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O cérebro humano armazena, integra e transmite informação recorrendo a 
milhões de neurónios, interconetados por inúmeras sinapses. Embora os 
neurónios comuniquem entre si através de sinais químicos, a informação é 
codificada e conduzida sob a forma de sinais elétricos. A neuroeletrofisiologia 
foca-se no estudo deste tipo de sinalização. Tanto abordagens intra, como 
abordagens extracelulares são usadas em investigação, mas nenhuma detém 
tanto potencial em screening de alto débito e na descoberta de fármacos, como 
medições extracelulares baseadas em matrizes de multi-elétrodos (MEA). MEAs 
medem a atividade neuronal, tanto em in vitro como em in vivo. A sua principal 
vantagem  é a capacidade de medir atividade elétrica a partir de vários locais 
simultaneamente. 
A doença de Alzheimer (DA) é a doença neurodegenerativa mais comum e uma 
das principais causas de morte em todo o mundo. É caracterizada por 
emaranhados neurofibrilares e agregados de péptidos amilóides (Aβ), que 
conduzem à perda de sinapses e em última instância, à morte neuronal. 
Atualmente, não existe cura e os tratamentos disponíveis apenas retardam a 
sua progressão. Os ensaios in vitro com MEA permitem uma seleção rápida dos 
compostos neuroprotectores e neurotóxicos. Portanto, as medições com recurso 
a MEA são de grande utilidade na investigação básica e clínica da DA. 
O principal objetivo desta tese foi otimizar a formação de redes neuronais SH-
SY5Y em MEAs. Estas podem ser extremamente úteis para instalações que não 
têm acesso a culturas neuronais primárias, mas também podem economizar 
recursos e facilitar a obtenção mais rápida de resultados para aquelas que têm 
acesso.  
Compostos mediadores de adesão provaram afetar a morfologia, viabilidade e 
a exibição espontânea de atividade elétrica das células. Além disso, as células 
SH-SY5Y foram diferenciadas com sucesso e demonstraram efeitos agudos 
sobre a função neuronal após a adição de Aβ. Este efeito sobre a sinalização 
elétrica foi dependente da concentração dos oligómeros de Aβ. 
Os resultados aqui apresentados permitem concluir que a linha celular SH-SY5Y 
pode ser diferenciada com sucesso em MEAs devidamente tratados e pode ser 
usada para avaliar os efeitos agudos do Aβ sobre a sinalização neuronal. 
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The human brain stores, integrates, and transmits information recurring to 

millions of neurons, interconnected by countless synapses. Though neurons 

communicate through chemical signaling, information is coded and conducted in 

the form of electrical signals. Neuroelectrophysiology focus on the study of this 

type of signaling. Both intra and extracellular approaches are used in research, 

but none holds as much potential in high-throughput screening and drug 

discovery, as extracellular recordings using multielectrode arrays (MEAs). MEAs 

measure neuronal activity, both in vitro and in vivo. Their key advantage is the 

capability to record electrical activity at multiple sites simultaneously. 

Alzheimer’s disease (AD) is the most common neurodegenerative disease and 

one of the leading causes of death worldwide. It is characterized by neurofibrillar 

tangles and aggregates of amyloid-β (Aβ) peptides, which lead to the loss of 

synapses and ultimately neuronal death. Currently, there is no cure and the 

drugs available can only delay its progression. In vitro MEA assays enable rapid 

screening of neuroprotective and neuroharming compounds. Therefore, MEA 

recordings are of great use in both AD basic and clinical research. 

The main aim of this thesis was to optimize the formation of SH-SY5Y neuronal 

networks on MEAs. These can be extremely useful for facilities that do not have 

access to primary neuronal cultures, but can also save resources and facilitate 

obtaining faster high-throughput results to those that do.  

Adhesion-mediating compounds proved to impact cell morphology, viability and 

exhibition of spontaneous electrical activity. Moreover, SH-SY5Y cells were 

successfully differentiated and demonstrated acute effects on neuronal function 

after Aβ addition. This effect on electrical signaling was dependent on Aβ 

oligomers concentration.  

The results here presented allow us to conclude that the SH-SY5Y cell line can 

be successfully differentiated in properly coated MEAs and be used for assessing 

acute Aβ effects on neuronal signaling.  
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1.1 Neuron 

The nervous system regulates all aspects of body function. In order to accomplish this massive task, 

it must communicate fast and efficiently with all the structures involved, from the receptors to the 

effectors. The communicative role of the nervous system is carried out by nerve cells, or neurons 

(1,2). The human brain is the control center that stores, computes, integrates, and transmits 

information recurring to about 1011 neurons. These are interconnected by some 1014 synapses, the 

junction points where two or more neurons communicate. Glial cells occupy the spaces between 

neurons and help maintain and modulate neurons functions (1,3). 

Despite the multiple types and shapes of neurons, all nerve cells share many common properties 

(2). Neurons’ main function is to communicate information, which they do by two methods: 

electrical and chemical signals. Electrical signals process and conduct information within neurons. 

The electrical pulse that travels along neurons is called action potential (AP), and information can 

be encoded as the frequency at which APs are fired. Chemical signals (neurotransmitters) transmit 

information between neurons. Taken together, the electrical and chemical signaling of the nervous 

system allows it to detect stimuli, integrate and process the information received, then generate 

an appropriate response to the stimulus (3). 

Neurons’ communicative functions demand unique cell structures. Fundamental physiological 

properties such as excitability, conductivity and secretion require specialized structures such as 

dendrites, axons and synaptic vesicles containing neurotransmitters, respectively.  

 

1.1.1 Structure 

A representation of a single neuron and its main distinctive structures is shown in Fig. 1. 

 

Figure 1 – Neuron. Schematic representation of a multipolar neuron. Note that the electrical signal conduction 

occurs in the soma-axon terminals direction [adapted from (2)]. 

Axon hillock 

Dendrites 

Axon collateral 

Axon 

Myelin sheath 

Soma 

Nucleus 

Node of Ranvier 

Axon terminals 



4 
 

The central part of the neuron, the soma or cell body, contains the nucleus, which is the site of most 

of the protein synthesis. The neuronal cell body processes the incoming signals via a direct spatial 

and temporal integration of the membrane potential shifts. The postsynaptic branches that 

originate from the cell body are called dendrites and are responsible for reception of excitatory or 

inhibitory input through the synapses (2,3). The axon hillock constitutes the interface between the 

cell body and the axon, as well as the “trigger zone” for APs generation. Growing outward from the 

axon hillock, the axon is a long extension that carries important subcellular components within the 

neuron and conducts the electrical signal to the next cell (1,3). The length of an axon can vary 

between 1 μm and 1 m, depending on the type of the nerve. Although the axon is relatively 

unbranched for most of its length, it may give rise to a few branches (axon collaterals) along the 

way. Still, most brain neuron’s axons branch extensively at their distal end (terminal arborization). 

Here, each branch ends in a terminal button (axon terminal) that forms a synapse with another cell 

(2). 

The axon can be coated by several sequential myelin sheaths. The myelin sheaths are formed in the 

central nervous system (CNS) by oligodendrocytes and in the peripheral nervous system (PNS) by 

Schwann cells. Small gaps are located between these myelin sheaths, called nodes of Ranvier. In 

myelinated axons of the same diameter, the nerve impulse conducts about ten times faster than in 

axons without myelin sheaths (2).This occurs because an AP current propagation is saltatory, as it 

jumps from node to node across the neuronal membrane (1). 

Neurons contain the organelles found in most other cells, including the endoplasmic reticulum, 

Golgi apparatus, mitochondria, and a variety of vesicular structures. Yet, in comparison, these 

organelles are often localized in distinct regions of the cell. In addition to the distribution of 

organelles and subcellular components, neurons are in some measure different in the specialized 

fibrillar or tubular proteins that constitute the cytoskeleton (1). For example, neuron’s microtubules 

extend along the axons due to their role in vesicular and subcellular components transport to the 

axon cytoplasm (axoplasm) and the axon terminals (1,2). 

 

1.1.2 Electrical Signals 

Neurons generate and conduct electrical signals that transmit information to other cells. These 

electrical signals may be produced in response to external stimuli. For example, receptor potentials 

are due to the activation of sensory neurons by external stimuli, such as pressure, light, sound, or 

heat. Yet, another type of electrical signal is associated with communication between neurons at 

synaptic contacts. Activation of these synapses generates synaptic potentials, which allow 

transmission of information between neurons. Both receptor and synaptic potentials are different 

types of graded potentials and trigger APs (also referred to as “spikes” or “impulses”) (1,3). 

On the basis of all these electrical signals are ion fluxes (mainly Na+ and K+) caused by the cell 

membrane’s selective permeability to different ions, and the heterogeneous distribution of these 

ions across the membrane (1,3). These two facts depend on two different kinds of proteins in the 

neuronal membrane. The selective permeability is due largely to ion channels, proteins that allow 

only certain kinds of ions to cross the membrane in the direction of their concentration gradients. 

The ion concentration gradients are established by proteins known as active transporters, which 
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move ions into or out of the cell against their concentration gradients using energy in the form of 

adenosine triphosphate (ATP) (1). 

A neuron receives its incoming signals in the form of neurotransmitters that originate in the 

presynaptic neuron. These are stored in synaptic vesicles and are released onto the synaptic cleft. 

Neurotransmitters induce synaptic potentials at the postsynaptic dendrites that lead to changes in 

membrane potential, which vary in size and decrease over time and space. These impulses are 

incremental and may be excitatory or inhibitory. Whether a neuron interacts in an inhibitory or 

excitatory way is determined by the synapses and depends on the type of the neurotransmitters it 

exchanges with the postsynaptic cells. An inhibitory neurotransmitter, like gamma-aminobutyric 

acid (GABA), produces inhibitory postsynaptic potentials (IPSPs), while an excitatory 

neurotransmitter like glutamate generates excitatory postsynaptic potentials (EPSPs). The 

magnitude of a synaptic potential is determined by the strength of the stimulus (1,3).  

Like all excitable cells, neurons, have an inside negative voltage or electric potential gradient across 

their plasma membranes - the resting membrane potential [around -70 millivolts (mV)]. The resting 

membrane potential is the state when no signal is in transit, therefore this potential is reversed 

when an AP occurs. As neurotransmitters bind to the receptors of the postsynaptic cell, they trigger 

a depolarization of the resting membrane potential. If a certain membrane potential is surpassed – 

the threshold potential (ranging from –40mV to –55mV) – an AP is elicited  (1,3). The signal is passed 

on over the dendrites to the cell body and from there to the axon hillock. The axon hillock contains 

the highest concentration of ion channels anywhere in the neuron, which reduces the threshold 

potential strongly and renders it a trigger for APs (1,3). An AP is only elicited at the axon hillock if 

the threshold potential is exceeded. Therefore, this process is often described as the “all-or-nothing 

law”: either there is an AP or there is none (1). At the beginning of the AP, Na+ voltage-gated ion 

channels open as the membrane reaches the threshold potential. Na+ ions rapidly move (influx) into 

the axon causing membrane depolarization. When the AP reaches its peak, Na+ voltage-gated ion 

channels close and the K+ voltage-gated ion channels begin to open. K+ ions then exit (efflux) the 

axon and membrane repolarization occurs. As an AP travels down the axon, this change in polarity 

between the outside and the inside of the cell is constantly created (3). An AP plot showing the 

variations in membrane potential on a neuronal membrane site during AP conduction can be seen 

in Fig. 2A. 

The best way to observe and measure APs is to use an intracellular microelectrode to measure the 

electrical potential across the neuronal membrane. A typical microelectrode is a piece of glass 

tubing, with an opening of less than 1 μm diameter, filled with a good electrical conductor such as 

a concentrated salt solution (1,4). A detailed understanding of the AP came only after the invention 

of the voltage clamp technique by Kenneth Cole in the 1940s. This device controls the membrane 

potential at any desired level by placing two microelectrodes inside the cell. Therefore, the voltage 

clamp technique indicates how membrane potential influences ionic current flow across the 

membrane (1). This method gave Hodgkin, A. and Huxley, A. (1952) the key insights that led to their 

model for AP generation (5). An AP may be “artificially” elicited by passing electrical current across 

the neuronal membrane. If current of the opposite polarity is delivered, so that depolarization 

occurs and the threshold potential is surpassed, an AP occurs (1). 
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Although APs can vary somewhat in duration, amplitude and shape, they are typically treated as 

identical stereotyped events in electrophysiological studies (6). If the brief duration of an AP (about 

1ms) is ignored, an AP sequence (“spike train”), may be characterized simply by a series of all-or-

none point events in time. The lengths of interspike intervals (ISIs) between two successive spikes 

in a spike train vary immensely (1,6,7). There is an ongoing debate on whether neurons use rate 

coding (“frequency coding”) or temporal coding (“precise timing”) to convey information (7,8).  

When recording electrical activity of multiple neurons, intracellular techniques, such as voltage 

clamp, fail to measure the majority of occurring signal transmission. Field potentials, which 

represent the activity of very large groups of neurons, are routinely recorded along the scalp using 

electroencephalography (EEG) technology (9). In turn, this naturally occurring brain electrical 

activity produces magnetic fields, which can be measured by magnetoencephalography (MEG) (10). 

MEG, EEG and its variants are used in clinical practice to diagnose epilepsy, sleep disorders, coma, 

encephalopathies, brain tumors and brain death (9,10). However, their application in 

neurodegenerative diseases (NDs) research is very limited. In order to study such diseases at a 

molecular level, different recording techniques are needed.  

On a minor scale, a local field potential (LFP) is an electrophysiological signal generated by the 

summed electric current flowing from multiple nearby neurons within a small volume of nervous 

tissue. It refers to the electric potential produced across the local extracellular space around 

neurons by APs and graded potentials, and varies as a result of synaptic activity (11). There is a lot 

of controversy about the sources of LFPs (11,12), still a synchrony of APs from many neurons seems 

to participate in their generation (12). LFPs can be measured recurring to extracellular recording 

techniques such as multielectrode arrays (11,13). 

The electrical nature of neuronal activity makes it possible to detect signals on electrodes at a 

distance from the source, but not without limitations. It is essential to determine the recording 

capabilities and limits of the device used and to understand how the neuronal signal is transduced 

into a recorded digital form (12). A schematic comparison between an AP sign recorded by 

intracellular and extracellular electrodes can be seen in Fig. 2B.  

Unlike the stereotypic uniformity of intracellularly recorded APs, extracellular recording renders 

traces that vary markedly in shape. They depend on the signal source, cell type and geometry, its 

developmental stage and with it the type, ratio and density of expressed (channel) proteins (14). 
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1.2 Electrophysiology – Applications in Neurosciences 

Electrophysiology is the study of the electrical properties of biological cells and tissues. It involves 

measurements of voltage change or electric current on a wide variety of scales, from single-ion 

channel proteins to whole organs. In neuroscience, electrophysiology is considered to be the “gold 

standard” for investigating neuronal signaling (15). The primary strength of neuroelectrophysiology 

is its combination of time resolution and sensitivity, allowing the precise determination of the 

temporal pattern of neuronal signals over many orders of magnitude, with high signal-to-noise ratio 

(SNR) (15,16). By using electrodes to record electrical signals associated with ion fluxes across 

neuronal membranes, neuroelectrophysiology allows direct access to studying neuronal 

communication (15).  

Only a concerted effort of many neurons make up what it is commonly experienced by humans. In 

particular, higher brain functions such as associative learning, memory acquisition and retrieval, 

and pattern and speech recognition depend on many neurons acting and communicating 

synchronically (17). Furthermore, pathophysiological conditions such as Alzheimer’s disease (AD), 

epilepsy, or other neurological impairments relate to extensive neuronal injuries (18,19). Therefore, 

in order to understand these pathologies a multi-unit approach is necessary. 

The available methodologies for the recording of neuroelectrophysiological activity include: (a) 

intracellular recordings and stimulation by sharp or patch electrodes, (b) extracellular recordings 

and stimulation by multielectrode arrays (MEAs), (c) other methods such as functional magnetic 
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Figure 2 – Action potential recordings. (A) Typical AP plot shows its various phases as the AP passes a neuronal 

membrane site. Afterhyperpolarization or refractory period prevents an AP from traveling back and the 

elicitation of a new AP on the site during a few milliseconds (ms). (B) Schematic comparison between the same 

AP sign recorded by intracellular and extracellular electrodes. Note that intracellular and extracellular recorded 

voltages are in the millivolt (mV) and microvolt (µV) ranges, respectively. The shape of the extracellular action 

potential (EAP) matches qualitatively the intracellular action potential (IAP), but varies along the extracellular 

space according to temporal distribution of membrane current and due to electrode/membrane distance.  
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resonance imaging (fMRI), EEG, MEG and electrocorticography, designed to record activity from 

very large scale neural populations (7,11). A schematic comparison between the different means of 

recording neuronal electrical activity can be seen in Fig. 3. 

Sharp electrode intracellular recording techniques and Patch-Clamp led to considerable progress 

over the last decades in the understanding of electrophysiological processes at the single channel, 

single synapse and single neuron level (9). However, in vivo or in vitro, it is technically difficult to 

record from and stimulate more than three cells using standard intracellular microelectrodes, and 

those cells typically die within a few hours (20). Consequently, understanding of 

electrophysiological processes at the neuronal network level is still in its beginning. In large part 

due to the technical difficulties of recording electrical activity from large numbers of neurons 

simultaneously and for prolonged periods of time (9,17). Ideally, these recordings should be entirely 

non-invasive, long-term stable, economically and temporally efficient and highly reproducible (9).  

Thomas et al. (1972) first found that electrical activity can be recorded extracellularly with a multi-

electrode device (21). Despite the temporal distance, network electrophysiology has only recently 

started to make significant contributions to the understanding of complex brain operations and 

functions (17). These recent advances have been the result of progress in electronic  technology, as 

well as advances in the computational methods required to store and analyze the enormous 

amount of data generated (9,17). Since then, multi- or microelectrode array (MEA) systems have 

been on the edge of in vitro extracellular recording (17).  

 

Figure 3 – Neuron-electrode interface in different neuroelectrophysiological techniques. Contact 

comparison in extracellular and intracellular approaches. Planar microelectrode arrays (MEAs) can record 

both extracellular/local field potentials (LFPs) and extracellular action potentials (EAPs). Please note that the 

image is not to scale – single MEA’s electrodes are usually larger than neurons’ cell bodies [adapted from 

(22)]. 

In vivo experiments using primates would obviously yield results with the highest certainty of being 

applicable to humans (9). But the successes obtained with in vivo recordings have come from the 

easily accessible areas of the brain such as the motor, sensory, and visual cortices (17). Although it 
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is possible to attain deep brain recording, the difficulty in data interpretation increases dramatically 

as these structures interact with multiple regions of the brain and are influenced by the behavioral 

state of the animal (17). The multiple factors that influence a nervous system make controlling in 

vivo networks an immense task, but properly controlled cell cultures provide an excellent model 

for controlling aspects of the experiment that could not be controlled in the living animal (9,17).  

The need to reduce the time, cost and numbers of animals used in contemporary toxicity tests is 

also contributing to a paradigm shift. In vitro assays, cellular and alternative species models, as well 

as predictive computational methods that incorporate knowledge about toxicity pathways, will 

change neurotoxicity testing (23). Although a number of neurophysiological methods could be 

utilized to address the mentioned needs, one in particular – in vitro MEA recordings - may provide 

a highly effective neurophysiological method that could be used for predictive toxicity testing 

(9,23). 

 

1.2.1 Intracellular Recording - Patch-Clamp 

In 1976, Erwin Neher and Bert Sakmann first used the patch-clamp technique to record single-ion 

channels currents from frog skeletal muscle (24). The patch-clamp was an improvement upon the 

previously used voltage clamp method (1,5). Subsequent refinements, such as the "giga-seal" (25), 

led to techniques for high resolution recording of current. Since then, patch-clamp recording has 

been established as the reference method for measuring electrical activity in the form of APs at the 

cellular level (9).  

While conventional intracellular recording involves impaling a cell with an electrode, patch-clamp 

recording takes a different approach (see Fig. 3). Patch-clamp recording uses a glass micropipette 

as a recording electrode, and another electrode in the bath around the cell, as a reference ground 

electrode (24). The micropipette tip is sealed onto the surface of the cell membrane and a gentle 

suction is applied through to draw a piece of the cell membrane (the “patch”). The suction applied 

helps forming an electric seal – the “giga-seal” - with resistances of 10-100 GΩ. The high resistance 

of a "giga-seal" reduces the background noise of the recording and allows a patch of membrane to 

be voltage-clamped without the use of microelectrodes (25). This configuration is called the "cell-

attached" mode and it has been used for studying the activity of ion channels present in the patch 

of membrane (17,25). 

If enough suction is applied, the small patch of membrane in the micropipette tip can be displaced, 

leaving the electrode sealed to the rest of the cell (25). This is called the "whole-cell" mode and 

allows very stable intracellular recording. Unfortunately, after a while, as the intracellular fluid of 

the cell mixes with the solution inside the micropipette, any properties of the cell that depend on 

soluble intracellular contents are altered, impairing subsequent research (9,17,25). 
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1.2.2 Extracellular Recording – Multielectrode Array (MEA) 

Since its introduction 43 years ago (21), that micro- or multielectrode array (MEA) technology and 

the related culture methods for electrophysiological cell and tissue assays have been continually 

improved, while marking their way in scientific literature (13). Throughout the years there has been 

a great variety of explorations of the possibilities provided by MEA technology. Some have led to 

new understanding, while others have built technologies that promise new future knowledge (17). 

For example, Schnitzer, M. and Meister, M. (2003) used MEA technology to find that groups of 

retina ganglion cells fire synchronously and that such groups may account for more than 50% of all 

the spikes recorded from the retina (26). These patterns conveyed messages about the visual 

stimulus far different from what had been inferred from studies of single ganglion cells (17,26). On 

a completely different approach, Bakkum, D. et al. (2004) connected a MEA system to a robotic arm 

and utilized the recorded neural activity to control the robotic arm activity. They viewed this as a 

new research paradigm to study learning, memory, and information processing in real time (27). 

There are two general classes of microelectrode arrays (MEAs): implantable MEAs, used in vivo, and 

non-implantable MEAs, used in vitro (17). Examples of implantable or in vivo MEAs are polytrodes 

or neural probes. Recently, Wei, W. et al. (2015) introduced a novel implantable dual-model MEA 

probe that can simultaneously measure glutamate levels, LFPs and spike activity across multiple 

spatial locations in the rat brain (28). Non-implantable or in vitro MEAs generally incorporate 

microelectrodes in a substrate forming a cell culture dish or medium chamber (12). Therefore, non-

implantable MEA systems are intended for non-invasive extracellular recordings of different 

applications that include brain, heart, and retina slices, cultured slices, dissociated neuronal cell 

cultures and cell lines (7,17,29–32).  

From here on, whenever referring to MEA systems and MEAs, non-implantable MEA systems and 

planar MEAs will be the subject. Concerning terminology, “MEA” is used to refer to the culture dish, 

while “system” refers to the MEA and all required components to operate a recording, such as the 

data acquisition hardware and software. The term “array” refers to the actual area that serves as 

culture chamber and includes the transducer elements. 

MEAs allow the targeting of several sites in parallel for synchronized recording and stimulation of 

electrophysiological activity (7,17,19,29,33). By simultaneously measuring spontaneous and 

evoked (through stimulation) electrical activity, MEAs provide an excellent approach to studying 

the spatio-temporal patterns of neuronal signaling (9,29,33,34).  

MEA systems enable simultaneous and long-term recordings of LFPs and extracellular action 

potentials (EAPs) at millisecond time scale (12,13). These incorporate stimulators, so 

microelectrodes are also used for extracellular electrical stimulation by applying either current or 

voltage impulses (17). Stimulation through non-implantable MEAs has been used to elicit spiking 

activity in, at least, dissociated cultures, brain slices, and isolated retina (35). Research has found 

that in most cases negative current pulses in fact excite neurons to fire APs (17).  

Cell lines or primary cell preparations are cultivated directly on the arrays. Freshly prepared slices 

can be used for acute recordings, or can be cultivated as organotypic cultures (7–9,17,33,34). 

Dissociated neuronal cell cultures have been used in many studies of network physiology due to 
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their superior accessibility compared to in vivo models, in terms of electrical recording and 

stimulation, pharmacological manipulation and imaging (8). 

MEA systems have been used to evaluate the plasticity of neuronal networks (20,34,36,37), 

neuronal diseases (7,19,31,38,39), and drug responsiveness (23,36,39,40). With respect to MEA 

applicability, careful consideration of their strengths and weaknesses is required. Their major 

strengths, when compared to more traditional methods such as Patch-Clamp, include (16,17): 

1. Data is recorded from multiple electrodes in multiple sites simultaneously;  

2. Simultaneous extracellular capture and elicitation of electrophysiological activity; 

3. Stimulation and recording sites may be rapidly changed within the array; 

4. Controls can be set up within the same experiment (taking advantage of the many available 

electrodes); 

5. No need to place multiple electrodes individually. 

On the other hand, major limitations are (16,17): 

1. Smaller amplitude recordings, as the electrodes are not inserted in the tissue (signal 

amplitudes are on the order of tens of µV only);  

2. Pre-determined recording and stimulation sites (electrodes are arranged in a fixed pattern); 

3. Sensitivity to fluid level fluctuations under interface conditions is greater; 

4. Non-transparent conductors partially obstruct transparency; 

5. Inverted microscopes that use high power lenses are not able to image through standard 

MEAs due to their thickness (~1 mm).  

Some of these disadvantages have been addressed using different configurations (17,32). For 

example, as high-quality signals depend on close contact between electrodes and tissue, perforated 

MEAs that apply negative pressure to openings in the substrate (suctioning)  have been designed 

(17,32). "Thin"-MEAs (with approximately 180 μm) have been created using cover slip glass, 

allowing them to be used with high-power lenses (32).  

MEAs are not adapted to the detection and measurement of subthreshold synaptic potentials. For 

a synaptic potential of 10 millivolts, the expected recording near a cell body will be much less than 

one tenth that for an AP, because it will be generated by a diffuse outward capacitative current 

from the cell body, neighboring dendrites or axon hillock (17). For studies of network development 

and plasticity this is a serious limitation (17), as it is conceivable that significant signaling between 

neurons is mediated by subthreshold potentials and is thus undetectable by MEAs (7). 

Consequently, neurons that do not fire APs during a recording session are not ‘visible’ to 

extracellular electrodes.  In some brain areas, 90% of the neurons are not spiking or are firing 

occasionally at very low rates of <0.16 spikes per second (9). Intracellular recordings of synaptic 

potentials from such neurons could reveal information as to the role of this ‘silent majority’ in 

information processing (17,35).  

For extracellular recordings, “spikes” are commonly considered to be the signal from a presumed 

AP and are identified as voltage signals that exceed a threshold. During an AP, the initial rapid Na+ 

ion influx creates a sink and results in a large negative spike in the EAP. Afterwards, the slow K+ 

efflux produces a source that renders a small positive spike (see Fig.2B). EAPs are usually around 
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tens to hundreds of microvolts in amplitude and <2 ms in duration. EAPs can be identified when 

microelectrodes are placed at the proximity (~100 μm) of the spike origin, usually at the soma or 

near the axon hillock (12). Moreover, aside from assessing spike activity, MEAs measure LFPs. LFPs 

are evaluated by the signal content in the low-frequency band of the recorded signal (<300 Hz), 

while EAPs are analyzed after filtering the LFP out (300–3000 Hz) (12). LFPs are more useful when 

recording in vivo, as monolayer cultures have weak LFPs (33). 

Multi Channel Systems (MCS, Reutlingen, Germany) is currently the market leader in commercially 

available MEA technology (13,17). This company provides electrophysiological tools alongside MEA 

systems, including Patch-Clamps and In Vivo ME-systems (13).  

 

1.2.2.1 Equipment Overview  

Concisely, in vitro MEA systems record, amplify, and analyze spontaneous and/or evoked signals 

from biological samples (32). If an analysis of these samples and its transfer properties is to be 

performed, the electrical characteristics of the main components of the sample and the entire 

system have to be considered (12,17), namely:  

1. Neuron signal sources spread of ionic current across the extracellular space; 

2. Contact between the neuron and the microelectrodes;  

3. The substrate and the embedded microelectrodes;  

4. The external hardware connected to the microelectrodes. 

MEA systems typically consist of MEAs, a MEA amplifier, a temperature controller and a data 

acquisition computer (29). A simplified pathway showing which parameters are involved in shaping 

the recorded signal can be seen in Fig. 4. 
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Figure 4 – The recorded signal pathway and the parameters that influence its shape. The neuron electrical 

activity is transformed by different parameters across the components of the MEA system toward the 

recorded signal. Noise sources may vary across the chain, with the most common being biological 

interferences, electrode’s contacts or malfunction and hardware [adapted from (12,17)]. 
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The analysis of EAPs and LFPs usually assumes a purely homogeneous, isotropic (uniform in all 

directions), ohmic (charge flows easily between conductors) culture medium (volume conductor) 

based on the volume conductor theory (Kirchoff’s current law) and Ohm’s law (12). Therefore, the 

difference in waveforms of a signal recorded at different locations in the tissue is considered to be 

mainly due to each neuronal source and its distance to the recording microelectrode (12,33). 

The neuron-electrode interface and MEA design are the most sensitive and influential parts of a 

MEA system recording. MEAs serve as the culture chamber and comprise the actual recordings site, 

therefore this will be addressed in detail below. 

At the core element of a classical MEA system is the MEA amplifier, where the electrophysiological 

signals are recorded (9,29). These are analyzed recurring to a data acquisition computer equipped 

with specific software. During the experiment, data can be filtered in order to separate events of 

interest. After the experiment the raw data can be saved, reviewed and adjusted (17,29). For 

example, spike detection adjustment, peak-peak amplitude comparison, or different signal 

frequencies separation may be performed re-running the data countless times (17,29).  

 

1.2.2.2 Multielectrode Arrays (MEAs) 

The recording process starts at the MEAs. MEAs consist of an arrangement of spatially distributed 

extracellular electrodes that are embedded in a biocompatible substrate (9,17,29). The MEA 

substrate is usually glass for simultaneous light microscopy and is covered with an insulation 

material, which exclusively exposes the electrode spots to the cells and shields the conductors from 

the culture medium (9,17).  

The closer the cells are to the electrodes, the better the signal transduction (17). A number of 

previous studies have demonstrated that the distance, the strength and the stability of neuron-

electrode contact is important for viable impedance recordings of both spontaneous and evoked 

signals (14,41,42). MEAs’ materials tend to become hydrophobic during storage, which prevents 

attachment of the cells (43). Therefore, coating of MEAs with various biochemical adhesion factors 

is used for improving the attachment and growth of cell cultures or cultured slices (32,43,44). 

Coating the substrate and the electrodes does not only determine the tightness of the cell-

electrode junction (14,45), but it also modulates substrate biocompatibility (14,43), biostability 

(14,43,44) and cell differentiation (14,41,43,44,46). 

MEAs are equipped with a ring, which serves as a culture chamber (29). Culture chamber lids that 

incorporate a thin transparent Teflon membrane can be applied in order to enable long-term 

culturing (17,20,33). This membrane has no pores, thus prevents infection. At the same time it is 

selectively permeable to oxygen and carbon dioxide, but relatively impermeable to water vapor, 

which reduces medium evaporation. This characteristic has enabled neuronal cultures to exhibit 

spontaneous electrical activity after more than a year in culture (20).  

MEAs differ in electrode number [16-10.000], electrode material (titanium nitride, gold, platinum, 

aluminum), electrode diameter [5-50 μm], spacing between electrodes [10-700 μm],  and geometry 

(electrodes layout) (12,17,29,32,47). A variety of electrode geometries and materials have been 

proposed, manufactured, tested and provided for a wide variety of applications (7,8,17,29,34).  



14 
 

MCS focus on designs centered on square or hexagonal arrays of 60 titanium nitride (TiN) electrodes 

with 10-30 μm of diameter and 100-200 μm of spacing between electrodes, which are considered 

“standard” and used by several researchers (8,9,17). TiN allows for design of small electrodes with 

a low impedance and an excellent SNR (29,32). The advantage of 30 μm diameter electrodes is their 

low impedance and low noise level, while 10 μm electrodes enable recording from single neurons 

(29,32). For recording from cultured neurons, a medium spatial resolution with a spacing of 200 μm 

is generally sufficient (17,32). As the electrodes are 200 μm spaced from each other, it can be 

estimated that the signals recorded at one electrode are independent from signals recorded at the 

neighboring ones (48). 

 

1.2.2.3 General Applications and Different Perspectives 

Given that neural systems use distributed codes to process and store information much of their 

dynamics is missed without a multi-unit approach. MEAs provide a mean to record electrical activity 

from many neurons non-destructively, facilitating real-time and multi-point measurements 

(8,17,20,34,36). Even though the neuronal networks one can analyze with this methodology are 

relatively very small, they are large enough for basic intercellular communication and information 

processing to occur (9). 

MEA studies have described fundamental properties of network activity patterns (8,9,17,20,26,34), 

plasticity (30,34,36) and learning in vitro (34); but have also shown promise from a clinical 

perspective through pharmacological testing (7,36,40,49–51), disease modelling (7,17,19) or even 

as a diagnostic tool (52). Neuronal diseases such as epilepsy (19) and AD (39,52–54) have been 

studied using MEAs. 

The use of cultured neuronal networks has allowed researchers to investigate neuronal activity in 

a much more controlled environment than would be possible in a live organism (9). Using MEAs 

researchers have found important evidence about the mechanisms behind learning, memory and 

plasticity. MEA electrophysiological recording and stimulation can take place either across the 

network or locally, and the network development can be visually observed using microscopy 

techniques. Moreover, chemical analysis is easily accomplished compared to an in vivo setting 

(8,17,55). Unfortunately, cultured neuronal networks are by definition disembodied cultures of 

neurons. Because they lack a body, these cultures cannot express behavior, and are cut off from all 

sensory input. Thus, neurons are influenced and may respond in ways that are not biologically 

normal (55). For example, patterns that resemble epileptic seizures and typically involve the entire 

network firing rhythmically in synchrony have been described (55–57). 

Although neurotoxicity of various chemicals is currently tested solely with in vivo methods due to 

the lack of proper, validated in vitro cell models, the MEA system has proven to be suitable for 

neurotoxicological screening (7,17,40). Ylä-Outinen et al (2010) studied the neurotoxicity of methyl 

mercury chloride to human embryonic stem cell (hESC)-derived neuronal cell networks and found 

decreases in the electrical signaling, as well as alterations in the pharmacologic response of hESC-

derived neuronal networks in a delayed manner. Those alterations could not be detected with real 

time quantitative PCR (qRT-PCR), immunostainings, or proliferation measurements (40). 
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Pre-clinical pharmacological testing is one of the most important potential applications of the MEA 

system (7,17,50). There has been a great evolution in this field, particularly in cardiac 

pharmacology. For example, MEA technology has proven to be a sensitive and reliable technology 

to assess drug-induced functional alternation of human cardiomyocytes by the ion channel blockers 

and tyrosine kinase inhibitors (TKIs) (50). In fact, human induced pluripotent stem (iPS) cell-derived 

cardiomyocytes are frequently used to characterize the electrophysiological effects of drug 

candidates for the prediction of QT interval prolongation and proarrhythmic potential (51). The use 

of MEA-cultured cell lines may avoid unexpected toxicity in subsequent clinical drug testing (50,51). 

MEAs have also been considered as a diagnostic tool for neurological diseases. Gortz, P. et al (2013) 

utilized MEAs to determine whether cerebrospinal fluid (CSF) alterations of individuals with AD 

have distinct neurofunctional properties that may distinguish it from that of individuals with mild 

cognitive impairment (MCI). The network electrical activity suppression correlated significantly with 

the degree of cognitive decline (52). 

In the area of robotics different perspectives have been explored. Ferrández et al (2011) used the 

data obtained with human neuroblastoma cultured cells (SH-SY5Y cells) to define stimulation 

patterns, modulating the neural activity for controlling an autonomous robot (30). Another group 

connected a MEA-cultured neuronal network to a computer on which an animal's body was 

simulated (Animat), with the purpose of studying the process of learning and memorizing. Imaging 

and recording the neurons involved in the learning process “while the learning is happening”, could 

enable the studying of the links between electrical activity and morphology (34,56).  

Across the years different applications have surged, often using standard MEAs coupled to other 

structures (7,30,49,58). For instance, MEAs have been coupled to glass co-culture systems 

consisting of two cultivation chambers interconnected by microchannels. In order to study signaling 

transmission between motor neurons and muscle fibers, this setup allowed stimulation of adherent 

neuronal cells in one chamber and measurement of action potentials induced in myotubes on the 

other (58).  

 

1.2.2.4 Neuronal Cell lines Culturing on MEAs 

Although rarely, neuronal cell lines have been used in MEA experiments. The easy availability of cell 

lines and their fast growth can be very useful in MEA experiments requiring high-throughput 

screening (HTS). For example, Teppola et al (2008) stated that human neuroblastoma cell networks 

may replace primary animal cell cultures in various electrophysiological experiments in the future, 

for example as a tool for toxicity and drug testing (44). A few examples where cell lines have been 

employed are discussed below. 

Gortz et al (2008) cultured neurons derived from the human NT2 cell line in order to study its 

neuronal network properties (59). In this experiment, cells were pre-treated with retinoic acid (RA) 

for 6-7 weeks to induce neuronal differentiation. After trypsinization, the purified neurons were 

plated in a cell density of 1.0 x 106 cells/cm2 on poly-D-lysine (1 mg/ml) and laminin (13 µg/ml)-

coated MEAs (59). 



16 
 

Ariano et al (2008) used GT1-7 cells, a neuronal cell line showing spontaneous action potentials 

firing, to test if diamond-based electrodes would be suitable for the fabrication of stable MEAs. The 

time courses of the recorded signals were in good agreement with those recorded by means of 

conventional MEAs and patch-clamp from single cells (60). 

Fernekorn et al (2008) coupled MEAs to glass co-culture systems consisting of two cultivation 

chambers interconnected by microchannels. In one chamber NG108-15 cells were cultured, and on 

the other C2C12 myogenic cells. This setup enabled signaling transmission between motor neurons 

and muscle fibers, by stimulation of adherent neuronal cells in one chamber and measurement of 

the action potentials induced in myotubes on the other (58). 

Takayama et al (2011) RA-induced differentiation of P19 embryonal carcinoma cells on MEAs. P19-

derived neuronal networks showed quite similar network properties to those of primary cultured 

neurons, exhibiting synchronized periodic bursts (61). 

Ferrández et al (2011) used the data obtained with SH-SY5Y cells cultured on MEAs to define 

stimulation patterns that controlled an autonomous robot. This group found no advantages in 

coating with PEI solely, culturing 80.000-120.000 neuroblastoma cells over the uncoated MEA 

substrate (30). 

Jahnke et al (2009) used MEAs to detect the pathological risk potential of hyperphosphorylated tau 

in the SH-SY5Y cell line. MEAs surfaces were coated with 0.5 mg/ml laminin and differentiation was 

induced with 20 nM staurosporine (41). 

 

1.3 SH-SY5Y cell line 

SH-SY5Y cell line derives from the original SK-N-SH cell line, from which it was thrice cloned in 1978 

(62,63). SK-N-SH cell line had been previously isolated from a bone marrow biopsy taken from a 

four year-old female with neuroblastoma (62,64). The SK-N-SH cell line contains cells with three 

different phenotypes: neuronal (N-type), Schwannian (S-type), and intermediary (I-type) (65). N-

type cells are considered immature nerve cells, S-type cells are multipotent precursors to Schwann 

cells, melanocytes and glial cells and I-type cells are intermediate with respect to N- and S-type cells 

in terms of morphology and biochemical markers (66). The SH-SY5Y cell line is a comparatively 

homogeneous neuronal cell line, mainly composed of N-type cells (63,66,67). Though, S-type cells 

remain present due to the ability of cells to transdifferentiate between cell phenotypes (66).  

Since they are tumor derived cell lines, SH-SY5Y cells continuously divide and can provide the 

required quantity of cells for different experiments, without exhibiting a large variability. Therefore, 

this human neuroblastoma cell line has been extensively used as a neuronal cell model since the 

early 1980’s as these cells possess morphological, functional and biochemical properties of primary 

neurons (46,67,68). Furthermore, SH-SY5Y cells proliferate in culture for long periods without 

contamination, a prerequisite for the development of a reliable in vitro cell model (67). 

SH-SY5Y cells are also characterized by noticeable sensitivity to oxidative stress (OS), a pivotal 

contributor to progressive NDs such as AD, but also Parkinson's disease or amyotrophic lateral 
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sclerosis (ALS) (69). The neuronal properties and sensitivity to OS make this neuroblastoma cell line 

an excellent model to study neurological pathologies (69,70).  

Undifferentiated SH-SY5Y cells are characterized morphologically by neuroblast-like, non-polarized 

cell bodies with few, truncated processes (63,71). These cells tend to grow in clusters and may form 

clumps in the central region of a cell mass. Cultures contain both adherent and floating cells, some 

studies suggest that the floating cells are more likely to adhere and differentiate into N-type cells 

upon treatment than the adherent cells present in undifferentiated cultures (71). N-type phenotype 

is characterized by relatively reduced cell growth and the formation of distinct neurites 

(neuritogenesis) (72). 

Both undifferentiated and differentiated SH-SY5Y cells have been used for in vitro experiments that 

require neuron-like cells (71,73), despite undifferentiated SH-SY5Y cells being typically locked in an 

early neuronal differentiation stage, characterized biochemically by the low presence of neuronal 

markers (70). Therefore, the proliferative SH-SY5Y cells do not represent a suitable in vitro model 

for studying the molecular and cellular mechanisms underlying neuronal pathophysiology. 

However, upon induced-differentiation, there is formation and extension of neurites, 

synaptophysin-positive functional synapses, induction of neuron-specific enzymes, 

neurotransmitters, and neurotransmitter receptors (46,67,71,74,75). 

SH-SY5Y cell line has brought several benefits to the field of neuroscience research. This in vitro 

model enables large-scale expansion prior to differentiation, when cells stop proliferating and 

become a stable population (67). This is achieved with relative ease and low cost when compared 

to primary neuronal cultures (71). As SH-SY5Y cells are human-derived, they express human-specific 

proteins and protein isoforms that would not be present in rodent primary cultures (71). Moreover, 

there are no ethical concerns, associated with primary human neuronal culture, as these cells 

originate from a cell line (62,63). 

 

1.3.1 Differentiation of SH-SY5Y cells 

Differentiation of SH-SY5Y cell line into a neuronal-like cell line is required to mimic the intracellular 

environment of a neuronal cell. Upon differentiation, SH-SY5Y cells possess more biochemical, 

structural, morphological, and electrophysiological similarity to neurons (46,64,67,74,75). In fact, 

MEA recordings of undifferentiated SH-SY5Y cells have a very low SNR (30), but differentiated 

cultures have shown electrophysiological responses similar to standard neurons, such as APs 

generation (30,41,76).  

Depending on treatment, SH-SY5Y cells can be differentiated towards different mature phenotypes 

(cholinergic, adrenergic, or dopaminergic) (70,71,74). The most commonly used differentiation 

agent is RA (71). Nevertheless, growth factors such as brain derived neurotrophic factor (BDNF) 

(75), nerve growth factor (NGF), and neuregulins (77) are also extensively used and frequently 

combined (74,75). Therefore, the differentiation method selected should be determined by the 

desired phenotype following differentiation, as well as for the reduction of non-target effects on 

experimental pathways (71). 
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In order for SH-SY5Y cells to undergo optimal differentiation both adhesion and growth factor 

receptors should be stimulated simultaneously (46,72,74). In fact, the interface between the cell 

and its environment, especially the extracellular matrix (ECM), has a profound effect on cell 

phenotype and fate. Therefore, much research has been invested into altering the properties of 

non-biological substrate surfaces that are supposed to come in contact with cells or tissue (14). 

ECM is a collection of soluble proteins secreted by adherent cells that plays a key role in tissue 

homeostasis, cell attachment, growth, proliferation, differentiation, morphology, polarization, 

directional motility, migration and cell spreading (14). Laminins are a major type of glycoprotein 

present in the ECM in the developing brain and stimulate neurite outgrowth in many neuronal cells 

in vitro.  An optimization protocol of SH-SY5Y cells differentiation reported that laminin coating 

induces more differentiation when compared to other ECM proteins coatings, such as collagen or 

fibronectin. Laminin coating induced higher levels of focal adhesion kinase (FAK) expression and 

longer neurites (46). 

Pre-treatment with RA followed by three-dimensional culturing in an extra ECM gel combined with 

several factors, such as BDNF, NGF, neuregulin β1 and vitamin D3 has been reported to generate 

SH-SY5Y differentiated cells with “unambiguous resemblance to adult neurons” (74). 

As mentioned before, MEAs are coated with various biochemical adhesion factors in order to 

improve the attachment and growth of cell cultures. Among these are ECM proteins, such as laminin 

or fibronectin (13,44). MEAs coating with ECM proteins is often combined with a pre-treatment 

with polyethyleneimine (PEI) or poly-D-lysine (PDL) (20,61,78,79). Still, Ferrández, J. M. et al. (2011) 

cultured SH-SY5Y cells on MEAs and found no advantages in pre-treating with PEI, when comparing 

with no covered plates (30). Another group cultured SH-SY5Y cells on MEA plates treated with PDL, 

poly-L-lysine (PLL), PEI with laminin, and laminin alone. Additionally, in order to differentiate the 

cells, they were treated with RA and cholesterol for 7 days. The results showed that the cells attach 

with all of the used coating agents, but there was less cell growth with PEI+laminin coating than 

with no coating (44). However, the maturation, morphology, and distribution of the cells was more 

neuron-like with PEI+laminin than with any other treatment (44,79). 

Patch-clamp studies have shown an increase in spontaneous electrical activity in differentiated SH-

SY5Y cells. Development of a resting membrane potential as well as expression of Ca2+ channels is 

dependent on cellular differentiation (80). Moreover, untreated cells exhibit scarce spontaneous 

electrical activity, but upon RA-induced differentiation there is an increase in spontaneous electrical 

activity. This indicates that SH-SY5Y cells form functional synapses when differentiated (76).  

 

1.3.2 Retinoic acid (RA)-induced Differentiation 

The most commonly implemented and best-characterized method for induction of neuronal 

differentiation in SH-SY5Y cells is through addition of RA to the cell culture medium (71). Numerous 

lines of evidence have indicated that SH-SY5Y cells are able to acquire neuron-like phenotypes with 

RA treatment (46,67,73,74,81,82). After treatment with RA, cells arrest in the G1-phase of the cell 

cycle, DNA synthesis is inhibited and growth inhibition can be detected already at 48 h after 

treatment (64,82). SH-SY5Y cells differentiate primarily to a cholinergic phenotype in response to 
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RA treatment (71). While cells may also differentiate toward a dopaminergic phenotype, 

controversy exists in the literature over whether dopaminergic markers present in undifferentiated 

cells significantly increase during RA treatment (64,71,75). 

RA is a vitamin A derivative known to possess powerful growth-inhibiting and cellular 

differentiation-promoting properties (71,75). RA induces transcriptional activation by binding to 

two families of nuclear receptors: the RA receptors (RARs) family, and the retinoid X receptors 

(RXRs) family (65). Typically, RA is administered at a concentration of 10 μM for a minimum of 3–5 

days in serum-free or low serum medium to induce differentiation (46,71,75). It has been 

documented that neuroblastoma cells have to be differentiated for at least 7 days for experimental 

applications (73,83). 

Many differentiation protocols for the SH-SY5Y cell line involve usage of RA as the only 

differentiation factor (82). Differentiation is in turn often appreciated on the basis of morphological 

changes and arrest of proliferation. It is unclear if cells differentiated in this way accurately exhibit 

neuronal characteristics without a detailed molecular analysis (46,71,82). Neuronal markers such 

as synaptophysin (71,73), neuronal nuclei (NeuN) (71,73), have been shown to increase following 

RA-induced differentiation.  

RA-induced differentiation of SHSY5Y cells has been reported to confer SH-SY5Y cells higher 

tolerance to neurotoxins by altering survival signaling pathways. Therefore, undifferentiated cells 

have been considered as more appropriate for studying neurotoxicity or neuroprotection in disease 

research (73). Furthermore, 10 μM RA-differentiated cells were shown to be significantly more 

resistant against Aβ 1-40 and Aβ 1-42 aggregate toxicity than undifferentiated cells treated similarly 

(84). 

 

1.4 Alzheimer’s Disease (AD) – Problem and Molecular Basis 

As of 2014, nearly 36 million people worldwide have AD (85). AD is the most common form of 

dementia, accounting for 60 to 80 percent of the cases (86,87). It is a progressive disease 

characterized by a deterioration of memory and other cognitive domains that lead to death within 

3 to 9 years after diagnosis (87). In its early stages, memory loss is mild, but with late-stage AD, 

individuals lose their autonomy and do not respond to the environment (86). Currently, there is no 

cure and the drugs available can only delay the progression of the disease (85,88). 

Although, the brain changes of AD may begin 20 or more years before symptoms appear, the 

principal risk factor is age (85,89). The incidence of the disease doubles every 5 years after 65 years 

of age (87). Even though age is the greatest risk factor, AD is not a normal part of aging and 

advanced age alone is not sufficient to cause the disease (85,87). Up to 5 percent of people with 

the disease have early onset AD, developing in 30-60 years old individuals (88). Genetic evidence 

indicates that inheritance of mutations in several genes causes autosomal dominant familial AD 

(FAD), while the presence of certain alleles of other genes, particularly apolipoprotein E (ApoE)-ε4 

gene, are significant risk factors for putative sporadic disease (85,90). Possible risk factors with 

some association for AD include gender (female) (85,88), lack of education (91), head trauma (92), 
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memory deficit with severity of any extent, small hippocampal volume (88), diabetes mellitus, 

insulin resistance, high cholesterol, hypertension, reduced exercise, and obesity (93).  

AD is a chronic ND with known pathophysiological mechanisms, mostly affecting medial temporal 

lobe and associative neocortical structures (89). Neuritic amyloid plaques (NPs) caused by 

extracellular deposition of the β-amyloid (Aβ) peptide in brain tissues; neurofibrillar tangles 

(NFT) derived from the hyperphosphorylation of the microtubule-associated Tau protein; and OS 

induced by impaired metabolic pathways and metals represent the hallmarks of the disease 

(18,89).  

The most influential theory (“Amyloid Hypothesis”) for the primary cause of AD is the 

overproduction and/or impaired clearance of Aβ peptides derived from amyloid precursor protein 

(APP), especially the markedly toxic 42-amino acid containing Aβ 1-42 (18). In fact, AD is 

characterized by the histological findings of NP deposits comprised primarily of fibrillar and ß-sheet 

rich aggregates of Aβ (9).  

 

1.4.1 β-Amyloid (Aβ) peptide – The “Amyloid Hypothesis” 

Aβ was first sequenced from the meningeal blood vessels of AD patients and individuals with Downs 

syndrome in 1984 (18,94). Shortly after, the same peptide was recognized as the primary 

component of the NPs characteristic of AD pathophysiology (95). Since then, the “amyloid 

hypothesis” has been widely accepted as a primary cause of the neurodegeneration observed in 

AD. This hypothesis considers Aβ as a toxic factor that impairs neuronal function and leads to cell 

death (18).  

Aβ is produced normally throughout life by the intramembrane proteolysis of APP (18). APP is a 

ubiquitously expressed membrane glycoprotein that is encoded by a single gene on the 

chromosome 21q21. Though multiple isoforms exist, APP695 is the predominant isoform in neuronal 

cells (96). APP is processed by secretase enzymes mainly resulting in the release of the ectodomain 

of APP, the production of APP intracellular domain (AICD), and the generation of several Aβ peptide 

fragments (90). There are two pathways for processing APP: an amyloidogenic pathway and a non-

amyloidogenic, constitutive secretory pathway (96–98). In the amyloidogenic pathway APP is 

cleaved by β–secretase (BACE1), discarding its soluble ectodomain (sAPPβ). The remaining 99-

amino acid long membrane-bound residue (C99) is then cleaved by γ-secretase, producing AICD and 

different types of Aβ peptides (18,96). Depending on the exact site of γ-secretase cleavage the Aβ 

produced may have 40 or 42 aminoacids. Alternatively, in the non-amyloidogenic pathway APP is 

sequentially cleaved by α-secretase and γ-secretase. Cleavage by α-secretase originates the soluble 

APP-fragment (sAPPα) and a 83-amino acid membrane-bound residue (C83). C83 is further cleaved 

by γ-secretase releasing the AICD and a P3 peptide, which are rapidly degraded (96). A 

representation of both APP processing pathways and their resulting fragments can be seen in Fig. 

5. 

Under physiological conditions, APP is preferentially metabolized in the non-amyloidogenic 

pathway and there is equilibrium between Aβ production and clearance from the brain (89). In AD 

there is an imbalance between Aβ production and clearance. Aβ species are released as monomers 
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that progressively aggregate into dimmers, trimers, oligomers, protofibrils and fibrils, that deposit 

and originate NPs (89,96). Despite their similarities, Aβ 1-42 is more prone to aggregation and 

fibrilization, rendering the most neurotoxic Aβ peptide (87).  

Synaptic terminals are thought to be a major source of APP that gives rise to Aβ (96). Thus, synapses 

release Aβ and are, in turn, damaged by elevated levels of Aβ peptides (90). Their accumulation 

into NPs triggers several harmful events that disrupt neuronal homeostasis, such as: mitochondrial 

dysfunction, activation of OS and inflammatory cascades, impaired neurotrophic support and 

response to injury, decreased neuroplasticity and neurogenesis, hyperphosphorylation of Tau 

protein, apoptosis, and abnormalities in calcium metabolism. Furthermore, these events are 

subject to positive feedback, amplifying neurotoxicity and culminating with neuronal death (89). 

In vitro investigations in cultured neurons have found that Aβ oligomers bind exclusively and rapidly 

to synaptic terminals, altering both pre- and postsynaptic structures and affecting excitatory, but 

not inhibitory nerve terminals (99). Changes in the microenvironment of neurons are sensitively 

and immediately translated into activity changes, which can be directly monitored using, for 

example, MEA technology (9).  

Recent findings on the physiological roles of Aβ challenge the way the “amyloid hypothesis” 

portrays Aβ peptides. According to Cárdenas-Aguayo, M. C. (2014), Aβ-peptides might help 

enhancing synaptic plasticity and memory at appropriate concentration levels. Moreover, recent 

studies have shown that Aβ may be vital for neuronal development, plasticity, and survival due to 

its integral membrane interactions and neurogenic properties (97).  

Figure 5 – APP processing. Amyloid precursor protein (APP) can be cleaved via two mutually exclusive 

pathways – the non-amyloidogenic and the amyloidogenic. Different fragments result from each pathway. 

Though various fragments of APP processing, including Aβ, may have roles in normal brain physiology, 

imbalance between production and clearance lead to pathology [adapted from (99)].  
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1.4.2 MEA application in AD 

Most in vitro functional electrophysiological studies on the effects of Aβ on neurons have been 

carried out using the patch-clamp technique (39). This technique enables the acquisition of detailed 

information concerning Aβ effects at the ion channel level, but it is very low throughput and difficult 

comparative to extracellular electrophysiological techniques like MEA (17,39). Development of this 

method and its applications could have a high impact on drug development in AD (39,100). 

The use of MEAs as a research and diagnostic tool for NDs has not been explored extensively (9). 

As MEA-supported neuronal culture has proven to be a useful model to study synaptotoxicity in 

vitro (39,54), electrophysiological analysis of neuronal activity alterations can surely be valuable in 

both AD’s basic and clinical research (7,9). Besides, both the addition of neuro-harming and 

neuroprotective substances is well controllable (9). Recent findings even assessed MEAs usefulness 

as a differential diagnosis tool in AD (52). 

MEAs have been used before to monitor the impact of amyloid oligomers (39,54,101) and tau 

proteins (38) on hippocampal neurons isolated from rat embryos (39), mouse embryos (54), rat 

pups (101) and mice adults (38,53). Furthermore, Jahnke et al (2009) used MEAs to detect the 

pathological risk potential of hyperphosphorylated tau in the SH-SY5Y cell line (41).  

Varghese et al (2010) utilized MEAs to create a high-throughput screening method for antagonists 

of the functional toxicity caused by Aβ 1-42 oligomers to embryonic rat hippocampal neurons. In 

this study Aβ had a pronounced effect on the spontaneous firing, even at concentrations in the 

nanomolar range. Treatment with Aβ stopped spontaneous activity completely and the time for 

cessation was concentration dependent. Furthermore, MEAs made it possible to screen a 

significantly higher number of cells for Aβ and drug effects in a much shorter amount of time than 

patch-clamp would require (39). 

Benilova et al (2009) studied acute synaptotoxicity caused by Aβ oligomers in hippocampal neurons 

isolated from mouse embryos. Treatment with 1-20 µM concentrations of Aβ 1-42 oligomers 

altered firing rate in a concentration-dependent manner. Aβ 1-42 oligomers, but not fibrils, rapidly 

and significantly inhibited synaptic activity, supporting the data simultaneously obtained by other 

electrophysiological methods. The lethal concentration (20 µM) caused immediate silencing of the 

network, while the effect of sub-lethal low uM concentrations (<2 µM) was observed after 

overnight (ON) treatment. In order to verify specificity of the Aβ 1-42 oligomers effect, anti-Aβ 

antibodies were added to neuronal cultures prior to Aβ 1-42 oligomers and injury was prevented 

(54).  

Hoppe et al (2013) studied synaptotoxicity caused by Aβ oligomers in organotypic hippocampal slice 

cultures of rat pups (6 to 8-day-old). After 14 days in vitro, cultures were treated with Aβ 1-42 

oligomers (2 µM) and an inhibitor of Aβ oligomerization, curcumin (10 µM) for 24 and 48 hours. 

Extended exposure to Aβ (48 hours) was necessary to induce significant neuronal death, as 

cotreatment with curcumin prevented cellular damage. While treatment with Aβ for 24 hours did 

not cause significant neuronal loss, it exerted effects upon functional synaptic transmission (101).  

Chong et al (2011) used MEAs to examine the early synaptic effects of amyloid oligomers and 

protein tau in AD transgenic mice and mouse models. Acute hippocampal slices were prepared and 
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analyzed under the MEA. They demonstrated that MEA recording is adequate and reliable to 

monitor early and region-specific defects inflicted by amyloid and tau proteins in AD transgenic 

mouse models, separately and combined (38). 

Kuperstein et al (2010) utilized MEAs to analyze the influence of the Aβ 1-42:Aβ 1-40 ratio as a 

driver of acute synaptic alterations and posterior neuronal death. Small alterations in the ratio 

dramatically affected the biophysical and biological properties of the Aβ mixtures affecting their 

aggregation kinetics, the morphology of the resulting amyloid fibrils and synaptic function. 

According to this study the relative ratio of Aβ peptides is more crucial than the absolute amounts 

for the induction of neurotoxicity (53). 

Charkhkar et al (2015) found that Aβ 1-42 oligomers, but not monomers, significantly reduce 

network spike rate in primary neuronal MEA cultures. Immediately after administration, 5 µM Aβ 

1-42 oligomers significantly reduced the normalized spike rate by 60%, but oligomer concentrations 

at 1 µM and 200 nM failed to alter it in a statistically significant manner (100).  

A number of compounds that may be able to protect neurons from amyloidogenic toxicity have 

been proposed (9), but few have been tested on MEAs. Among those proposed are included: 

curcumin (39,102); peptide-based compounds, such as KLVFF and LVFFA (103); hemin and related 

porphyrins (104). Until now, only curcumin treatment has been tested on MEAs (9,39,101). 

Curcumin, a polyphenol from curry spice (101), has been reported to disaggregate Aβ aggregates, 

as well as prevent fibrils and oligomers formation (102), and to improve memory in animal models 

of AD (105). Reversal of Aβ harmful effects have also been reported on in vitro studies carried out 

on MEA (39,101). As already mentioned, Varghese et al (2010) plated embryonic rat neurons and 

demonstrated that Aβ1-42 functional toxicity could be reproduced using MEAs (39). Partial 

functional activity was recovered by administration of curcumin, but it was more effective in 

inhibiting the effect of Aβ when it was coadministered with it as opposed to the experiments in 

which it was applied 24 hours after Aβ exposure. The recovery of spontaneous firing frequency 

obtained with curcumin treatment on MEAs was comparable to results obtained with patch-clamp 

using similar experimental paradigms (39). Hoppe et al (2013) exposed organotypic hippocampal 

slice cultures of rat pups to Aβ1–42 and studied the neuroprotective effects of curcumin through 

MEA recordings of spontaneous neuronal activity. Curcumin counteracted both harmful effects of 

Aβ: the initial synaptic dysfunction and the later neuronal death (101). 

Peptide-based compounds that mimic Aβ structure, such as KLVFF and LVFFA, may have potential 

therapeutic benefit. These derivatives have been constructed using the “Aβ binding element” and 

have reduced β-amyloid aggregation in vitro (103).  

Hemin and related porphyrins have been shown to inhibit β-amyloid aggregation (104). However, 

recent findings support the hypothesis that the binding of hemin to the amyloid peptide is a key 

event in the early stages of AD, as Aβ-hemin complexes enhance oxidation and polymerization of 

neurotransmitters (106). Either way, MEA analysis could help clarify Aβ-hemin complexes 

relevance. 





 
 

2. Aims
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The main aim of this thesis was to optimize a neuronal cell culture model for obtaining reliable MEA 

recordings. Such model should render extracellular recordings of spontaneous electrical activity 

and enable the evaluation of the acute Aβ effects on such cultures. 

In vitro MEA assays enable rapid screening of neuroprotective and neuroharming compounds. As a 

consequence, accelerate the drug development process and may help to find new potential 

therapeutics. From a basic research point of view, for example, such experiments help to 

understand neuronal networks signaling dynamics. 

This thesis purports to offer clear instructions for the culture and maintenance of SH-SY5Y neuronal 

networks on MEAs. SH-SY5Y cells may be differentiated into a mature neuron-like phenotype, but 

have rarely been used in MEA studies. A protocol depicting SH-SY5Y cells culturing on MEAs and its 

successful differentiation into a mature neuronal network may be extremely useful for laboratories 

that do not have access to primary neuronal cultures. Moreover, cell lines usage in MEA studies 

may save resources and facilitate obtaining faster high-throughput results. 

AD is one of the leading causes of death in developed countries. It is a ND characterized by a gradual 

and progressive decline in memory, executive function and ability to perform daily activities. This 

cognitive decline and subsequent morbidity are caused by a neuronal impairment thought to be 

triggered by Aβ’s neurotoxicity.  

The impact of Aβ on cell lines cultured on MEAs has not been assessed. Here, we aim to develop a 

model that may enable the evaluation of this impact. 

Concisely, the main specific objectives were to: 

 Optimize MEA coating and manipulation for SH-SY5Y cell culturing; 

 Evaluate whether SH-SY5Y cell culture is a suitable model for extracellular recordings of 

spontaneous electrical activity; 

 Follow neuronal differentiation by electrical activity measurements and morphological 

analysis; 

 Evaluate the acute effect of Aβ oligomers on the neuronal network electrical activity.





 
 

3. Methods
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3.1 MEAs  

MEAs were obtained from Multi Channel Systems (MCS, Reutlingen, Germany). For the recording 

experiments four standard MEAs (60MEA200/30iR-Ti-gr) containing 60 electrodes in an 8 by 8 grid 

arrangement were used. The TiN electrodes diameter is 30 μm and the distance between electrode 

centers is 200 μm. One of the electrodes (electrode no. 15) is larger and functions as the ground or 

internal reference electrode (iR). The contact pads and tracks are opaque. A macro and a 

microscopic view of this standard MEA can be seen in Fig.  6A and Fig. 6B, respectively. 

An additional distinct MEA (60MEA200/10iR-ITO) was used for imaging purposes and comparison 

needs. This MEA equally contains 60 electrodes separated by 200 μm in an 8 by 8 grid, with one 

being an iR. However, the titanium nitride electrodes diameter is just 10 μm and the contact pads 

and tracks are transparent. 

Sealed MEA culture chambers (ALA-MEA-MEM) were also obtained from MCS. These culture 

chambers were applied to the MEAs in order to prevent contamination during recordings and 

medium evaporation throughout incubation. They are made of polytetrafluoroethylene Teflon and 

have a clear membrane (fluorinated ethylene-propylene Teflon) stretched across the top. 

When handling MEAs, there are several aspects that must be taken into account in order to obtain 

reliable recordings. Moreover, as the MEA substrate and the electrodes are extremely fragile, some 

precautions are imperative. With the appropriate care, MEAs can be reused multiple times (43). For 

handling purposes, each MEA was placed in a standard 100 mm sterile polystyrene Petri dish. 

Complete information on how MEAs were manipulated during and in-between experiments work 

can be consulted in annex 7.1.  

Figure 6 – Standard multielectrode array (MEA). (A) 60MEA200/30iR-Ti-gr MEA. Note that the glued glass 

ring forms the culture chamber (array). Tracks and contact pads disperse along the MEA substrate outside 

the array. (B) MEA’s recording area is comprised of 60 electrodes arranged in a 8x8 layout grid. Electrodes 

and tracks appear as black dots and lines, respectively. Bright-field photograph at a magnification of 40×. 

A B 



32 
 

3.1.1 Optimization 

No guidebook or protocol exists in the literature for the culture and maintenance of SH-SY5Y cells 

for use with MEA technology. In fact, neuronal cell lines have been seldom used in MEA studies and 

no document describes clearly the problems most commonly encountered in cell culture. Most 

often, protocols found in the literature involve culture of neuronal dissociated cultures (20) of the 

cortex (33) or hippocampal (107) regions of pre- or post-natal rat central nervous systems or acute 

hippocampal rat slices (48). A protocol for iCell® Neurons culture, human induced pluripotent stem 

cell-derived neurons, has been provided by Cellular Dynamics International, Inc. (108). A 

comprehensive protocol of MEA recordings of human epileptic postoperative cortical tissue also 

exists (19). 

In order to form functional neuronal networks for MEA recordings the first important step was to 

optimize cell growth on MEAs (20,44). Moreover, MEAs need to be sterilized and suffer surface 

treatment prior to any cell seeding. So as to achieve reliable recordings, several proceedings had to 

first be optimized. More information on how MEAs were sterilized and prepared for reuse can be 

consulted in annex 7.1.2. Several different MEA culture settings were tested, including: with and 

without MEA’s surface pre-treatment (coating), different cell plating densities, with or without RA-

induced cell differentiation, as well as different serum concentrations in the differentiation 

medium. 

The surface of new MEAs is hydrophobic, thus preventing the attachment of the (hydrophilic) cells. 

Therefore, when preparing MEAs for use it was crucial to ensure that the surface was hydrophilic 

enough for cell adhesion. Coating of MEAs is used for improving the attachment and growth of cell 

cultures or cultured slices (14,43,44). It is extremely important that induced cell-surface adhesion 

be greater than naturally occurring cell-cell adhesion to avoid large aggregates of clumped cells. 

These cell clumps are problematic as they tend to detach from the MEA surface (17). 

Even surface treated-MEAs tend to become hydrophobic again during storage, especially when dry. 

To maintain a hydrophilic surface, when not in use, arrays were immersed in sterile distilled water 

and stored at 4 °C in the dark (33,43).  

 

3.1.1.1 Coating  

Maintaining cells in culture is essential for studying their physiological properties. Cell culturing is 

dependent on the growth surfaces and cells must adhere to the electrode substrate in order to 

establish the best connection with the electrodes material. An optimization of the MEA coating 

associated with an SH-SY5Y differentiation protocol was performed. The objective was to find the 

best alternative amongst the various coating treatments by following the cell growth, morphology, 

level of differentiation and viability. The various combinations of MEA coatings and differentiation 

medium parameters tested are shown in section 3.2.2.2 in Table 1. 

SH-SY5Y cells were cultured and differentiated for 7 days on MEAs without coating and various 

coating agents alone and combined. These coating agents were: PEI, PDL and laminin. Combinations 

of PEI+laminin and PDL+laminin were also tested. A Teflon lid was applied to the MEA in order to 

prevent evaporation of the coating agents during incubation. 
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3.1.1.1.1 Polyethyleneimine (PEI) treatment 

PEI surface-treatment has been successfully used in MEA’s dissociated cell (33) and cell line cultures 

(14,44). It has proven to enhance cell maturation (44) and induce less clustering of cells (33) when 

compared to poly-lysine coated MEAs (33,44). Unfortunately, PEI forms a uniform layer that can 

become easily detached from the surface (43).  

This synthetic adhesion-mediating compound (a polycation) changes the charge on the glass 

substrate surface from negative to positive (33). The cell membrane’s extracellular side has a net 

negative charge due to a dense negatively-charged network of proteoglycans, glycolipids and 

glycoproteins. By giving the glass substrate surface a positive charge, cell/substrate adhesion is 

enhanced. As polycations are synthetic molecules, they do not stimulate biological activity in the 

cells cultured on them (14). 

After MEA sterilization and careful observation under an optical microscope (see annex 7.1.2), 500 

µl of 0.1% PEI dissolved in sterile distilled water (from a 50% w/v PEI stock solution) was pipetted 

onto the MEA in order to cover the whole array. Then, the MEA was stored at 4 °C ON. The day 

after, the remaining solution was aspirated and the MEA was thoroughly rinsed with sterile distilled 

water and allowed to air-dry under the laminar flow cabinet. It was necessary to thoroughly rinse 

off unbound PEI from the arrays before using them, as the high pH (~9.5) of the solution is extremely 

cytotoxic, dramatically affecting the cell culture’s viability (14,43). After PEI surface-treatment, each 

MEA was exposed to UV-light for 1 hour. 

3.1.1.1.2 Poly-D-lysine (PDL) treatment 

Poly-lysine is another synthetic polycation that functions as an adhesion-mediating compound. 

Thus, poly-lysine surface-treatment increases the number of positively-charged sites available for 

cell binding (14). Both polymers of D- and L-lysine are used to coat substrates to promote cell 

attachment (45,109). However, PDL, unlike PLL, is not easily digested by proteases released by cells 

in culture, hence it is less cytotoxic (14).  

After MEA sterilization and careful observation under an optical microscope (see annex 7.1.2), 500 

µl of 0.1% PDL solution dissolved in phosphate buffered saline (PBS) was pipetted onto the MEA in 

order to cover the whole array. Then, the MEA was stored at 4 °C ON. The following day, excess 

PDL was aspirated. As with PEI, thorough rinsing with sterile distilled water following the treatment 

is mandatory and was performed. Should the PDL be allowed to air-dry, without thorough rinsing, 

evaporation would form a cytotoxic crystal precipitate ring. In fact, simple aspiration of the PDL 

solution from the cell culture surface does not remove enough solute to prevent this precipitation 

(14,43). After PDL surface-treatment, each MEA was exposed at UV-light for 1 hour. 

3.1.1.1.3 Laminin treatment 

The ECM can be regenerated in an organism, but less efficiently in cell culture. Laminin is an ECM 

glycoprotein that has active domains for collagen binding, cell adhesion, heparin binding, and 

neurite outgrowth fragment (14). In addition to adhesion promotion (33), laminin is thought to play 

a key role in neuronal proliferation, migration, myelination, neurite outgrowth, and tissue survival 

both in vivo and in vitro (46,110).  
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Laminin coating is stable for several uses of the MEAs and does not have to be removed after use 

(43). Despite this, MEA’s laminin coating was performed after every sterilization step. First, 400 µl 

of 10 µg/ml laminin (0.001%) diluted in PBS (from a 1 mg/ml stock solution) was pipetted onto the 

center of the array in order to cover the whole recording area and surroundings. Then, the MEA 

was incubated at 37 °C for 1 hour at room temperature (RT). Finally, excess laminin was aspirated, 

the MEA was rinsed with PBS and allowed to air-dry. 

3.1.1.1.4 PEI + laminin and PDL + laminin treatments 

In MEA cultures, polycations are often combined with proteins from the ECM such as laminin (14). 

Combinations of polycations and laminin have been proven to improve the attachment and growth 

of cell cultures, when compared to polycations alone (14,44). Relative positioning and thickness of 

the coating agents used, extracellular components and MEA’s substrate can be seen in Fig. 7. 

The two-step surface treatment was carried as mentioned before, but taken together. Concisely, 

the arrays were coated with PDL and PEI and incubated ON at 4 °C, after which they were 

thoroughly rinsed with sterile distilled water. The second step of surface adhesion promotion 

involved the use of laminin and was carried out just before culturing on the array. After UV-light 

sterilization, laminin was added for 1 hour at RT. 

Figure 7 – Neuron-electrode distance after MEA coating. Relative positioning and thickness of coating agents, 

extracellular matrix (ECM), other glycolipid and glycoprotein membrane components (glycocalyx) and MEA 

surface. Positively charged polycations and adhesion proteins promote negatively charged extracellular 

components adhesion. Due to its heterogeneity and plasticity, the extracellular space between the cell and the 

substrate/electrode is hard to calculate. In fact, according to recent findings the negatively charged glycocalyx 

may be orders of magnitude thicker than previously thought (14). Thus, the electrode-cell membrane distance 

may be between 100s of nm and a few µm [adapted from (14)]. 

 

Electrode 

Cell membrane 

~10 nm 

Polycations 

(e.g., PEI) 

<30 nm 

Adhesion proteins 

(e.g., laminin) 

<100 nm 

Extracellular matrix + Glycocalyx 

10s of nm-µm (?) 
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3.2 Cell Culture 

For every experiment, the SH-SY5Y cell line (ATCC® CRL-2266™) was used. This neuroblastoma cell 

line was chosen since it is human derived and can be differentiated towards a more mature 

neuronal-like phenotype. 

SH-SY5Y cells grow as clusters of neuroblastic cells with multiple, short, fine cell processes 

(neurites). Typically, they aggregate, form clumps and float, as they grow as a mixture of floating 

and adherent cells. Their proliferation kinetics resemble that of many tumor cell lines well with a 

population doubling time of approximately 48 hours (111). They continue to divide after the 

monolayer is confluent, tending to grow over each other. Therefore, cells were passaged to 

approximately 70% confluence on the MEAs and the experimental procedure was then carried out. 

All procedures involving cell culture manipulation were performed under a class II air flow cabinet. 

 

3.2.1 Growth and Maintenance of SH-SY5Y cell culture 

Before use, SH-SY5Y cells were cryopreserved in liquid nitrogen (-196ºC) with a cell-freezing 

medium comprised of complete growth medium supplemented with 5% (v/v) dimethyl sulfoxide 

(DMSO). Complete growth medium was a 1:1 mix of minimal essential medium (MEM) and F12 

supplemented with 10% fetal bovine serum (FBS), 2 mM L-glutamine (200 mM stock solution), 

sodium bicarbonate, sodium pyruvate and 1% of antibiotic/antimycotic.  

To use, cells were quickly thawed using a water bath at 37ºC and then collected into a conical tube. 

The culture medium was added dropwise (to avoid cell lysis) and re-suspended to dilute the DMSO 

present in the cell-freezing medium. Cells were centrifuged at 1000 rpm for 3 min and the 

supernatant removed. The pellet was re-suspended in complete growth medium and cells were 

then seeded in a 100 mm culture plate. 

Cell cultures were maintained in an incubator at 37ºC with 5% CO2 and 95% humidity. Complete 

growth medium was replaced in three-day intervals until cell passage or culture on MEAs. For every 

cell splitting, old medium was aspirated and cells were washed 3 times with 4 ml pre-warmed PBS 

to keep the pH approximately constant. Then, 2 ml of 0,05% trypsin-EDTA solution was added and 

the culture was incubated at 37 °C for 2 minutes in order to re-suspend cells adherent to the cell 

culture dish. After checking under an optical microscope whether cells were completely detached, 

6 ml of fresh complete medium was added to the trypsinated cells in order to inactive the trypsin. 

Then, cell suspension was transferred to a 15 ml vial and centrifuged at 1000 RPM for 3 minutes. 

After the supernatant had been discarded, cells were carefully resuspended in fresh complete 

medium and seeded at the desired cell density. 

 

3.2.2 SH-SY5Y cell culture on MEAs 

After subculturing and MEA’s preparation (sterilization and surface treatment), SH-SY5Y cells were 

seeded on the arrays. Optimization of the cell density on the arrays was performed. Therefore, 

40.000, 60.000, 80.000 and 100.000 viable cells were seeded and differentiated for 7 days on MEAs. 
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RA-induced differentiation was also optimized, while concomitantly searching for the most 

indicated MEA surface treatment. 

 

3.2.2.1 Optimization of Cell Density 

Literature divergences and exploratory experiments discrepancies led to testing the effect of cell 

plating density on MEA recordings. 

SH-SY5Y cells have a reported saturation density greater than 10.000 cells/mm2 (111), however 

differentiation protocols diverge from as low as 35 cells/mm2 (83) to a few 100s of cells/mm2 (46,75) 

at initial seeding. An appropriate cell density for RA-induced differentiation has been defined as 70 

to 210 cells/mm2 (72). Ferrández et al (2011) cultured between 80.000 (~280 cells/mm2) and 

120.000 (~420 cells/mm2)  SH-SY5Y cells on identical MEAs, though cultures did not undergo 

differentiation treatment (30). Teppola et al (2008) cultured SH-SY5Y cells at a cell density of 50 

cells/mm2 and induced differentiation on MEAs with RA and cholesterol (44). 

Based on literature and previous experiments the following cell censities were tested: 40.000 (~140 

cells/mm2); 60.000 (~210 cells/mm2); 80.000 (~280 cells/mm2) and 100.000 (~350 cells/mm2) viable 

cells per MEA.  

Before seeding, cell counting was performed using an adapted Trypan Blue protocol (112) as 

described below. Then, cells were seeded in MEAs, which had been previously treated with PEI and 

laminin. 

3.2.2.1.1 Cell Counting 

In order to count cells for plating, a Trypan Blue protocol was followed. This dye exclusion method 

is based on the principle that live (viable) cells do not take up impermeable dyes (like Trypan Blue), 

whereas dead (non-viable) cells are permeable and take up the dye. It is important to not expose 

cells to Trypan Blue for extended periods of time, as it is cytotoxic and viable cells may be affected. 

Once exposed to Trypan Blue, cells can be counted with a hemocytometer under an optical 

microscope. 

The hemocytometer is the most used type of cell counting chamber. It consists of a thick glass 

microscope slide with a rectangular indentation that typically creates two separate chambers. Each 

chamber contains a gridded area, with divisions separated into 9 large squares. Each square has a 

surface area of 1 mm2 and the depth of the chamber is 0.1 mm. Therefore, each square of the 

hemocytometer, with cover slip in place, represents a total volume of 0.1 mm3. Since 1 cm3 is 

equivalent to approximately 1 ml, the cell concentration per ml of the original aliquot may be 

calculated.  

Firstly, the hemocytometer and the coverslip were cleaned using 70% ethanol and the coverslip 

affixed gently. Cells were subcultured and harvested as mentioned in 3.2.1. Subculture’s 1 ml of cell 

suspension was aliquoted to an eppendorf. Subsequently, 10 µl of the aliquoted cell suspension 

and 10 µl of 0.4% Trypan Blue solution were combined in a 1:1 dilution (dilution factor of 2). The 

solution was mixed thoroughly and allowed to stand for 1 minute. Then, 10 µl of Trypan Blue-cell 

suspension mixture was added to each chamber of the hemocytometer, filling by capillary action 
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(no over or underfilling each chamber). Under an optical microscope, viable and non-viable cells 

were counted in each chamber’s five squares (one central and one on each corner). 

The total number of cells per ml, total number of viable cells per ml and percentage of viable cells 

were calculated, as necessary. 

The total number of cells per ml is given by the following formula: 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑒𝑙𝑙𝑠 𝑝𝑒𝑟 𝑚𝑙 = [
𝑇𝑜𝑡𝑎𝑙 𝑐𝑒𝑙𝑙 𝑐𝑜𝑢𝑛𝑡

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑞𝑢𝑎𝑟𝑒𝑠 𝑐𝑜𝑢𝑛𝑡𝑒𝑑
] × 𝐷𝑖𝑙𝑢𝑡𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟 × 104 

The total number of viable cells per ml is given by the following formula: 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑣𝑖𝑎𝑏𝑙𝑒 𝑐𝑒𝑙𝑙𝑠 𝑝𝑒𝑟 𝑚𝑙 = [
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑣𝑖𝑎𝑏𝑙𝑒 𝑐𝑒𝑙𝑙𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑞𝑢𝑎𝑟𝑒𝑠 𝑐𝑜𝑢𝑛𝑡𝑒𝑑
] × 𝐷𝑖𝑙𝑢𝑡𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟 × 104 

The percentage of viable cells per ml of culture is given by the following formula: 

% 𝑜𝑓 𝑣𝑖𝑎𝑏𝑙𝑒 𝑐𝑒𝑙𝑙𝑠 = [1 −
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑙𝑢𝑒 𝑐𝑒𝑙𝑙𝑠 (𝑛𝑜𝑛 − 𝑣𝑖𝑎𝑏𝑙𝑒)

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑜𝑡𝑎𝑙 𝑐𝑒𝑙𝑙𝑠
] × 100 

3.2.2.1.2 Cell Seeding 

Before MEA recording experiments took place, 40.000, 60.000, 80.000 and 100.000 viable cells 

were plated on different MEAs and differentiated along a 7-day period. The objective was to choose 

the cell density that produced the most viable and neuron-like culture. In order to monitor each 

culture, phase-contrast photographs were taken every 3 days and 3-minute recordings were 

acquired on the final day. 

Viable cells were subcultured, harvested and counted as mentioned before in section 3.2.1 and 

3.2.2.1.1, respectively. MEAs were prepared as mentioned in annex 7.1 and coated with PEI and 

laminin prior to cell seeding.  

A dilution was calculated so that the desired number of cells for plating was in a final volume of 20-

40 μl. Therefore, a minimum final concentration of 1000 cells per μl and a maximum of 5000 cells 

per μl was used. Cells were then seeded at a total suspension volume of 1 ml in complete growth 

medium.  

 

3.2.2.2 Optimization of Cell Differentiation 

When SH-SY5Y cells are suspended in solution, connections previously established are destroyed. 

Therefore, differentiation treatment must be carried out once cells are attached onto the array. 

In order to differentiate SH-SY5Y cells into neuronal-like cells, cultures were treated with 10 μM RA. 

Several variations of the RA-induced differentiation conditions are found in the literature. Different 

serum and/or RA concentrations have been used in the differentiation medium (46,71), though RA 

is typically administered at a concentration of 10-20 μM. This protocol diversity led to a decision of 

testing different combinations of fetal bovine serum (FBS) concentration in the differentiation 

medium. Remaining constituents of the differentiation medium were the same as described in 

section 3.2.1 plus 10 μM RA. 
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Serum-free (0%) and low serum (1% and 3%) media were administered concomitantly with 10 μM 

RA along a 7-day period. Therefore, complete growth medium was aspirated and replaced by the 

differentiation medium the day after cell seeding. Differentiation medium was replaced every 3 

days, totaling 3 additions per culture. The various combinations of MEA coatings and cell culture 

medium parameters tested can be seen in Table 1. 

 

Table 1 – Combination of MEA cell culture conditions for optimization of the SH-SY5Y cell line 

differentiation. Different MEA coatings and differentiation medium conditions were tested alone and 

combined. Ticks represent tested conditions.    

 Abbreviations: MEA, multielectrode array; PEI, polyethyleneimine; PDL, poly-D-lysine; FBS, fetal bovine 

serum; RA, retinoic acid. 

Phase-contrast photographs were taken at three separate times during the 7-day differentiation 

treatment. Furthermore the evaluation of neuronal differentiation was accompanied by electrical 

activity measurements in order to determine whether differentiated SH-SY5Y cells had the ability 

to generate spontaneous activity.
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SH-SY5Y CELLS 

CULTURE MEDIUM 

NON-DIFFERENTIATED DIFFERENTIATED 

10% FBS 0% FBS 
+ 10 μM 

RA 

1% FBS 
+ 10 μM 

RA 

3% FBS 
+ 10 μM 

RA 

Without coating        

0.1% PEI        

0.1% PDL      

0.001% Laminin        

0.1% PEI+ 0.001% Laminin         

0.1% PDL+ 0.001% Laminin      
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3.3 MEA Recordings of SH-SY5Y cell culture’s Electrical Activity 

3.3.1 MEA System Set Up 

The MEA2100-System was used for recording and analysis of the MEA’s SH-SY5Y cell cultures 

electrical activity. This MEA system is a versatile in vitro recording system manufactured by MCS 

(47,78). It consists of several components, including: headstage (equipped with integrated 

amplifier, stimulator and analog-to-digital converter), interface board, data acquisition computer, 

temperature controller (T-control), as well as a perfusion cannula and peristaltic perfusion pump 

which were not used in the course of these experiments (78).  

A included T-control unit guarantees a stable and precise temperature control over a wide 

temperature range, from ambient temperature up to 105 °C (32). The T-control is connected to an 

internal heating element and a Pt-100 temperature sensor incorporated in the headstage. During 

recordings, MEAs contact with the internal heating element. Thus, the heating element guaranteed 

constant temperature conditions for the MEA cell culture. 

Very small unnoticed vibrations could increase noise or render unspecific “signals”. Therefore, 

recordings were performed with the headstage placed on top of a completely stable platform 

proper for long-term electrophysiology experiments – “Scientifica SlicePlatform”. In turn, an up-

right microscope was mounted on the fixed platform and allowed the optical monitorization of the 

region of interest (ROI) during recordings. 

More information on how the MEA system was set-up can be seen in annex 7.2. The complete MEA 

system set up can be seen in Fig. 8. 

 

3 1 2 

4 

7 

5 6 

1 – Headstage (open) 5 – Temperature Controller 

2 – MEA (capped) 6 – Interface Board 

3 – Platform  7 – Optical Microscope 

4 – Data acquisition PC 

  

Figure 8 – MEA system set up. Microscope controllers are in the photograph but were not subtitled. 
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3.3.2 Recording Procedures 

Though long-term recordings (spanning several days/months) are possible, these render enormous 

amounts of data and demand logistical and practical conditions which were impossible to attain. 

Maintaining ideal cell culture conditions for prolonged periods of time were especially limitating 

factors. Short-term recordings range from a few minutes to 1-2 days but still yield enough data and 

are more indicated for certain types of studies. In fact, similar studies have employed short-term 

recordings of pre-, during and post-Aβ 1-42 oligomers addition (39,54,100).  

In this study, short-term recordings (3 to 33 minutes) were made. Though short-term, recordings 

required standard and optimized procedures. The next sections describe the recording procedures.  

 

3.3.2.1 Preparation 

Dirt on the MEA’s contact pads or on the headstage’s contact pins leads to bad contact and 

electrical noise. Therefore, before any recordings took place, pins and contact pads were cleaned 

by gently wiping with 70% ethanol.  

Neuronal electrical activity is dependent on ideal environmental conditions including temperature 

and pH (33). Thus, the T-control unit was formerly set to 37 °C in order to mimic body temperature 

conditions and diminish the incubator-MEA system shifting shock.  

When SH-SY5Y cell culture’s electrical activity was to be recorded, MEAs were transported from the 

storing incubator to the MEA system, while inside the Petri dish. The bottom of the dish was kept 

parallel to the ground and quick movements were avoided, as jarring the MEA could detach the cell 

culture from the substrate. Then, the MEA was removed from the dish and placed on the MEA2100-

System headstage/amplifier. 

 

3.3.2.2 Recording 

After placing on the headstage, cell cultures were left do adapt for 1 minute before recording took 

place. This minute also allowed for the stabilization of medium fluxes caused by transport. Even 

though gas conditions were different from the incubator-controlled environment, previously placed 

Teflon lids helped reduce evaporation and contamination. 

The recording area of each MEA consisted of 59 recording electrodes and 1 iR disposed along an 

area measuring roughly 2.5 mm2. As each array measured approximately 283 mm2, each recording 

area accounted for less than 1% of the total cell culture area. This ROI was visually assessed during 

recordings by an Olympus up-right microscope. A bright-field photograph taken during recordings 

can be seen in Fig. 9A. 
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MC_Rack software is included with each MEA system provided by MCS. Here, tools can be chosen 

for displaying data, for digital filtering, for extracting spikes out of raw data, for analyzing the 

slope/amplitude of an evoked response, and/or calculating the spike rate. Simultaneous recording 

of multiple MEAs is possible. MEA’s cultures electrical activity can be recorded independently of 

each other, creating their own data streams (32,78). 

MC_Rack (4.5.16 version) was used to record and analyze MEA’s SH-SY5Y cell cultures electrical 

activity. Extracellular signals were recorded and processed by a 120-channel, 0.1 Hz-10 kHz band-

pass filter-amplifier data acquisition system at 25 kHz sampling rate per channel. The amplification 

stage functioned as an operational amplifier with a fixed gain of 2. The sampling rate (25 kHz), signal 

range (± 2500 mV) and bandwidth (1 Hz to 3 kHz) were adjusted via software control. 

Recordings lasted for, at least, 180 s (3 min). Most often two MEAs were subject to experiment 

simultaneously. In order to do so, two MC_Rack independent instances were initiated on the data 

acquisition computer. When scheduled recording time finished, cell cultures were removed by 

trypsinization and MEA cleaning and sterilization ensued.  

 

3.3.2.2.1 Aβ 1-42 Oligomers Addition 

In order to evaluate the effects of Aβ on SH-SY5Y cell’s electrical activity, MEA cultures were treated 

with different concentrations of Aβ 1-42 oligomers during recordings. The goal of this work was to 

determine an acute effect of Aβ 1-42 oligomers on SH-SY5Y cell cultures firing dynamics. 

200 μm 30 μm 

B A 

Figure 9 – Recording area during MEA recordings. (A) Bright-field photograph of a SH-SY5Y cell culture 

recording area at a magnification of 40×. Note that the numbering in each corner functions as orientation. (B) 

Standard electrode numbering scheme. In the 8x8 layout grid, the numbering of MEA electrodes follows the 

standard numbering scheme for square grids: the first digit is the column number, while the second digit is 

the row number. Note that in 60MEA200/30iR-Ti-gr MEAs, electrodes diameter is 30 μm and inter-electrode 

centers distance is 200 μm [adapted from (78)]. 
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Synthetic Aβ 1-42 (Genic Bio) was dissolved in water to prepare 1 mM stock solution. Prior to cell 

culture exposure to the Aβ peptides, an aggregation step took place. This was achieved by 

incubating Aβ 1-42 for 48 hours at 37°C with PBS (1x) at a concentration of 100 μM.  

Recordings without Aβ addition lasted 180 s. In cases where Aβ was to be added, the medium was 

rapidly substituted by medium containing the desired Aβ concentration after initial equivalent 180 

s recordings. In two subsequent experiments, Aβ was added after previous medium exchange under 

a laminar flow cabinet (30 minutes before experiment). Different cell cultures were exposed to 0.1, 

1 and 10 μM Aβ 1-42 oligomers. The whole procedure was recorded and microscopically monitored, 

so as to identify if cells detached during Aβ addition. Recordings continued for 1800 s (30 min) 

totaling 1980 s. A control cell culture was subject to medium exchange with only PBS (1x) instead 

of Aβ dissolved in PBS. This was to ensure that the results obtained were not due to PBS, which was 

used in the aggregation step, but due to Aβ 1-42. 

 

3.3.3 Data Analysis 

MC_Rack software is included with each MEA system provided by MCS. Here, tools can be chosen 

for displaying data, for digital filtering, for extracting spikes out of raw data, for analyzing the 

slope/amplitude of an evoked response, and/or calculating the spike rate. Simultaneous recording 

of multiple MEAs is possible. MEA’s cultures electrical activity can be recorded independently of 

each other, creating their own data streams (32,78). 

Spikes are usually extracted from the raw data using an amplitude threshold. The threshold is 

usually set as multiple (as 3 times) of the baseline noise level. The choice of the threshold represents 

a compromise between missing spikes if a high threshold is used (Type II error), or getting false 

positives due to noise surpassing a low threshold (Type I error).  

An automatic threshold is preferable and can be set as a multiple of the standard deviation (SD) of 

the signal. Therefore, the SD of each electrode data trace was used to estimate its spike detection 

threshold. A time interval of 500 ms was used to calculate the SD. Taking into account previous 

MEA studies using SH-SY5Y cell line (30,44), spike detection threshold was set at a triple noise level 

(-3) in order to identify spikes among the noise. Only values above this threshold were extracted as 

spiking activity. Recordings of every single electrode (n) lasted for, at least, 180 s. Spikes above 

threshold were extracted from raw data and parameters, such as spike rate (Hz), were calculated 

separately in Graph Prism 6. All statistical analysis was performed in either GraphPad Prism 6 or 

Microsoft Excel. 

Analysis was purely quantitative, not qualitative. Spike sorting algorithms are an advanced way of 

analyzing qualitatively extracted data. Spike sorting helps distinguish superimposed spikes, or false 

positives from data (6). However, there are no established algorithms for analyzing data obtained 

with SH-SY5Y cells. Thus, data was not analyzed qualitatively and it is prone to the two types of 

errors mentioned. 
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4. Results & Discussion 
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4.1 SH-SY5Y cell culture on MEAs 

SH-SY5Y neuroblastoma cells have been employed in neuroscience investigation for the past 

decades. Despite its potential, SH-SY5Y cell line has rarely been used in MEA studies. We believe 

that a lack of consensual protocols in culturing methods is one of the main reasons for such disuse.  

In cell cultures, normal attachment, growth, and development are dependent on attachment 

factors and ECM components. Though some cells are able to synthesize such components, others 

require an exogenous source, particularly when grown in serum-free medium. Surface-treating 

MEAs is mandatory, but has not been deeply explored in relation to SH-SY5Y cell line culturing. Cell 

plating density affects cell culture viability and subsequent differentiation treatment, however SH-

SY5Y cell plating numbers vary immensely, even in similar studies. Furthermore, there is no 

available protocol for SH-SY5Y cells RA-induced differentiation on MEAs. These specificities led to a 

necessity to optimize the various steps for a MEA’s SH-SY5Y cell culture protocol. 

Ultimately, the main objective of these experiments was to evaluate whether an optimized SH-SY5Y 

cell culture could be a suitable model for reliable in vitro MEA recordings. 

4.1.1 MEA Coating 

The goal of this experiment was to find the best alternative amongst various coating agents by 

following the cell growth, morphology and spontaneous electrical activity exhibition. In order to do 

so, SH-SY5Y cells were cultured and differentiated with conditioned medium (3% FBS + 10 μM RA) 

for 7 days on MEAs without coating and various coating agents alone and combined. These coating 

agents were: PEI, PDL and laminin. Combinations of PEI+laminin and PDL+laminin were also tested. 

MEAs are hydrophobic, thus difficult cell-substrate adhesion. Polycations, such as PDL or PEI, 

change the substrate charge and facilitate cell adhesion. Moreover, laminin acts as adhesion-

mediating compound but has also been shown to enhance neuronal differentiation (46,110). To 

date, no comprehensive study had focused on the effects of different MEA coatings in SH-SY5Y cells 

morphological differentiation, as well as electrophysiological activity. Teppola et al (2008) had 

tested PDL, PLL, PEI and laminin but with no correlation to cell cultures electrical activity (44). 

Coated MEAs are expected to have improved neuron-electrode contact and increased seal 

resistance. Therefore, higher SNR is predictable.  

SH-SY5Y cell cultures are comprised of the two main distinct phenotypes: S- and N-type. These are 

easily distinguished under a microscope as the S-type phenotype is more epithelial-like with no or 

underdeveloped processes, whereas the N-type is more neuronal-like with pyramidal bodies and 

long processes. N-type cells tend to adhere weakly to the substrate. However, neuronal 

differentiation and neuritogenesis of SH-SY5Y cells have been proven to be regulated via cell-

substrate mechanical interactions (72).  

Although each recording area accounts for less than 1% of the total cell culture area, cell culture 

viability and spontaneous electrical activity depend on the surroundings, not only the recording 

area. Therefore, when treating MEAs it was important to homogeneously expose the array to the 

coating agents. Pipetting at least 400 µl of solution was enough to cover the whole array during 

incubation. 
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4.1.1.1 Morphological Evaluation 

To evaluate how the different MEA coatings affected cell distribution and morphology during 

differentiation treatment, phase-contrast photographs were taken 8 hours after each medium 

exchange. Representative cell culture sections from each MEA are presented in Fig. 10. 
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Figure 10 – Phase-contrast photographs of SH-SY5Y differentiated cells in coated MEAs. Control culture was 

grown on MEA without surface treatment (no coating). A; D; G; J; M; P represent control; laminin; PEI; PDL; 

PEI + laminin and PDL + laminin coated MEAs, respectively, at the first day of differentiation treatment (day 

0). B; E; H; K; N; Q represent control; laminin; PEI; PDL; PEI + laminin and PDL + laminin coated MEAs, 

respectively, at the fourth day of differentiation treatment (day 4). C; F; I; L; O; R represent control; laminin; 

PEI; PDL; PEI + laminin and PDL + laminin coated MEAs, respectively, at the seventh day of differentiation 

treatment (day 6). White arrows indicate extended neurites, while white triangles signpost S-type 

subpopulations. All photographs show a magnification of 100×.  

M 

N 

O 

P 

Q 

R 



49 
 

From the results here presented it was possible to observe that 32 hours after initial seeding, SH-

SY5Y cells had adhered in all MEA substrates. However, there were already differences in cell 

distribution, viability and differentiation.  

Uncoated MEA (control) showed unevenly distributed cells (Fig. 10A), when compared to the other 

MEAs. This has been previously reported in SH-SY5Y cell line MEA culturing (44) and negatively 

affects networks formation. Moreover, PDL (Fig. 10J) and PDL+laminin-coated (Fig. 10P) MEAs 

presented many floating cells. As these non-adherent and spherical cells are dead cells, PDL-coated 

MEAs seemed to provide a cytotoxic environment for the cells. Such cytotoxicity could have been 

caused by insufficient rinsing following surface treatment, as polycations have high pH. However, 

PEI-coated MEAs underwent the same preparation and did not present comparable quantities of 

dead cells.  

Interestingly, laminin-coated (Fig. 10D) and PEI-coated (Fig. 10G) MEAs already exhibited cells with 

developed processes and short neurites. However, this was not so for PEI+laminin-coated MEA (Fig. 

10M). Although laminin is known to enhance neurite extension (46), PEI alone has been reported 

as not being sufficient for optimal growth (44). 

At day 3 (72 h after), cultures had developed in different ways. In spite of this, all cell cultures 

exhibited some degree of cellular differentiation and network formation.   

Laminin (Fig. 10E), PEI (Fig. 10H), PEI+laminin-coated (Fig. 10N) MEAs exhibited higher neurite 

extension than other coatings. PDL+laminin-coated MEA (Fig. 10Q) displayed less dead cells than at 

day 0, but undifferentiated S-type small populations began to appear. This also happened in the 

PEI-coated MEA (Fig. 10H).  A large clump of cells detached in the PDL-coated MEA (Fig. 10K) during 

medium exchange, indicating weak cell-substrate adhesion with this type of coating. 

On the final day (day 6), MEA cultures had completely different outcomes. After 7 days of 

differentiation, it was possible to observe that most cultures were not optimal.  

Uncoated MEA (Fig. 10C) had no remaining living cells, as most detached during medium exchange 

or had already died. Laminin-coated MEA (Fig. 10F) had an increased proliferative rate and cells 

exhibited shorter neurites on day 6 than at day 3. PEI-coated MEA (Fig. 10I) had achieved cell 

density saturation due to incontrollable proliferation, mainly by S-type subpopulations. PDL-coated 

MEA (Fig. 10L) cells had almost completely detached, after forming a clump. PDL+laminin-coated 

MEA (Fig. 10R) presented many floating cells and an underdeveloped network. PEI+laminin-coated 

MEA (Fig. 10O) had formed a mature network, as cells exhibited extended neurites and 

interconnected along the array. 

It has previously been reported that PEI+laminin coating induces a more neuron-like than the other 

treatments. PDL+laminin has also been shown to induce more growth of S-type cells, when 

compared to PEI+laminin (44). These results corroborate such findings, as PEI+laminin-coated MEA 

exhibited the most mature neuronal network among tested conditions. 

This study underlined the need for optimizing other parameters such as cell plating density and 

differentiation medium. Cell density proved to be critical to the final outcome of a neuronal 



50 
 

network, as not plating the exact cell numbers may have led to pronounced differences in cell 

culture differentiation and viability. Furthermore, the used conditioned medium (3% FBS + 10 μM 

RA) failed to contain S-type subpopulations growth. In the PEI-coated MEA (Fig. 10I), S-type cells 

eventually overgrew N-type cells.  

RA has growth-inhibiting and differentiating properties. So, when exposed, SH-SY5Y cells should 

choose to differentiate rather than divide. However, 3% serum concentration in the medium could 

be sufficient to induce cell proliferation, despite RA presence. Moreover, long RA differentiation 

treatments have promoted proliferation of S-type cells, while short-term treatments induced 

differentiation the N-type cells (71).  

The results indicate that the viability and distribution of the SH-SY5Y cells are similar on MEAs 

coated with laminin alone or combined with PEI. Despite this, cells plated in the PEI+laminin-coated 

MEA exhibited a more mature network further along the differentiation treatment. Thus, the 

present study opted for PEI + laminin coating for further experiments. Furthermore, detailed 

attention was employed with respect to the cell plating density and the chosen differentiation 

treatment.  

 

4.1.1.2 Electrical Activity 

To evaluate whether coating MEAs with different adhesion-mediating compounds correlated with 

spontaneous electrical activity differences, short-term MEA recordings were taken.  

MEA recordings were made on the final day (day 6) of the differentiation treatment, after taking 

the phase-contrast photographs (day 6). Recordings were carried through and analyzed recurring 

to MC_Rack software. 

Recordings of spontaneous electrical activity lasted for 180 s. Pairs of MEAs were subject to 

experiment simultaneously. Upon experiment completion, trypsinization and MEA cleaning 

removed MEA cell cultures, and sterilization was carried out.  

Peak detection was applied to the raw data to better visualize data traces. A 2-second example of 

output from MC_Rack can be seen in Fig A. The SD of each data trace was used to estimate its 

detection threshold, which was established at triple noise (-3). Electrodes that picked up-threshold 

electrical activity during the experiment time-course were considered as “active electrodes”. These 

active electrodes were “visible” on a separate overlayed data stream, as can be seen in Fig. 11B and 

Fig. 11C. The total number of active electrodes per coated MEA can be seen in Fig. 11D. 
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Active electrodes were visible after spike detection using the SD method (Fig. 11A). Detected spikes 

were separated from raw data and displayed in overlayed data streams (Fig. 11B and Fig 11C). As 

an example, Fig. 11C shows 9 active electrodes and corresponds to the laminin-coated MEA. The 

Figure 11 – MEA recordings of SH-SY5Y cell cultures with different coating treatments. (A) 2-second display 

of a recorded data stream corresponding to the laminin-coated MEA. Each square represents one electrode. 

Y-axis and X-axis expressed in µV and ms, respectively. Green arrow indicates detection threshold (SD method; 

-3) bar. Red arrow denotes up-threshold electrical activity. “Green” spikes surpassed the detection threshold 

and were extracted from raw data. (B) Display of overlayed extracted data corresponding to the uncoated 

MEA (control). (C) Display of overlayed extracted data corresponding to the laminin-coated MEA. (D) Graph 

represents the total number of active electrodes (i.e. ones from which signals were recorded) per 3-minute 

recordings of differently coated MEAs. 

 

A 

C 
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same procedure was applied to the remaining raw data. This simple analysis enabled the detection 

of immediate differences. 

As can be seen in Fig. 11D, laminin-coated MEAs exhibited more active electrodes. Therefore, the 

role of laminin in neuronal differentiation (46) seemed to correlate with increased spontaneous 

electrical activity. PEI+laminin-coated MEA (Fig. 10O) was clearly the MEA with most active 

electrodes, as anticipated by microscopical evaluation. These results are in accordance with 

previous studies (14,44). Laminin-coated MEA (Fig. 10F) and PDL+laminin-coated MEA (Fig. 10R) 

were the 2nd and 3rd with more active electrodes.  

As expected, uncoated MEA (control) did not present any active electrode (Fig. 10B). Remaining 

attached cells were either nonviable or did not have any developed processes (Fig. 10C). PDL-coated 

MEA (Fig. 10L) presented mostly inactive electrodes, as expected. Most of the electrodes were not 

covered up by cells, unlike the two which picked up-threshold signals (data not shown).  

S-type cells do not have neurites and are relatively electrically inactive (76). This helps explain why 

PEI-coated MEA (Fig. 10I) presented less active electrodes, despite its greater cell density. As S-type 

subpopulations overgrew N-type cells, electrical function was reduced. This result underlines the 

importance of restricting S-type proliferation in culture. 

The morphological and spontaneous electrical activity evaluations combined, led to selecting PEI + 

laminin coating as standard procedure in SH-SY5Y cells culturing on MEAs. However, such 

evaluation could have been influenced by different cell plating densities and non-optimized 

differentiation procedures. Therefore, optimization of such factors was carried on.  

 

4.1.2 Cell Plating Density 

The effect of cell density on MEA recordings and cell culture viability was assessed by seeding 

different total numbers of cells and following their differentiation along a 7-day period. Phase-

contrast photographs were taken at day 0, day 3 and day 6, while MEA recordings were performed 

at the final day. Initial seedings were of 40.000 (~140 cells/mm2); 60.000 (~210 cells/mm2); 80.000 

(~280 cells/mm2) and 100.000 (~350 cells/mm2) viable cells per MEA. MEAs were previously coated 

with PEI and laminin double-step treatment. 

As cell density increases, the number of electrodes covered up by cells sho  uld also increase. On the 

other hand, if cell density is excessive, cells may lack the physical space to extend neurites during 

differentiation and form mature neuronal networks. Although the number of covered electrodes 

could be assessed by microscopically monitoring the culture, whether this cell-electrode proximity 

transduced into up-threshold electrical activity had to be tested recurring to recordings. A simple 

way of determining whether cell density affected network activity was to count the number of 

electrodes which detected up-threshold activity during the 3-minute recordings. These electrodes 

were considered as active electrodes. 
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Figure 13 – Cell density effect on the number of electrodes activated. Graph represents the number of active 

electrodes (i.e. ones from which signals were recorded) per 3-minute recordings of cell cultures with different 

cell plating densities, after 7-day differentiation treatment. All values are expressed as mean, error bars 

represent standard deviation (±SD), n=3. 

B ~210 cells/mm2 

A ~140 cells/mm2 C ~280 cells/mm2 

D ~350 cells/mm2 

Figure 12 – Phase-contrast photographs of SH-SY5Y cells at different cell plating densities. Photographs 

were taken after 7-day differentiation treatment. A; B; C; and D represent sections of MEAs where 40.000; 

60.000; 80.000 and 100.000 cells were seeded, respectively. All photographs show a magnification of 100×. 
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Brain neurons are typically grown in culture above a density of 300 cells/mm2 (113). However, 

dissociated neuronal cultures have been plated on MEAs in densities ranging from 20 cells/mm2 to 

1000 cells/mm2 (33). In turn, SH-SY5Y cells have been plated on MEAs in densities ranging from as 

low as 50 cells /mm2 (44) to 420 cells/mm2 (30).  

From the results here presented, one can deduce that cell plating density plays an important role 

in SH-SY5Y network formation. From a morphological point of view, plating 60.000 cells produced 

the more neuronal-like networks (Fig. 12B). At this density, cells had enough space to develop 

extended neurites, but still covered most electrodes. In contrast, plating 80.000 and 100.000 cells 

resulted in saturated networks, where cells did not appear morphologically differentiated (Fig. 12C 

and Fig. 12D).  

In most MEA cultures (n=12) not all electrodes were covered up by cells. Additionally, those that 

were, often distanced from the cell body or the axon hillock, where it would be more probable to 

record electrical activity (12). This helps explain why, from a total of 59 recording electrodes, most 

often, less than 30% picked up-threshold activity. 

A minimum of 7 electrodes, at the lowest number of seeded cells (40.000), and a maximum of 18 

electrodes, at the highest number of seeded cells (100.000), were activated. Cell density affected 

the number of electrodes which picked up cell electrical activity, but this effect was more 

pronounced from the lowest number of seeded cells (40.000) to the rest, than in between them 

(60.000;80.000;100.000).  

Undifferentiated SH-SY5Y cells exhibit a very low SNR (30,76). Even after differentiation treatment, 

a substantial part of a culture can be composed of undifferentiated cells and/or S-type cells. This 

compromises the network spontaneous electrical activity recordings. Moreover, the spike 

detection threshold was set at triple noise level (-3). Such threshold may be too strict, rejecting data 

that would be extracted with lower thresholds. However, it reinforces extracted data strength. 

Generally, the total number of active electrodes increased in relation to cell plating density. Still, 

the increase at 80.000 and 100.000 plated cells was not statistically significant in relation to plating 

60.000 cells. Therefore, taking into account the morphological analysis, cell plating 60.000 SH-SY5Y 

cells per MEA was chosen for the following experiments. 
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4.1.3 Cell Differentiation  

Differentiation of SH-SY5Y cells is required to mimic the intracellular environment of a mature 

neuronal cell. Upon differentiation, SH-SY5Y cells possess more biochemical, structural, 

morphological, and electrophysiological similarity to neurons (46,71,76). Furthermore, when SH-

SY5Y cells are suspended in solution, connections previously established are destroyed. Therefore, 

the differentiation treatment must be made once cells are attached onto the array. Induction of 

differentiation by RA treatment helps solve this problem by forcing the creation of a new network. 

Based on  the literature, coating agents have an impact on SH-SY5Y cell morphology, growth and 

viability (44,46). For example, plates coated with 10 μg/ml laminin have been proven to enhance 

neurite outgrowth in SH-SY5Y cells (46). The results here presented corroborate such findings on 

MEA substrates. Nonetheless, substrate alterations, alone, do not induce optimal cell 

differentiation (72). Both adhesion and growth factor receptors should be stimulated 

simultaneously when differentiating SH-SY5Y cells (46,72).  

Past experiments underlined the need to optimize a differentiation medium and a treatment time-

course that would systematically render mature neuronal-like SH-SY5Y cell networks. An optimized 

protocol should favor a N-type population-dominant culture, concomitantly increasing network’s 

spontaneous electrical activity. 

Moreover, precise electrophysiological and compound-effect investigations require the use of 

culture medium with well-defined effects. Thus, serum use in culture medium needs to be 

thoroughly analyzed. Serum-free medium is often considered a more appropriate choice during 

electrophysiological recordings of pharmacology and toxicology, since albumin (major component 

of FBS) is a non-specific binding agent (113). However, serum is an essential nutritional component 

of cell culture medium and plays a vital role during the growth and development of in vitro cultures. 

In the course of this experiment, 60.000 SH-SY5Y cells were plated on PEI+laminin-coated MEAs in 

complete growth medium (supplemented with 10% FBS). Medium was completely aspirated 24h 

after plating. Then, differentiation was induced during a 7-day treatment with 3 separate additions 

of conditioned media (at day 0; day 3 and day 6). Combinations of 10 μM RA with serum-free (0%) 

and low serum (1% and 3%) media were tested. 

Phase-contrast photographs were taken every 3 days in order to follow morphological 

differentiation and network formation along treatment. Furthermore, the evaluation of neuronal 

differentiation was accompanied by 180 s MEA recordings to determine how SH-SY5Y cells ability 

to generate spontaneous electrical activity evolved over the differentiation treatment. 
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4.1.3.1 Morphological Evaluation 

To evaluate how the different conditioned media affected cell morphology and network formation 

along differentiation treatment, phase-contrast photographs were taken 8 hours after each 

medium exchange. Representative cell culture sections from each MEA are presented in Fig. 14. 
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Figure 14 – Phase-contrast photographs of SH-SY5Y cells grown in different media. Control culture did not 

undergo differentiation treatment with conditioned medium. A; D; G; J represent cell cultures in complete 

growth medium (10% FBS); serum-free medium (0% FBS); low serum medium (1% FBS) and low serum medium 

(3% FBS), respectively, at the first day of treatment (day 0). B; E; H; K; represent cell cultures in complete 

growth medium (10% FBS); serum-free medium (0% FBS); low serum medium (1% FBS) and low serum medium 

(3% FBS), respectively, at the fourth day of differentiation treatment (day 4). C; F; I; L; represent cell cultures 

in complete growth medium (10% FBS); serum-free medium (0% FBS); low serum medium (1% FBS) and low 

serum medium (3% FBS), respectively, at the seventh day of differentiation treatment (day 6). White arrows 

indicate extended neurites, while white triangles signpost S-type subpopulations. All photographs show a 

magnification of 100×. 
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From the results here presented it was possible to observe that 8 hours after the first addition of 

conditioned medium (day 0), cells had minor differences in morphology. 

Interestingly, undifferentiated cell culture (control) presented cells with some developed processes 

(Fig. 14A), unlike any other culture. This may have been due to the fact that, although medium was 

replaced, the medium composition did not change. Therefore, control culture did not suffer the 

initial negative impact that a severe change in medium composition caused. At this point, low serum 

medium (1%) presented the culture with more dead cells (Fig. 14G). Although this could have been 

caused by the lack of serum in medium, the same was not observed in the culture exposed to 

serum-free medium (Fig. 14D). 

At day 3 (72 h after), cultures had differentiated and formed networks with different degrees of 

complexity. However, S-type cells began to proliferate in cultures treated with low serum media. 

Serum-free medium had induced the formation of a complex network composed of N-type cells 

(Fig. 14E). Small clumps of cells with extended neurites spread homogeneously along the array. In 

the low serum medium (1%), some extended neurites were evident, but S-type cells still remained 

present (Fig. 14H). In the other low serum medium (3%), cells were not well differentiated, as no 

network formation was visible (Fig. 14K). At this point, the culture was already mainly composed of 

S-type cells. 

After 7 days of differentiation treatment (day 6), it was possible to observe that cultures were not 

as optimal as before.  

The undifferentiated culture had reached a point of cell density saturation, with almost no space 

in-between cells (Fig. 14C). The S-type population was dominant. The culture treated with serum-

free medium presented mostly dead cells (Fig. 14F), while cultures treated with low serum media 

were composed mainly of S-type cells (Fig. 14I and Fig. 14L). 

As expected, cells grown in complete growth medium proliferated unrestrictedly. On the contrary, 

cells grown in conditioned media, generally, differentiated rather than divided. Apparently, 

medium without serum did not provide enough conditions for maintaining a differentiated culture 

for more than 4 days, as most cells died between the 4th and the 7th day of the differentiation 

treatment. However, the culture treated with this medium did not have S-type cells. Such 

subpopulation was not restricted with low-serum media, especially at 3% FBS. Although 

differentiated cells were still present at the 7th day in treatment with 1% FBS, remaining neurites 

appeared fragmented and generally not as viable as at the 4th day (day 3). 
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4.1.3.2 Electrical Activity Evolution 

Patch-clamp studies have shown that spontaneous electrical activity increases in differentiated SH-

SY5Y cells (76). In fact, untreated cells exhibit scarce spontaneous electrical activity, but upon RA-

induced differentiation there is an increase in activity. Moreover, a previous MEA study utilizing 

undifferentiated SH-SY5Y cells had reported low SNR (30). 

In order to analyze whether differentiated cells exhibited increased spontaneous electrical activity 

with the methodology here presented, recordings were made at three separate times during 

differentiation treatment. These MEA recordings were made immediately before taking the phase-

contrast photographs (day 0; day 3; day 6). This experiment also aimed to distinguish between 

cultures treated with the different conditioned media. 

Neuroplasticity is associated with changes in the amplitude of synaptic potentials. However, in 

extracellular recordings, amplitude depends massively on the neuron-electrode distance. As MEAs 

are not adapted to recording synaptic potentials, such kind of analysis was not performed in this 

experiment. Unless these changes reached detection threshold, recordings were ‘blind’ to those 

critical events. 

Recordings of spontaneous electrical activity lasted for 180 s. Pairs of MEAs were subject to 

experimentation simultaneously. A simple way of determining whether different conditions 

affected overall activity would be to count the total number of extracted spikes in the time window 

(180 s). This is problematic, as the number of covered electrodes varies in-between cultures. Even 

though cell plating density was the same, undifferentiated cells proliferated until saturation. 

Moreover, even MEAs containing the exact same number of cells, most often, do not have the same 

number of covered electrodes due to cells’ random distribution nature. Therefore, cultures with 

more active electrodes could have an increased total count of extracted spikes, disregarding 

increased spontaneous electrical activity in individual electrodes. 

In order to solve this problem, total spike counts from 3 active electrodes from each MEA were 

averaged. Cells migration kinetics during treatment, obliged to changing the electrodes chosen for 

analysis in-between day 0; day 3 and day 6 recordings. The evolution of the total spike counts can 

be seen in Table 2 and Fig. 15. 
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Table 2 – Total spike count during differentiation treatment with different media. The number of active 

electrodes analyzed (n) is indicated for each condition. 

Conditioned Media Total spike count per active electrode [mean ±SEM (n)] 

Day 0 Day 3 Day 6 

Control 28.5 ±6.5 (2) 133.0 ±23.5 (3) 60.0 ±18.7 (3) 

Serum-free (0%) 30.0 ±3.0 (2) 679.3 ±105.0 (3) - (0) 

Low serum (1%) 36.0 (1) 452.3 ±63.2 (3) 237.3 ±29.0 (3) 

Low serum (3%) 47.0 ±14.0 (2) 192.3 ±52.4 (3) 82.7 ±10.5 (3) 

Abbreviations: SEM, standard error of mean 
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Figure 15 – Total spike count along differentiation treatment with different media. Data is expressed as 

means ±SEM and represents the number of extracted spikes per active electrode in 180 s. 

 

From the results here presented one can conclude that RA-induced differentiation increases SH-

SY5Y cells spontaneous electrical activity exhibition. All tested conditioned media increased the 

total spike count in some measure. 

At the 1st day of treatment (day 0), differences were not statistically significant. Detected spikes 

were very sparse and very few electrodes detected up-threshold activity. Low serum (1%) only 

presented one active electrode. 

At the 4th day of treatment (day 3), cultures had formed mature networks and exhibited extremely 

increased activity. Particularly, the culture treated with serum-free (0%) with 679.3 ±105.0 detected 

spikes along the 180 s. Culture treated with serum-free (3%) medium did not show relevant 

differences in comparison to the  complete growth medium (10%) treated culture. 
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At the 7th day of treatment (day 6), activity had decreased in all conditions. Due to cell death, there 

were no active electrodes left in the serum-free (0%) medium-treated culture. At this point, low 

serum (1%) medium-treated culture was the one that totaled more spike events (237.3 ±29.0). 

However, its activity had reduced significantly since the 4th day of treatment (452.3 ±63.2). 

Generally, exhibition of spontaneous electrical activity correlates with the morphological 

evaluation. Even when many cells covered the electrodes (Fig. 14C and Fig. 14L), this increased cell 

density did not correlate with increased activity. We believe that the proliferation of S-type cells in 

such cultures negatively affects recordings, as these cells are electrically inactive.  

Serum-free (0%) medium seems to have contained S-type cells proliferation and induced the 

formation of mature network early on treatment. At the 4th day of treatment, cells exposed to a 

serum-free medium presented shorter ISIs (data not shown) and increased spiking activity. At this 

point, SH-SY5Y cells presented the highest spike count among treatments. However, such 

conditioned medium could have been too limiting for cell viability in more prolonged periods of 

time. Eventually, cells died between the 4th and the 7th day of differentiation treatment. 

Most SH-SY5Y cell differentiation protocols include an initial phase (usually 24h) with 10% FBS 

present in medium, followed by at least three days of differentiation treatment with low or serum-

free medium. However, these well-defined protocols do not take into account electrophysiological 

specificities. Low serum (1% and 3%) culture media did not show significant improvements in 

morphological differentiation, nor in spiking activity when compared to serum-free medium (0%). 

Moreover, such supplemented media could compromise inferences taken from Aβ addition, due to 

incontrollable interactions between peptides. Taking into account these factors combined and cell 

viability during the whole treatment, a 4-day differentiation treatment with serum-free medium 

was chosen for the final experiment.  

Dissociated neuronal cultures demand increased efforts and expertise than SH-SY5Y cells 

manipulation. Furthermore, once cells are plated onto MEAs they still need 2-3 weeks of 

maturation before recordings take place (33,100). The methodology here proposed enables the 

formation of networks exhibiting spontaneous activity after 4 days in culture. Such short-cut can be 

very useful for a wide range of applications. However, this model comes with serious relative 

limitations as cultures did not survive for prolonged periods of time. Albeit this shortcoming, the 

proposed model may still be used for assessing acute effects in short-term experiments. 

Relating morphology of networks maintained in the cell culture to general neuronal health and 

predicted electrophysiological is challenging. Knowing when cultures are mature enough for 

experimental use is a common problem faced by researchers. Here, total spike counts and firing 

rates changed markedly during the culture differentiation treatment. Although, spontaneous 

electrical activity exhibition seems to be closely related to the age of the network, more detailed 

studies are needed to establish the optimal day(s) for MEA recordings with the SH-SY5Y cell line. 
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4.2 Aβ Addition to SH-SY5Y MEA Cultures 
 

Aβ 1-42 oligomers, but not monomers, have been shown to produce significant reductions in 

neuronal spontaneous electrical activity of cultured neuronal networks. Benilova et al (2009) 

showed that 20 µM Aβ 1-42 oligomers can immediately suppress spike activity on MEAs (54), while 

Kuperstein et al (2010) showed that 1 µM can rapidly and persistently depress spike activity on 

patch-clamp in cultured hippocampal neuronal networks (53). Recently, Charkhkar et al (2015) 

demonstrated that 5 µM significantly inhibited spiking activity. However, exposure to 0.2 µM and 

1 µM failed to alter the spike rate in a statistically significant manner (100). 

Spike rate is an important component of neural coding. As it is prone to alteration by electrical and 

chemical stimuli, the frequency of APs provides a quantitative evaluation of overall cell electrical 

activity (54). Charkhkar et al (2015) stated that 5 µM Aβ 1-42 oligomers reduced the normalized 

spike rate by approximately 60% from the baseline, immediately (100). 

The initial toxic impact of these Aβ oligomers is synaptic in nature, however this can spread into the 

cells leading to neuronal cell death (53). Though, short-term recordings cannot give information on 

this development, they contribute to identifying acute Aβ effects on neuronal networks. 

In order to test whether differentiated SH-SY5Y MEA culture’s electrical activity was influenced by 

Aβ, cultures were exposed to 0,1; 1 and 10 μM Aβ 1-42 oligomers. Aβ was added after previous 

medium exchange under a laminar flow cabinet (30 minutes before experiment). Recordings time-

course totaled 1980 s, from which 1800 s were after Aβ addition. Results from two independent 

experiments were utilized in this analysis.  

The total number of spikes per second (spike rate) was calculated. Active electrodes were identified 

and spike rates (Hz) for each electrode were computed individually, as seen in Fig. 16. Mean spike 

rates (before and after Aβ addition) from 6 active electrodes (3 from each experiment) were 

considered in the analysis of each condition. These were calculated in 3-minute intervals, so as to 

follow alterations during the whole recording (see Fig. 18). 
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Figure 16 – Single recording of spontaneous electrical activity before and after Aβ addition. (A) 1 s display 

of recorded data stream corresponding to “electrode 53” at 14 seconds into recording session. Y-axis and X-

axis expressed in µV and ms, respectively. Spikes extracted by detection threshold are enlighten in green. (B) 

Graph depicts the spike rate (spikes/sec) recorded at “electrode 53” during whole recording (1980 s). Red line 

represents the time point of 10 µM Aβ 1-42 oligomers addition (at 180 s). The 2 seconds post-Aβ addition were 

excluded from analysis as the addition fluxes caused widespread noise in all recording electrodes. Mean spike 

rate (Hz) was 4.61 ±4.15 SD before Aβ addition and 0.78 ±1.18 SD after. (C) Phase-contrast photograph of the 

cell culture after Aβ addition. Green arrow indicates recording electrode no. 53. 
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As it can be seen in Fig. 16 and Fig. 17, addition of 10 µM Aβ 1-42 oligomers visibly decreased spike 

rate and overall spiking activity in electrode no 53 and electrodes no 52; 66 and 87, respectively. 

These findings are comparable with previous work demonstrating that a dose of 5 µM caused an 

immediate reduction in spike rate (100), whereas a lethal dose of 20 µM caused immediate silencing 

of the network (54) in primary neuronal cultures. 

Large precipitates can be seen in Fig. 16C and Fig. 17B, these increased in correlation with Aβ 

concentration but were not present in the control culture. They were most probably caused by the 

synthetic Aβ formulation and their effect on cells was unknown. 

 

Figure 17 – Longterm data display of spontaneous electrical activity before and after Aβ addition. (A) 30-

minute display of recorded activity in 3 active electrodes. Y-axis and X-axis expressed in µV and mins, 

respectively. Red triangle indicates the time point of 10 µM Aβ 1-42 oligomers addition (at 180 s). (B) Phase-

contrast photograph of cell culture sections after Aβ addition. White, red and green arrows indicate recording 

electrodes no. 87; 66 and 52, respectively. 
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The effect of sublethal low µM range concentrations (<2 µM) has previously only been observed 

after ON treatment (54). The concentrations here tested of 0.1 µM and 1 µM showed no significant 

acute effect on network activity. These results are also in agreement with previous studies, where 

0.2 µM and 1 µM failed to immediately alter spike rate in a statistically significant manner (100).  

However, 10 µM oligomers addition visibly decreased spike rate quasi-immediately. In half of the 

considered electrodes (n=3), activity was completely suppressed after addition and did not recover 

significantly during the experiment time-course. In fact, spontaneous electrical activity exhibition 

was significantly decreased in all the active electrodes analyzed for such concentration. 

In all tested conditions, the mean spike rate exhibited a tendency to reduce markedly after solution 

addition and less pronouncedly along the experiment. However, this decrease was very augmented 

in the active electrodes where cells were exposed to 10 µM oligomers. Such cells exhibited very 

sparse spiking activity after Aβ addition, if any. These results indicate that the highest concentration 

tested deeply decreased spiking activity in the SH-SY5Y cell cultures. 

Past results have suggested that inotropic glutamate receptors, AMPA/kainate and NMDA, are both 

involved in the net effects of Aβ 1-42 oligomers. However, immediate effects on network activity 

are probably mainly AMPA/kainate receptor mediated, as when exposed to a competitive 

antagonist of AMPA/kainate receptors, the subsequent treatment with 5 µM Aβ42 oligomer 

resulted in immediate significant inhibition (100). In recent years, new generation optical 

fluorescent probes have been tested in synchronization with MEA studies. Optimized fluorescent 

probes for visualizing glutamate neurotransmission (114) could help unravel Aβ acute effects on 
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are expressed as means and error bars represent ±SEM. 
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the synapse function. The same line of thought can be applied to other molecules involved in signal 

transmission, such as calcium. 

The main goal of this work was to determine an acute effect of Aβ 1-42 oligomers on SH-SY5Y cell 

cultures firing dynamics. For the highest concentration (10 µM), Aβ 1-42 oligomers markedly 

reduced spiking activity for the recording length. In most active electrodes, spontaneous electrical 

activity exhibition was suppressed quasi-immediately. Beside the differences in the cell types or 

experimental design, oligomers seem to strongly influence network behavior. 

 

 

 

 

 

 



 
 

5. Conclusion 
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The objective of this thesis was to develop a SH-SY5Y cell culture model for obtaining reliable 

extracellular recordings. Seeding SH-SY5Y cells and forming a neuronal network on surface-treated 

MEAs could provide an effective model for a wide range of applications in neurosciences, including 

biosensors for neuroprotective and neuroharming compounds. The results here presented show 

the feasibility of using differentiated SH-SY5Y cells in MEA recordings. Particularly, to investigate 

the electrophysiological acute effects of neurodegenerative peptides, such as Aβ. 

MEAs coating, cell plating density and differentiation treatment markedly influenced cell 

distribution, viability, morphological differentiation and electrophysiological properties. The 

methodology we propose enables the formation of networks exhibiting spontaneous activity after 

4 days in culture. Alhtough cell cultures did not survive for prolonged periods of time, differentiatied 

SH-SY5Y cell cultures could still be useful for short-term experiments or assessing acute compound 

effects. Research fields where investigators may lack cell culture expertise, such as robotics, could 

also benefit from a simpler neuronal model with a well-defined growth and maintenance protocol.  

Coating MEAs in a double-step treatment of PEI and laminin enhanced neuronal differentiation and 

increased the number of electrodes which picked up-threshold activity when compared to other 

coating treatments and uncoated MEAs. Cell plating density was optimized so as to achieve a 

balance between enough cells for relevant activity exhibition and enough spare space for neurite 

extension and network formation. Cell plating 60.000 cells per MEA led to the formation of the 

most neuronal-like networks. Differentiation treatment with 10 μM RA and serum-free conditioned 

medium proved to induce mature network formation at the 4th day of treatment and spike rate 

levels comparable to primary neuronal cultures. Total spike counts and firing rates changed during 

the culture development with marked day differences. Spontaneous electrical activity exhibition 

seems to be closely related to the age of the network and more detailed studies are needed to 

establish the optimal day for recordings. 

In the future, the SH-SY5Y cell line can be used to explore other differentiation treatments. 

Although RA-induced differentiation is the most common treatment, compounds such as BDNF 

have been shown to induce better biochemical differentiation. The work here presented explored 

morphological and quantitative spiking activity differences, future studies could explore 

concomitantly molecular alterations recurring, for example, to coupled fluorescence analysis and 

the new generation of optical probes. Recent years have been marked by coupled analysis of 

neuroelectrophysiology and fluorescent dye molecules. Voltage or molecule sensitive dyes could 

help unravel compound effects on single cell and network behavior.  

Addition of 10 µM Aβ 1-42 oligomers visibly decreased spike rate and overall spiking activity, as 

expected. However, the concentrations of 0.1 µM and 1 µM showed no significant acute effect on 

network activity. These results prove that Aβ exerts a modulatory effect on differentiated SH-SY5Y 

cells spontaneous electrical activity. In the future, overnight incubation at such concentrations 

could be tested to sustain differences in spontaneous activity. Simultaneous incubation of Aβ 

oligomers with anti-oligomers antibodies could help understand whether those effects are Aβ-

mediated or due to network ageing or stress.  

The single-recording experiments here presented extract information and permit one to draw 

conclusions from representative, temporally limited snapshot timelines. This approach bears the 
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risk of missing crucial moments that may help our understanding of physiological events. One way 

of circumventing this problem would be resorting to an incubator-independent cell-culture 

perfusion platform, thus prolonging the recordings time-course.  

The electrophysiological properties of the neuroblastoma cultures were analyzed by recording the 

spontaneous activity of the network. In vitro neuroblastoma networks show spontaneously firing. 

These firing rates change during the culture development with marked day differences and the 

global rate is closely related to the age of the network. However, recordings of SH-SY5Y have the 

disadvantage of having a very low SNR and reduced active electrodes in comparison to mature 

primary neuronal cultures. 

Although SH-SY5Y cell line is widely used as an in vitro model for AD and the existence of evidence 

that these cells can have an electrophysiological behavior similar to neurons, until now there have 

been no MEA studies using SH-SY5Y cells for investigation on AD. This cell line culturing on MEAs 

and its successful differentiation into a mature neuronal network can be extremely useful for 

laboratories that do not have access to primary neuronal cultures. Moreover, its usage may save 

resources and facilitate obtaining faster high-throughput results. The work developed in this thesis 

led to obtaining SH-SY5Y cell cultures exhibiting relevant spontaneous electrical activity in 4 days.   

Obtaining a viable and reliable MEA cell culture is the hardest component in a MEA experiment. SH-

SY5Y MEA cultures are often fastidious and delicate, but thanks to their simplicity and accessibility 

they may provide a powerful model for studying neuronal activity. We propose that differentiated 

SH-SY5Y cells could be used to assess how Aβ acutely modifies the synaptic function throughout 

the neuronal network.
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7.1 MEAs Handling 
In this section one can find more info on how MEAs were manipulated, conserved and kept 

sterilized during and in-between experiments. 

7.1.1 Precautions 

Due to its fragility, MEAs were maintained inside a sterile 100 mm Petri dish at all times. MEAs are 

glass made and any crack in its substrate renders them unusable. Concerning this, any MEA 

manipulation was made on a flat and completely stable surface. Placing the Teflon lid and pipetting 

onto the MEA were especially delicate steps. It was vitally important that no solid object (e.g., 

pipette tips) ever touched the array as it could irreversibly damage the electrodes.  

When needed, MEAs were gently transported while keeping the bottom of the dish parallel to the 

ground. Transferences from the storage incubator to the recording system were especially critical, 

as quick movements with the MEA or shaking could detach the cell culture from the substrate. 

 

7.1.2 Sterilizing and Reusing 

Prior to cell culturing, MEAs have to be sterilized with standard methods such as immersion in 70% 

ethanol, UV-light exposure, dry-heat sterilization, or vapor autoclavation (43,78). Furthermore, any 

work with an open MEA (without Teflon lid) must take place in a standard cell culture laminar flow 

cabinet to minimize the risk of contamination.  

After unsatisfactory results with a 70% ethanol sterilization procedure (cell cultures were often 

inviable and ethanol could fix cell debris), vapor autoclavation was chosen as standard. Therefore, 

in order to sterilize the MEAs, each MEA was rinsed with sterile distilled water and allowed to dry 

under a laminar flow cabinet. Then, MEAs were carefully inspected for cleanliness, intact insulation 

and cell debris from previous experiments under an optical microscope. While inside a borosilicate 

glass Petri dish, MEAs were vapor autoclaved at 121 °C for 20 minutes. Typically, MEAs were 

allowed 2 – 3 hours for cooling and 1 day for complete drying. When not needed for immediate 

use, arrays were immersed in sterile distilled water and stored at 4 °C in the dark (to prevent growth 

of algae). 

When reusing MEAs that had cell cultures on, the organic matter was completely removed first. 

Therefore, 500 μl of 0.05% trypsin was added to the array and the MEA was incubated at 37°C for 

30 minutes. The array was then rinsed with distilled water and inspected under an optical 

microscope. If cellular matter still remained, the trypsin step was repeated. When the array was 

completely clean, the sterilization step proceeded. 
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7.2 Setting up the MEA System 
 

In order to set up the MEA2100-System correctly, various system manuals were consulted. When 

preparing such delicate experiments, one must be extremely cautious in order to obtain reliable 

recordings. Therefore, settings were formerly and thoroughly tested.  

MEA2100-System Manual (2014) states that all system devices must be placed on a stable and dry 

surface, where air can circulate freely and the devices are not exposed to direct sunlight. The data 

acquisition computer, the interface board and the temperature controller were all connected via 

power supply to a power outlet of the same electrical system. The headstage was connected via an 

eSATAp cable to the interface board. In turn, the interface board was connected via an USB high 

speed 2.0 cable to the data acquisition computer. The internal heating element of the MEA2100 

headstage was also connected to the temperature controller, which in turn connected with the 

interface board. Consequently, the interface board transmitted all information (data recorded with 

the headstage and set temperature) to the data acquisition computer letting complete control over 

the experiment. 

The MEA socket in the base plate featured a resistive heating element and a Pt-100 temperature 

sensor. An external T-control unit (Multi Channel Systems, HC-1) kept the temperature of the socket 

surface at less than or equal to 36.5°C. 

MC_Rack software was installed in the data acquisition computer. This software let complete 

control over pre, during and post-experiment parameters.  

MEAs are not symmetrical. When placing the MEA on the headstage, the MEA chip should be on 

the right side viewed from the front. MEAs have one big iR that should be placed with reference 

electrode to the left side in the amplifier. Otherwise, the MEA layout does not match with the pin 

layout of the channel map in MC_Rack. 
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7.3 List of Materials 
 

7.3.1. Devices 

 

 Hera cell CO2 incubator (Heraeus); 

 Safety cabinet Hera safe (Heraeus); 

 Inverted optical microscope (LEICA); 

 Up-right optical microscope (Olympus); 

 Hemacytometer (Sigma-Aldrich); 

 Bath SBB6 (Grant); 

 Culture Plates (Corning); 

 60MEA200/30iR-Ti-gr MEAs (Multichannel Systems); 

 ALA-MEA MEM (ALA Scientific Instruments); 

 Ultra-stable platform (Scientifica); 

MEA2100-System (Multichannel Systems) set up: 

 MEA2100-HS2x60 headstage for 2 x 60-electrode MEAs; 

 Interface Board; 

 T-control unit; 

 Data acquisition computer (LG); 

 MC-Card. 

Software: 

 MC_Rack;  

 GraphPad Prism version 6.0; 

 Microsoft Excel. 

7.3.2 Reagents and Solutions 

 

Complete growth medium 10% FBS MEM:F12 (1:1): 

 MEM (Gibco, Invitrogen)       4.805 g  

 F12 (Gibco, Invitrogen)        5.315 g  

 NaHCO3 (Sigma)        1.7 g  

 Sodium Pyruvate (Sigma-Aldrich)      0.055 g  

 1% Antibiotic/Antimycotic (AA) mix (Gibco, Invitrogen)    10 mL  

 10% FBS (Gibco, Invitrogen)       100 mL  

 L-Glutamine (200 mM stock solution)      2.5 mL 
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Adjust to pH 7.4 and to a final volume of 1000 mL in dH2O. Sterilize by filtering through a 0.2 

μm filter and store at 4ºC.  

 

Other consumables: 

 PBS (Sigma-Aldrich); 

 Ethanol;  

 Trypsin-EDTA solution (Sigma-Aldrich); 

 Poly-D-Lysine (Sigma-Aldrich); 

 Laminin (Sigma-Aldrich); 

 Polyethileneimine (Sigma-Aldrich); 

 DMSO (Fisher Scientific); 

 Synthetic Aβ 1-42 (Genic Bio). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


