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Abstract

The Herglotz problem is a generalization of the fundamental problem of the calculus
of variations. In this paper, we consider a class of non-differentiable functions, where the
dynamics is described by a scale derivative. Necessary conditions are derived to determine
the optimal solution for the problem. Some other problems are considered, like transversality
conditions, the multi-dimensional case, higher-order derivatives and for several independent
variables.
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1 Introduction

The calculus of variations deals with optimization of a given functional, whose algebraic expression
is the integral of a given function, that depends on time, space and the velocity of the trajectory:

x 7→
∫ b

a

L(t, x(t), ẋ(t)) dt.

The variational principle of Herglotz can be seen as an extension of such classical theories, but
instead of an integral, we have the functional as a solution of a differential equation (see [9, 10]):{

ż(t) = L(t, x(t), ẋ(t), z(t)), with t ∈ [a, b],
z(a) = za.

Without the dependence of z, we can convert this problem into a calculus of variations problem.
In fact, integrating the differential equation

ż(t) = L(t, x(t), ẋ(t))

from a to b, we obtain

z(b) =

∫ b

a

[
L(t, x(t), ẋ(t)) +

za
b− a

]
dt.

Recently, more advances were made namely proving Noether’s type theorems for the variational
principle of Herglotz (see e.g. [5, 6, 7, 8, 9, 12]). The aim of this paper is to consider the
Herglotz problem, but the trajectories x(·) may be non-differentiable functions. We believe that
this situation may model more efficiently certain physical problems, like fractals.

The organization of the paper is the following. In Section 2 we define what is a scale derivative,
following the concept as presented in [2], and we present some of its main properties, like the
algebraic rules, integration by parts formula, etc. In Section 3 we prove our new results. After
presenting the Herglotz scale problem, we prove a necessary condition that every extremizer must
fulfill. Some generalizations of the main result are also presented to complete the study.
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2 Scale calculus

We review some definitions and the main results from [2] that we will need. For more on the
subject, see references [1, 2, 3].

From now on, let α, β, h be reals in ]0, 1[ with α + β > 1 and h � 1, and consider I :=
[a− h, b+ h].

Definition 1. Let f : I → R be a function. The delta derivative of f at t is defined by

∆h[f ](t) :=
f(t+ h)− f(t)

h
, for t ∈ [a− h, b],

and the nabla derivative of f at t is defined by

∇h[f ](t) :=
f(t)− f(t− h)

h
, for t ∈ [a, b+ h].

If f is differentiable, then

lim
h→0

∆h[f ](t) = lim
h→0
∇h[f ](t) = f ′(t).

These two operators can be combined into a single one, where the real part is the mean value
of such operators, and the complex part measures the difference between them.

Definition 2. The h-scale derivative of f at t is given by

2hf

2t
(t) =

1

2
[(∆h[f ](t) +∇h[f ](t)) + i (∆h[f ](t)−∇h[f ](t))] , for t ∈ [a, b]. (1)

For complex valued functions f , such definition is extended by

2hf

2t
(t) =

2hRef

2t
(t) + i

2hImf

2t
(t).

We now explain how to drop the dependence on the parameter h in the definition of the scale
derivative. First, consider the set C0

conv([a, b]×]0, 1[,C) of the functions g ∈ C0([a, b]×]0, 1[,C) for
which the limit

lim
h→0

g(t, h)

exists for all t ∈ [a, b], and let E be a complementary space of C0
conv([a, b]×]0, 1[,C) in C0([a, b]×]0, 1[,C).

Define π the projection of C0
conv([a, b]×]0, 1[,C)⊕ E onto C0

conv([a, b]×]0, 1[,C),

π : C0
conv([a, b]×]0, 1[,C)⊕ E → C0

conv([a, b]×]0, 1[,C)
g := gconv + gE 7→ π(g) = gconv.

Using these definitions, we arrive at the main concept of [2].

Definition 3. The scale derivative of f ∈ C0(I,C), denoted by 2f
2t , is defined by

2f

2t
(t) :=

〈
2hf

2t

〉
(t), t ∈ [a, b], (2)

where 〈
2hf

2t

〉
(t) := lim

h→0
π

(
2hf

2t
(t)

)
.

Definition 4. Given f : In = [a− nh, b+ nh]→ C, define the higher-order scale derivative of f
by

2nf

2tn
(t) =

2

2t

(
2n−1f

2tn−1

)
(t), t ∈ [a, b],

where 2f1

2t1 := 2f
2t and 2f0

2t0 := f .
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We will adopt the notation 2nf(t) instead of 2nf
2tn (t) when there is no danger of confusion.

Scale partial derivatives are also considered here. They are defined as in the standard case.

Definition 5. Let f :
∏n
i=1[ai − h, bi + h]→ R be a function. Define, for each i ∈ {1, . . . , n},

∆i
h[f ](t1, . . . , tn) :=

f(t1, . . . , ti−1, ti + h, ti+1, . . . , tn)− f(t1, . . . , ti−1, ti, ti+1, . . . , tn)

h
,

for ti ∈ [ai − h, bi] and for tj ∈ [aj − h, bj + h] if j 6= i, and

∇ih[f ](t1, . . . , tn) :=
f(t1, . . . , ti−1, ti, ti+1, . . . , tn)− f(t1, . . . , ti−1, ti − h, ti+1, . . . , tn)

h
,

for ti ∈ [ai, bi + h] and for tj ∈ [aj − h, bj + h], if j 6= i. The h-scale partial derivative of f with
respect to the i− th coordinate is given by

2hf

2ti
(t1, . . . , tn) =

1

2

[(
∆i
h[f ] +∇ih[f ]

)
+ i
(
∆i
h[f ]−∇ih[f ]

)]
,

for ti ∈ [ai, bi].

The definition of partial scale derivatives 2f/2ti is clear.
In what follows, we will denote

Cn2([a, b],K) := {f ∈ C0(In,K) | 2
kf

2tk
∈ C0(In−k,C), k = 1, 2, . . . , n}, K = R or K = C.

Definition 6. Let f ∈ C0(I,C) and α ∈]0, 1[ . We say that f is Hölderian of Hölder exponent α
if there exists a constant C > 0 such that, for all s, t ∈ I,

|f(t)− f(s)| ≤ C|t− s|α,

and we write f ∈ Hα(I,C), or simply f ∈ Hα when there is no danger of mislead.

We say that f(t1, . . . , tn) ∈ Hα if f(t1, . . . , ti−1, ·, ti+1, . . . , tn) ∈ Hα, for all i ∈ {1, . . . , n} and
for all tj ∈ [aj , bj ], j 6= i.

Theorem 1. For all f ∈ Hα and g ∈ Hβ, we have

2(f.g)

2t
(t) =

2f

2t
(t).g(t) + f(t).

2g

2t
(t), t ∈ [a, b].

Theorem 2. Let f ∈ C1
2([a, b],R) be such that

lim
h→0

∫ b

a

(
2hf

2t

)
E

(t) dt = 0, (3)

where 2hf
2t :=

(
2hf
2t

)
conv

+
(

2hf
2t

)
E
. Then,

∫ b

a

2f

2t
(t) dt = f(b)− f(a).

As a consequence, we have the following integration by parts formula. If

lim
h→0

∫ b

a

(
2h(f · g)

2t

)
E

(t) dt = 0,

where f ∈ Hα and g ∈ Hβ ,then∫ b

a

2f

2t
(t) · g(t)dt = [f(t)g(t)]

b
a −

∫ b

a

f(t) · 2g
2t

(t)dt.
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3 The scale variational principle of Herglotz

The (classical) variational principle of Herglotz is described in the following way. Consider the
differential equation  ż(t) = L(t, x(t), ẋ(t), z(t)), with t ∈ [a, b]

z(a) = za
x(a) = xa, x(b) = xb,

where x, z and L are smooth functions. We wish to find x (and the correspondent solution z of the
system) such that z(b) attains an extremum. The necessary condition is a second-order differential
equation:

d

dt

∂L

∂ẋ
=
∂L

∂x
+
∂L

∂z

∂L

∂ẋ
,

for all t ∈ [a, b]. This can be seen as an extension of the basic problem of calculus of variations. If
L does not depend on z, then integrating the differential equation along the interval [a, b], we get

∫ b

a

[
L(t, x(t), ẋ(t)) +

za
b− a

]
dt → extremize

x(a) = xa, x(b) = xb.

As is well known, many physical phenomena are characterized by non-differentiable functions (e.g.
generic trajectories of quantum mechanics [4], scale-relativity without the hypothesis of space-
time differentiability [11]). The usual procedure is to replace the classical derivative by a scale
derivative, and consider the space of continuous (and non-differentiable) functions. The scale
calculus of variations approach was studied in [1, 2, 3] for a certain concept of scale derivative
2x(t): 

∫ b

a

L(t, x(t),2x(t)) → extremize

x(a) = xa, x(b) = xb.

Motivated by this problem, we define the fundamental scale variational principle of Herglotz.
First we need to define what extremum is.

Definition 7. We say that z ∈ C1([a, b],C) attains an extremum at t = b if z′(b) = 0.

The problem is then stated in the following way. Consider the system ż(t) = L(t, x(t),2x(t), z(t)), with t ∈ [a, b]
z(a) = za
x(a) = xa, x(b) = xb.

(4)

For simplicity, define
[x, z](t) := (t, x(t),2x(t), z(t)).

We assume that

1. the trajectories x are in Hα ∩ C1
2([a, b],R), 2x ∈ Hα and the functional z in C2([a, b],C),

2. for each x, there exists a unique solution z of the system (4)

3. za, xa, xb are fixed numbers,

4. the Lagrangian L : [a, b]× R× C2 → C is of class C2.

Observe that the solution z(t) actually is a function on three variables, to know z = z(t, x(t),2x(t)).
When there is no danger of mislead, we will simply write z(t). We are interested in finding a trajec-
tory x for which the corresponding solution z is such that z(b) attains an extremum. In particular,
what necessary conditions such solutions must fulfill. These equations are called Euler-Lagrange
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equation types. Again, problem (4) can be reduced to the scale variational problem in case L is
independent of z: ∫ b

a

L

[
(t, x(t),2x(t)) +

za
b− a

]
dt → extremize.

Theorem 3. If the pair (x, z) is a solution of problem (4), and ∂L
∂2x [x, z] ∈ Hα(I,C) (α ∈]0, 1[),

then (x, z) is a solution of the equation

2

2t

(
∂L

∂2x
[x, z](t)

)
=
∂L

∂x
[x, z](t) +

∂L

∂z
[x, z](t)

∂L

∂2x
[x, z](t), (5)

for all t ∈ [a, b].

Proof. Let ε be an arbitrary real, and consider variation functions of x of type x(t) + εη(t), with
η ∈ Hβ(I,R) ∩ C1

2([a, b],R) (β ∈]0, 1[), η(a) = η(b) = 2η(a) = 0, and

lim
h→0

∫ b

a

(
2h

2t

(
λ(t)

∂L

∂2x
[x, z](t)η(t)

))
E

dt = 0.

The corresponding rate of change of z, caused by the change of x in the direction of η, is given by

θ(t) =
d

dε
z(t, x(t) + εη(t),2x(t) + ε2η(t))|ε=0 .

Then

θ̇(t) =
d

dt

d

dε
z(t, x(t) + εη(t),2x(t) + ε2η(t))|ε=0

=
d

dε
L(t, x(t) + εη(t),2x(t) + ε2η(t), z(t, x(t) + εη(t),2x(t) + ε2η(t))|ε=0

=
∂L

∂x
[x, z](t)η(t) +

∂L

∂2x
[x, z](t)2η(t) +

∂L

∂z
[x, z](t)θ(t).

We obtain a first order linear differential equation on θ, whose solution is

λ(b)θ(b)− θ(a) =

∫ b

a

λ(t)

[
∂L

∂x
[x, z](t)η(t) +

∂L

∂2x
[x, z](t)2η(t)

]
dt,

where

λ(t) = exp

(
−
∫ t

a

∂L

∂z
[x, z](τ)dτ

)
.

Using the fact that θ(a) = θ(b) = 0, we get∫ b

a

λ(t)

[
∂L

∂x
[x, z](t)η(t) +

∂L

∂2x
[x, z](t)2η(t)

]
dt = 0.

Integrating by parts the second term, we obtain∫ b

a

[
λ(t)

∂L

∂x
[x, z](t)− 2

2t

(
λ(t)

∂L

∂2x
[x, z](t)

)]
η(t)dt+

[
η(t)λ(t)

∂L

∂2x
[x, z](t)

]b
a

= 0.

Since η(a) = η(b) = 0, and η is an arbitrary function elsewhere,

λ(t)
∂L

∂x
[x, z](t)− 2

2t

(
λ(t)

∂L

∂2x
[x, z](t)

)
= 0,

for all t ∈ [a, b]. Since the function t 7→ λ(t) is differentiable, and the function t 7→ ∂L
∂2x [x, z](t) is

in Hα, it follows that

λ(t)

(
∂L

∂x
[x, z](t) +

∂L

∂z
[x, z](t)

∂L

∂2x
[x, z](t)− 2

2t

(
∂L

∂2x
[x, z](t)

))
= 0.
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Finally, since λ(t) > 0, for all t, we get

2

2t

(
∂L

∂2x
[x, z](t)

)
=
∂L

∂x
[x, z](t) +

∂L

∂z
[x, z](t)

∂L

∂2x
[x, z](t),

for all t ∈ [a, b].

Remark 1. Assume that the set of state functions x is C1([a, b],R). Then equation (5) becomes

d

dt

(
∂L

∂ẋ
[x, z](t)

)
=
∂L

∂x
[x, z](t) +

∂L

∂z
[x, z](t)

∂L

∂ẋ
[x, z](t),

which is the generalized variational principle of Herglotz as in [10].

Theorem 4. Let the pair (x, z) be a solution of the problem (4), but now x(b) is free. Then (x, z)
is a solution of the equation

2

2t

(
∂L

∂2x
[x, z](t)

)
=
∂L

∂x
[x, z](t) +

∂L

∂z
[x, z](t)

∂L

∂2x
[x, z](t),

for all t ∈ [a, b], and verifies the transversality condition

∂L

∂2x
[x, z](b) = 0.

Proof. Following the proof of Theorem 3, the Euler-Lagrange equation is deduced. Then[
η(t)λ(t)

∂L

∂2x
[x, z](t)

]b
a

= 0.

Since η(a) = 0 and η(b) is arbitrary, we obtain the transversality condition.

Multi-dimensional case
For simplicity, we considered so far one state function x only, but the multi-dimensional case

(x1, . . . , xn) is easily studied.

Theorem 5. Let α ∈]0, 1[ and let the vector (x1, . . . , xn, z) be a solution of the problem: find
(x1, . . . , xn) that extremizes z(b), with ż(t) = L(t, x1(t), . . . , xn(t),2x1(t), . . . ,2xn(t), z(t)), with t ∈ [a, b]

z(a) = za
xi(a) = xia, xi(b) = xib

(6)

where, for all i ∈ {1, . . . , n},

1. the trajectories xi are in Hα ∩C1
2([a, b],R), 2xi ∈ Hα and the functional z in C2([a, b],C),

2. za, xia, xib are fixed numbers,

3. ∂L
∂2xi

[x1, . . . , xn, z] ∈ Hα(I,C)

4. the Lagrangian L : [a, b]× Rn × Cn+1 → C is of class C2.

Then, for all i ∈ {1, . . . , n}, (x1, . . . , xn, z) is a solution of the equation

2

2t

(
∂L

∂2xi
[x1, . . . , xn, z](t)

)
=
∂L

∂xi
[x1, . . . , xn, z](t) +

∂L

∂z
[x1, . . . , xn, z](t)

∂L

∂2xi
[x1, . . . , xn, z](t),

for all t ∈ [a, b].
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Theorem 6. Let the vector (x1, . . . , xn, z) be a solution of the problem as stated in Theorem 5, but
now xi(b) is free, for all i ∈ {1, . . . , n}. Then, for all i ∈ {1, . . . , n}, (x1, . . . , xn, z) is a solution
of the equation

2

2t

(
∂L

∂2xi
[x1, . . . , xn, z](t)

)
=
∂L

∂xi
[x1, . . . , xn, z](t) +

∂L

∂z
[x1, . . . , xn, z](t)

∂L

∂2xi
[x1, . . . , xn, z](t),

for all t ∈ [a, b], and verifies the transversality condition

∂L

∂2xi
[x1, . . . , xn, z](b) = 0.

Higher-order derivatives case

Theorem 7. Let α ∈]0, 1[ and let the pair (x, z) be a solution of the problem: find x that extremizes
z(b), with  ż(t) = L(t, x,2x(t), . . . ,2nx(t), z(t)), with t ∈ [a, b]

z(a) = za
2ix(a) = xia, 2

ix(b) = xib, for all i ∈ {0, . . . , n− 1},
where

1. the trajectories x are in Hα ∩ Cn2([a, b],R), 2x ∈ Hα and the functional z in C2([a, b],C),

2. za, xia, xib are fixed numbers, for all i ∈ {0, . . . , n− 1},

3. ∂L
∂2ix [x, z] ∈ Hα(In,C), for all i ∈ {1, . . . , n},

4. [x, z](t) = (t, x,2x(t), . . . ,2nx(t), z(t)) and [x](t) = (t, x,2x(t), . . . ,2nx(t)),

5. the Lagrangian L : [a, b]× Rn+1 → R is of class C2.

Then, (x, z) is a solution of the equation

λ(t)
∂L

∂x
[x, z](t) +

n∑
i=1

(−1)i
2i

2ti

(
λ(t)

∂L

∂2ix
[x, z](t)

)
= 0,

for all t ∈ [a, b].

Proof. Let x(t)+εη(t) be a variation function of x, with ε ∈ R and η ∈ Hβ∩Cn2([a, b],R) (β ∈]0, 1[).
Also, assume that the variations fulfill the conditions:

1. for all i = 0, . . . , n− 1, 2iη(a) = 2iη(b) = 0, and 2nη(a) = 0,

2. for all i = 1, 2, . . . , n and k = 0, 1, . . . , i− 1,

lim
h→0

∫ b

a

(
2h

2t

(
λ(t)

2k

2tk

(
∂L

∂2ix
[x, z](t)

)
2i−k−1η(t)

))
E

dt = 0.

Define

θ(t) =
d

dε
z(t, x(t) + εη(t),2x(t) + ε2η(t), . . . ,2nx(t) + ε2nη(t))|ε=0 .

Then

θ̇(t) =
∂L

∂x
[x, z](t)η(t) +

n∑
i=1

∂L

∂2ix
[x, z](t)2iη(t) +

∂L

∂z
[x, z](t)θ(t).

Solving this linear ODE, we arrive at∫ b

a

λ(t)

[
∂L

∂x
[x, z](t)η(t) +

n∑
i=1

∂L

∂2ix
[x, z](t)2iη(t)

]
dt = 0,

7



where

λ(t) = exp

(
−
∫ t

a

∂L

∂z
[x, z](τ)dτ

)
.

Integrating by parts n times, we obtain the following:∫ b

a

[
λ(t)

∂L

∂x
[x, z](t) +

n∑
i=1

(−1)i
2i

2ti

(
λ(t)

∂L

∂2ix
[x, z](t)

)]
η(t)dt

+

[
n∑
i=1

i−1∑
k=0

(−1)k
2k

2tk

(
λ(t)

∂L

∂2ix
[x, z](t)

)
2i−1−kη(t)

]b
a

= 0,

and rearranging the terms, we get∫ b

a

[
λ(t)

∂L

∂x
[x, z](t) +

n∑
i=1

(−1)i
2i

2ti

(
λ(t)

∂L

∂2ix
[x, z](t)

)]
η(t)dt

+

[
n∑
i=1

[
n∑
k=i

(−1)k−i
2k−i

2tk−i

(
λ(t)

∂L

∂2kx
[x, z](t)

)]
2i−1η(t)

]b
a

= 0.

Since 2iη(a) = 2iη(b) = 0, for all i ∈ {0, . . . , n− 1} and η is arbitrary elsewhere, we get

λ(t)
∂L

∂x
[x, z](t) +

n∑
i=1

(−1)i
2i

2ti

(
λ(t)

∂L

∂2ix
[x, z](t)

)
= 0,

for all t ∈ [a, b].

Theorem 8. Let the pair (x, z) be a solution of the problem as stated in Theorem 7, but now
2ix(b) is free, for all i ∈ {0, . . . , n− 1}. Then, (x, z) is a solution of the equation

λ(t)
∂L

∂x
[x, z](t) +

n∑
i=1

(−1)i
2i

2ti

(
λ(t)

∂L

∂2ix
[x, z](t)

)
= 0,

for all t ∈ [a, b], and verifies the transversality condition

n∑
k=i

(−1)k−i
2k−i

2tk−i

(
λ(t)

∂L

∂2kx
[x, z](t)

)
= 0 at t = b,

for all i ∈ {1, . . . , n}.

Several independent variables case
We generalize Theorem 3 for several independent variables. First we fix some notations. The

variable time is t ∈ [a, b], x = (x1, . . . , xn) ∈ Ω :=
∏n
i=1[ai, bi] are the space coordinates and the

state function is u := u(t, x).

Theorem 9. Let α ∈]0, 1[ and let the pair (u, z) be a solution of the problem: find u that extremizes
z(b), with 

ż(t) =

∫
Ω

L

(
t, x, u,

2u

2t
,
2u

2x1
, . . . ,

2u

2xn
, z(t)

)
dnx, with t ∈ [a, b]

z(a) = za
u(t, x) takes fixed values, ∀t ∈ [a, b]∀x ∈ ∂Ω
u(t, x) takes fixed values, ∀t ∈ {a, b} ∀x ∈ Ω,

(7)

where, for all i ∈ {1, . . . , n},
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1. the trajectories u are in Hα(I × Ω,R) ∩ C1
2([a, b] × Ω,R), 2u

2t ,
2u
2xi
∈ Hα([a, b] × Ω,C) and

the functional z in C2([a, b],C),

2. za is a fixed number,

3. dnx = dx1 . . . dxn,

4. ∂L
∂2t [u, z],

∂L
∂2xi

[u, z] ∈ Hα(I × Ω,C), where ∂L
∂2t [u, z] denotes the partial derivative of L with

respect to the variable 2u
2t , and ∂L

∂2xi
[u, z] denotes the partial derivative of L with respect to

the variable 2u
2xi

, and [u, z](t) = (t, x, u, 2u
2t ,

2u
2x1

, . . . , 2u
2xn

, z(t)),

5. L : [a, b]× Ω× R× Cn+2 → C is of class C2.

Then, (u, z) is a solution of the equation

∂L

∂u
[u, z](t)+

∂L

∂2t
[u, z](t)

∫
Ω

∂L

∂2z
[u, z](t) dnx− 2

2t

(
∂L

∂2t
[u, z](t)

)
−

n∑
i=1

2

2xi

(
∂L

∂2xi
[u, z](t)

)
= 0,

for all t ∈ [a, b] and for all x ∈ Ω.

Proof. Let u(t, x) + εη(t, x) be a variation function of u, with ε ∈ R and η ∈ Hβ(I × Ω,R) ∩
C1

2([a, b]× Ω,R) (β ∈]0, 1[). Also, assume that the variations fulfill the conditions:

1. η(t, x) = 0, ∀t ∈ [a, b]∀x ∈ ∂Ω,

2. η(t, x) = 0, ∀t ∈ {a, b} ∀x ∈ Ω,

3. 2η
2t (a, x) = 2η

2xi
(a, x) = 0, ∀x ∈ Ω,

4. for all i = 1, 2, . . . , n,

lim
h→0

∫ b

a

(
2h

2t

(
λ(t)

∂L

∂2t
[u, z](t)η(t)

))
E

dt = 0.

and

lim
h→0

∫ b

a

(
2h

2xi

(
λ(t)

∂L

∂2xi
[u, z](t)η(t)

))
E

dt = 0,

where

λ(t) = exp

(
−
∫ t

a

∫
Ω

∂L

∂z
[u, z](τ) dnx dτ

)
.

Let

θ(t) =
d

dε
z

(
t, x, u+ εη,

2u

2t
+ ε

2η

2t
,
2u

2x1
+ ε

2η

2x1
, . . . ,

2u

2xn
+ ε

2η

2xn

)∣∣∣∣
ε=0

.

Proceeding with some calculations, we arrive at the ODE

θ̇(t)−
∫

Ω

∂L

∂z
[u, z](t) dnx θ(t) =

∫
Ω

∂L

∂u
[u, z](t)η +

∂L

∂2t
[u, z](t)

2η

2t
+

n∑
i=1

∂L

∂2xi
[u, z](t)

2η

2xi
dnx.

Solving the ODE, and taking into consideration that θ(a) = θ(b) = 0, we get∫ b

a

∫
Ω

λ(t)

[
∂L

∂u
[u, z](t)η +

∂L

∂2t
[u, z](t)

2η

2t
+

n∑
i=1

∂L

∂2xi
[u, z](t)

2η

2xi

]
dnx dt = 0.

Integrating by parts, and considering the boundary conditions over η, we get∫ b

a

∫
Ω

[
λ(t)

∂L

∂u
[u, z](t)− 2

2t

(
λ(t)

∂L

∂2t
[u, z](t)

)
−

n∑
i=1

2

2xi

(
λ(t)

∂L

∂xi
[u, z](t)

)]
ηdnxdt = 0.
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By the arbitrariness of η, it follows that for all t ∈ [a, b] and for all x ∈ Ω,

λ(t)
∂L

∂u
[u, z](t)− 2

2t

(
λ(t)

∂L

∂2t
[u, z](t)

)
−

n∑
i=1

2

2xi

(
λ(t)

∂L

∂xi
[u, z](t)

)
= 0.

Since λ(t) > 0, this condition implies that

∂L

∂u
[u, z](t)+

∂L

∂2t
[u, z](t)

∫
Ω

∂L

∂2z
[u, z](t) dnx− 2

2t

(
∂L

∂2t
[u, z](t)

)
−

n∑
i=1

2

2xi

(
∂L

∂2xi
[u, z](t)

)
= 0,

for all t ∈ [a, b] and for all x ∈ Ω, and the theorem is proved.
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