesc language: A
holistic approach to networked embedded systems”, in Proceedings of the ACM SIGPLAN 2003
Conference on Programming Language Design and Implementation, ser. PLDI ’03, San Diego,
California, USA: ACM, 2003, pp. 1–11, isbn: 1-58113-662-5. doi: 10.1145/781131.781133.
[Online]. Available: http://doi.acm.org/10.1145/781131.781133.

99

https://www.ietf.org/id/draft-ietf-core-block-17.txt
https://www.ietf.org/id/draft-ietf-core-block-17.txt
http://dx.doi.org/10.3390/s120506538
http://www.mdpi.com/1424-8220/12/5/6538
http://www.rfc-editor.org/internet-drafts/draft-ietf-core-observe-08.txt
http://www.rfc-editor.org/internet-drafts/draft-ietf-core-observe-08.txt
http://archive.ericsson.net/service/internet/picov/get?DocNo=1/28701-FGB101973
http://archive.ericsson.net/service/internet/picov/get?DocNo=1/28701-FGB101973
http://technical.openmobilealliance.org/Technical/technical-information/release-program/current-releases/oma-lightweightm2m-v1-0
http://technical.openmobilealliance.org/Technical/technical-information/release-program/current-releases/oma-lightweightm2m-v1-0
http://technical.openmobilealliance.org/Technical/technical-information/release-program/current-releases/oma-lightweightm2m-v1-0
http://technical.openmobilealliance.org/Technical/technical-information/omna/lightweight-m2m-lwm2m-object-registry
http://technical.openmobilealliance.org/Technical/technical-information/omna/lightweight-m2m-lwm2m-object-registry
http://dx.doi.org/10.1109/MWC.2004.1368897
http://dx.doi.org/10.1109/MWC.2004.1368897
http://dx.doi.org/10.1145/378995.379006
http://doi.acm.org/10.1145/378995.379006
http://doi.acm.org/10.1145/378995.379006
http://dx.doi.org/10.1145/1031495.1031506
http://doi.acm.org/10.1145/1031495.1031506
http://doi.acm.org/10.1145/1031495.1031506
http://dx.doi.org/10.3390/s110605900
http://www.mdpi.com/1424-8220/11/6/5900
http://dx.doi.org/10.1145/781131.781133
http://doi.acm.org/10.1145/781131.781133

[43] Network protocols tinyos wiki - dissemination. [Online]. Available: http://tinyos.stanford.
edu/tinyos-wiki/index.php/Dissemination.

[44] Network protocols tinyos wiki - tymo. [Online]. Available: http://tinyos.stanford.edu/
tinyos-wiki/index.php/Tymo.

[45] A. Dunkels, B. Gronvall, and T. Voigt, “Contiki - a lightweight and flexible operating system
for tiny networked sensors”, in Proceedings of the 29th Annual IEEE International Conference
on Local Computer Networks, ser. LCN ’04, Washington, DC, USA: IEEE Computer Society,
2004, pp. 455–462, isbn: 0-7695-2260-2. doi: 10.1109/LCN.2004.38. [Online]. Available:
http://dx.doi.org/10.1109/LCN.2004.38.

[46] A. K. Dwivedi, M. K. Tiwari, and O. P. Vyas, “Operating systems for tiny networked sensors:
A survey”, IJRTE 2009, pp. 152–157,

[47] A. Dunkels and O. Schmidt, Protothreads - lightweight, stackless threads in c, 2005.

[48] Contiki documentation. [Online]. Available: http://contiki.sourceforge.net/docs/2.6/.

[49] N. Tsiftes, J. Eriksson, and A. Dunkels, “Low-power wireless ipv6 routing with contikirpl”,
in Proceedings of the 9th ACM/IEEE International Conference on Information Processing in
Sensor Networks, ser. IPSN ’10, Stockholm, Sweden: ACM, 2010, pp. 406–407, isbn: 978-1-
60558-988-6. doi: 10.1145/1791212.1791277. [Online]. Available: http://doi.acm.org/10.
1145/1791212.1791277.

[50] Q. Cao, T. Abdelzaher, J. Stankovic, and T. He, “The liteos operating system: Towards unix-like
abstractions for wireless sensor networks”, in Information Processing in Sensor Networks, 2008.
IPSN ’08. International Conference on, Apr. 2008, pp. 233–244. doi: 10.1109/IPSN.2008.54.

[51] A. Eswaran, A. Rowe, and R. Rajkumar, “Nano-rk: An energy-aware resource-centric rtos for
sensor networks”, in Real-Time Systems Symposium, 2005. RTSS 2005. 26th IEEE International,
Dec. 2005, pages. doi: 10.1109/RTSS.2005.30.

[52] A. Rowe, K. Lakshmanan, H. Zhu, and R. Rajkumar, “Rate-harmonized scheduling for saving
energy”, in Proceedings of the 2008 Real-Time Systems Symposium, ser. RTSS ’08, Washington,
DC, USA: IEEE Computer Society, 2008, pp. 113–122, isbn: 978-0-7695-3477-0. doi: 10.1109/
RTSS.2008.50. [Online]. Available: http://dx.doi.org/10.1109/RTSS.2008.50.

[53] S. Bhatti, J. Carlson, H. Dai, J. Deng, J. Rose, A. Sheth, B. Shucker, C. Gruenwald, A. Torgerson,
and R. Han, “Mantis os: An embedded multithreaded operating system for wireless micro sensor
platforms”, Mob. Netw. Appl., vol. 10, no. 4, pp. 563–579, Aug. 2005, issn: 1383-469X. [Online].
Available: http://dl.acm.org/citation.cfm?id=1160162.1160178.

[54] A. Dunkels, “Programming memory-constrained networked embedded systems”, PhD thesis,
Swedish Institute of Computer Science, Stockholm, Sweden, 2007. [Online]. Available: http:
//www.sics.se/~adam/dunkels07programming.pdf.

[55] A. Dunkels, “Poster abstract rime a lightweight layered communication stack for sensor networks”,
2007. [Online]. Available: http://www.sics.se/~adam/dunkels07rime.pdf.

[56] Contiki os wiki - processes, 2011. [Online]. Available: https://github.com/contiki-os/
contiki/wiki/Processes.

[57] A. Valente, “Implantação de sistemas operativos em módulos de comunicação sem fios”, Master’s
thesis, University of Aveiro, 2013.

[58] A. Dunkels, O. Schmidt, T. Voigt, and M. Ali, Protothreads: simplifying event-driven program-
ming of memory-constrained embedded systems], 2006. [Online]. Available: http://www.sics.
se/~adam/dunkels06protothreads.pdf.

100

http://tinyos.stanford.edu/tinyos-wiki/index.php/Dissemination
http://tinyos.stanford.edu/tinyos-wiki/index.php/Dissemination
http://tinyos.stanford.edu/tinyos-wiki/index.php/Tymo
http://tinyos.stanford.edu/tinyos-wiki/index.php/Tymo
http://dx.doi.org/10.1109/LCN.2004.38
http://dx.doi.org/10.1109/LCN.2004.38
http://contiki.sourceforge.net/docs/2.6/
http://dx.doi.org/10.1145/1791212.1791277
http://doi.acm.org/10.1145/1791212.1791277
http://doi.acm.org/10.1145/1791212.1791277
http://dx.doi.org/10.1109/IPSN.2008.54
http://dx.doi.org/10.1109/RTSS.2005.30
http://dx.doi.org/10.1109/RTSS.2008.50
http://dx.doi.org/10.1109/RTSS.2008.50
http://dx.doi.org/10.1109/RTSS.2008.50
http://dl.acm.org/citation.cfm?id=1160162.1160178
http://www.sics.se/~adam/dunkels07programming.pdf
http://www.sics.se/~adam/dunkels07programming.pdf
http://www.sics.se/~adam/dunkels07rime.pdf
https://github.com/contiki-os/contiki/wiki/Processes
https://github.com/contiki-os/contiki/wiki/Processes
http://www.sics.se/~adam/dunkels06protothreads.pdf
http://www.sics.se/~adam/dunkels06protothreads.pdf

[59] Contiki os wiki - multithreading, 2011. [Online]. Available: https://github.com/contiki-
os/contiki/wiki/Multithreading.

[60] Contiki os wiki - memory allocation, 2011. [Online]. Available: https://github.com/contiki-
os/contiki/wiki/Memory-allocation.

[61] Contiki os wiki - file systems, 2011. [Online]. Available: https://github.com/contiki-
os/contiki/wiki/File-systems.

[62] Contiki os wiki - dynamic loader, 2011. [Online]. Available: https://github.com/contiki-
os/contiki/wiki/The-dynamic-loader.

[63] Contiki os wiki - timers, 2011. [Online]. Available: https://github.com/contiki-os/contiki/
wiki/Timers.

[64] Contiki os wiki - i/o, 2011. [Online]. Available: https://github.com/contiki-os/contiki/
wiki/Input-and-output.

[65] A. Dunkels, “Towards tcp/ip for wireless sensor networks”, Master’s thesis, Swedish Institute
of Computer Science, tockholm, Sweden, 2005. [Online]. Available: %7Bhttp://www.sics.se/
~adam/dunkels05towards.pdf%7D.

[66] A. Dunkels, F. Österlind, and Z. He, “An adaptive communication architecture for wireless sensor
networks”, in Proceedings of the 5th International Conference on Embedded Networked Sensor
Systems, ser. SenSys ’07, Sydney, Australia: ACM, 2007, pp. 335–349, isbn: 978-1-59593-763-6.
doi: 10.1145/1322263.1322295. [Online]. Available: http://doi.acm.org/10.1145/1322263.
1322295.

[67] Networks of embedded systems group home page. [Online]. Available: http://rtn.sssup.it/
index.php/software/contiki.

[68] Contiki 2.6 doxigen documentation. [Online]. Available: http://contiki.sourceforge.net/
docs/2.6.

[69] C. Yibo, K.-m. Hou, H. Zhou, H.-L. Shi, X. Liu, X. Diao, H. Ding, J.-J. Li, and C. de Vaulx,
“6lowpan stacks: A survey”, in Wireless Communications, Networking and Mobile Computing
(WiCOM), 2011 7th International Conference on, Sep. 2011, pp. 1–4. doi: 10.1109/wicom.
2011.6040344.

[70] J. Ko, J. Eriksson, N. Tsiftes, S. Dawson-haggerty, A. Terzis, A. Dunkels, and D. Culler,
“Contikirpl and tinyrpl: Happy together”, in In Proceedings of the workshop on Extending the
Internet to Low power and Lossy Networks (IP+SN 2011, 2011.

101

https://github.com/contiki-os/contiki/wiki/Multithreading
https://github.com/contiki-os/contiki/wiki/Multithreading
https://github.com/contiki-os/contiki/wiki/Memory-allocation
https://github.com/contiki-os/contiki/wiki/Memory-allocation
https://github.com/contiki-os/contiki/wiki/File-systems
https://github.com/contiki-os/contiki/wiki/File-systems
https://github.com/contiki-os/contiki/wiki/The-dynamic-loader
https://github.com/contiki-os/contiki/wiki/The-dynamic-loader
https://github.com/contiki-os/contiki/wiki/Timers
https://github.com/contiki-os/contiki/wiki/Timers
https://github.com/contiki-os/contiki/wiki/Input-and-output
https://github.com/contiki-os/contiki/wiki/Input-and-output
%7Bhttp://www.sics.se/~adam/dunkels05towards.pdf%7D
%7Bhttp://www.sics.se/~adam/dunkels05towards.pdf%7D
http://dx.doi.org/10.1145/1322263.1322295
http://doi.acm.org/10.1145/1322263.1322295
http://doi.acm.org/10.1145/1322263.1322295
http://rtn.sssup.it/index.php/software/contiki
http://rtn.sssup.it/index.php/software/contiki
http://contiki.sourceforge.net/docs/2.6
http://contiki.sourceforge.net/docs/2.6
http://dx.doi.org/10.1109/wicom.2011.6040344
http://dx.doi.org/10.1109/wicom.2011.6040344

	Contents
	List of Figures
	List of Tables
	Glossary
	Introduction
	Purpose and Goals
	Structure of this Thesis

	Key Technologies
	Wireless Sensor Networks
	Hardware Components
	Networking

	Operating Systems
	Architecture
	Programming model
	Scheduling

	Network Protocols
	6LoWPAN
	RPL - A Mesh Networking Solution

	Application Protocols
	CoAP
	OMA Lightweight M2M

	Operating Systems for Wireless Sensor Networks
	Design Issues and Challenges
	Restricted Resources
	Portability
	Customizability
	Multitasking
	Network Dynamics
	Distributed Nature

	Design Characteristics
	Flexible Architecture
	Efficient Programming Model and Scheduling
	Clear Application Programming Interface
	Reprogramming
	Resource Management
	Real Time Nature

	Existing Operating Systems
	Tiny OS
	Contiki OS
	Lite OS
	Nano-RK
	MANTIS

	Evaluation of the Operating Systems

	The Contiki Operating System
	Brief Introduction
	Main Features
	Kernel and Processes
	Events
	Process Polling
	The Process Scheduler

	Protothreads
	Protothreads in Processes

	Preemptive Multi-threading
	Memory Allocation
	File Systems
	The Dynamic Loader
	Libraries
	Timers
	Leds API
	The Serial I/O API

	Communication
	uIP Communication Stack
	Rime Communication Stack

	Global Overview

	Implementation
	Introduction
	Hardware
	The Giore Platform
	The 4LD Platform

	Porting the Hardware to Contiki OS
	A General Port
	Porting the Giore Platform
	Porting the 4LD Platform
	RFM69H Device Driver

	The Network Stack
	Physical, Framer, RDC and MAC Layers
	Network Layer
	Application Layer

	Gateway
	The Giore as Border Router
	The SLIP tunnel
	Functional Tests

	Sensor Node
	Experimental Setup using Erbium-CoAP and Copper
	Experimental Setup using OMA LWM2M and Leshan Server

	Development Tools
	Difficulties during implementation
	Stack Issues

	Evaluation of the implementation
	Memory Usage
	Network: Performance Evaluation
	CoAP transactions: Performance Evaluation

	Conclusions
	Conclusions
	Future Work

	References

