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Resumo O crescimento da investigação em redes veiculares provocou o aumento

da interação nestes ambientes muito dinâmicos no mercado. As arqui-

teturas desenvolvidas não se focam, no entanto, na segurança. Estra-

tégias comuns de segurança para a Internet, requerem sessões baseadas

no IP. Como os endereços dos nós numa rede veicular, e a sua loca-

lização e caminhos até à Internet, são muito dinâmicos, as soluções

já desenvolvidas para outro tipo de redes iriam requerer renegociações

que teriam um grande impacto no desempenho destes ambientes.

O objetivo desta dissertação será, portanto, desenvolver e testar um

protocolo de segurança implementado na camada 3 para redes veicu-

lares, que seja escalável e leve, em que os nós da rede conseguirão

estabelecer associações de segurança de longa duração com a Home

Network, evitando renegociações devidas à falta de conectividade, e re-

duzir o overhead devido ao empilhamento protocolar. Este protocolo

permite ter segurança independentemente da posição dos nós (os veí-

culos), do seu endereçamento e do caminho estabelecido para o acesso

à Internet, permitindo assim mobilidade dos veículos e das sessões ati-

vas de forma transparente sem falhas na comunicação.





Abstract The growing research in vehicular network solutions provided the rise

of interaction in these highly dynamic environments in the market.

The developed architectures do not usually focus, however, in security

aspects. Common security strategies designed for the Internet require

IP. Since nodes' addresses in a vehicular network are too dynamic, such

solutions would require cumbersome negotiations, which would make

them unsuitable to these environments.

The objective of this dissertation is to develop, and test a scalable,

lightweight, layer 3 security protocol for vehicular networks, in which

nodes of the network are able to set up long-term security associations

with a Home Network, avoiding session renegotiations due to lack of

connectivity and reduce the protocol stacking. This protocol allows

to provide security independent of the nodes (vehicles) position, of its

addressing and of the established path to access the Internet, allowing

the mobility of vehicles and of its active sessions seamlessly without

communication failures.
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Chapter 1

Introduction

The concept of Vehicular Ad Hoc Networks (VANETs) is now a reality. One of the main

VANETs deployment was the result of a partnership between, among other stakeholders,

University of Aveiro and Porto, Instituto de Telecomunicações and Veniam. This network

comprises the mobile devices deployed in vehicles as mobile access points, and the �xed

infrastructure which establishes a connection between the mobile devices and the internal

network.

1.1 Motivation

Communication is a necessity integrated in the current society. VANETs bring many

useful services, such as tra�c control, content distribution, real-time content access. In

comparison with cellular infrastructures, VANETs may be composed by more nodes than

cellular; however, the access technology may be cheaper than cellular, the vehicle to vehicle

communicatons are made easily, and nodes are powered by car batteries, which recharge

while the car is moving. This results in a network which is composed by nodes connected in

a meshed fashion, and operators can take advantage of this meshed capabilities to extend

the range and provide services to users by routing tra�c to gateways cooperatively.

However, it is important that, in such a dynamic networks, unauthorized third parties,

which may enter the network, do not compromise the integrity and performance of legit-

imate nodes. Also, privacy must not be compromised in a network where the channel is

shared. Common solutions are bound to IP, and depend on security mechanisms which

make such solutions inappropriate networks with constant loss of connectivity.

Furthermore, existent VPN solutions could be integrated alongside with Mobile IP, but

1



the overhead caused by stacking these two solutions, would cause strain on the network.

Because of that, there is a need to design and implement a solution able to maintain

security on these networks without compromising performance, and enabling fast mobility

seamless for the network and the running communications.

Home Network (HN) is a network created in the core of the provider, which may supply

several services to mobile access points. We want to provide a secure connection to this

network through a mesh network composed by vehicles and cabled infrastructure.

The elements of this mesh network should cooperate between them to establish valid

connections to the HN but, at the same time, the tra�c generated from each element

should remain con�dential between itself and the internal provider network.

In order to achieve this, the security was subdivided into two segments. The mobile

router deployed in a vehicle authenticates in the HN through the vehicular network, and

then, user authentication uses common solutions to authenticate the users inside the vehi-

cles.

1.2 Problem

Until today, to the best of our knowledge, all VPNs are IP based. Parameters are bound

to IP which cause frequent renegotiation when mobility occurs, and several protocols are

stacked. Moreover, there is not a solution for secure communications in VANETs seamless

to the mobility of the vehicles.

Since mobility occurs frequently, those protocols, which were designed to operate with

sporadic mobility would impose frequent downtimes, and a user accessing the service would

not be able to use the network.

1.3 Objectives

The purpose of this dissertation is to establish a secure connection between the user

connected to a vehicle through its mobile access point, the On Board Unit (OBU), to the

HN where its services are deployed. The solution should behave like a VPN and should

attain the following advantages:

• Remove overhead of protocol stacking, providing a light protocol for the dynamic

nature of the vehicular networks.
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• Replace the usual internet mechanism which binds session parameters to IP, by a

mechanism which binds vehicle identi�ers to session parameters. In opposition to IP,

the vehicle identi�er is controlled in the vehicular network, and maintained constant

at all times. Because of that, keys do not need to be renegotiated constantly, in a

network where connection is intermittent.

Also, the security solution should separate the routing strategy from the security ap-

proach, which will allow the routing algorithm to be changed without compromising the

security.

1.4 Contributions

In order to gain insight about the architecture's requirements, security primitives and

protocols were studied.

The main focus of the dissertation was to implement a solution which allowed to deploy

a lightweight security architecture in VANETs. To that end, a routing mechanism based

on �xed identi�ers and an end-to-end security protocol were implemented.

This solution was deployed and tested not only in the laboratory, but also in a real

environment of vehicles and road side units connected to a HN. The concept and its results

were also presented in a scienti�c paper which was published in the 10th Conference on

Telecommunications, Conftele 2015. A �nal journal paper is in preparation and will be

submitted in the end of 2015.

1.5 Document Organization

This document is organized as follows.

In chapter 2, it is given a general overview about vehicular networks, its elements, and

architecture. It is also presented the routing strategies applied in these networks, because

they di�er from the traditional solutions. Since this dissertation will focus on end-to-end

security, the security primitives, protocols and concepts used in the document will also

be explained. Also, existent solutions are presented, and it is discussed why they do not

match the requirements for these networks.

In chapter 3, a high-level description of the proposed architecture is stated, and ex-

plained how that solution meets the requirements.
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In chapter 4, we focus on describing how the solution was designed, which libraries are

used and why, and a description of the structures implemented and used to hold the data.

In chapter 5, the solution is evaluated, both in terms of network performance and

software performance.

In chapter 6, we expose the goals which have been met, and what needs to be done in

order to further evolve the work of this dissertation.
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Chapter 2

State of the art

2.1 Introduction

VANETs have di�erent requirements than �xed networks, with that in mind, the nodes

which compose the network also have di�erent requirements than normal network devices.

In section 2.2 it is described the core elements of this networks.

In section 2.3, the architecture used in these networks is described. These architectures

describe how communication between the nodes is established.

In VANETs, the usual network routing strategies do not work, because of the implicit

mobility in these networks. Furthermore, there is extensive research in suitable proto-

cols. Thus, in section 2.4, several types of routing strategies which are commonly used in

VANETs are described.

Since research has been, usually, focused in routing, and mobility, some concerns about

these environments are presented in section 2.5. It is also described the respective impli-

cations on the network and user experience.

After exposing the concerns in such environments, solutions which solve them, need

to be presented. In section 2.6, it is described the security requirements which a solution

should achieve in these networks.

In section 2.7, it is explained the security concepts used through this document, the

alternatives, and each one of their advantages and disadvantages. In this section, it is

explored the primitives, such as hash functions, symmetric and asymmetric key algorithms,

key exchange protocols. Then, it is given a perspective of the current VPN solutions used

in the Internet, and why they are not used in this scope.

In section 2.8, it is described already existent architectures proposed in these environ-
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Figure 2.1: Hardware used by the RSUs and OBUs

ments. These security solutions are, however, mostly used for di�erent purposes than this

dissertation. Because of that, this section focus on relating the purpose of the solution,

with the security primitives used in it.

Section 2.9, presents conclusion about the existing solutions and points what can be

improved in them, regarding the primitives presented.

2.2 Equipment

A VANET architecture, is composed by two types of nodes.

• The mobile nodes, OBUs, are nodes which are deployed in moving vehicles. They

make use of the energy supplied by the vehicle's battery and communicate using

other OBUs or other �xed access points.

• The �xed infrastructure, Road Side Units (RSUs), are nodes which are deployed close

to the road, where the OBUs are expected to be seen. They allow communication

of OBUs with the exterior network, or even to send data across vehicles. Because

they are �xed, they may use high-speed, �xed infrastructure between themselves,

and communicate with mobile nodes through 802.11p.

2.3 Architecture

A VANET encompasses various types of communications, as shown in Figure 2.2.
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Figure 2.2: Architecture of a VANET network [38]

• V2V: Vehicle to Vehicle is the most dynamic type of communication, and also the

most common one in this type of environments. Nodes establish temporary routes

using di�erent types of algorithms, and route data between themselves using ad-

hoc/sensor routing strategies conceived for establishing connection between nodes in

dynamic, and energy constrained networks.

• V2I/I2V: Vehicle to Infrastructure and vice-versa is the type of communication where

a node can use the �xed infrastructure to communicate with external networks, and

also allow the outside network to communicate with nodes in the VANET.

By using all the VANET nodes in cooperation, one can extend the maximum range

of the network several times in comparison to normal centralized wireless technology, and

provide services to users in vehicles in a dynamic and large scale.

These networks provide services, such as, tra�c monitoring and control, accident pre-

vention, and others which can be used to improve road safety.

They are also used, to provide access to entertainment services, through a network

where a provider might deploy applications and gateways to external networks.

The channels allocated for VANETs, described by Dedicated short-range communi-

cations (DSRC) are shown in Figure 2.3. This set of standards provides seven 10 MHz
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channels in the 5.9 GHz. One of them should be used as a control channel and the remain-

ing six are used for service between nodes.

Figure 2.3: Channel allocation for DSRC [7, 25]

In these channels the stack used to communicate can be seen in Figure 2.4. This stack

features the IEEE 1609.x which is used to control the resources between nodes, the security

mechanisms and the WAVE' network layer.

Figure 2.4: WAVE Protocol [6]

This technology also features a fast association which allows for very fast handovers

as shown in Figure 2.5. The features missing in the fast association shown in the vehic-

ular technology are usually passed to the upper layers, which might di�erentiate security

approaches based on the service.
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Figure 2.5: Comparison of the association processes between usual Wi-Fi (on the left) and
IEEE 802.11p (on the right) [1]

2.4 Routing strategies

Since vehicles are in constant movement, routing strategies used in �xed networks can-

not be applied, because they do not consider mobility. Therefore, several routing strategies

are developed to be used in these dynamic environments. Considering that VANETs are

a subclass of Mobile Ad Hoc Networks (MANETs), most the typical routing strategies

implemented in both ad-hoc and sensor networks, are suitable to be applied here.

In the following subsections typical sets of routing strategies applied in these networks

are presented.

2.4.1 Ad-hoc Networks Routing

In order to establish non-ambiguous routes, each node needs to have a unique address

in the ad-hoc network.

The routing strategies should meet certain requirements, among them are the routing

acquisition and recon�guration delays, and also the network overhead, scalability, security

and privacy.

The �rst question in ad-hoc routing is �Who determines routes?�. This question may

be answered in two ways, each one with its advantages and disadvantages.

In source routing, the whole path is described in the packet. The intermediate nodes

forward the packet to the next hop in the list. For this, the source must have a lot of

storage, because it needs at least, all the best paths which describe the route for everyone.

But it does not need to have storage in the intermediate nodes. In destination routing, the
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Figure 2.6: ZRP routing zone the node S with radius 2 [15]

source only speci�es the destination in the packet. The source must hold, in memory, the

next-hop for each node in the network.

These protocols might be also separated in other sets of protocols. The proactive

protocols maintain the routes with every host at all times, and are based on periodic

updates. The reactive protocols only determine route, on a needed basis. Whilst the �rst

set always consumes a certain bandwidth, to keep routes updated, the second one employs

�ooding to search the whole network for one node, and because of that, reactive routing

has bursty tra�c.

Some protocols, such as the Zone Routing Protocol (ZRP) are hybrid, because they

have separate components which have characteristics of both, proactive and reactive pro-

tocols. The ZRP protocol limits the proactive procedure to the node' local neighbourhood

minimizing the bandwidth waste of proactive protocols. To search in between zones, a

reactive scheme is used. In Figure 2.6, it is shown the radius of the S node in 2 hops.

Other di�erent class of algorithms is the hierarchical routing protocols, such as, the

Fisheye State Routing (FSR). As seen on Figure 2.7, in order to diminish the bandwidth

used, the packet is sent to neighbours and a full topology map is kept at each node.

The VANET subclass, increases the number of routing protocols existent, as Global

Positioning System (GPS) is available at most times. Examples of such types of routing

algorithms are the following [38]:

• Geographical Routing Protocols: Essentially for cars with GPS. The solution consists

in using information about node positioning, or about neighbours in a speci�c zone.
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Figure 2.7: FSR scope [42]

• Movement-Based Routing Protocols: This solutions maintains memory of the trajec-

tory made by the vehicle in order to calculate the velocities of the nodes, and with

that information, choose the next best connection to make.

• Broadcasting Approaches: Used to disseminate information as fast as possible. This

type of algorithms broadcast a message based on one or more factors (usually involv-

ing probabilities).

2.4.2 Sensor Networks Routing

In wireless sensor networks, a wide variety of protocols to gather data may be used.

We will focus on three. The �rst type, may be branched in two options which are address

centric or data centric. The second type, is based on a hierarchy (de�ning clusters, which

have a relation like master-slave, as for example in LEACH [13]). The third type, is based

on location (for example the Geographic Adaptive Fidelity (GAF) [46]).

Address centric, tries to �nd the shortest way to the sink, and the data centric tries to

agglomerate all data in a common node, in order to minimize the number of packets sent,

as seen in Figure 2.8.

The second type, works by de�ning masters in the network, which will be responsible
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Figure 2.8: Address centric on the left versus Data centric on the right. Dashed means
connection between nodes and arrowed means tra�c �ow.

for gathering the data from the slaves. Then, the masters are responsible to send the stored

information to nodes closer to the sink.

The third type, is similar to the second type, but grids are established in the topology

and masters are chosen depending on the location where they are in that moment.

2.5 Security Challenges in VANETs

Systems designed to operate in VANET should consider the security challenges present

in these networks.

Some of the most crucial challenges to non Intelligent Transport System services are

listed next [38].

• Data consistency liability: This is a important issue, since even authenticated vehicles

can become malicious by sending incorrect information to gain advantage or disrupt

the network.

• Key Distribution: For most security architectures, keys are essential to use some

security protocols. However, keys cannot be installed by manufacturers because there

is no cooperation between them regarding this matter. This would require agreement

on the method of distribution.
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Figure 2.9: Attacks on VANETs [23, 35]

• High Mobility: The vehicle's computing platform, di�er signi�cantly in mobility

support and throughput when compared with other computational systems. This

creates a gap between �xed infrastructure and vehicular infrastructure, that may be

closed by choosing lightweight security measures, without loosing the robustness.

2.6 Security Requirements in VANETs

Despite the various bene�ts o�ered by VANETs, securing this environment is very

di�cult, because of the issues that this type of network brings up (some listed in Figure 2.9).

According to ETSI' technical report on security requirements [11], the following objec-

tives are de�ned:

• Con�dentiality: In the absence of a con�dentiality mechanism, this attack is very

di�cult to detect because it is passive, and users are not aware of data being collected.

Because of that, and because this dissertation aims to deliver content between the

user, and the external network securely, a con�dentiality mechanism must exist.

• Mutual authentication, authorization and access control: Especially a requirement for

non Intelligent Transport System (ITS) tra�c, this requirement speci�es that a node

in the VANET realm must authenticate in the service provider, and also the server

must be authenticated by the node, in order to prevent Man-in-the-Middle (MitM)

attacks.
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• Availability: Availability guarantees that the network is functional. An example

of these attacks, is the Denial of Service (DoS). This type of property can never

be totally guaranteed. However, the ways in which a third-party can disrupt the

network availability may be limited.

• Authenticity: Authenticity is a major challenge for VANETs. Any node who acts on

the network without authentication, can expose the network to serious consequences.

This requirement purpose is to identify a node on the network, and deny service to

non-authorized nodes.

• Accountability: This is the same as non-repudiation. The objective of this property

is to identify vehicles injecting malicious data on the network.

• Integrity: Data integrity means that the accuracy and consistency of data must not

be allowed to be tampered with. This requirement is applied both to ITS, and non

ITS tra�c. In practice, integrity control and authenticity are assured in the same

way, because the origin will not be able to be identi�ed if the content is altered.

It is important to realize that some attacks in VANETs, such as attacks on the tech-

nology availability cannot be prevented. An example of one of these attacks is jamming.

If the technology becomes unusable, the only way to get communication, will be to change

access technology, for example, by using cellular. In the eventuality of such an attack, the

solution will be the versatility between technologies and not the protection on a speci�c

one.

2.7 General Security Overview

This section presents several security primitives used in the dissertation that follows.

2.7.1 Security Versus Performance Versus Complexity

A system should not be deemed secure only because it is very complex, or because

it relies on obscurity. A study on the dangers of complex systems to obscure security

procedures [21, 48] revealed that complexity correlates to more frequent incidents. Not

only that, but as security is usually based on mathematical or logical operations with keys,

every measure taken in order to get security will add overhead to the system.
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Because of the reasons mentioned before, systems should be designed to take security

in account without adding an enormous toll on the functionality and performance of the

system. When not doing so, systems will most likely have security incidents which may be

hard to detect or �x.

2.7.2 Random number generation

Random number generators are widely used in cryptography in order to provide material

to cryptographic primitives. They are especially useful for key generation.

An example of the problems that bad random number generation was shown in 1994,

when a researcher from CERN Web team reported to Netscape that their version of Secure

Sockets Layer (SSL) encryption protocol was seeded with the time of day, the PID and the

PPID of the application using it.

Shannon entropy is a measure of unpredictability of the symbol a source outputs. Se-

cure systems must have highly unpredictable streams, because if attackers can guess the

sequence used to do operations on a bu�er, they can mimic outputs.

In Linux there are two built in devices which are used as sources of random data:

• /dev/random: This device is a blocking random number generator. It blocks because

the kernel and user-space need to collect information about events in the system to

generate randomness, and the device blocks until a certain level of entropy is attained.

It is especially useful for cryptographic purposes, however, it might not be possible

to use this device if the system has to read a lot of random data. This is considered

a �true� random number generator.

• /dev/urandom: This device is a non-blocking random generator. It is a pseudo-

random number generator, because it takes the pool of randomness managed by

the kernel, and swaps it, so that the order of the stream read is changed. Despite

not being considered a �true� random device, �looking random� is enough for the

large majority of the existent cryptographic protocols. In that aspect, this device is

perfectly �ne for giving unpredictable data, whilst /dev/random should be used for

more demanding purposes.

A simpli�ed scheme of how the random devices work in UNIX is shown in Figure 2.10.

The manual for the randomness devices has very vague description regarding the used

sources of entropy [55], some of the listed ones are, for example:
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Figure 2.10: UNIX Random devices [20]

• Timing delays

• Devices inputs

• Interrupts

Every time the device is dumped, the system keeps track of how many bytes were

added/removed, to maintain a certain level of entropy.

There are tests to measure the quality of randomness devices. The most used, is the

Chi-square Test [3], which is largely used when sampling is large and discontinuous. This

test is extremely sensitive to errors in pseudorandom sequence generators. The percentage

is interpreted as follows: if the percentage is between 10% and 90%, the device may be

considered random. The closest from 50% the better the device is.
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After running the Chi-square Test on the /dev/urandom with a sample of 100Mb using

a laptop with a i7-2670QM CPU @ 2.20GHz and using a Ubuntu v14.04.2 LTS with kernel

version 3.13.0, the results were quite satisfactory (especially when knowing it's a pseudo-

random device which does not maintain the level of entropy) by giving a percentage of

50%. Because of this, we can conclude that this device is better suited to time-constrained

cryptographic operations, not only because it is not going to block the application, but

also, because it is already considered quite random.

2.7.3 Cryptography

Cryptography is not a solution for the majority of the security problems. It might be

part of the solution, but by itself, it does not provide any security. Let's say a person wants

to encrypt a �le with a key. Usually good keys are too long for memorizing and it needs to

be stored somewhere. If the key is stored on same place where the �le is located, then it

defeats the whole purpose of applying the encryption, because if a attacker is able to get

the �le, it will probably also be able to get the key. Therefore, cryptography is part of the

solution but by itself requires the use of other methods to protect the data (and the keys).

Assuming that keys can be safely stored, then it is a good measure to apply methods

to hide and/or control the integrity of data.

2.7.3.1 Encryption

As shown in Figure 2.11, if Alice wants to communicate with Bob over an insecure

communication channel (in general, most communication channels are considered insecure).

If no method for privacy is used, Eve (eavesdropper) can easily listen to the message. This

may not be a big issue if, let us assume, the data is just a harmless conversation. But if

Alice and Bob represent corporations, and they are exchanging con�dential data, it turns

out to be a big problem.

Therefore, to solve this problem, Alice and Bob may use encryption (shown in Fig-

ure 2.12), in order to transform the data they want to exchange, and hide the information

from Eve, by using a symmetric key, for example. The question which arises is: how to

exchange keys between both parties?

The idea is that Alice, uses a encryption function with a Key and a Plaintext as input,

and the function returns a Ciphertext. Any changes in the Plaintext will change the result

and the function is only reversible by using that key. When Bob receives the Ciphertext,
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Figure 2.11: Insecure communication over insecure medium
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Figure 2.12: Con�dential communication over insecure middle

he uses the same function but on the opposite direction to get the original Plaintext.

An attacker should not be able to learn any information about the contents of the

message except the time sent and the recipients. Encryption, however, by itself does not

hide the length of the packet, however for that purpose, a set of standards called Public-

Key Cryptography Standards (PKCS) were created, and based on the PKCS#7 [24], it

was created the Cryptographic Message Syntax (CMS) [18] which speci�es the syntax for

digitally signnatures, digests, authentication messages and encryption of data.

The CMS standard for encrypted data padding can be seen in Algorithm 1. The main

idea behind it is that one should always append padding to adjust a bu�er to the block

size used by the encryption mechanism, and if the length of the packet is already adjusted

to it, then it should be appended with blocksize bytes.

On decryption, the padding is also veri�ed in order to con�rm integrity. If the packet

does not follow the established rules for padding, it shall be discarded.

Since the cryptographic routine is assumed to be unbreakable (if that is not assumed,

then padding is still reversible), padding does not help security. However, this procedure

makes tra�c analysis much harder since it hides users' tra�c true length, and makes

attacks based on ciphertext and plaintext models much harder.
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Algorithm 1 CMS proposed algorithm

Description: Pad a bu�er with size length according to CMS standard
Require: length ≥ 0
1: procedure PadData(buffer, length, blksize)
2: padding ← blksize− (length mod blksize)
3: while i 6= padding do
4: buffer[i]← padding
5: i← i+ 1
6: end while
7: length← length+ padding
8: return bu�er, length
9: end procedure

2.7.3.2 Authentication

Considering again the scenario depicted on Figure 2.12, Alice and Bob still have a

problem, because even though Eve cannot see the packet contents, she may still interfere

with the communication for example by:

• Insert new messages;

• Tamper with existing messages;

• Replay messages

Even if a message could only be understood by the key-holders, nothing guarantees

Bob that the message came from Alice, Eve can send packets to Bob identifying her-

self as Alice (as seen in Figure 2.13 and Figure 2.14). To solve this problem there are

several approaches, for example, digital signatures, which are based on Public-Key In-

frastructure (PKI), Authenticated Encryption with Associated Data (AEAD) or Message

Authentication Codes (MACs).

2.7.4 Key Exchange Protocols

2.7.4.1 Di�e-Hellman (DH)

Di�e-Hellman (DH) was the one of the �rst asymmetric solutions to key distribution

problem, it allows two parties, which have never met, to exchange a symmetric key over

an insecure channel, without the possibility of getting the private session key derived by

listening third parties.
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Figure 2.13: Authentic communication over insecure medium with MAC, computed as a
Digest after the message m and the secret key Ka
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Figure 2.14: Authentic communication over insecure medium with PKI, using digital sig-
natures generated with SAlice and veri�ed with PAlice

This protocol is, by itself, unauthenticated, which means it might be vulnerable to

MitM attacks. To solve that the packets exchanged through the protocol must be signed.

The DH protocol goes as refereed in Figure 2.15.

The proof of DH can be demonstrated as follow:

K = (Y y
x ) mod q = (αx)y mod q = (α)x×y mod q (2.1)

K =
(
Y x
y

)
mod q = (αy)x mod q = (α)y×x mod q (2.2)

Since the Equations 2.1 and 2.2 result in the same key, and cannot be calculated without

knowledge of at least one of the private parameters, we reach to the conclusion that the

algorithm succeeds in distributing a private key between two parties.

At the end of the protocol, an eavesdropper cannot getK becauseK = (α)xy mod q, and

there is no easy way to get this value without solving Discrete Logarithm Problem (DLP),
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Figure 2.15: DH Key Exchange Protocol applied to a VPN key exchange protocol
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or Di�e-Hellman Problem (DHP).

The key can be used in symmetric algorithms, which are usually more e�cient than

asymmetric algorithms.

2.7.5 RSA public-key schemes

RSA public-key schemes, are used to sign messages, and may also be used to encrypt

them, but as the latter is a rather costly operation, when compared with most symmetric

key algorithms, this work focus on the signing component because it is not frequently used.

The purpose of signing messages is not to make the message con�dential, but rather,

to assure that the content is trusted and immutable. A good analogy would be sealing

a envelope with a speci�c wax seal. Everyone can read the message, but the fact that

the packet contains a valid signed hash of the message means that the message was not

changed since the signer signed it.

The process of signing a message involves generating a digest of the message, and use

the private key of the signer to encrypt such digest. Since everyone can have access to the

public key, the message is not secret, but after processing the signature with the public

key of the signer, the hash calculated by the signer can be compared to the hash of the

message which is being checked, if those hashes do not match, it means the message has

been tampered with, or the origin is not trusted.

The RSA is a trapdoor function, which is a mathematical operation that is very easy

to calculate in one direction but in the opposite direction is very di�cult. For example

f (x) = xe mod n is easy to calculate but for its inverse to be calculated, the number has

to be factored, which for large numbers, would be very hard using normal computational

resources.

2.7.6 Hash Functions

The Secure Hash Algorithms (SHAs) is a particular implementation of a family of hash

functions published by the National Institute of Standards and Technology (NIST). These

algorithms are iterative, one-way functions which can reduce messages with arbitrary length

into messages with a �xed length in such a way that having the hash cannot provide the

original message but the message always gives the same hash.

These algorithms have several uses, but in the current context, they are used to verify

message integrity: the smallest change in the message will alter the hash result completely.
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A hash function must have 3 properties:

1. preimage resistance: For every output, it is computationally infeasible to �nd a input

which yields the given output;

2. 2nd-preimage resistance: It is computationally infeasible to �nd any second input

which yields the given output;

3. collision resistance: For every output, it is computationally infeasible to �nd two

distinct inputs which hash to the same output.

A hash function can be implemented with a scheme based on Figure 2.16. In the �gure,

it is shown that a digest is separated in �xed-length blocks and appended applying padding

to match a size multiple of the block length. The compression function, and the optional

pos-processing function depend on the algorithm used [36].

append padding bits

append lenght block

g

f

original
input x

Hi−1

hash function h

preprocessing

formatted input
iterated processing

compression function f

xi

Hi

Ht

H0 = IV

Figure 2.16: Merkle�Damg
ard Hash function construction
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2.7.7 Symmetric Cipher Algorithms

Ciphers algorithms are a large set of mathematical functions, which transform a given

plaintext into a ciphertext and also revert that operation.

The alternative from block ciphers are stream ciphers which typically require less com-

plexity to implement and run, being for that reason, more time-e�cient. This cipher type

is however more tricky, because in order for it to be secure, the random number generator

used to mask the bits must absolutely be unpredictable and unreadable from outside the

operation and it's period should be large.

2.7.7.1 Rijndael

Rijndael [43] is ranked �rst among the Advanced Encryption Standard (AES) sub-

missions. This algorithm is not based in Feistel networks, instead it uses a substitution-

permutation network, and is fast both on software and hardware.

The bytes are collected in a 4x4 matrix called state and the key size used speci�es the

number of rounds made by the algorithm.

• 10 cycles of repetition for 128-bit keys.

• 12 cycles of repetition for 192-bit keys.

• 14 cycles of repetition for 256-bit keys.

The algorithm consists of the following procedures:

1. KeyExpansions: Operations on the key using the Rijndael key schedule.

2. InitialRound: AddRoundKey: Consists of a XOR of the subkey derived in the last

phase with the state.

3. Rounds (repetitions according to key size)

(a) SubBytes: Applies a S-Box to each byte in the state matrix.

(b) ShiftRows: Cyclic shift of the last three by bytes of the state matrix.

(c) Mix Columns: Applies a mathematical operation in each column.

(d) AddRoundKey

4. FinalRound.
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(a) SubBytes.

(b) ShiftRows.

(c) AddRoundKey.

There are no feasible attacks on full AES. There is one theoretically key-recovery attack

which would take billions of years to complete [5]. There are also side-channel attacks which

use measurements from the physical system to recover the key.

In terms of performance this algorithm was chosen by NIST by its high speed and

low Random Access Memory (RAM) requirements. The algorithm requires 18 cycles per

byte [49], and with AES-NI instruction set extensions, the throughput can be over 700MB/s

per thread [34].

2.7.8 Modes of operation

The modes of operation of a cipher is a algorithm which establishes how a block should

be processed depending on blocks before. It works with blocks or streams. In blocks a

cipher algorithm is applied each block whilst on stream ciphers a random stream is XORed

with each plaintext symbol.

The most simple one is Electronic Code Book (ECB) which ciphers blocks of �xed size

independently of each other. This method is very weak because if data has a pattern, that

becomes apparent for a person observing that cryptogram. By doing that, one can �gure

out the block size, and even the plaintext using frequency analysis.

The next method, Cipher Block Chaining (CBC), uses feedback to change the output

of the next block with the previous.

Then there are several complex cipher modes such as the Output Feedback (OFB)

and the Cipher Feedback (CFB) where a block cipher is turned into a continuous cipher

by generating a random stream of blocks which would be XORed with the input. The

di�erence between these two is in the feedback function, however, they work in a similar

way.

The Counter (CTR) mode works is a intermediate step between ECB and CBC. After

establishing a Initialization Vector (IV) which is public, each block is transformed by

XORing the data with the IV plus the block number.

None of the modes of operation outputs anything which might be used for integrity

control and because of that, other techniques such as Hash Message Authentication Code

(HMAC) should be used.
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Figure 2.17: GCM Mode of Operation [39]

There is another mode of operation which is worth talking about in this document as

it will be used in the implementation of the software.

Galois-Counter Mode (GCM) is a mode of operation which is used on block ciphers

such as AES which provides authenticated encryption. This mode of operation is good

for data exchanged in packets, because it can overlap the operations of authentication and

encryption.

Basically, after ciphering each block it generates a Hash, which is used to cipher the

next block as seen in Figure 2.17. In the last block, that Hash is returned and is considered

a authentication tag because it is unique for each datagram.

2.7.9 Virtual Private Network (VPN)

The concept of VPN is widely used to denominate secure communication. Virtual

Private Network Consortium (VPNC) de�nes that these solutions, should be categorized

in two di�erent types: trusted VPNs and secure VPN (and then it is possible to have a

secure VPN over a trusted one to create a hybrid solution).

Trusted VPNs, assure that a given circuit was leased for a client and no one would use

it.

Later, the Internet popularity started rising and, as vendors realised that trusted VPNs

did not o�er security, they created protocols that allowed to assure data con�dentiality and

authenticity, starting to develop solutions which are denominated by Secure VPNs. These

types of solutions, do not have the necessity to lease circuits, instead the network is fully

constructed on the endpoints, which are the stakeholders.

According to the VPNC, a VPN to be considered secure has to meet certain requi-
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sites [8]:

• All tra�c on the secure VPN must be encrypted and authenticated

� VPN are used to establish a level of security, so that, a client must be au-

thenticated and his tra�c should be private. If it does not provide both these

characteristics, it does not meet the requirements to be called a VPN.

• The security properties of the VPN must be agreed to by all parties in the VPN.

� A VPN server might have to manage one or more tunnels. For each tunnel this

property must be hold true for both endpoints.

• No one outside the VPN can a�ect the security properties of the VPN.

� Third-parties should not be allowed to a�ect the secret keys of the stakeholders.

2.7.9.1 Point-to-Point Tunnelling Protocol (PPTP)/Point-to-Point Protocol

(PPP)

Point-to-Point Tunnelling Protocol (PPTP) [16] is used to create a VPN by relying

in the Point-to-Point Protocol (PPP) protocol [50] to handle security between endpoints.

This protocol instantiates a Generic Routing Encapsulation (GRE) [17] tunnel which will

encapsulate PPP packets, as seen on Figure 2.18. This last encapsulation carries user data,

and is not limited to IP, but it can carry also other protocols, such as Internetwork Packet

Exchange (IPX) or Network Basic Input/Output System (NetBIOS). The control channel

is instantiated in a side channel, running over Transmission Control Protocol (TCP).

PPP for authentication uses several mechanisms to authenticate interlocutors. Point-to-

Point Authentication Protocol (PAP) [31], Challenge Handshake Authentication Protocol

(CHAP) [51], MS-CHAPv1 [58], MS-CHAPv2 [57]. All these methods use passwords or

challenges to authenticate users and they do not exchange keys.

The PAP, seen on Figure 2.19, is considered to be inadequate, since the username and

the password are sent in clear text. The CHAP protocol already hides the username and

the password, as seen on Figure 2.20. The MS-CHAPv1 is an attempt to improve security

by storing a digest of the password and not the cleartext version of the password. The MS-

CHAPv2 provides mutual authentication to the v1 protocol, by piggybacking a challenge

on the Response packet, and an authenticator on the success packet.
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Figure 2.18: PPTP tunnel [2]

Initiator Authenticator

Authenticate Req (username, password)

Authenticate Ack/N
ak

Figure 2.19: PAP protocol

Initiator Authenticator

ID, Challenge

MD5(ID|Password|Challenge)

ID, Ack or Nack

Figure 2.20: CHAP protocol

The encapsulated overhead of the tra�c is the sum of the GRE header plus the PPP

header, which is, at least, 14 bytes.
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The lifetime of this solution, is the duration of the TCP connection on the control side-

channel, which makes this unsuitable to use in this networks because in these environments,

TCP connection breaks very easily.

2.7.9.2 Internet Protocol Security (IPSec)

IPSec [29] is a security extension to the IP protocol. This extension uses Security

Associations (SAs) structures to describe how communication should be secured. They

hold an identi�er, the Security Parameter Index (SPI), and the security mechanism used,

the Authentication Header (AH) or the Encapsulating Security Payload (ESP). These SA

are unidirectional and, in order to get bidirectional communication, two of these structures

need to be instantiated, for each header used.

The protocols used to set these structures are the IP Security Protocol (IPSP), and

the Internet Security Association and Key Management Protocol (ISAKMP). The last one

provides a framework for authentication, which is key exchange independent and provides

the Internet Key Exchange (IKE) [26] protocol and the Kerberized Internet Negotiation of

Keys (KINK) [47] to exchange key material. The latter, is a protocol similar to IKE but

uses the Kerberos protocol to allow third parties to authenticate stakeholders. The IKE

does not implement a strict operation described by OAKLEY [40].

The IKE works in two phases:

• The IKE phase 1, establishes a secure authenticated channel using DH key exchange.

This authentication is assured by using pre-shared keys, signatures or asymmetric

keys.

• The IKE phase 2, use the previously established secure connection, to negotiate the

IPSec's SA. Usually, two SA are needed, for inbound and outbound tra�c.

The IKE phase 2 always operates in quick mode, whilst phase 1 may operate in main

mode or aggressive mode. Aggressive mode does not protect the identity of the peers

creating the secure channel and makes the negotiation to be made in 3 packets, whilst the

main mode does protect the identity but takes more more time.

In total, the IKE exchanges exchange 6 messages, as seen in Figure 2.21, if both peers

support cookies, if one of the peers do not support this, it is extended to 8 messages.

There is also support for IKEv2 Mobility and Multihoming Protocol (MOBIKE) [10],

which exchanges the same messages as IKE. However, this protocol allow to change the IP

in the SA structure. Even so, there is loss of connection when handover is made, because
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Figure 2.21: IKE main method
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Figure 2.22: IPSec representation of the ESP and AH in the various IPSec modes [33, 59]

IP needs to be updated using a UPDATE_SA_ADDRESSES message, which needs to be veri�ed

for its authenticity.

IPSec works by using between one or two headers, the ESP [28] and the AH [27]. The

AH does not encrypt the payload but it provides integrity check on complete packet. The

ESP, however, protects only the payload encapsulated, both with encryption and integrity

control. The AH, in order to support Network Address Translation (NAT) cannot do the

integrity check on the whole packet, because source IP, for example, will be changed. In

order to support this, if the value can be predicted, that value is inserted in the �eld for

the Integrity Check Value (ICV) calculation, if it cannot be predicted, it will be set to zero.

Rather than omitting the value, alignment is preserved. This process is repeated both in

the sender, and the receiver.
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IPSec can operate in two modes, as seen in Figure 2.22. The transport mode, uses the

original IP address to route the packet and adds the security headers to protect payload.

The tunnel mode, adds the security headers and a new IP address.

Transport mode is not usually seen as a VPN because are used in machine to machine

communication, whilst the tunnel mode is used for machine to network or network to

network applications.

This protocol could be used on top of Mobile IPv6, however, it would have a great

amount of headers which are not needed, and since we can control the environment to

create a meshed L2 network, this overhead could be removed. This makes the protocol not

suitable, because it only supports IP and it sees both endpoints as equals, whilst we may

want the server to impose conditions on nodes on the network.

2.7.9.3 OpenVPN

OpenVPN [53] was developed as a versatile and portable solution, running in userspace.

The authentication uses SSL and asymmetric keys to authenticate both endpoints and

uses the ESP to communicate securely between the stakeholders.

This solution also operates over IP, and supports both User Datagram Protocol (UDP)

and TCP.

It can be con�gured in two modes:

• Routing mode: In this mode, the tra�c of a user is routed through the tunnel in a

IP-only network. This mode is more scalable than bridging because L2 broadcasts

are replied by the OpenVPN administrative virtual interface, the TUN. However, it

does not support L2 discover protocols and other L2 services.

• Bridging mode: This mode operates at a lower layer and creates a bridge between

the user and the virtual interface, TAP. The performance is worse when compared

with routing mode but it allows L2 services to be provided.

This solution is still not appropriate for this networks, since it runs over IP and does

not support mobility, because security parameters are bound to IP.

2.8 Security Solutions for VANETs

The security solutions found in literature heavily depend on the uses given to the tech-

nology, for example, tra�c safety purposes will not be spreading any potential con�dential
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information and because of that, encryption is not needed, but source authentication is

very important in order to not fool legitimate vehicles with information from malicious

nodes [45]. In opposition to this use of the VANETs, they can also be used to supply con-

nection to services hosted on a provider network or even outside. These are two examples

of uses which would use two completely di�erent approaches in order to secure tra�c.

The �rst use of this type of network could use, for example, Public Key approaches as

described in [14, 19, 9], because it is a type of tra�c which does not need to have high

throughput, but rather, it should be authentic (at least the sender must be authenticated),

as described in [45]. For this purpose, message signing is enough, and the overhead of using

asymmetric techniques, which would in most cases make the network slower, is probably

better than a handshake to establish a shared symmetric key which would be used only to

exchange little tra�c.

In the second case, the tra�c would be approximately continuous and because of that,

makes the previous solution infeasible because the number of times exponentiation would

be applied to packets would, at a certain point, have harsher impact on the network per-

formance and for this purpose, and this alone, a solution could be to establish a handshake

with a server in infrastructure in order to establish a long term key to be used for all the

tra�c in a certain vehicle.

However, none of the documents really proposes a protocol for a secure infrastructure

but rather, they discuss the use of some methods to authenticate a certain type of tra�c.

Also, in [44] it is pointed out that symmetric solutions have a complexity of O(n2),

and asymmetric solutions have O(n). This is true when considering V-V communication.

However, if we consider V-I, the complexity of the symmetric algorithms may becomeO(n),
if the key is only established between the endpoints, hence solving the excessive memory

consumption problem.

The big problem in asymmetric solutions, will always be the distribution of the key

pair. How should the keys be put in a not (yet) authorized node and assure that they were

not mislead, and the user ultimately using that private key is really authorized to do so.

The most reasonable way of doing this, since VANETs providing services in the cloud

to users is always operated by a provider, keys may be pre-injected.
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2.9 Chapter Considerations

In this chapter, we have explored several issues in VANETs, the cryptographic primi-

tives, protocols and existent solutions which are able to solve those issues.

The design of security architectures in VANETs is of major importance, and the research

in this �eld is almost non-existent. However, there are some published architectures that

focus on tra�c security applications, but largely rely on PKIs to assure node authentication.

Regarding the infotainment applications, the current solutions impose a large overhead,

since they always rely on IP in order to establish a secure connection. Also, this type of

networks are highly dynamic and the connection in them is unstable, whereby current

security solutions do not apply.

In the following chapter, we will present a lightweight security solution, which was

designed to be more reliable in cases of intermittent connectivity between nodes. Fur-

thermore, the proposed solution aims to solve the protocol stacking overhead and apply

authentication protocols in a intelligent way, without disregarding security. This will still

provide a secure communication between the users, and the HN without introducing non-

relevant layers.
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Chapter 3

Link Layer Virtual Private Network

3.1 Introduction

In chapter 2 we have presented a brief overview of vehicular networks and security

concepts. In practice, the current solutions deployed in static networks are not appropriate

in VANET scenario. Therefore, in this chapter we propose a security architecture which

can use some of these concepts to secure the user communication whilst supporting high

mobility scenarios.

Section 3.2 describes the problem faced when considering the speci�c scenario of the

vehicular networks. Here the current security solutions' problems are shown.

In section 3.3 is described a possible solution to the problem stated in section 3.2,

as well as the stakeholders present in the following architecture and the communication

requirements.

Section 3.4 overviews our solution, the stakeholders and the overall relation between

them in the shown architecture.

Section 3.5 describes how communicating endpoints should be addressed in order to

have a solution which is independent of the link layer technology used.

Section 3.6 describes the idea behind the VPN routing algorithm and a particular

example of its implementation.

Section 3.7 describes how a vehicle is authenticated in a high level perspective.

Section 3.8 explains how users connected to authenticated access points are addressed.

Section 3.9 describes the structure of the VPN packets.

Section 3.10 shows the software architecture, the functional modules and the �ow of

di�erent types of messages through each module and, the mechanism implemented to
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prevent memory over�ows.

In section 3.11 some problems found in the solution are shown and their solutions.

In section 3.12 the considerations about the architecture are described.

3.2 Problem Statement

The architecture in place uses devices to create a meshed network and communicate to

external providers, these devices are described next.

• RSU: This device is an interface between the 802.11p Layer 2 meshed network and

the Layer 3 network connecting it to the VPN server.

The RSU is a �xed access point to the vehicular network, and it behaves as a gateway

between the OBUs and the VPN server. This node provides interaction between the

vehicular network, and external �xed networks.

• OBU: This device is a mobile node to which users can connect using well-known

technologies, such as 802.11g. OBUs form a meshed network between themselves,

forming branches (like a tree) with a starting point in the �xed infrastructure. They

also have other ways to connect to the HN when the infrastructure is not available,

for example using cellular. However, such approach is usually avoided since this tech-

nology is very expensive, when compared to Wireless Local Area Network (WLAN)

technologies cost.

Since vehicles move, the security solution should tolerate fast and frequent handovers.

This imply not renegotiating the secure tunnel parameters upon handovers.

Previously, some existing security solutions were described. Using Mobile IP (MIP),

some of those solutions could be applied. However, they have some problems.

PPTP would require a constant connection because the negotiation of the tunnel and its

maintenance is controlled with an initial TCP connection, which would break on connection

loss. OpenVPN would work in UDP mode while the IP of the mobile nodes is maintained

constant. However, this may not be assured in these dynamic environments.

IPSec supports mobility by using MOBIKE. However, it assumes that both peers can

change their IP address by negotiating new asymmetric SAs. These operations can add

some protocol complexity and aggravate the SA setup which is already cumbersome [38].

Furthermore, we want to implement VPNs to vehicles that may be identi�ed by their

own endpoint identi�er.
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3.3 Requirements of the Solution

We want user data �owing in the network to be protected. The vehicle should be

authorized to access the HN through a meshed network, and the data sent and received by

it should be con�dential in between stakeholders.

To avoid the problems existing in previously presented solutions, the solution developed

must be lightweight and exploit the VANET technology characteristics to create a dynamic,

IP-independent, L3 mobile VPN. The solution should depend on a unique vehicle identi�er

which must be maintained constant at all times independently of the state of the connection

or the access technology as in [60]. Also, because we have full control of the environment,

when designing a solution like this, we can also omit the outer IP-layer, keeping only the

protected inner layers belonging to the users and exchanging them between the vehicles

and the server through a secure tunnel, using the VPN identi�er to route data.

The security parameters should also be created only once, and maintained even when

the node has no connectivity. This way, when the vehicle is in range, it may resume

communication with the server, because they both have the security parameters already

established, which prevents blackouts due to renegotiation.

The security parameters should be negotiated by the endpoints, and a secure tunnel

should be established on top of a routing strategy. Furthermore, to provide a seamless

experience, the security parameters should not depend on parameters changing when mo-

bility occurs. For that purpose, and considering the available infrastructure, we propose

another entity, the VPN server.

The VPN server establishes the required security parameters for each vehicle, identi�ed

as a unique Endpoint Identi�er (EID), in order to provide access to the HN. This server

may be located in the same network as the RSUs or be deployed in an external network.

A user, which might be considered a mobile node, uses an access point provided by an

OBU to get a secure connection to a HN.

This secure connection encompasses a set of security requirements that should be met,

as for example, authentication and con�dentiality. In that sense, this secure connection

resumes the requirements established for VPN.

The OBU may use several means available to connect to a HN, for example a direct

connection to an RSU or a multi-hop connection to other vehicles connected somehow to

the infrastructure.

The VPN server should authenticate each vehicle in order to grant access to the HN

and manage tra�c between this network and each OBU.
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Each OBU should act as a Network Access Server (NAS) [37] to provide access between

the user and a HN, through its VPN server. It will route user data securely to a HN and

vice-versa.

Despite the authentication process of each OBU and the connectivity transparency for

the user, handovers will occur when a vehicle gets a connection with a better metric to the

infrastructure. Since the network will support multi-hop, the handover should be made

between RSUs and between OBUs. The handovers should be transparent to the users when

using an OBU as an access point, but not to users changing between OBUs.

Three security requirements established are the following:

• Users' tra�c should be con�dential between the OBU providing the access point,

and their HN.

• Message integrity must be assured. Any modi�cation to the tra�c made by other

persons than the stakeholders must be detected and rejected.

• Tra�c between the HN and the OBU should not be diverted by attackers to other

hosts in order to prevent against DoS and vice-versa.

Depending on the architecture con�guration, the HN could either identify users con-

nected to OBUs or just the OBU in which the user is connected to. The �rst situation is

much more �exible because it allows to establish di�erent HN access network policies for

each user.

3.4 Network Architecture

The network may be divided in two di�erent segments, as can be seen in Figure 3.1:

• The Ad-Hoc Meshed segment may be considered one big network. Since we are in

full control of how tra�c moves here, the VPN may be supported only by the link

layer and a few headers which are mandatory such as an unique identi�er.

• The Layer 3 segment, which is required because when leaving the network that we

control, the tra�c has to be in accordance with standards used by external network

providers.
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Figure 3.1: Proposed Network Architecture. Users (M) connect over a Link Layer tunnel
formed between vehicles (V) and the VPN server

Users' equipment (M) connecting to the vehicles (V) are authenticated with standard

technologies, using for example 802.1X. This is a well-known user authentication mecha-

nism in Wireless LAN, and for tra�c encryption the 802.11i (known as Wi-Fi Protected

Access II (WPA2) which is widely used in most private wireless networks nowadays) should

be used because it protects the entire L2 packet.

Vehicles will then establish a secure session with the VPN server, by using pre-deployed

authentication credentials, allowing them to negotiate speci�c parameters that belong to

that secure tunnel.

For already created sessions, in the VPN server, packet protection should be veri�ed

and reversed allowing users to access services within the HN. Since several devices may

connect to a speci�c OBU, and they communicate using the TCP/IP stack, the server must

be able to keep track of the IP of each device in each OBU, in order to forward packets

accordingly.

The association established in the server should be kept at long term in order to reduce

renegotiation to a minimum, and should not depend on the IP given to the user or the

vehicle. This feature allows the VPN server to work even with di�erent technologies and

to re-establish the connection after handover with minimum latency.

This architecture allows several di�erent NAT deployments. NAT deployed in the VPN

Server will allow the tra�c from the users to be undi�erentiated on the HN services and

in the HN gateway, NAT deployment at the HN gateway will allow to di�erentiate the

users IP in services within the HN but not outside of the HN. These two layers of NAT

are perfectly compatible. At last NAT could also be deployed at the OBU. This third
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deployment could be more troublesome because it restricts communication between two

di�erent vehicles because it will make the server di�erentiate only vehicles and not users

connected to them, which makes impossible for the VPN server to address user IP and

therefore restricting communication between users in di�erent vehicles.

3.5 Node Identi�cation

The OBUs should not be di�erentiated by the address given by the access technology

which they are using at the moment to address the external network. Instead, they should

be identi�ed by a Vehicle Endpoint Identi�er (VEID) which should be unique in the network

and independent of the interface in which it is receiving information. This avoids problems

with IP mobility.

The usefulness of this VEID is not only restricted to the advantages it has in routing,

but also to the authentication process. If authentication is bound to this unique identi�er,

the node will never need to renegotiate a VPN when the network interface card addresses

change.

The users, however, use the normal communication stack, with IP. Because of that,

mobility is provided to the vehicles but not to users changing access points.

3.6 Forwarding

Generally a routing mechanism should try to optimize one or combinations of the

following situations:

• Shortest path (fewest hops)

• Shortest time (lowest latency)

• Shortest weighted path (based on several factors, for example bandwidth, signal

strength, . . . )

The solution proposes to authenticate nodes by their EID and also, to reduce the

number of layers used by common protocols. Because of those are the goals, IP layer is

then, unnecessary. A meshed forwarding protocol similar to service-based routing [32] was

created, which identi�es nodes based on their VEID, that also represents the tunnel. The

protocol is then speci�ed in this section.
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1. RSUs periodically transmit beacons. Those beacons indicate direct access to the

infrastructure. The lack of beacons in the environment will be interpreted by the

nodes as being out of the infrastructure coverage.

2. OBUs keep listening to environment messages, establishing their uplink connection

from the message with the best metric to the HN (be it the number of hops, RSSI,

or any other combination). If there is a tie between the current uplink and another

one received, the OBU will check for the RSSI and connects to the one which has a

higher value. It is also possible to carry along the path the sum of the RSSI to the

RSU and calculate the overall best connection by calculating the Equation 3.1:

RSSI =
i=n∑
i=0

RSSIi
n

, n = Number of Hops (3.1)

Every time an OBU refreshes its uplink connection, it sends a message (SESSIONNOTIFY)

to the uplink advertising itself and broadcasts a BEACON message. By sending a beacon

only as a reaction to another beacon, and not periodically, we can save bandwidth and

processing, since we know that these message must start at the RSU, periodically, and if

OBU cannot receive beacons, then it is not in the range of any RSU. When a OBU or a

RSU receive a SESSIONOTIFY packet, the path to that node is added to the downlink table

and that packet is then carried to the VPN server.

This mechanism aimed to establish the shortest path to the server. The algorithm

tried to maintain the best connection to the server by establishing a path with the fewest

number of hops. Since in some situations, the node would change it's routes very quickly

(by having a tie in the number of hops) even if there was no advantage of doing so, a new

factor was brought in consideration, the RSSI. With the addition of the RSSI factor, it

was possible to solve ties in the number of hops and only change path if the new one had

a better RSSI. This prevented the change to paths with the same distance to RSUs but

worse channel condition (either because of distance or interference).

However, it is also added a hysteresis mechanism which is based on the RSSI to make

decisions when the metric is tied, as shown in Figure 3.2. As shown in the �gure, the route

will not change immediately to a new connection if that new connection is not signi�cantly

better.

The route establishment decision process is described in Figure 3.3. Every node in the

meshed network makes decisions based on this algorithm.
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Connection 1

Connection 2

RSSI_HYSTERESIS

Figure 3.2: Hysteresis mechanism based on RSSI

Wait for routing packet

Received Beacon Received Acknowledge

Has a better or equal connection

Set uplink route Set downlink route

Send Acknowledge to uplink Send Acknowledge to uplink

Send Beacon with 1 more hop

True

False

Figure 3.3: Node Forwarding Algorithm

The OBUs only need to know where the infrastructure is in order to communicate with

the server. Also, each OBU knows which OBUs are transmitting data to the infrastructure

through it.

The protocol is proactive, because it maintains a fresh list of paths to the destination

and periodically updates the table. However, for it to work, the table does not need to

contain every path but just the next-hop to the server and the next-hop to downlink.

Instead of having the whole path as in source routing, or specifying the destination as in

destination routing, the packet is marked with an EID and when it is sent to the network,

the packet will follow a �ow as seen in Figure 3.4. The �gure shows that a packet sent by

a OBU will always go upstream to the server unless the path is corrected in the middle

(in this case the packet will reverse its �ow until it gets a valid route, and helps nodes

detecting invalid entries in the table).
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Figure 3.4: Routing Scheme

Since vehicles move, the downstream routes may become outdated. A fallback mech-

anism is implemented: when a packet reaches a dead-end, the �ow that it is following is

reversed until it reaches a valid route, removing all outdated routes, and then reversing

the direction of the �ow again in order to use correct routes as shown in Figure 3.5.

VPN

Server

RSU

OBU OBU

OBU

(1)

(2)

?

Figure 3.5: Fallback mechanism used to recover packets

In order to implement this routing scheme, structures are needed to hold the information

relating the hop by hop information. This structure can contain the same information for

both the uplink and downlink information. For each EID, the structure should contain the

MAC address of the interface relating to the Network Interface Card (NIC) with contact

to the next-hop and the MAC address of the next-hop to reach that EID. The structure

should also contain the metrics used to decide, in order to be able to compare with the

next values of the received possible paths and the timestamp when the last decision was
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successfully made. On the server the only parameters necessary to be stored are the RSU

IP and its port.

A diagram displaying what each node has to do in order to construct the forwarding

tables is shown in the Figure 3.6 and is explained next.

VPN Server RSU OBU1 OBU2 Network

Beacon (1 hop)

RSU ID Beacon (2 hops)

Beacon (N hops)OBU1 ID

OBU2 IDOBU1 ID

OBU2 ID

OBU2 ID

Figure 3.6: Forwarding Protocol

In this example, there is a RSU and two OBUs in the network. As described before the

RSU will send periodic beacons with a metric, e.g. 1 hop. Because OBU1 is within the

RSU's range, it connects to it, acknowledges the connection and broadcasts the service.

OBU2 is only in OBU1's range, it connects to OBU1, acknowledges the connection and

broadcasts the service. Because, in the example, there is no other node in range, the packet

will not be retransmitted again, preventing network �ooding. Since every node registers

the connections being made, the tables in the nodes would look like shown in Table 3.1.

Table 3.1: Forwarding Tables

VPN server RSU OBU1 OBU2

Uplink Uplink Uplink Uplink
�� �� RSU MAC OBU1 MAC

Downlink Downlink Downlink Downlink
RSU → RSU [IP, PORT ] OBU1→ OBU1 MAC OBU2→ OBU2 MAC ��
OBU1→ RSU [IP, PORT ] OBU2→ OBU1 MAC �� ��
OBU2→ RSU [IP, PORT ] �� �� ��
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3.7 Authentication in HN

In order to be accepted in the server, all the intervening nodes must have its own

private key and the server public key, with the exception of the server which needs only

its private key and all the authorized nodes' public keys. If any vehicular node does not

meet these requirements, it must not be able to establish a tunnel with the server. Any

intervention regarding the key establishment by a third party in the network should also

be detected and rejected. The keys should be pre-deployed and they should be protected

against third-party modi�cations (copy and removal included).

In order to start the authentication, one of the endpoints has to initiate the key ne-

gotiation. If the server started negotiating the parameters, it would have to iterate over

every node in order to check for key validity or even existence. Then, the OBU is the

stakeholder which always starts the key exchange. However, if the OBU has a SA but the

server is restarted, this approach will not be able to renegotiate new parameters. Because

of that, the �rst time the server becomes aware of the vehicle, it asks that vehicle to start

the authentication process (by sending VPN_SETUP_START to the node).

When the vehicular node receives a packet to start the authentication (VPN_SETUP_-

START), it starts a signed Di�e-Hellman (DH) key exchange which will generate a secret,

shared key, that will be used by the ciphering algorithm to protect the payload of every

user data packet exchanged between the server and the vehicle. The VPN_SETUP_START is

not necessary to start the authentication. The node can also start the exchange, if the key

expires.

The operation of this protocol can be seen on Figure 3.7, where it is shown the case

in which the server became aware of an unauthenticated node in the network, therefore,

requesting its authentication, afterwards the key lifetime passed and the node tried to

generate new key material.

The amount of data signed in each packet is di�erent. While in VPN_SETUP_START

only the signature is hashed/signed because the crucial information behind it (the EID)

is also included in the Signature header and it would be redundant to do it, in the other

authentication packets the public key is added to the digest.

With those fresh-generated keys, the endpoints calculate a session key which may be

used for a long time, and discard the other keys in order to achieve Perfect Forward

Secrecy (PFS).

There is a time-out associated with the key, because now the only way to calculate the

key is solving the DHP, or the DLP and that cannot be done currently faster than the
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VPN Server Vehicle

VPN_SETUP_START

VPN_SETUP_REQ

VPN_SETUP_RES

...

TimeoutVPN_SETUP_REQ

VPN_SETUP_RES

Figure 3.7: Authentication Protocol

timeout.

When exchanging data between the HN and the user, the symmetric key derived from

the authentication process belonging to the correspondent vehicle is always used to protect

the data and its integrity.

The key derived from this process is stored in a structure which has the same compo-

sition on both the vehicular node, and the server. This structure only stores the key, in a

char array in order to prevent several dynamic memory allocations when using it, and it

contains also the corresponding EID. Also, the timestamp is stored in order to maintain a

record of the validity of the key.

The process in each node can be described by Figure 3.8. In the �gure it is shown

that each node has 3 states. The second one, NEGOTIATING, is a temporary state in which

the node waits for the reply of the server. If the server does not reply, the node will fall

to the NOTSET state or, if a reply is received and is valid, it proceeds to calculate session

parameters and fall into the VALID state which is maintained until timeout or renegotiation

request. Nodes always start on the NOTSET state and they are therefore, the ones to start

the authentication protocol.

Also, as seen on Figure 3.9, when the server detects a new node connecting, it sends a

signed packet requesting the node to start the DH key exchange. This only occurs once per

node because if the node disappears, the VPN server shall not start the renegotiation. If a
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Sleep X ms or wait for packet

Woke up Packet Received

State NOTSET

State NEGOTIATING

State VALID

• If woke up

� Generate DH parameters

� Send VPN_SETUP_REQ

� Set State as NEGOTIATING

• If woke up

� Timeout

� Set State as NOTSET

• If VPN_SETUP_RES

� Set context

� Set State as VALID

• If VPN_SETUP_START

� Set State as NOTSET

Figure 3.8: Node Authentication State Machine

timeout occurs, the node will start, by its own will, the DH key exchange with the server.

All keys are registered in the server structure which maintain parameters for communicating

with all nodes.

3.8 User Tra�c Association

In the server, it is kept a list of the users' addresses in each node, so that the VPN

tra�c can be routed accordingly. In order to do this a structure was created which holds

the EID and the lookup key is the EID. When the tra�c comes from the user, the

source IP is checked and that IP is associated to the EID where the packet originated.

Furthermore, when the server wants to communicate with a user, it looks for the EID

where that destination IP is connected and sends it only to that node.

By doing this, we can address not only nodes, by their EID, but also users connected

to the access points by their IP.
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Wait for packet

Search in SA list for client

Unknown Client (received

new SESSIONOTIFY)
VPN_SETUP_REQ

• Send VPN_SETUP_START

• Register temporary empty

context

• If context non-existant

� Register empty context

� Fill context

� Send VPN_SETUP_RES

• Else

� Fill already existing con-

text

� Send VPN_SETUP_RES

Figure 3.9: Server Security Association Management Algorithm

3.9 Packet Structure Overview

In order to reduce the overhead added by headers which are used in standard solutions,

and since the meshed segment of the network allows to manipulate packets over L2, it was

added a new layer on top of MAC, this header is used to forward packets between the VPN

server and the vehicle.

The packet type, which may contain BEACON or SESSIONOTIFY for routing establishment

packets, VPN_SETUP_START, VPN_SETUP_REQ or VPN_SETUP_RES for authentication packets

or other numbers for other types of data. The Metric �eld will carry information about

the main metric used in forwarding packets and in normal tra�c will carry information

about the direction of the �ow which the packet is following (if the packet is following a

good route, it is NORMALD, if not it is REDIRECTD). The EID �eld is the unique identi�er

used by the node.

The payload composition may vary depending on the Type of packet. During authen-

tication, the payload contains the sender DH Public-Key and a Signature header shown in
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Type Metric EID Payload

Figure 3.10: EID Header

Figure 3.11, which allows authentication using RSA public-key schemes.

The packets with Type VPN_SETUP_START only contains the Signature where the Digest

is a one-way function of the other Signature �elds.

0xFE|CipherMode Nonce

EID Timestamp

σ (SEID, h(message))

Figure 3.11: Signature Header: The CipherMode variable is a bit that indicates if the
node is requesting cipher or not. The last �eld is a digital signature applied on the hash
of the message

The packets with Type VPN_SETUP_REQ and VPN_SETUP_RES are composed by a runtime

generated DH public key and the Signature header. The public key is signed in order not

to be altered. By doing this, an active attacker will not be able to change the key whilst

maintaining a valid Signature �eld.

As a note, standard network order for packet �elds should be big Endian in every

network exchange, and the sender must convert the �elds which are composed by more

than one byte to network order so that compatibility between di�erent architectures is

maintained. Similarly, the receiver must �rst convert the �elds in the packet and only then

use them.

User data is captured in the OBU, padded, ciphered with the current VEID key and

then appended to a new packet containing a routing header.
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3.10 Software Architecture

In order to implement the network architecture, the software is organized in modules.

Each one of these modules has speci�c functions in order to detach each plane of the

network, and also to separate the program operation in di�erent stack levels.

The following modules were de�ned for low level interface with network devices:

• Transmission and Receiving modules for control plane.

• Transmission and Receiving modules for data plane.

• Transmission and Receiving modules for Layer 3.

The modules for Layer 3 interface are used in RSUs, where communication requires

the support of external providers. The modules for sending and receiving data at Layer 2

are separated into two di�erent planes in order to separate route establishment from data

tra�c.

These modules communicate with two other modules:

• The control plane manager module receives routing information from the network in

order to construct its own routing tables.

• The data plane manager module receives data and authentication packets, and uses

the tables established in the control plane manager to forward packets between nodes.

If the data packet belongs to a speci�c node, the authentication or tunnel manager

modules will be called. These are the highest level modules. The authentication module

manages the session state, generates and exchanges keys. The tunnel manager applies

transformations to incoming and outgoing packets. However, some of the refereed modules

do not need to be used in all the nodes in the same manner. For example, the authentication

manager module, in the server , will never process VPN_SETUP_RES packets and the vehicular

node will never process VPN_SETUP_REQ packets. Because of that, it does not make sense

to accept those packets in those cases.

The VPN server acts as a gateway from the users to the HN and vice-versa. For that

purpose it contains three fundamental components working with speci�c purposes accord-

ing to Figure 3.12. The �gure shows that in the server the only modules are the authenti-

cation manager module, the tunnel manager module, and the receiving and transmitting

modules which interact with the other two.
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Figure 3.12: VPN Server Components

In Figure 3.13 it is illustrated an example of the working �ow of the node. As seen on

the �gure, the receiving module manages the routes of each EID and may create contexts

if the node is not known. When authentication data is received, that data will be passed

to the authentication manager in order to give access to the node. When data packets are

received, the tunnel manager will wake up and will process the packets.

As seen in Figure 3.14, the RSU is formed by the modules that, in cooperation, allow

packets which are being transported over Link Layer to change and be transported over

Network Layer. This can be done only by removing the MAC layer which is passed in the

vehicular environment (in the tunnel manager), and append the rest of the packet after IP

(in the L3 transmitting module). This is a requirement for this node because the server

can be running on networks crossing other external providers. The authentication manager

in the RSU is not necessary, however, it allows the RSU to authenticate in the server. The

RSU manager module is the module that triggers the beginning of the routing process,

by advertising the RSU to the server, and to the control plane forwarding manager. The

control plane forwarding manager constructs the routing tables when it receives packets,

and the data plane forwarding manager uses those tables to route data.

A high level description of how the modules communicate between them is shown in

Figure 3.15. As seen in the �gure, in the RSU can receive authentication information

directed to it from the server and respond to it. For data that it is not addressed to it, it

will append or remove the MAC layer in accordance to the situation, and send the packet

to the meshed network if it is received from the server or send the packet to the server, if

it is received from the meshed network.

The main di�erence between the RSU and the OBU is that the RSU sends packets

going to the server always to the L3 low level interfaces, whilst the OBU keeps on sending
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Figure 3.13: Server Packet Flows

through the L2 TX/RX modules. The modules and their relations on vehicles is shown

in Figure 3.16. In the �gure, the tunnel manager sends or receives data from users, and

the authentication manager interacts with authentication messages. The control plane

forwarding manager establishes routes in accordance with the messages received, and the

data plane forwarding manager uses the structures generated to route packets in the meshed

network. The table manager is also required to clean tables when routes are detected to

be invalid (when they expire).

An example of the �ow of packets and operation taken by the OBU with control packets

can be seen on Figure 3.17, and a diagram of the operations taken on data packets can be

seen on Figure 3.18. As shown in the �gure of the control �ow, the control plane forwarding
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Figure 3.14: RSU Components

manager reacts to packets received from the network in order to construct the tables used

in the meshed forwarding scheme. In the �gure showing data �ow, when a packet is

received, the destination is always checked, and if the current node is the destination, the

authentication packets will go to the authentication manager and the user data will go to

the tunnel manager. If the packets do not belong to the node, the data plane forwarding

manager will check the tables and route the packet.

3.10.1 Queue Management

Since the queues between modules must not be allowed to �ll the memory completely,

a maximum size is de�ned for each queue, and a queueing policy similar to Random early

detection (RED) [12] is implemented in order to prevent memory from �lling too fast.

The algorithm calculates the probability of rejection of the packet based on the current

queue size, and it is de�ned as shown in Equation 3.2. This leads to a rejection probability
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Figure 3.15: RSU Data Packet Flows

function that behaves like described in Figure 3.19.

P (n) =


0, if n

MAXSIZE
< THRESHOLD

n
MAXSIZE

− THRESHOLD, if n
MAXSIZE

< 1

1, n
MAXSIZE

= 1

(3.2)
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Figure 3.17: OBU Control Packet Flows

This allows the memory to be controlled and it prevents the program from being killed

by the kernel for using excessive amounts of memory.
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3.11 Anticipated problems and solutions

3.11.1 IV randomization

The IV is a bu�er used by the AES-GCM algorithm with the purpose of randomizing

the data packet. Using a constant IV in several packets means that, given a certain packet,

if there is an equal one in the same session, the result of the cipher will be the same.

This is not a very concerning matter. Even the standard points out that using unique

and random IVs is not mandatory. It is, however, recommended, because it might help to
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Figure 3.19: Queueing policy implemented

prevent replay attacks. If we maintain the IV equal to a part of the key, we do not need

to carry it because both endpoints have that information �xed (using a speci�c part of the

session key, which both endpoints possess).

3.11.2 Forwarding

The routing mechanism implemented is a insecure protocol. An attacker could mislead

data tra�c by advertising beacons with low metric.

This issue may be solved, for example, by appending a digital signature to routing pack-

ets. However, unilateral authentication would not be enough, in order to avoid Man-in-the-

Middle (MitM) attacks, mutual authentication would be required which would probably

have impact in the performance of the routing algorithm.

Another way this could be solved is to implement a hash chain [56], because hashes

have the advantage of being very fast to generate. A disadvantage of this is that this is only

good for N passwords where N is chosen at initialization time and a counter of passwords

must be maintained [41].

3.11.3 Scalability with an increasing number of clients

In order to allow inter-node communication, NAT deployment must be done in the

server and not in the OBU. NAT deployment, if done at the OBU level, will allow the

server to route tra�c to nodes just by knowing the IP of the vehicle.
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However, if NAT is done at a vehicle level, when intercommunicating between clients,

the server will not know where the destination IP of the client is located. This cannot be

solved easily, since a NAT deployment in the OBU level will increase the solution scalability,

but would deny inter-client communication. A NAT deployment at the server level would

allow this feature, but would decrease the performance, since each user has to be mapped

instead of only its network access OBU.

3.11.4 Link Layer Broadcast Flooding

Most operating systems provide virtual devices, the TUN (network tunnel) or the TAP

(network tap), that are not attached to network adapters. They are usually used in tun-

nelling solutions and virtual-machine networking. The TUN device is used in IP-only appli-

cations and the TAP operates with Ethernet layer. In tunnelling solutions, TAP implements

a bridged network and the TUN device can implement a Point-to-Point IP-only network.

Using a TAP device to capture users' tra�c, layer 2 broadcasts are caught in the device.

This would cause broadcast �ooding (mostly from neighbour discovering services) because,

when the server received such packets, it did not know how to reply, and because of that,

it would replicate that packet for each board on the network.

In order to solve this, which is a known problem of bridged VPN [52], the solution is

to separate broadcast domains by changing the device to a TUN, which is Point-to-Point

IP-only device.

3.12 Chapter Considerations

The current chapter presented the proposed architecture. The solution uses known

cryptographic primitives to secure communication between a node, and a external network,

supplied by a service provider.

This tunnel is secure, because the stakeholders exchange a symmetric key in a mutual-

authenticated DH exchange. The key derived from this protocol, is used not only to assure

the privacy of the data �owing in the network, but also the integrity of that same data.

The network is, at the time, vulnerable to attacks on the routing mechanism. These

attacks can create partitions on the network. They cannot, however, impersonate the

stakeholders in the authentication process, and neither can they interpret the data sent by

the user or the server, once authentication is completed.
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Chapter 4

Secure VANET implementation

4.1 Introduction

This chapter describes the implementation of the proposed solution.

In section 4.2 it is described the paradigm which �ts best the solution, and the libraries

used. Some libraries have advantages in comparison with others and, because of that, this

is crucial information that describes why those decisions are made.

In section 4.3 structures used to hold information about routes, cryptographic param-

eters and user info are described.

In section 4.4 are described the functions which allow to use the security protocols.

In section 4.5 it is described how the tra�c is made con�dential after authentication.

In section 4.6 it is described, the decisions made by modules within each node.

In section 4.7 it is calculated the overhead put on the network by the authentication

and the components which are holding back the software performance.

In section 4.8 it is described how each node should be con�gured in order to start this

solution.

In section 4.9 the considerations about the implementation are described.

4.2 Software Paradigm and Libraries

The software was designed using a Event-driven architecture (EDA) approach so that

the �ow of the program is determined by network events or local variables which are set

at the beginning of the program.
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This type of approach may be used by applications which transmit events/messages

among loosely coupled software components (components who have little or no knowledge

of other components and react only to events occurring in themselves). It is also a good

strategy because each module which forms the software is asleep when it does not have

events queued, saving a lot of processing power when idle.

Because of this kind of detachment between components allowing completely asyn-

chronous operation, several work�ows may have to be de�ned to describe the operation of

the whole software.

However, since events are mostly asynchronous, not only deadlocks are bound to disap-

pear but also the software may be able to process two events at the same time in di�erent

components, when synchronization between data is not necessary.

Several libraries are used in order to provide easy access to structures and operations

that are required in the �ow of programming.

In order to have at disposal several data structures which are going to be used along the

development, there is a need to choose a library which supplies access to data structures.

In C++ the Standard Template Library (STL) has an e�cient implementation of generic

data structures which would be a major advantage of using this language. In C, however,

most libraries use void * which is slow to instantiate, may cause cache misses and is not

optimized by the compiler. The other way of obtaining a generic library in C would be to use

macro de�ned structures in order to instantiate every structure at compilation time instead

of runtime. By doing this, we can have solutions as e�cient as type-speci�c libraries, which

are able to work with custom-de�ned structures. The only drawbacks would be that macros

may turn code hard to debug, less comprehensible and the dynamically allocated memory

handling inside each node must be handled by the developer and not the library.

To handle data structures, KLib is the library chosen. It provides several data structures

which do not need to be installed, and each one has no internal or external dependencies.

The data structures included in the project are khash and klist.

KHash provides a hashed list implementation and is used to create structures when

lookup operations are common, because hash lists are the most e�cient structures in these

operations.

KList is the queue implementation used to pass data between threads, and also used

to handle routing tables. The reason why queueing is chosen to be implemented as a

FIFO is straightforward. Linked-Lists are very e�cient when appending data in the tail

and removing the head, each one of these operations needs only one command. It is not
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Figure 4.1: Performance comparison between several cryptographic suites tested in a com-
puter with a Intel Pentium 4 at 3.2 GHz with 1024 KB L2 cache [4]

e�cient, however, to iterate over data because no shortcuts are available and the list has

to iterate over each and every element until it �nds the one needed.

Yet, even with the reasons presented earlier, routing tables do not gain advantage over

using neither one of the two implementations refereed. The reason why they are kept with

linked lists is because the algorithm might change, thus changing the search key. This

would imply that the Hash table implemented now would not be valid in other algorithms

and had to be rewritten. By keeping them implemented as linked-lists, the only way to

search for nodes is iteration, and while this is a not performance advantage, it would help

to maintain compatibility with big changes in structures if the lookup ID is maintained

unique, and of course, linked-lists may be sorted whilst hashed lists may not guarantee

this.

For cryptographic operations, OpenSSL is used because it is the suite of low-level

algorithms most optimized as show in Figure 4.1, which also requires the use of libcrypto.

OpenSSL provides low-level interfaces with BIGNUM structures used to store keys and

make arithmetic operations on numbers with uncommon sizes, ciphering algorithms and

hash functions.

The modules are not sub-routines, they are co-routines. This allows multiple entry

points and are suited to state-machines and communication between modules.

For the module implementation, the library used to create threads is POSIX Threads,
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known as pthread. Pthread is a library of high-level functions, types and constants which

simplify the creation and management of userspace threads. It is probably not the most

e�cient implementation to use. The most e�cient would probably be clone with the

support of futex calls. Other libraries are also available, for example, GNU Portable

Threads or even State Threads. However, as pthread has much more documentation and

use case examples, it seemed simpler to just use it.

It was necessary to decide also how to implement the modules described in section 3.10.

The options would be processes or threads. Processes had the immediate disadvantage of

separating the memory of each module. This problem could be solved in two ways:

• Create a big chunk of memory, shared between every module and a �xed zone to

index it.

• Create a system to manage dynamic, shared memory. Since shared memory is not

implemented dynamically, this would imply creating a memory zone just for indexing

and then access those indexes in di�erent shared memories (in the same way a �le-

system has a indexing zone and a separated data zone).

• Create a protocol with UNIX sockets or pipes to pass the data structures between

processes.

The �rst two options would complicate too much the synchronization process, and the

third option would take a lot of e�ort to implement, because every operation on structures

have to be performed in an internal protocol (but it would solve concurrency problems).

However, the better option seemed to be the implementation with threads whilst passing

data within the shared memory.

Pthread library allows to use the same memory stack provided by the kernel to be

accessed to all instantiated co-routines. This memory must be protected with atomic

structures supplied by the library such as semaphores or mutexes. The chosen structures

were mutexes which are basically binary semaphores without signalling. The reason for

this is that, whilst semaphores �t the producer-consumer paradigm, some threads were not

meant to be eternally asleep if there was no producer. This was a simple task to implement

using mutexes and condition variables with timers, which allows not only to sleep until a

condition signal is received, but also wake up after a certain time.

To pass data between threads, there are also several options. The easiest one is to use

UNIX Sockets, which allow processes and threads to communicate as if they were network
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devices. However, the current implementation which uses a FIFO in a shared memory uses

one copy between most threads and can be adapted to use zero copies. UNIX Sockets would

forcefully use two copies because, on send operation packet would be copied to kernelspace,

and then, on the receiver the packet would be copied again from the kernelspace to the

userspace. Pipes (or named-pipes) can also have been used and they would allow to pass

data between threads through the kernel, however named pipes are more useful for one-to-

one communication while shared memory can easily support many-to-many.

4.3 Software Structures

Several structures are created in order to make the information handling e�cient.

Data is exchanged between threads using linked-lists because they are e�cient to be

used as FIFO queues. Elements are always queued in the last position using the tail

element, and always removed from the head element. Both operations' complexity is O(1)
because �rst and last positions are known.

This data structure, show in Figure 4.2, contains a pointer to char where packets may

be allocated, a size variable and a source variable, which allows threads to con�rm the

thread where the packet originated, and deal with that information in accordance.

The library deals with the memory from the nodes, because it has a memory pool

where memory is allocated and managed. However, the implementation is made without

assumptions of the internal elements allocated inside the structure and, because of that,

the memory allocated for each packet must be freed.

When a module needs to send data to another one, it locks the queue owned by the

destination thread, �lls the source, the destination and the packet size �eld, and then

allocates memory inside that structure in order to copy that packet. Each thread is waiting

for packets to �ll their queues, so when a packet is received, in order to reduce the time

locked, the thread gets all the data it needs from the packet, frees the packet memory and

unlocks the queue. This way, the time used to allocate the packet in a thread will overlap,

as seen in Figure 4.3, with the data processing on that module, because both operations

are parallel, making the time of generating copies less restrictive.

Routing structures are kept as linked lists, because they are easier to deal compared

with other structures, and o�er a way to iterate, which does not need the knowledge of the

items inside, because of that, the complexity to search is O(n).
The hash structures, shown in Figure 4.4, have as a basis the KLib implementation,
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Figure 4.2: Internal Queue Structure
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Figure 4.3: Example of multiprocessing strategies. On top each thread is blocked while
other threads processes some piece of data, while the approach taken in the �gure below
has the advantage of reducing the gaps and take advantage of every cycle the thread can
get from the processor. The gaps represent places where threads are blocked in order to
put shared data available

which uses open-addressing double-hashing to solve collisions. The main idea is that using

this, the index in the table where a Key is going to be stored is Index1 = Hash1(Key) =
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Key mod TableSize and, if a collision occurs, the position should be recalculated to �nd

the di�erence of positions between the �rst and the second hash [54].

Key1

Key2

. . .

Keyn

Deleted V alue

Deleted V alue

{Key2, V alues}

Deleted V alue

{Key1, V alues}

{Keyn, V alues}

Figure 4.4: Hash Structure

Depending on the purpose in which the Hash table is used, the structure of the values

and the key itself might vary.

In the VPN server, the communication is made at Layer 3, and the solution needs to

keep track of the Port and the IP belonging to the RSU where a Session is communicating.

This allows the server to change a Session downlink route seamlessly. This is mapped using

a hash table where the Key is the session, and its content is a structure that holds the

current IP and Port of the RSU. The complexity of the access of a known Key in a Hash

Table is O(1) and, because of that the access is very e�cient. This IP and Port �elds

belong to the RSU which is the connection to the OBU advertising this.

The VPN server also holds a structure which informs in which Session a user IP is

communicating. This is also a Hash Table and, therefore, it has the same complexity of

the structure that maps Session → [IP, Port] and this one maps UserIP → [Session],

allowing the server to direct incoming tra�c to a speci�c user instead of sending to every

session available.

The other structure is common to the VPN server, the RSU and the OBU. It is a Hash

Table which maps Session → [CryptoParameters, Session State]. By doing this, each

OBU/RSU can have its own entry in this table, which allocates the current context, and

the server uses this to store all the Sessions contexts.
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4.4 Security related functions

In order to be able to use security primitives the following functions were made available

by libcrypto and OpenSSL:

• RAND_seed(const void *buf,int num): Establishes a seed for the random number

generator. The bu�er should be random bytes with num bytes.

• BIGNUM * BN_new(): Allocates and initializes a BIGNUM structure and returns its

memory address.

• BIGNUM * get_rfc3526_prime_2048(BIGNUM *): Returns a pointer to a structure

containing the parameters recommended to be used in DH exchanges by [30], chang-

ing this function will change the key size and the group used.

• BN_set_word(BIGNUM *, unsigned int ): This function is used to substitute a

�small� number in a BIGNUM structure. Since the generator is always 2 in every

group, this function is used to put that value in the structure.

• BIGNUM * BN_value_one(): this function returns the value 1 and is particularly

useful to do subtractions.

• BN_sub(BIGNUM * a,BIGNUM * b,BIGNUM * c): this function calculates a = b− c.

• BN_CTX_new(): Allocates and initializes a temporary number used to support calcu-

lations. OpenSSL requires this temporary on the functions where multiple operations

are made.

• BN_rand_range(BIGNUM * k, BIGNUM * range): Generates a random number from

[0, range[. It is used to generate random private keys for the DH exchange.

• BN_free: Deallocates a previously used BIGNUM

• BN_add(BIGNUM * a,BIGNUM * b,BIGNUM * c): this function calculates a = b+ c.

• BN_CTX_start(BN_CTX *): Renews a already allocated temporary number.

• BN_CTX_end(BN_CTX *): Finishes the use of a renewed temporary number.

• BN_CTX_free(BN_CTX *): Frees a temporary number.
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• BN_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, const BIGNUM *m,BN_-

CTX *ctx): Calculates r = ap mod m. This is one of the most used functions used

in both asymmetric cryptography and DH key exchange. In the context of the DH

protocol, it is used to derive the Public Key from the random Private Key. In RSA,

for example, it is used to sign packets and also to encrypt them (depending on what

key is used).

• BN_bn2bin(BIGNUM *, unsigned char *): Takes a BIGNUM and copies it into a

pre-allocated bu�er.

• RAND_pseudo_bytes(unsigned char * ,int num): Puts num bytes of pseudo-random

data taken from /dev/urandom in a bu�er. The bu�er should already be allocated

and the random generator should be seeded.

• SHA256_Init(SHA256_CTX *): Initializes a SHA256 structure.

• SHA256_Update(SHA256_CTX *, unsigned char *): Runs data over the hashing

algorithm.

• SHA256_Final(unsigned char *,SHA256_CTX *): Extracts the calculated hash to

a bu�er. The bu�er should have at least SHA256_DIGEST_LENGTH bytes.

• RSA_new(): Returns a pointer to an initialized structure prepared to hold RSA pa-

rameters.

• PEM_read_RSAPrivateKey(FILE *, RSA **, pem_password_cb, void *): Reads

an RSA Private Key stored in PEM format. Using this format, the key may be

protected with a password. This password can be hardcoded in the pem_password_-

cb or a callback could be de�ned in order to prompt for the password.

• RSA_free(RSA *): Frees a RSA structure.

• PEM_read_RSA_PUBKEY(FILE *, RSA **, pem_password_cb, void *): This func-

tion does the same as the Private, but it reads a public key instead of a private. They

are di�erent because this one does not read private keys to the structure (because

public �les do not contain them) whilst the other one �lls every �eld on the structure.

• unsigned int PadData(unsigned char *, unsigned int len, int blksize): Given

an array with len bytes, applies padding according to CMS to a bu�er and returns its

new length. The bu�er should have memory allocated before the function is called.
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• int EncryptData(unsigned char * in, unsigned int inlen, unsigned char *

out, unsigned char * key): Takes the in bu�er with inlen, applies padding to the

bu�er and ciphers the bu�er using the algorithm de�ned. In the end, it appends a

TAG in the end of the packet and returns the new length of the packet.

• int DecryptData(unsigned char * in, unsigned int inlen, unsigned char *

out, unsigned char * key, int * auth): Takes the in bu�er with inlen bytes,

deciphers the bu�er using the algorithm de�ned, veri�es and removes the padding,

veri�es TAG and returns the new length of the packet if valid (or -1 otherwise). *auth

shall be allocated before calling the program (otherwise veri�cation of the TAG will

not be done) and will return 1 if packet is authentic and 0 otherwise.

• EVP_EncryptInit(EVP_CIPHER_CTX * , EVP_CIPHER *, unsigned char * key, unsigned

char * iv): Sets up cipher context for encryption. The di�erence between EVP_-

EncryptInit_ex and EVP_EncryptInit is that, in the latter, the context does not

need to be initialized implicitly. EVP_CIPHER should be a pointer to a ciphering

function (in this case EVP_aes_256_gcm()).

• EVP_EncryptUpdate(EVP_CIPHER_CTX * , unsigned char * in, int inl, unsigned

char * out, int outl): Updates variables like the AAD, or does the ciphering op-

eration on the packet.

• EVP_EncryptFinal(EVP_CIPHER_CTX * , unsigned char *, int * len): Retrieves

data from the ciphering engine.

• EVP_CIPHER_CTX_ctrl(EVP_CIPHER_CTX * , int type, int arg, void *ptr): Al-

lows to set additional parameters, like for example, the TAG length.

• EVP_DecryptInit(EVP_CIPHER_CTX * , EVP_CIPHER *, unsigned char * key, unsigned

char * iv): Sets up cipher context for decryption. The di�erence between EVP_-

DecryptInit_ex and EVP_DecryptInit is that in the latter the context does not

need to be initialized implicitly. EVP_CIPHER should be a pointer to a ciphering

function (in this case EVP_aes_256_gcm()).

• EVP_DecryptUpdate(EVP_CIPHER_CTX * , unsigned char * in, int inl, unsigned

char * out, int outl): Updates variables like the Additional Authenticated Data

(AAD), or does the deciphering operation on the packet.
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• EVP_DecryptFinal(EVP_CIPHER_CTX * , unsigned char *, int * len): Retrieves

data from the ciphering engine and returns 0 in authentication failure or greater than

zero on success.

4.5 Data exchange

After both endpoints get an unique private session key, the header referred in Figure 3.10

will be appended with a payload padded to multiples of 16 bytes according to PKCS#7

and CMS, and appended with a TAG after encryption which GCM uses to authenticate

data after deciphering.

This way, data does not need to be signed, which is a slow operation and can use a

method which can authenticate data and protect its privacy at the same time.

While data is exchanged, the network that is in between the endpoints is seamless in

terms of security which make the process completely detached from the routing and the

state of other nodes.

It is important to notice that the GCM mode output will be the same for a packet

that uses the same Key and the same IV. Consequently, GCM mode alone only provides

integrity and not true authenticity. Still, it does more than other modes of operation which

usually only deal with privacy and rely on other algorithms to control integrity.

4.6 Work�ow for di�erent types of nodes

Since di�erent types of messages trigger chain reactions between di�erent components

which also di�er based on the type of node, the present section di�erentiates every work�ow

implemented for each type of message and each node.

4.6.1 VPN server work�ow description

The �rst component is a module which receives and sends any type of packets directed

at the VPN server address. This thread decides which type of packet arrived at the server

and, if identi�ed, queues the packet in another component.

If the packet is of type VPN_SETUP_REQ, it will send the packet to the authentication

manager module.

If the packet is of type DATA, it will send the packet to the tunnel module.
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If the packet is of type SESSIONOTIFY, the RX Module will set the context for each

session that is created. This context includes the EID of the board, the RSU from which

it received this information, and the Cryptographic parameters which in this state are

initialized to invalid values in order to not be accepted. If the session received in this

module is a session which is not known, the server will send a VPN_SETUP_START to the

node in order to request data from the node. The purpose of this module is also to keep

updating the RSU which serves as gateway to a certain EID.

In the authentication manager module, the context, which was created in the session

manager module (if it was not, it will be created here), will be �lled more in depth. Since

the only packets accepted by this thread in the server are VPN_SETUP_REQ, the packet

already contains the DH public key and the Signature header.

In this module, the Signature header will be checked, in order to know if the packet

is authentic or if the packet was not modi�ed by some non-authorized third-party. If the

packet is marked invalid, the thread will discard the packet and no actions are taken in

the context. If the packet is deemed valid, the server will calculate the private session key

using its private DH key, and will send his public key to the node so that the node can

calculate the Session key, by sending a VPN_SETUP_RES.

In the tunnel module packets may have di�erent �ows based on the network where

they are received. If they are received from the outside network and they have a header

with the EID, the packet is going to be deciphered and checked for integrity using the

AES-256-GCM implemented in the DecryptPacket function. Then, since it is a packet

sent by a user in the meshed segment of the network, the program needs to map its IP

address linking it with the current EID where the packet came from. The packet is now

ready to be sent to the network as the user sent to the board.

If the packet is received from the HN, this module will check if the destination IP address

is known in the list, and if it is, it will cipher the packet with the key corresponding to the

EID where that user is located, and then will add the forwarding header and send it to the

corresponding RSU.

4.6.2 RSU work�ow description

The TX/RX modules receive data from the network and send data to the network. The

di�erence between the L3 and the L2 is the Layer at which the user-space software can

access information. In the L2 module, a SOCK_RAW is created allowing the software to read

and send data starting at the Link Layer Information �ltered by the ETHERTYPE �eld. This
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type of sockets allows programs to develop protocols at the link layer. The L3 modules

only receive/send data starting from the network layer, which are more suited to develop

protocols working over IP, since the lower layers will be �lled by the kernel according to

its tables.

Similarly to the server, the table manager module updates the shared information stored

in linked lists. For the RSU speci�cally, it maintains the list of all nodes connected to itself

as the uplink path to the server. The sessions downlink routes expire after DTABLEEXP,

and the server uplink path route expire after UTABLEEXP. These constants are calculated

by the preprocessor based on the time of beacon retransmission (PROVIDERADVTIME).

The Control Plane Forwarding Manager is the module which constructs the routing

tables. Because each module reacts to events, this thread is fed with information from the

RSU Manager modules stating that he has 0 hops to the gateway (because it is itself). By

doing that, the RSU will send to the network that the nodes have access to the gateway

with 1 hop. This module also receives SESSIONOTIFY packets which are sent by nodes

connecting to the RSU.

The Data Plane Forwarding Manager uses the tables formed by the control plane mod-

ule to forward packets in the layer 2 segment of the network. In the case of the RSU, this

module passes the packet between the Link Layer network and the Network layer segment

by using the appropriate sending and receiving modules.

4.6.3 OBU work�ow description

The Control Plane Forwarding Manager reacts to BEACON packets in the network and

connects to the better one using the number of hops and the RSSI as a metric. After

connecting to a beacon node, the OBU sends a BEACON with a worse metric by one, so that

a node which is in range of this node but not in range of the one providing service to this

one will use this node as uplink connection to the server, and then it sends a SESSIONOTIFY

to inform the nodes closest to the server that someone is connecting there.

The Data Plane Forwarding Manager uses the routes established in the Control Plane

Manager Module to forward packets between the nodes in a way that can pass between

tra�c between downlink connections, itself and the server.

The Tunnel Manager Module receives data from the user, encrypts it and sends it to

the network and to the data which is received from the Data Plane Manager, decrypts it

and sends it to the user.
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4.7 Network Overhead and Software Performance Anal-

ysis

In terms of tra�c encrypted in the network, the software pads data received from the

user to multiples of 16 bytes, and always adds 16 bytes to get a TAG which, in this cipher

mode, provides integrity control.

The overhead included by �rst time authentication of a node is the size of the Signature

header plus two messages that contain a byte with the key size, a DH public key, and a

Signature header, in each packet. In terms of tra�c that gives us 673 bytes per node

entering the network.

The overhead of the authentication on key timeout is 620 bytes per node, because there

is no VPN_SETUP_START packet.

There is some overhead included by the software design in the network, because (just

in data packets) several copies of the packet are made along the processing of the packet.

This is hard to solve because user data must be padded and encapsulated.

The reason why this does not apply to control packets is that they are internal to the

software and do not need to be encapsulated. Because of that, it is possible to implement

the control packets with just one bu�er copy, which is the from kernel-space to user-space

and vice-versa.

Although it would be advantageous to implement this solution in the kernel-space,

because the packet ring bu�er is written by hardware, in this proof of concept, it is im-

plemented in the user-space where at least one copy is made. That copy must be made

because the kernel required a static allocated bu�er, which prevented the software from

adding an o�set to the packet. Since the packets need to be encapsulated, some padding

at the beginning is required. Therefore, the number of copies made along the software tree

varies between one and three, depending on which interface is sending the packet.

Currently, AES is implemented in software by the OpenSSL libraries in this architec-

ture. However, in Intel architectures, for example, AES is implemented in hardware [22].

This reduces dramatically the time consumed by the transformation, which can explain

the overhead gap between the server and the nodes, using a ARM architecture.

There may be another source of overhead coming from the software implementation,

which is the pthread implementation with a large context switching between modules.

When measured on pro�ling tools, this problem appeared as the second cause of overhead,

and the AES operations being the �rst one.
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4.8 Node Con�guration

The described architecture implements a VPN over Layer 2, and uses a routing mode

which interacts as depicted in Figure 4.5. With the con�gurations described below, the

communication process occurs as follows (for example, an ICMP to address X):

1. The User requests the MAC of the gateway to X.

2. Since TUN acts as a gateway to the HN, it replies the Address Resolution Protocol

(ARP) address with it's own MAC address.

3. The software catches the tra�c in the TUN interface, applies padding and ciphers

the package.

4. The packet is sent in the mesh network along the route speci�ed by the routing

algorithm.

5. Reaching the VPN server, the packet is delivered to the software which decrypts the

packet and removes the padding based on the information of the vehicle.

6. The packet leaves the HN with the public IP address of the VPN server (if NAT is

deployed at the server)

7. X replies and the packet is routed by the HN through the TUN device.

8. The user-space software catches the packet, searches the destination IP (NAT was

already reversed), pads and ciphers the packet with the parameters used by the

session where the User is located, and the packet is sent encapsulated again through

the HN gateway targeting the RSU.

9. Then, the L2 protocol carries the packet to the correct node and the packet is deliv-

ered to the user, decrypted.

Every transition between virtual devices and physical devices (except in certain cases,

the HN gateway) applies the security rules described in chapter 3 to the packet.

On top of that, the following con�gurations are made in order to set the server (the

executable will look for a �le in the same directory called ini.conf or it can be speci�ed

by sending the absolute path of the �le as an argument).

The following syntax should be followed. The character # as the �rst line character,

represents a line comment. The word echo represents a command which will be run in the
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Figure 4.5: Device Setup and Interconnection

system during the software initialization. The word INTERFACES is used to specify a list

of interfaces to be used to execute the L2 protocol. These interfaces should be separated

by a hyphen. On RSU the server IP should be speci�ed by using the keyword IP, followed

by the IP of the server. In the server, the line enforce cipher can be speci�ed to force

all nodes of the network to use the cipher algorithm. In the nodes, the default will be to

use the cipher algorithm, however if the node does not want to use it and the server is not

obliging that, the line no cipher can be used to turn o� the cipher algorithm.

Also, it is assumed that the IP and the characteristics to the virtual interface are given

either in the con�guration �le or in an external script.

1. The server is con�gured the following way (this is the ini.conf �le):

# You should substitute X by the number of device that will be

# allocated. This value is usually 0

echo ip link set dev tunX up

# Give the address to the TUN device. These addresses should

# be out of range of DHCP pools across the network.

# This allows this interface to be used as administration.

echo ip addr add 10.0.0.1/8 dev tun0

# Here you should configure the maximum transmission unit for the

# tunnel. Be aware that since data is going to be encapsulated

# and the MTU for the interface which will carry the encap.

# data is 1500, you should give it way less (1300/1400 is ok)

# Substitute Y

echo ifconfig tun0 mtu Y up
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# Since this VPN on top is made with routing the node has to enable this

echo echo 1 > proc/sys/net/ipv4/ip_forward

# Just to enforce the rules and make sure other rules

# are not valid when the program starts

echo iptables -t nat -F

echo iptables -F

# Deploys NAT in the server. Z is the interface where NAT is deployed

echo iptables -t nat -A POSTROUTING -o Z -j MASQUERADE

# Accept traffic in TUN device (the default should do it but this is just to make sure)

# Again X is the number of the TUN device

echo iptables -A FORWARD -i tunX -j ACCEPT

echo iptables -A INPUT -i tunX -j ACCEPT

echo iptables -A FORWARD -d 255.255.255.255 -j ACCEPT

# Here one should put in W the route for the networks spread by the boards

# (example: 40.0.0.0/8)

echo ip route add W dev tun0

2. RSU and OBU can be con�gured by the exact same script since the type of node and

its ID will be read from the �les /root/type and /root/id. The RSU/OBU should

be con�gured this way:

INTERFACES wlan1

# Especially RSU nodes should be informed of the IP of the server in order to

# make communication across networks possible. (Ports should be also forwarded

# accordingly)

IP serverIP

# no cipher is used if client doesn't want security

no cipher

echo ip link set dev tun0 up
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echo ip addr add 10.0.6.39/8 dev tun0

echo ifconfig tun0 mtu 1400

echo echo 1 > /proc/sys/net/ipv4/ip_forward

echo route add default gw 10.0.0.1

echo echo "nameserver 8.8.8.8" > /etc/resolv.conf

echo echo "nameserver 8.8.4.4" >> /etc/resolv.conf

echo iptables -t nat -F

echo iptables -F

echo iptables -A INPUT -i tun0 -j ACCEPT

echo iptables -A FORWARD -i tun0 -j ACCEPT

echo iptables -A FORWARD -d 255.255.255.255 -j ACCEPT

3. Apart from this con�guration, the nodes should be communicating in the same chan-

nel by using:

uwme insertChan channel 174 rate 6 txpower 23

4. And also in order to have larger bandwidth, Wave Management Entity (WME) stack

should be turned on by using:

uwme startPS action add psid 80-06 channel 174 access 1 repeat_rate 30

ip_service priority 12 was_type unsecured psc netname

4.9 Chapter Considerations

This chapter presents several aspects of the implementation. It explains how software

is constructed, which allowed the modules to be separated, presents the libraries used

during the development process of the solution. Then, the structures used to store data

regarding IP's, Ports, cryptographic material and users, are explained. The work�ow of

each module implemented in the nodes, is also made and depicted in state diagrams. At

last, this chapter ends by presenting the overhead imposed by the protocols used and the

software because of its implementation, and the con�guration done in each of the di�erent

nodes in order to use the actual software.
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Since there are various libraries which might do the same operations with di�erent

implementation, this chapter compares di�erent sets of libraries based on factors such as,

performance or ease of use, to justify the use of one of these libraries. The same is applied

to the structures.

In the next chapter, the current solution, is evaluated in di�erent scenarios, to test the

e�ciency of the software in several environments, and its impact on the network.
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Chapter 5

Evaluation

5.1 Introduction

Network and machine performance is a important factor when considering the tests

realized, because they usually involve large amounts of tra�c. Hardware used to realize

the tests is speci�ed in section 5.2.

In section 5.3, the testbeds used to test the architecture developed, is described along

with its several con�gurations, node displacements, networks characteristics and their im-

plications.

In section 5.4, the most interesting metrics, which can be measured with the setups

used, are described.

At last, in section 5.5 we present the results taken on the several setups measured, and

compared them, and take conclusions about what is happening to the network.

5.2 Hardware Used

The hardware present in the tests, are devices used as the RSUs and the OBUs, and a

laptop which was used to simulate the VPN Server.

The laptop has a i7-2670QM CPU @ 2.20 GHz processor which has 4 cores and 2

threads in each core (hyper threading), 3 cache layers of sizes 32 KB, 256 KB and 6 MB,

respectively, and supports several hardware extensions (among them the AES instructions

for Intel [22]). It has two memory slots occupied with 4 GB plus 2 GB both DDR3 working

at 1333 MHz. The disk has a capacity of 500 GB, with a speed of 5400 RPM and 8 MB

Cache. The network interface used for tests is a Gigabit Ethernet card.
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Table 5.1: Testbed characteristics

Server RSU OBU
CPU [GHz] 2.2 (8 cores) 0.5 (1 core) 0.5 (1 core)
Memory [GB] 6 0.059 0.059

OS
Ubuntu
(v14.04)

Veniam
(v19.2)

Veniam
(v19.2)

Linux Kernel 3.13.0 3.7.4 3.7.4

Devices used in the VANET, have a MIPS 24KC v7.4 processor with one core, two data

caches with 64 Kb each, and no AES extensions. The amount of memory available, is 64

MB and 128 MB of disk.

Tests were also conditioned by network conditions. In the laboratory, the RSUs were

connected by Ethernet to a switch, which limited the tra�c to 100 Mbps and the wireless

was set to support 27 Mbps which is the current maximum. The tests in the real network

required to be connected to a VPN to the core network, where RSUs are connected to.

However, the server is in IT network and not their core network. The meshed network is

also limited to 6 Mbps.

The server in IT has a AMD Opteron(tm) Processor 4238 @ 3.3 GHz with two cores

and AES extensions. It also has 2 GB of RAM.

5.3 TestBed

5.3.1 Laboratory Testbed

While the solution was on development stage, it was tested on the laboratory testbed

shown in Figure 5.1.

This testbed tried to demonstrate the forward mechanism implemented in handover

situations to conclude about what would happen to packets which had their route severed

and also that it would be possible to minimize recon�guration of the VPN con�guration

when that situation occurred. The situations are going to be repeated without and with

security.

The �rst situation was assembled, to measure the route recon�guration in the server

when changing the infrastructure. We expect to the measure the impact of the route recon-

�guration on di�erent kinds of tra�c, while using the implemented forwarding mechanism.

In the �rst situation we assembled the VPN Server in the laptop described before, and
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then moved the OBU between two nodes, which were �xed infrastructure. The criteria for

route change in this situation was purely di�erence in RSSI.

The second situation was tested to measure changes in the meshed network when the

route recon�guration would be made by the intermediate mobile nodes. To do this, we

connected the VPN Server in the laptop described previously, in order to interact with a

�xed node, which simulated RSUs. We assembled another node, which was �xed, but not

connected to any infrastructure serving as a OBU. Also, another OBU is assembled, but

this time, it should be moving out of the RSU's range, and entering it again repeatedly,

in order to see how fast was the attachment to better connections and how route timeouts

a�ected tra�c.

Situation 2

VPN

Server

RSU

OBU

OBU

Situation 1

VPN

Server

RSURSU

OBU

Figure 5.1: Testbed assembled in the Lab. Dashed indicates node movement
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Figure 5.2: Porto de Leixões Testbed

5.3.2 Real Testbed

After the tests in the laboratory testbed, it has been measured the same metrics in a

real testbed, located in Porto de Leixões, as seen in Figure 5.2. The purpose was to add a

lot of entropy to the system, to see what results we could measure from a system with a

little more chaos than the laboratory.

Because the testbed is assembled alongside with other architecture serving a real client,

we wanted to ensure that service given to them was not a�ected in any way because of our

architecture, therefore, the metrics we were able to obtain were more limited, because we

did not have access to the components in place.

We are able to predict some problems in which the developed solution has a lot of

challenges. Porto de Leixões still has area which is not covered by the technology, and

also some materials present in the local which cause re�ections, that may eventually have

impact on tra�c by creating a lot of duplicate packets. Duplicate packets are compensated

by establishing a minimum RSSI for the nodes to establish a connection. By doing that,

we can diminish the probability of the nodes causing trouble if the connection is bad.

However, range decreases a little.
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5.4 Metrics

There are several metrics which are interesting to be measured and explained. Since

the solution would be used to provide connection for users which will most probably use

it for entertainment purposes, the �rst test realized was the throughput.

The second one should be how much time the user has to wait in renegotiation time

until is authenticated in the HN, because, if this time is too large when facing the key

lifetime, the Quality of Service would su�er.

The routing was completely decentralized and, because of that, theoretically there

should be no blackouts when route recon�guration happened. Even so, it would be inter-

esting to show the e�ect on latency and since nodes do not update all at the same time,

some packet disordering and loss is to be expected. We wanted to measure the e�ects of

that and take into account the impact in various types of tra�c.

In the laboratory, it is also measured the e�ect of the software on the nodes. This

is a very important measurement as the software should not overburden the nodes and

therefore impede the normal functionality of other parallel solutions. From this test we

concluded throughput tests should be avoided or, at least, reduced to a minimum, in the

real scenario, because the network should be operational for another services and, because

of that results should be limited in order not to encumber the network.

5.5 Measurements

5.5.1 Laboratory Testbed

The throughput measured can be seen in Figure 5.3. From this �gure, we can conclude

that the overhead of the routing, causes the speed of the network to decrease about 8 Mb

from the wireless maximum. The di�erence of throughput between the operation with and

without cipher may be explained by the fact that the MIPS architecture in use, does not

have the AES instructions processor extension and because of that, takes 0.06 µs/bit. A

model was made in order to explain this reduction. Furthermore, the number of hops did

not a�ect the throughput signi�cantly, and neither did the route recon�guration. This was

to be expected, especially from a small network with low amount of entropy.

The program processes packets coming from the user sequentially, and because of that
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Figure 5.3: Throughput for di�erent ciphers - Laboratory Testbed
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Figure 5.4: AES Empirical Model for the throughput reduction.

the time is added as overhead in all packets, which is described by Equation 5.1.

TAES =
1

1
T
+ tAES

(5.1)

This model, shown in Figure 5.4, was con�rmed for several values of throughput, ei-

ther on a computer which had AES instructions and on the nodes which did not. In the

computer with AES instructions the time needed to cipher a bit was 0.001µs and because

of that the limit would be 1Gbps and on the hardware where the software was tested,

the measurements indicated 0.06µs/bit, which led to a maximum of 16Mbps. Since the

di�erence between what the software can route in this wireless technology, and in Eth-

ernet (which is already beyond wireless limit) ends up resulting in a small di�erence in
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Figure 5.5: The �gure on the left shows that the security is routing independent. The �gure
on the right shows the authentication time while varying the key sizes. When varying one
key, the key which authenticates the other endpoint is constant

bandwidth, future improvements should focus on improving some hardware aspects (for

example, having multiple cores and processor extensions), until software changes cause a

relevant di�erence.

The second metric evaluated is the time in which each mobile node needed to authen-

ticate in the VPN server. This experiment accounts for the parameter generation and key

exchange in both endpoints.

The results from this experiment may be seen in Figure 5.5. In general, this time

is irrelevant when compared to the lifetime of the Key generated (even when using the

largest key in the server it is about 0.001% of the total time if the key validity is 1 day).

The conclusion that was reached was that the function BN_exp_mod used in the process

of signing the packet and verifying the signature, is the one which adds the delay since it

is based on exponentiation of large numbers. Each node should not use very large keys

because the time to process the exchange will increase exponentially. The server, however,

may use larger keys because the impact is not so large. Using larger keys will also increase

the time needed to factorize the key. Since this key is common in every node in the network,

it would be advantageous to do this.

The e�ect of authentication, as seen from the users, were also measured, and it is

shown in Figure 5.6. We can conclude that, by shrinking the renegotiation time (to 30s),

communication is lost temporarily. However, as soon as the new key is renegotiated,

communication from the user restarts to a normal state, seamlessly. Also, keeping the

authentication as short as possible, may allow the renegotiation to be almost invisible as
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Figure 5.6: Authentication E�ect on node throughput - Laboratory Throughput. In the
left �gure, the server uses a 7680 bit key length, whilst in the right �gure, the server
uses a 2048 bit key length. The mobile nodes always uses a 2048 because of its lack of
computational power.

can be seen on the throughput results.

The jitter on the Situation 1 is depicted in Figure 5.7, and it can be noticed a increase

of the jitter reported by the used application in some circumstances, but as the software

is doing the path choice without ever really disconnecting from the last path (like a soft

handover), only a small change is noticeable.

In situation 2, as shown in Figure 5.8, the software has to timeout to connect to the

route because the second route connected is worse, and it will not ever connect unless there

are no other routes are available. Even so, in the worst case scenario, which would be the

last one, the connection is still maintained and the recon�guration takes little time.

The last metric measured in the laboratory scenario, was packet disordering. This

situation was relevant, because as the path changed very fast, and the delay between paths

could vary, it was expected to see packets arriving to destination unordered. This is not

that important to most services working at application level, because usually, they already

have that in mind, and already have a way to �x problems in intermediate networks, as IP

does not guarantee reliable packet transmission and its ordering.

It is observed that in the laboratory disordering does not occurs as shown in Figures

5.9 and 5.10, but only a small packet loss. In these �gures, the number 0 indicates that

sequence number is ordered, positive index indicate packet loss and negative index indicate

out-of-order packets.

The disordering problem, may add di�culties to real time tra�c, if the disordering
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Figure 5.7: Jitter measurement in situation 1 - Laboratory Testbed
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Figure 5.8: Jitter measurement in situation 2 - Laboratory Testbed
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Figure 5.9: Disordering measurement of downstream tra�c in situation 1 - Laboratory
Testbed
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Figure 5.10: Disordering measurement of tra�c in situation 2 - Laboratory Testbed

magnitude exceeds the TCP retransmission window. Otherwise, it is not really relevant,

and should not modify behaviour of the services used by the client. Furthermore, it was

observed that this rarely occurs. It only occurs when tra�c has a large bandwidth and the

RSSI threshold is removed.

It was also measured the di�erence of time between one route being used and another

route. To do this, a timestamp was kept for each packet along with the MAC carried in

that packet. When the MAC changed the client saved the time di�erence and the next

MAC in memory. This timestamp can be interpreted as an handover. The results can be

seen on Figure 5.11.

The tests for CPU load and system load, yielded the results shown in Figure 5.12 and
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Figure 5.11: Handover Time for di�erent throughputs

Figure 5.13. Memory was also measured and displayed in Figure 5.14. It is important to

limit the network, so that, the normal functioning of the software will not have impact on

other systems running in parallel.

We could see that, as far as CPU load is concerned, the application does not have that

much of a impact, and we can see that it increases linearly as throughput increases, which

is to be expected since the processing time increases with the number of packets going

through the virtual device.

System load is much harder to explain, since Linux calculates a one minute average

of a function of several parameters, that describe system state, such as, network queues

congestion, memory and of course, CPU load, by measuring the time processes are sleeping.

A good analogy, would be to think of processes and network operations as a bridge. If the

number is 0, it means the bridge is empty (no processing to do), if it is 1, the bridge has

exactly the capacity which can be processed, and higher than 1 it means there is congestion

(processing is slower than the incoming/outgoing �ow of packets). It is exactly because of

this, that queue management mechanisms were implemented. Since the queues cannot be

processed faster that they are �lled, in some situations, queues would �ll too fast, and the

software would be killed by the kernel.

The RED mechanism implemented, solved this question, by discarding packets which

were going to obstruct the software. However, logically the load was maintained. To solve

this, the software should be able to cope with any throughput inserted in the virtual inter-

face, which means that it is imperative to use zero-copy and faster AES implementations.

It was also measured, the memory used by the software, as seen in Figure 5.14. The
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Figure 5.12: CPU usage measured in the Laboratory Testbed

program starts with a pool of memory reserved for queues, supplied by the KLib libraries.

As the queues start �ooding, the library starts resizing the queues occupying, therefore,

more memory. If RED, or some congestion control mechanism, was not implemented, this

memory would start increasing linearly with the tra�c increase. RED allows to control

this by limiting the number of packets present in memory simultaneously.

5.5.2 Real Testbed

The real network needed some way of monitoring the connections made by the nodes,

because of that it was developed an interface with the server software that allowed to show

the RSU where a node was connected, the number of hops it had to the server when last

contact was made, and the time it would have passed since then, in milliseconds, as shown

in Figure 5.15. In the �gure, the upper right terminal has information on the state of the

server, the lower right terminal was used to make throughput test, but since we wanted

to know where handover occurred, that information was dumped in the upper terminal,

and the lower left terminal, shows the interface made with the server, where nodes and

information about them are shown. This information, was taken from the server using a

UNIX Socket, and the columns represent EID, connected RSU IP, connected RSU Port,

number of hops, and lastly, the time of last contact in milliseconds.

The �rst test made in Leixões was throughput. This throughput, as shown in Fig-
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Figure 5.13: System Load measured in Laboratory Testbed
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Figure 5.14: Memory usage measured in Laboratory Testbed
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Figure 5.15: Screenshot of the setup used to get information in Porto de Leixões network

ure 5.16, in similarity to the one measured in the laboratory, is the maximum throughput

in both modes (with and without the cipher).

Afterwards jitter was tested. The results are shown in Figure 5.17. The jitter on each

hop is slightly greater than what was measured in the laboratory. The handover between

infrastructure did not increase the jitter. However, on timeout it is seen that the jitter

increases a lot on that instant. This is expected, because, for some time, the node has no

information available to communicate to the server.

With respect to packet lack of order, we could see that it increases a lot as it was

expected, as shown in Figure 5.18. In the laboratory, using the hysteresis mechanism it

was not possible to get this information.

In the real network it was observed that the authentication time was similar to the one

obtained in the laboratory, as shown in Figure 5.19 which was to be expected since that

time depends mostly on the performance of the node and not the network by itself.
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Figure 5.16: Maximum throughput obtained in Leixões
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Figure 5.17: Jitter caused by the connection to the infrastructure and caused by the
vehicular environment in Leixões
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Figure 5.18: Packet disordering, caused by the duplicated packets and the route recon�g-
uration time in vehicular environment in Leixões
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Figure 5.19: Authentication times in Leixões
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Chapter 6

Conclusions and Future Work

This chapter re�ects about the conclusions taken from the developed solution, and what

can be done in the future to evolve this solution.

6.1 Conclusions

This dissertation proposed an architecture to provide secure connections between the

vehicles in a vehicular network and an external network, in an e�cient and scalable way,

addressing seamlessly the vehicles' mobility. This solution proposed to remove protocol

stacking overhead, and bind session parameters to a unique identi�er, instead of the IP,

which is normally utilized in the Internet solutions.

The security approach can authenticate both stakeholders of the network, which pre-

vents MitM attacks. Also, the tra�c is maintained con�dential, and integrity is controlled

during the session. Furthermore, the user sessions are maintained at all times, even when

connectivity is not available. The routing scheme is also able to create a dynamic mesh

network. By decentralizing routing, the network route recon�guration made blackouts

undetectable.

The security solution has been tested both in the lab and in a real vehicular network in

the harbor of Leixões, Portugal. The obtained results show that the objectives have been

met: (1) the authentication and the exchange of the key material is relatively fast, when

compared to the lifetime of the keys, and RSA keys may be generated with bigger size to

make factorization more di�cult without turning the protocol infeasible; (2) furthermore,

both endpoints, are able to maintain the keys and exchange data securely; �nally, (3) the

routing algorithm converges quickly and no blackouts were detected.
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6.2 Future Work

The current solution can be improved in several ways, which would make the solution

more resilient and versatile. An example of the improvements to this solution are listed as

follows.

• Improve the routing scheme: The software works with a very simple routing strategy.

• Secure the routing scheme: The network is vulnerable to routing attacks. It should

be assured that, at least, some form of source authentication will be implemented.

• Implement new cipher modes on the software in order to improve the throughput.

• Implement multi-homing and multipath.

• Reduce the number of packet copies in the software in order to improve performance.

• Implement the current solution in two modules embedded in the kernel space, one

for the routing, and another for the security, minimizing the load imposed on the

system by the excessive number of threads running, and using the kernel ring bu�er

to read and send packets.

The support for some of these improvements are already thought to some extent and

implemented.

The cipher modes would be an easy extension, because the same approach which is

used to negotiate if cipher is used or not, between the server and the nodes, could also be

used to request a speci�c cipher algorithm.

Multi-homing, multi-path should be able to be implemented; however, in the current

routing version, it seems too much decentralized to control the attachment points.

Vertical handover would also be interesting to test: the application should be able to

work between 802.11p and 802.11g if there is an external software scanning and connecting

to these networks. Cellular is, however, a di�erent matter, since in the perspective of the

OBU, the software should have to behave like an infrastructure connected using L3. At

the moment, OBUs only use L2 communication.

The number of packet copies should be able to be reduced; however, in the current

software version padding required at least one copy. There is one solution, however, which

is only possible because we are in the control of the whole communication stack. The

solution is to append the headers in the end of the user packet instead of the beginning.
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This is counter-intuitive; however, if this approach is taken, the only operation on memory

required will be the reallocation of the extra bytes.
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