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ABSTRACT

This work presents a periodic state space model to model monthly temperature data.
Additionally, some issues are discussed, as the parameter estimation or the Kalman
filter recursions adapted to a periodic model. This framework is applied to monthly
long-term temperature time series of Lisbon.
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1. INTRODUCTION

The rise in global temperature has been an increasing concern of several authorities. According
to the Intergovernmental Panel on Climate Change, the world’s greenhouse gas emissions are still
increasing and on the present path, the global temperature rise will substantial exceed the limit
goal of two degrees Celsius that countries have agreed upon in order to avoid the most dangerous
impacts of climate change. In the United Nations (UN) Framework on Climate Change, it was
adopted the Paris Agreement, on 12 December 2015, at the UN Climate Change Conference in
France where parties committed to take ambitious actions to keep global temperature rise below
2 degrees Celsius by the end of the century [9].
Climate change monitoring is performed with multidisciplinar approaches. However, the statistical
analysis has been a key in this theme. Usually, monitoring climate change is performed based on
regional or global temperature long-term data. Indeed, temperature data is considered in several
studies of climate change or as the main variable under analysis or as a covariate on modeling other
environmental variables, for instance in rainfall modeling. Thus, long-term temperature time series
are, par excellence, the most appropriate data to study climate change, mainly in the global or
local warming.
Indeed, modeling and foresight scenarios of environmental and climate variables are based on the
selection of climate models using the analysis of other variables as rainfall and temperature [5].
On the other hand, the impact of changes in environmental variables changes, as the temperature
or the precipitation, on environmental issues have been assessed and analyzed in order to explore
the implications under a future climate [3].
The most applied statistical models in order to analyze climate time series, in particular of temper-
atures data sets, are the linear models and the usual time series models as ARIMA models [1, 2, 4].
These models are largely known as simple and they have well-known optimal properties under the
usual assumptions (normality of errors, etc.). Some extensions and combinations of these models
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have been proposed in environmental data analysis in order to improve models performance and
to increase the predictions accuracy.
State space models have been largely considered an extension of the usual linear models which
incorporate a versatile stochastic structure at the same time that integrate temporal dependence.
The goal of this work is to analyze monthly long-term temperature time series of the Portuguese
city of Lisbon. In [7] propose and implement a methodology for detection and correction of series
of monthly temperatures for Lisbon, Oporto and Coimbra, providing the homogenization of these
Portuguese long-term temperature data series (data in [8]). For instance, see Figure 1 related to
Lisbon homogenized monthly temperature data.

Figure 1: Lisbon homogenized monthly temperature data.

State space models have been largely applied in several areas of applied statistics. In particular,
the linear state space models have desirable properties and they have a huge potential in time
series modeling that incorporates latent processes.
Once a model is placed in the linear state space form, the most usual algorithm to predict the latent
process, the state, is the Kalman filter algorithm. This algorithm is a procedure for computing,
at each time t (t = 1, 2, . . .), the optimal estimator of the state vector based on the available
information until t and its success lies on the fact that is an online estimation procedure.
The main goal of the Kalman filter algorithm is to find predictions for the unobservable variables
based on observable variables related to each other through a set of equations forming the state
space model. Indeed, in the context of linear state space models, the Kalman filter produces the
best linear unbiased estimators. When the errors and the initial state are Gaussian, the Kalman
filter predictors are the best unbiased estimators in the sense of the minimum mean square error.
However, the optimal properties only can be guaranteed when all model’s parameters are known
[6].

2. THE PERIODIC STATE SPACE MODEL - PSSM

In order to accommodate data properties as temporal correlation and the periodic behavior, a
periodic state space model is proposed. This model is defined as

Ys,n = [S(n− 1) + s]Xs,n +Ds,n! + es,n (1)

Xs,n = µs + "s(Xs−1,n − µs−1

) + �s,n (2)

where

• s is the season of the year with s = 1, 2, ..., S;

• n is the year with n = 1, 2, ..., N ;

• Ys,n represents the time series observation in the s

th season of the n

th year, that is, the

[S(n− 1) + s]th observation of the time series;
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� are unknown parameters representing the fixed effects in the model;

• Ds,n is an 1× S matrix of known values, a design matrix;

• the error process (es,n) is a white noise disturbance, which is assumed to have var(es,n) = #

2

e ;

• µs is the mean of the process (Xs,n) for the s

th season, "s is the autoregressive parameter
for season s and �s,n is the white noise disturbance;

• the error process (�s,n) are distributed IID(0,#2

s) and it is assumed to have an covariance
defined by

cov(�s,n, �s−i,n) =

!
#

2

�,s i = 0
0 i �= 0 for i = 1, 2, ..., S.

The first equation is referred as the observation equation and the second is called the state
equation.

4. GAUSSIAN LIKELIHOOD ESTIMATION

Under the assumptions that the initial state, the state noise �s,n and the observation noise es,n are
mutually independent and normally distributed, for a given realization Y = (Y

1,1, Y2,1, ..., YS,N )
�

the logarithm of the Gaussian likelihood function is computed as follows

logL(";Y) = −NS
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�, %s,n = Ys,n − �

Ys−1,n is the innovation and

�s,n is the mean square error of the innovation. The forecast one-step-ahead of Ys,n, �
Ys−1,n,

is obtained by the Kalman filter equations reformulated to the model (1)-(2). The maximum
likelihood estimates are obtained through numerical procedures.

5. SOME RESULTS

The modeling procedure and the Kalman filter algorithm allow obtaining one-step-ahead forecasts
and some overall results. In the first case, Figure 2 shows the one-step-ahead forecasts in the last
decade of the period analyzed in Lisbon. It seems that the model has a good adjustment to the
real data.

Figure 2: One-step-ahead forecasts in the last decade of the period analyzed in Lisbon.

On the other hand, the model’s parameters allow to concluded that there is a global temperature
rise. However, the months with the highest average rates of temperature increase by century are
January (+0,9oC), March (+1,1oC), October (+0,8oC) and December (+0,8oC).
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